1
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Wu Y, Mohd Sani SB, Peng K, Lin T, Tan C, Huang X, Li Z. Research progress of the Otubains subfamily in hepatocellular carcinoma. Biomed Pharmacother 2024; 179:117348. [PMID: 39208669 DOI: 10.1016/j.biopha.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
In cancer research, oncogenesis can be affected by modulating the deubiquitination pathway. Ubiquitination regulates proteins post-translationally in variety of physiological processes. The Otubain Subfamily includes OTUB1 (ovarian tumor-associated proteinase B1) and OTUB2(ovarian tumor-associated proteinase B2). They are deubiquitinating enzymes, which are research hotspots in tumor immunotherapy, with their implications extending across the spectrum of tumor development. Understanding their important role in tumorigenesis, includ-ing hepatocellular carcinoma (HCC) is crucial. HCC has alarming global incidence rates and mortality statistics, ranking among the top five prevalent cancers in Malaysia1. Numerous studies have consistently indicated significant expression of OTUB1 and OTUB2 in HCC cells. In addition, OTUB1 has important biological functions in cancer, suggesting its important role in tumorigenesis. However, the mechanism underlying the action of OTUB1 and OTUB2 in liver cancer remains inadequately explored. Therefore, Otubain Subfamily, as potential molecular target, holds promise for advancing HCC treatments. However, further clinical studies are required to verify its efficacy and application prospects.
Collapse
Affiliation(s)
- Yanming Wu
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Sa'udah Badriah Mohd Sani
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Ke Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| | - Tao Lin
- Department of General Surgery, Anyang People's Hospital, Anyang, Henan 450000, China.
| | - Chenghao Tan
- Department of Social Science, Universiti Sain Malaysia, Gelugor, Penang 11700, Malaysia.
| | | | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
3
|
Wang X, Liu Y, Zhao Q, Wang X, Chen X, Hou L, Tian S, Peng ZM, Han XJ, Wang T, Zhang Z, Tou FF, Huang S, Rao J, Chen L, Zheng Z. PILRB potentiates the PI3K/AKT signaling pathway and reprograms cholesterol metabolism to drive gastric tumorigenesis and metastasis. Cell Death Dis 2024; 15:642. [PMID: 39227585 PMCID: PMC11372125 DOI: 10.1038/s41419-024-07026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Paired immunoglobin-like type 2 receptor beta (PILRB) mainly plays a crucial role in regulating innate immunity, but whether PILRB is involved in cancer is poorly understood. Here, we report that PILRB potentiates the PI3K/AKT pathway to drive gastric tumorigenesis by binding and stabilizing IRS4, which could hyperactivate the PI3K/AKT pathway. Firstly, the levels of PILRB are upregulated in human gastric cancer (GC) specimens and associated with poor prognosis in patients with GC. In addition, our data show that PILRB promotes cell proliferation, colony formation, cell migration and invasion in GC cells in vitro and in vivo. Mechanistically, PILRB recruits the deubiquitination enzymes OTUB1 to IRS4 and relieves K48-linked ubiquitination of IRS4, protecting IRS4 protein from proteasomal-mediated degradation and subsequent activation of the PI3K/AKT pathway. Importantly, the levels of PILRB are positively correlated with IRS4 in GC specimens. Meanwhile, we also found that PILRB reprogrammed cholesterol metabolism by altering ABCA1 and SCARB1 expression levels, and PILRB-expression confers GC cell resistance to statin treatment. Taken together, our findings illustrate that the oncogenic role of PILRB in gastric tumorigenesis, providing new insights into the regulation of PI3K/AKT signaling in GC and establishing PILRB as a biomarker for simvastatin therapy resistance in GC.
Collapse
Affiliation(s)
- Xing Wang
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yuanyuan Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Chaoyang, China
| | - Li Hou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Chaoyang, China
| | - Shaodan Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Chaoyang, China
| | - Zi-Mei Peng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Fang-Fang Tou
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Shan Huang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| | - Jun Rao
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi, PR China.
| | - Lixiao Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Zhi Zheng
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| |
Collapse
|
4
|
Hong Z, Liu F, Zhang Z. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Exp Hematol Oncol 2024; 13:91. [PMID: 39223632 PMCID: PMC11367865 DOI: 10.1186/s40164-024-00552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Although immune checkpoint-based cancer immunotherapy has shown significant efficacy in various cancers, resistance still limits its therapeutic effects. Ubiquitination modification is a mechanism that adds different types of ubiquitin chains to proteins, mediating protein degradation or altering their function, thereby affecting cellular signal transduction. Increasing evidence suggests that ubiquitination modification plays a crucial role in regulating the mechanisms of resistance to cancer immunotherapy. Drugs targeting ubiquitination modification pathways have been shown to inhibit tumor progression or enhance the efficacy of cancer immunotherapy. This review elaborates on the mechanisms by which tumor cells, immune cells, and the tumor microenvironment mediate resistance to cancer immunotherapy and the details of how ubiquitination modification regulates these mechanisms, providing a foundation for enhancing the efficacy of cancer immunotherapy by intervening in ubiquitination modification.
Collapse
Affiliation(s)
- Zihang Hong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Huang M, Liu Y, Yan Q, Peng M, Ge J, Mo Y, Wang Y, Wang F, Zeng Z, Li Y, Fan C, Xiong W. NK cells as powerful therapeutic tool in cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:733-757. [PMID: 38170381 DOI: 10.1007/s13402-023-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
Collapse
Affiliation(s)
- Mao Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center, Baylor College of Medicine, Alkek Building, RM N720, Houston, TX, USA
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, 410013, Changsha, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Hsu SK, Chou CK, Lin IL, Chang WT, Kuo IY, Chiu CC. Deubiquitinating enzymes: potential regulators of the tumor microenvironment and implications for immune evasion. Cell Commun Signal 2024; 22:259. [PMID: 38715050 PMCID: PMC11075295 DOI: 10.1186/s12964-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Ubiquitination and deubiquitination are important forms of posttranslational modification that govern protein homeostasis. Deubiquitinating enzymes (DUBs), a protein superfamily consisting of more than 100 members, deconjugate ubiquitin chains from client proteins to regulate cellular homeostasis. However, the dysregulation of DUBs is reportedly associated with several diseases, including cancer. The tumor microenvironment (TME) is a highly complex entity comprising diverse noncancerous cells (e.g., immune cells and stromal cells) and the extracellular matrix (ECM). Since TME heterogeneity is closely related to tumorigenesis and immune evasion, targeting TME components has recently been considered an attractive therapeutic strategy for restoring antitumor immunity. Emerging studies have revealed the involvement of DUBs in immune modulation within the TME, including the regulation of immune checkpoints and immunocyte infiltration and function, which renders DUBs promising for potent cancer immunotherapy. Nevertheless, the roles of DUBs in the crosstalk between tumors and their surrounding components have not been comprehensively reviewed. In this review, we discuss the involvement of DUBs in the dynamic interplay between tumors, immune cells, and stromal cells and illustrate how dysregulated DUBs facilitate immune evasion and promote tumor progression. We also summarize potential small molecules that target DUBs to alleviate immunosuppression and suppress tumorigenesis. Finally, we discuss the prospects and challenges regarding the targeting of DUBs in cancer immunotherapeutics and several urgent problems that warrant further investigation.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chon-Kit Chou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR, 999078, P.R. China
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - I-Ying Kuo
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
7
|
Lin L, Zhang S, Yang W. Comment on "An Injectable Hydrogel to Modulate T Cells for Cancer Immunotherapy". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302812. [PMID: 38072801 DOI: 10.1002/smll.202302812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/26/2023] [Indexed: 05/03/2024]
Abstract
Recent clinical successes of immune checkpoint blockade (ICB) therapies represents a milestone as a novel anti-tumor strategy beyond surgery, radiotherapy, chemotherapy, and targeted therapy in cancer therapy. T cells, especially CD8+ T cells, play crucial roles in anti-tumor immune responses. However, most T cells in the tumor microenvironment express high inhibitory receptors, such as PD-1, TIM-3, and LAG-3, and decreased T cell response in response to stimuli. Applying ICB therapies, such as anti-PD-1, promotes T cell activation and increases cytotoxic T lymphocyte (CTL) response, leading to the enhanced anti-tumor immune response in patients with malignancy. Therefore, studies aimed to define novel targets that can restrain T cell terminal exhaustion are urgently required to provide new strategies for patients resistant to immunotherapy. The previously published study by Zhang et al. (An Injectable Hydrogel to Modulate T Cells for Cancer Immunotherapy, https://doi.org/10.1002/smll.202202663) introduces a new type of injectable hydrogel that can regulate the function of T cells, thereby improving their effectiveness in cancer immunotherapy. However, it remains to be discussed for its conclusion, as the flow cell assay of this article may not be proper.
Collapse
Affiliation(s)
- Liangbin Lin
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Sunfu Zhang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| |
Collapse
|
8
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Liu J, Han Y, Zhao M, Wang L, Hu H, Chen D. Unlocking the power of immunotherapy: Combinatorial delivery of plasmid IL-15 and gemcitabine to synergistically remodeling the tumor microenvironment. Int J Pharm 2024; 655:124027. [PMID: 38554742 DOI: 10.1016/j.ijpharm.2024.124027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Cancer immunotherapy has emerged as a promising clinical treatment strategy in recent years. Unfortunately, the satisfactory antitumor therapeutic efficacy of immunotherapy is limited by intricate immunosuppressive tumor microenvironment (ITM). To remodel the ITM and alleviate the immune evasion, we constructed FA-PEG-modified liposomes to deliver plasmid IL-15 (pIL-15) and gemcitabine (GEM) (FPCL@pIL-15 + FPGL), respectively. The FPCL@pIL-15 (150 nm) and FPGL (120 nm) exhibited symmetrically spherical structures as well as desirable penetration and accumulation on tumor tissue depending on folic acid (FA) specialized targeting function. The transfected expression of IL-15 efficiently fosters the proliferation and co-activation of Natural killer (NK) cells and CD8+T cells through binding to IL-15R. FPGL upregulated the expression of Natural killer group 2 member D ligands (NKG2DLs) and reinforced recognition by NK cells to alleviate the immune evasion, and simultaneously promoted activation of CD8+T cells through immunogenic cell death (ICD) effects. More importantly, the combinatorial administration achieved intended anti-tumor efficacy in the subcutaneous 4T1 tumor model. In essence, we demonstrated that combining FPCL@pIL-15 with FPGL synergistically stimulates and mobilizes the immune system to reverse the ITM and trigger an anti-tumor immune response, indicating a tremendous potential for application in immunotherapy.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Yanyan Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Leyuan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China.
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
10
|
Hu S, Meng K, Wang T, Qu R, Wang B, Xi Y, Yu T, Yuan Z, Cai Z, Tian Y, Zeng C, Wang X, Zou W, Fu X, Li L. Lung cancer cell-intrinsic IL-15 promotes cell migration and sensitizes murine lung tumors to anti-PD-L1 therapy. Biomark Res 2024; 12:40. [PMID: 38637902 PMCID: PMC11027539 DOI: 10.1186/s40364-024-00586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND IL-15 plays a vital role in enhancing NK cell- and T-cell-mediated antitumor immune responses; however, the direct effect of IL-15 on tumor cells has not been fully elucidated. Herein, we investigated the effect of IL-15 on lung adenocarcinoma cells. METHODS Silencing and overexpression techniques were used to modify endogenous IL-15 expression in tumor cells. Transwell assays were used to assess tumor cell migration and invasion; a live-cell analysis system was used to evaluate cell motility; cellular morphological changes were quantified by confocal fluorescence microscopy; the molecular mechanisms underlying the effect of IL-15 on tumor cells were analyzed by western blotting; and RhoA and Cdc42 activities were evaluated by a pulldown assay. NCG and C57BL/6 mouse models were used to evaluate the functions of IL-15 in vivo. RESULTS Cancer cell-intrinsic IL-15 promoted cell motility and migration in vitro and metastasis in vivo via activation of the AKT-mTORC1 pathway; however, exogenous IL-15 inhibited cell motility and migration via suppression of the RhoA-MLC2 axis. Mechanistic analysis revealed that both the intracellular and extracellular IL-15-mediated effects required the expression of IL-15Rα by tumor cells. Detailed analyses revealed that the IL-2/IL-15Rβ and IL-2Rγ chains were undetected in the complex formed by intracellular IL-15 and IL-15Rα. However, when exogenous IL-15 engaged tumor cells, a complex containing the IL-15Rα, IL-2/IL-15Rβ, and IL-2Rγ chains was formed, indicating that the differential actions of intracellular and extracellular IL-15 on tumor cells might be caused by their distinctive modes of IL-15 receptor engagement. Using a Lewis lung carcinoma (LLC) metastasis model, we showed that although IL-15 overexpression facilitated the lung metastasis of LLC cells, IL-15-overexpressing LLC tumors were more sensitive to anti-PD-L1 therapy than were IL-15-wild-type LLC tumors via an enhanced antitumor immune response, as evidenced by their increased CD8+ T-cell infiltration compared to that of their counterparts. CONCLUSIONS Cancer cell-intrinsic IL-15 and exogenous IL-15 differentially regulate cell motility and migration. Thus, cancer cell-intrinsic IL-15 acts as a double-edged sword in tumor progression. Additionally, high levels of IL-15 expressed by tumor cells might improve the responsiveness of tumors to immunotherapies.
Collapse
Affiliation(s)
- Shaojie Hu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Kelin Meng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Tianlai Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Rirong Qu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Boyu Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yu Xi
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Taiyan Yu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zhiwei Yuan
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zihao Cai
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yitao Tian
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Chenxi Zeng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xue Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Wenbin Zou
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Morimoto T, Nakazawa T, Maeoka R, Matsuda R, Nakamura M, Nishimura F, Yamada S, Nakagawa I, Park YS, Tsujimura T. Bulk RNA sequencing reveals the comprehensive genetic characteristics of human cord blood-derived natural killer cells. Regen Ther 2024; 25:367-376. [PMID: 38405180 PMCID: PMC10891285 DOI: 10.1016/j.reth.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Innate immune cells are important in tumor immunotherapy. Natural killer cells (NKCs) are also categorized as innate immune cells and can control tumor growth and metastatic spread. Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. NKC-based immunotherapy is a promising treatment strategy against GBM. We previously reported a feeder-free expansion system that yielded large-scale highly purified and cytotoxic NKCs derived from human cord blood (CB). In the present study, we performed comprehensive genomic analyses of NKCs generated from human CB (CBNKCs) as compared those from human peripheral blood (PB) (PBNKCs). Methods Frozen T cell-free CB mononuclear cells were cultured with recombinant human interleukin (rhIL)-18 and rhIL-2 in anti-NKp46 and anti-CD16 antibody immobilization settings. After 14-day expansion, the total RNA of the CBNKCs or PBNKCs was extracted and transcriptomic analyses was performed to determine their similarities and differences. We also examined CBNKC and PBNKC activity against a GBM cell line. Results Differential expression gene analysis revealed that some NK activating and inhibitory receptors were significantly downregulated in the CBNKCs compared to PBNKCs. Furthermore, genes related to anti-apoptosis and proliferation were upregulated in the CBNKCs. Enrichment analysis determined that the gene sets related to immune response and cytokines were enriched in the CBNKCs. Gene set enrichment analysis demonstrated that the immune response pathway was upregulated in the CBNKCs. Cytotoxic assays using impedance-based cell analyzer revealed that the CBNKCs enhanced NKC-mediated cytotoxicity on GBM cells as compared to the PBNKCs. Conclusions We demonstrated the characteristics of human CBNKCs. Cell-based therapy using the CBNKCs is promising for treating GBM.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda, Nara, 633-2221, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda, Nara, 633-2221, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
| |
Collapse
|
12
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
13
|
Morimoto T, Nakazawa T, Matsuda R, Maeoka R, Nishimura F, Nakamura M, Yamada S, Park YS, Tsujimura T, Nakagawa I. Antitumor Effects of Intravenous Natural Killer Cell Infusion in an Orthotopic Glioblastoma Xenograft Murine Model and Gene Expression Profile Analysis. Int J Mol Sci 2024; 25:2435. [PMID: 38397112 PMCID: PMC10889440 DOI: 10.3390/ijms25042435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Despite standard multimodality treatment, containing maximum safety resection, temozolomide, radiotherapy, and a tumor-treating field, patients with glioblastoma (GBM) present with a dismal prognosis. Natural killer cell (NKC)-based immunotherapy would play a critical role in GBM treatment. We have previously reported highly activated and ex vivo expanded NK cells derived from human peripheral blood, which exhibited anti-tumor effect against GBM cells. Here, we performed preclinical evaluation of the NK cells using an in vivo orthotopic xenograft model, the U87MG cell-derived brain tumor in NOD/Shi-scid, IL-2RɤKO (NOG) mouse. In the orthotopic xenograft model, the retro-orbital venous injection of NK cells prolonged overall survival of the NOG mouse, indirectly indicating the growth-inhibition effect of NK cells. In addition, we comprehensively summarized the differentially expressed genes, especially focusing on the expression of the NKC-activating receptors' ligands, inhibitory receptors' ligands, chemokines, and chemokine receptors, between murine brain tumor treated with NKCs and with no agents, by using microarray. Furthermore, we also performed differentially expressed gene analysis between an internal and external brain tumor in the orthotopic xenograft model. Our findings could provide pivotal information for the NK-cell-based immunotherapy for patients with GBM.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Nara, Japan
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Nara, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Nara, Japan;
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Nara, Japan;
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| |
Collapse
|
14
|
Lee H, Park SH, Shin EC. IL-15 in T-Cell Responses and Immunopathogenesis. Immune Netw 2024; 24:e11. [PMID: 38455459 PMCID: PMC10917573 DOI: 10.4110/in.2024.24.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.
Collapse
Affiliation(s)
- Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
15
|
Skariah N, James OJ, Swamy M. Signalling mechanisms driving homeostatic and inflammatory effects of interleukin-15 on tissue lymphocytes. DISCOVERY IMMUNOLOGY 2024; 3:kyae002. [PMID: 38405398 PMCID: PMC10883678 DOI: 10.1093/discim/kyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
There is an intriguing dichotomy in the function of cytokine interleukin-15-at low levels, it is required for the homeostasis of the immune system, yet when it is upregulated in response to pathogenic infections or in autoimmunity, IL-15 drives inflammation. IL-15 associates with the IL-15Rα within both myeloid and non-haematopoietic cells, where IL-15Rα trans-presents IL-15 in a membrane-bound form to neighboring cells. Alongside homeostatic maintenance of select lymphocyte populations such as NK cells and tissue-resident T cells, when upregulated, IL-15 also promotes inflammatory outcomes by driving effector function and cytotoxicity in NK cells and T cells. As chronic over-expression of IL-15 can lead to autoimmunity, IL-15 expression is tightly regulated. Thus, blocking dysregulated IL-15 and its downstream signalling pathways are avenues for immunotherapy. In this review we discuss the molecular pathways involved in IL-15 signalling and how these pathways contribute to both homeostatic and inflammatory functions in IL-15-dependent mature lymphoid populations, focusing on innate, and innate-like lymphocytes in tissues.
Collapse
Affiliation(s)
- Neema Skariah
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
16
|
Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci 2024; 10:1261273. [PMID: 38264570 PMCID: PMC10803509 DOI: 10.3389/fmolb.2023.1261273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Protein ubiquitination plays a pivotal role in protein homeostasis. Ubiquitination may regulate the stability, activity, protein-protein interaction, and localization of a protein. Ubiquitination is subject to regulation by two groups of counteracting enzymes, the E3 ubiquitin ligases and deubiquitinases. Consistently, deubiquitinases are involved in essentially all biological processes. OTUB1, an OTU-family deubiquitinase, is a critical regulator of development, cancer, DNA damage response, and immune response. OTUB1 antagonizes the ubiquitination of a wide-spectrum of proteins through at least two different mechanisms. Besides direct deubiquitination, OTUB1 can also inhibit ubiquitination by non-canonically blocking ubiquitin transfer from certain ubiquitin-conjugases (E2). In this review, we start with a general background of protein ubiquitination and deubiquitination. Next, we introduce the basic characteristics of OTUB1 and then elaborate on the updated biological functions of OTUB1. Afterwards, we discuss potential mechanisms underlying the versatility and specificity of OTUB1 functions. In the end, we discuss the perspective that OTUB1 can be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Miaomiao Wu
- Deparment of Obstetrics and Gynecology, Shuyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Zhang H, Yang L, Wang T, Li Z. NK cell-based tumor immunotherapy. Bioact Mater 2024; 31:63-86. [PMID: 37601277 PMCID: PMC10432724 DOI: 10.1016/j.bioactmat.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Natural killer (NK) cells display a unique inherent ability to identify and eliminate virus-infected cells and tumor cells. They are particularly powerful for elimination of hematological cancers, and have attracted considerable interests for therapy of solid tumors. However, the treatment of solid tumors with NK cells are less effective, which can be attributed to the very complicated immunosuppressive microenvironment that may lead to the inactivation, insufficient expansion, short life, and the poor tumor infiltration of NK cells. Fortunately, the development of advanced nanotechnology has provided potential solutions to these issues, and could improve the immunotherapy efficacy of NK cells. In this review, we summarize the activation and inhibition mechanisms of NK cells in solid tumors, and the recent advances in NK cell-based tumor immunotherapy boosted by diverse nanomaterials. We also propose the challenges and opportunities for the clinical application of NK cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Li Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
18
|
Li Y, Li R, Qin H, He H, Li S. OTUB1's role in promoting OSCC development by stabilizing RACK1 involves cell proliferation, migration, invasion, and tumor-associated macrophage M1 polarization. Cell Signal 2023; 110:110835. [PMID: 37532135 DOI: 10.1016/j.cellsig.2023.110835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Ovarian tumor domain, ubiquitin aldehyde binding 1 (OTUB1), a deubiquitinating enzyme known to regulate the stability of downstream proteins, has been reported to regulate various cancers tumorigenesis, yet its direct effects on oral squamous cell carcinoma (OSCC) progression are unclear. Bioinformatics analysis was performed to screen for genes of interest, and in vitro and in vivo studies were carried out to investigate the function and mechanism of OTUB1 in OSCC. We found that OTUB1 was abnormally elevated in OSCC tissues and positively associated with the pathological stage and tumor stage. Knockdown of OTUB1 impaired the malignance of OSCC cells - suppressed cell proliferation, invasion, migration, and xenografted tumor growth. OTUB1 silencing also drove tumor-associated macrophage M1 polarization but suppressed M2 polarization, and the induction of M1 polarization inhibited the survival of OSCC cells. However, OTUB1 overexpression exerted the opposite effects. Furthermore, the protein network that interacted with the OTUB1 protein was constructed based on the GeneMANIA website. Receptor for activated C kinase 1 (RACK1), a facilitator of OSCC progression, was identified as a potential target of the OTUB1 protein. We revealed that OTUB1 positively regulated RACK1 expression and inhibited RACK1 ubiquitination. Additionally, RACK1 upregulation reversed the effects of OTUB1 knockdown on OSCC progression. Overall, we demonstrated that OTUB1 might regulate OSCC progression by maintaining the stability of the RACK1 protein. These findings highlight the potential roles of the OTUB1/RACK1 axis as a potential therapeutic target in OSCC.
Collapse
Affiliation(s)
- Yunyun Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhe Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Qin
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongliu He
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Mohamed AA, Caussat T, Kelly S, Johansen PM, Lucke-Wold B. Choroid plexus tumors: A spectrum from benign to malignant. TUMOR DISCOVERY 2023; 2:1057. [PMID: 37799733 PMCID: PMC10552314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Choroid plexus tumors (CPT) are believed to originate from outgrowths of the choroid plexus. Despite their broad spectrum of symptoms, invasive nature, and prognosis, most CPTs typically exhibit similar presentations due to their relationship with the cerebral ventricles, as well as the mechanical obstruction and mass effect associated with their growth. In addition, these tumors mainly affect the pediatric population, further complicating the differentiation between benign and malignant subtypes. The World Health Organization classifies CPTs into three grades, namely, grades I, II, or III, based on their mitotic activity, which determine the benign or malignant nature of the tumors. CPTs classified by the World Health Organization (WHO) include choroid plexus papillomas (CPP), atypical CPPs (aCPP), and malignant choroid plexus carcinomas (CPC). Choroid plexus adenomas represent an additional category of benign CPTs not officially classified by the WHO. Despite the variations in histology, immunohistochemistry, imaging, treatment, and prognosis, CPTs cannot be reliably distinguished based solely on clinical presentation. Therefore, in this review, we aim to provide a comprehensive overview of each tumor subtype, along with the current management approach and emerging treatments.
Collapse
Affiliation(s)
- Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Thomas Caussat
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Sophie Kelly
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Phillip M. Johansen
- Department of Neurosurgery, University of South Florida, Orlando, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Wang YW, Zuo JC, Chen C, Li XH. Post-translational modifications and immune responses in liver cancer. Front Immunol 2023; 14:1230465. [PMID: 37609076 PMCID: PMC10441662 DOI: 10.3389/fimmu.2023.1230465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
Post-translational modification (PTM) refers to the covalent attachment of functional groups to protein substrates, resulting in structural and functional changes. PTMs not only regulate the development and progression of liver cancer, but also play a crucial role in the immune response against cancer. Cancer immunity encompasses the combined efforts of innate and adaptive immune surveillance against tumor antigens, tumor cells, and tumorigenic microenvironments. Increasing evidence suggests that immunotherapies, which harness the immune system's potential to combat cancer, can effectively improve cancer patient prognosis and prolong the survival. This review presents a comprehensive summary of the current understanding of key PTMs such as phosphorylation, ubiquitination, SUMOylation, and glycosylation in the context of immune cancer surveillance against liver cancer. Additionally, it highlights potential targets associated with these modifications to enhance the response to immunotherapies in the treatment of liver cancer.
Collapse
Affiliation(s)
| | | | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| |
Collapse
|
21
|
Sheryazdanova A, Amoedo ND, Dufour S, Impens F, Rossignol R, Sablina A. The deubiquitinase OTUB1 governs lung cancer cell fitness by modulating proteostasis of OXPHOS proteins. Biochim Biophys Acta Mol Basis Dis 2023:166767. [PMID: 37245529 DOI: 10.1016/j.bbadis.2023.166767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Aerobic glycolysis is a hallmark of cancer development, but this dogma has been challenged by reports showing a key role of oxidative phosphorylation (OXPHOS) in cancer cell survival. It has been proposed that increased levels of intramitochondrial proteins in cancer cells are associated with high OXPHOS activity and increased sensitivity to OXPHOS inhibitors. However, the molecular mechanisms leading to the high expression of OXPHOS proteins in cancer cells remain unknown. Multiple proteomics studies have detected the ubiquitination of intramitochondrial proteins, suggesting the contribution of the ubiquitin system to the proteostatic regulation of OXPHOS proteins. Here, we identified the ubiquitin hydrolase OTUB1 as a regulator of the mitochondrial metabolic machinery essential for lung cancer cell survival. Mitochondria-localized OTUB1 modulates respiration by inhibiting K48-linked ubiquitination and turnover of OXPHOS proteins. An increase in OTUB1 expression is commonly observed in one-third of non-small-cell lung carcinomas and is associated with high OXPHOS signatures. Moreover, OTUB1 expression highly correlates with the sensitivity of lung cancer cells to mitochondrial inhibitors.
Collapse
Affiliation(s)
- Aidana Sheryazdanova
- VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KULeuven, Leuven, Belgium
| | - Nivea Dias Amoedo
- INSERM U1211 Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Sara Dufour
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; VIB Proteomics Core, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; VIB Proteomics Core, Ghent, Belgium
| | - Rodrigue Rossignol
- INSERM U1211 Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Anna Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KULeuven, Leuven, Belgium.
| |
Collapse
|
22
|
Molfetta R, Petillo S, Cippitelli M, Paolini R. SUMOylation and related post-translational modifications in natural killer cell anti-cancer responses. Front Cell Dev Biol 2023; 11:1213114. [PMID: 37313439 PMCID: PMC10258607 DOI: 10.3389/fcell.2023.1213114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
SUMOylation is a reversible modification that involves the covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins, leading to changes in their localization, function, stability, and interactor profile. SUMOylation and additional related post-translational modifications have emerged as important modulators of various biological processes, including regulation of genomic stability and immune responses. Natural killer (NK) cells are innate immune cells that play a critical role in host defense against viral infections and tumors. NK cells can recognize and kill infected or transformed cells without prior sensitization, and their activity is tightly regulated by a balance of activating and inhibitory receptors. Expression of NK cell receptors as well as of their specific ligands on target cells is finely regulated during malignant transformation through the integration of different mechanisms including ubiquitin- and ubiquitin-like post-translational modifications. Our review summarizes the role of SUMOylation and other related pathways in the biology of NK cells with a special emphasis on the regulation of their response against cancer. The development of novel selective inhibitors as useful tools to potentiate NK-cell mediated killing of tumor cells is also briefly discussed.
Collapse
|
23
|
Lu D, Yadav R, Holder P, Chiang E, Sanjabi S, Poon V, Bernett M, Varma R, Liu K, Leung I, Bogaert L, Desjarlais J, Shivva V, Hosseini I, Ramanujan S. Complex PK-PD of an engineered IL-15/IL-15Rα-Fc fusion protein in cynomolgus monkeys: QSP modeling of lymphocyte dynamics. Eur J Pharm Sci 2023; 186:106450. [PMID: 37084985 DOI: 10.1016/j.ejps.2023.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
XmAb24306 is a lymphoproliferative interleukin (IL)-15/IL-15 receptor α (IL-15Rα) Fc-fusion protein currently under clinical investigation as an immunotherapeutic agent for cancer treatment. XmAb24306 contains mutations in IL-15 that attenuate its affinity to the heterodimeric IL-15 receptor βγ (IL-15R). We observe substantially prolonged pharmacokinetics (PK) (half-life ∼ 2.5 to 4.5 days) in single- and repeat-dose cynomolgus monkey (cyno) studies compared to wild-type IL-15 (half-life ∼ 1 hour), leading to increased exposure and enhanced and durable expansion of NK cells, CD8+ T cells and CD4-CD8- (double negative [DN]) T cells. Drug clearance varied with dose level and time post-dose, and PK exposure decreased upon repeated dosing, which we attribute to increased target-mediated drug disposition (TMDD) resulting from drug-induced lymphocyte expansion (i.e., pharmacodynamic (PD)-enhanced TMDD). We developed a quantitative systems pharmacology (QSP) model to quantify the complex PKPD behaviors due to the interactions of XmAb24306 with multiple cell types (CD8+, CD4+, DN T cells, and NK cells) in the peripheral blood (PB) and lymphoid tissues. The model, which includes nonspecific drug clearance, binding to and TMDD by IL15R differentially expressed on lymphocyte subsets, and resultant lymphocyte margination/migration out of PB, expansion in lymphoid tissues, and redistribution to the blood, successfully describes the systemic PK and lymphocyte kinetics observed in the cyno studies. Results suggest that after 3 doses of every-two-week (Q2W) doses up to 70 days, the relative contributions of each elimination pathway to XmAb24306 clearance are: DN T cells > NK cells > CD8+ T cells > nonspecific clearance > CD4+ T cells. Modeling suggests that observed cellular expansion in blood results from the influx of cells expanded by the drug in lymphoid tissues. The model is used to predict lymphoid tissue expansion and to simulate PK-PD for different dose regimens. Thus, the model provides insight into the mechanisms underlying the observed PK-PD behavior of an engineered cytokine and can serve as a framework for the rapid integration and analysis of data that emerges from ongoing clinical studies in cancer patients as single-agent or given in combination.
Collapse
Affiliation(s)
- Dan Lu
- Genentech, Inc., South San Francisco, CA, USA.
| | | | | | | | | | - Victor Poon
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | - Ke Liu
- Xencor, Inc. Monrovia, CA, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Deng H, Jia S, Tang J, Rong F, Xu C, Chen X, Wang Z, Zhu C, Sun X, Liao Q, Liu W, Li W, Xiao W, Liu X. SET7 methylates the deubiquitinase OTUB1 at Lys 122 to impair its binding to E2 enzyme UBC13 and relieve its suppressive role on ferroptosis. J Biol Chem 2023; 299:103054. [PMID: 36822329 PMCID: PMC10040876 DOI: 10.1016/j.jbc.2023.103054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The deubiquitinating enzyme OTUB1 possesses canonical deubiquitinase (DUB) activity and noncanonical, catalytic-independent activity, which has been identified as an essential regulator of diverse physiological processes. Posttranslational modifications of OTUB1 affect both its DUB activity and its noncanonical activity of binding to the E2 ubiquitin-conjugation enzyme UBC13, but further investigation is needed to characterize the full inventory of modifications to OTUB1. Here, we demonstrate that SET7, a lysine monomethylase, directly interacts with OTUB1 to catalyze OTUB1 methylation at lysine 122. This modification does not affect DUB activity of OTUB1 but impairs its noncanonical activity, binding to UBC13. Moreover, we found using cell viability analysis and intracellular reactive oxygen species assay that SET7-mediated methylation of OTUB1 relieves its suppressive role on ferroptosis. Notably, the methylation-mimic mutant of OTUB1 not only loses the ability to bind to UBC13 but also relieves its suppressive role on Tert-Butyl hydroperoxide-induced cell death and Cystine starvation/Erastin-induced cellular reactive oxygen species. Collectively, our data identify a novel modification of OTUB1 that is critical for inhibiting its noncanonical activity.
Collapse
Affiliation(s)
- Hongyan Deng
- College of Life Science, Wuhan University, Wuhan, P. R. China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenhua Li
- College of Life Science, Wuhan University, Wuhan, P. R. China.
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China.
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
25
|
Casado-Fernández G, Corona M, Torres M, Saez AJ, Ramos-Martín F, Manzanares M, Vigón L, Mateos E, Pozo F, Casas I, García-Gutierrez V, Rodríguez-Mora S, Coiras M. Sustained Cytotoxic Response of Peripheral Blood Mononuclear Cells from Unvaccinated Individuals Admitted to the ICU Due to Critical COVID-19 Is Essential to Avoid a Fatal Outcome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1947. [PMID: 36767310 PMCID: PMC9915056 DOI: 10.3390/ijerph20031947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The main objective of this study was to determine the influence of the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) on the outcome of unvaccinated individuals with critical COVID-19 admitted to the ICU. Blood samples from 23 individuals were collected upon admission and then every 2 weeks for 13 weeks until death (Exitus group) (n = 13) or discharge (Survival group) (n = 10). We did not find significant differences between groups in sociodemographic, clinical, or biochemical data that may influence the fatal outcome. However, direct cellular cytotoxicity of PBMCs from individuals of the Exitus group against pseudotyped SARS-CoV-2-infected Vero E6 cells was significantly reduced upon admission (-2.69-fold; p = 0.0234) and after 4 weeks at the ICU (-5.58-fold; p = 0.0290), in comparison with individuals who survived, and it did not improve during hospitalization. In vitro treatment with IL-15 of these cells did not restore an effective cytotoxicity at any time point until the fatal outcome, and an increased expression of immune exhaustion markers was observed in NKT, CD4+, and CD8+ T cells. However, IL-15 treatment of PBMCs from individuals of the Survival group significantly increased cytotoxicity at Week 4 (6.18-fold; p = 0.0303). Consequently, immunomodulatory treatments that may overcome immune exhaustion and induce sustained, efficient cytotoxic activity could be essential for survival during hospitalization due to critical COVID-19.
Collapse
Affiliation(s)
- Guiomar Casado-Fernández
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, 28805 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Magdalena Corona
- Faculty of Sciences, Universidad de Alcalá, 28805 Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Adolfo J. Saez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mario Manzanares
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Francisco Pozo
- Respiratory Viruses Service, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Casas
- Respiratory Viruses Service, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Valentín García-Gutierrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
26
|
Morimoto T, Nakazawa T, Maeoka R, Nakagawa I, Tsujimura T, Matsuda R. Natural Killer Cell-Based Immunotherapy against Glioblastoma. Int J Mol Sci 2023; 24:ijms24032111. [PMID: 36768432 PMCID: PMC9916747 DOI: 10.3390/ijms24032111] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary brain tumor in adults. Despite multimodality treatment involving surgical resection, radiation therapy, chemotherapy, and tumor-treating fields, the median overall survival (OS) after diagnosis is approximately 2 years and the 5-year OS is poor. Considering the poor prognosis, novel treatment strategies are needed, such as immunotherapies, which include chimeric antigen receptor T-cell therapy, immune checkpoint inhibitors, vaccine therapy, and oncolytic virus therapy. However, these therapies have not achieved satisfactory outcomes. One reason for this is that these therapies are mainly based on activating T cells and controlling GBM progression. Natural killer (NK) cell-based immunotherapy involves the new feature of recognizing GBM via differing mechanisms from that of T cell-based immunotherapy. In this review, we focused on NK cell-based immunotherapy as a novel GBM treatment strategy.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
27
|
Stutz A, Nishanth G, Zenclussen AC, Schumacher A. Partial otubain 1 deficiency compromises fetal well-being in allogeneic pregnancies despite no major changes in the dendritic cell and T cell compartment. BMC Res Notes 2022; 15:341. [PMID: 36335372 PMCID: PMC9636684 DOI: 10.1186/s13104-022-06230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/18/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Objective Pregnancy is characterized by well-defined immunological adaptions within the maternal immune cell compartment allowing the survival of a genetically disparate individual in the maternal womb. Phenotype and function of immune cells are largely determined by intracellular processing of external stimuli. Ubiquitinating and deubiquitinating enzymes are known to critically regulate immune signaling either by modulating the stability or the interaction of the signaling molecules. Accordingly, if absent, critical physiological processes may be perturbed such as fetal tolerance induction. Based on previous findings that mice hemizygous for the deubiquitinating enzyme otubain 1 (OTUB1) do not give rise to homozygous progeny, here, we investigated whether partial OTUB1 deficiency influences fetal-wellbeing in a syngeneic or an allogeneic pregnancy context accompanied by changes in the dendritic cell (DC) and T cell compartment. Results We observed increased fetal rejection rates in allogeneic pregnant OTUB1 heterozygous dams but not syngeneic pregnant OTUB1 heterozygous dams when compared to OTUB1 wildtype dams. Fetal demise in allogeneic pregnancies was not associated with major changes in maternal peripheral and local DC and T cell frequencies. Thus, our results suggest that OTUB1 confers fetal protection, however, this phenotype is independent of immune responses involving DC and T cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06230-w.
Collapse
|
28
|
Tan L, Shan H, Han C, Zhang Z, Shen J, Zhang X, Xiang H, Lu K, Qi C, Li Y, Zhuang G, Chen G, Tan L. Discovery of Potent OTUB1/USP8 Dual Inhibitors Targeting Proteostasis in Non-Small-Cell Lung Cancer. J Med Chem 2022; 65:13645-13659. [PMID: 36221183 DOI: 10.1021/acs.jmedchem.2c00408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deubiquitinating enzymes (DUBs) are key regulatory components of the ubiquitination system. Many DUBs have been revealed to play key roles in normal physiology and diseases. However, only very limited DUB members have well-characterized inhibitors. OTUB1 and USP8 are two DUBs reported to promote both immune evasion and tumorigenesis in tumor models, yet their targeted inhibitors are in the early stages of development. Here, we describe the lead identification and optimization of an OTUB1/USP8 dual inhibitor, 61, which exhibits highly potent and selective inhibition of both targets with subnanomolar IC50s in vitro. By inhibiting both DUBs, 61 phenocopies the double knockdown of OTUB1/USP8 and exerts pronounced antiproliferative effects in H1975 and other non-small-cell lung cancer (NSCLC) cell lines. Moreover, 61 efficaciously mitigates tumor growth in vivo. Collectively, our results provide a useful tool for pharmacological perturbation of OTUB1/USP8 and introduce a promising therapeutic strategy of dual DUB inhibition for treating NSCLC.
Collapse
Affiliation(s)
- Lingli Tan
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hengyue Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiali Shen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuankuan Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
29
|
Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol 2022; 43:833-847. [PMID: 36058806 PMCID: PMC9612852 DOI: 10.1016/j.it.2022.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
30
|
Zhao G, Song D, Wu J, Yang S, Shi S, Cui X, Ren H, Zhang B. Identification of OTUD6B as a new biomarker for prognosis and immunotherapy by pan-cancer analysis. Front Immunol 2022; 13:955091. [PMID: 36052059 PMCID: PMC9425067 DOI: 10.3389/fimmu.2022.955091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background Ovarian-tumor (OTU) domain-containing protein 6B (OTUD6B), one of newly identified OTU deubiquitylating enzyme families, is proved to be associated with tumor progression. However, whether it plays a key role in pan-cancer still remains unknown. Methods The profiles of OTUD6B expression in multiple cancers were analyzed using The Cancer Genome Atlas (TCGA) database. Information of protein expression was performed based on the HPA, GeneCards, and String databases. K-M plotter and survival data analysis were used to analyze the prognostic value of OTUD6B expression, including overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI). R package “clusterProfiler” was used for enrichment analysis of OTUD6B. Furthermore, we analyzed the correlation between the expression of OTUD6B, immune infiltration, and immune-related genes. Additionally, we preliminarily validated its tumorigenic effect in lung cancer cell lines. Findings OTUD6B expression was upregulated in most cancers, such as COAD, CHOL, and LUAD, and predicted poor prognosis in most cancers in TCGA. Results showed that OTUD6B expression was positively correlated with memory CD4+ T cells, Th1 CD4+ T cells, and CD8+ T cells. In terms of the immune-related genes, OTUD6B was found to be associated with most types of genes, such as immunostimulatory genes KDR, TGFBR1, and IL-10. Moreover, for most types of tumors, the immune score was found to be negatively correlated with OTUD6B expression. In addition, lung cancer cell lines with OTUD6B knockdown significantly inhibited proliferation and invasion ability of lung cancer cells. Conclusions The study indicated that OTUD6B is an oncogene and may serve as a new potential biomarker in various tumors. OTUD6B may play a part in TIME, which could be applied as a new target for cancer therapy.
Collapse
Affiliation(s)
- Guang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dingli Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Sanhu Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Sien Shi
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaohai Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hong Ren, ; Boxiang Zhang,
| | - Boxiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hong Ren, ; Boxiang Zhang,
| |
Collapse
|
31
|
Mao R, Ren ZY, Yang F, Yang P, Zhang T. Clinical significance and immune landscape of KIR2DL4 and the senescence-based signature in cutaneous melanoma. Cancer Sci 2022; 113:3947-3959. [PMID: 35848898 DOI: 10.1111/cas.15499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Senescence is an effective barrier to tumor progression. Mutations that inhibit senescence and promote cell division are mandatory for the development of cancer. Therefore, it is particularly important to explore the differences between cutaneous melanoma (CM) patients with severe and mild degrees of senescence. We clustered all the patients with CM in the Cancer Genome Atlas (TCGA) database based on all the genes of the senescence pathway in the cellAge and MSigDB database. The prognosis, immunotherapy effect, tumor microenvironment score, NRAS mutation rate, expression of CD274, CTLA4, and PDCD1, and abundance of CD8+ T and NK cell infiltration in the younger group of patients (YG) were higher than those in the older group (OG). Compared with the American Joint Committee on Cancer (AJCC) stage, the risk scoring system stratified the risk of CM patients and guided immunotherapy more accurately. The nomogram model, which combined the AJCC stage and risk score, greatly improved the ability and accuracy of prognosis prediction. As KIR2DL4 is the core molecule in the risk scoring system (RSS), knocking down the KIR2DL4 of human NK cells in vitro can inhibit the cytotoxicity of NK cells and can also inhibit the secretion of tumor necrosis factor-α and interferon-γ by NK cells. In contrast, upregulation of KIR2DL4 can activate the MEK/ERK signaling pathway, which is the activation pathway of NK cells. OurRSS and nomogram model can accurately stratify the risk of CM patients and effectively predict the effect of immunotherapy and prognosis in CM patients.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yun Ren
- The center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Fan Yang
- Emergency Department, Peking University Third Hospital, Peking University School of Medicine, Beijing, China
| | - Peng Yang
- Department of Pathology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, China
| | - Tongtong Zhang
- Emergency Department, Peking University Third Hospital, Peking University School of Medicine, Beijing, China.,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Zhu L, Zhou X, Gu M, Kim J, Li Y, Ko CJ, Xie X, Gao T, Cheng X, Sun SC. Dapl1 controls NFATc2 activation to regulate CD8 + T cell exhaustion and responses in chronic infection and cancer. Nat Cell Biol 2022; 24:1165-1176. [PMID: 35773432 DOI: 10.1038/s41556-022-00942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
CD8+ T cells are central mediators of immune responses against infections and cancer. Here we identified Dapl1 as a crucial regulator of CD8+ T cell responses to cancer and infections. Dapl1 deficiency promotes the expansion of tumour-infiltrating effector memory-like CD8+ T cells and prevents their functional exhaustion, coupled with increased antitumour immunity and improved efficacy of adoptive T cell therapy. Dapl1 controls activation of NFATc2, a transcription factor required for the effector function of CD8+ T cells. Although NFATc2 mediates induction of the immune checkpoint receptor Tim3, competent NFATc2 activation prevents functional exhaustion of CD8+ T cells. Interestingly, exhausted CD8+ T cells display attenuated NFATc2 activation due to Tim3-mediated feedback inhibition; Dapl1 deletion rescues NFATc2 activation and thereby prevents dysfunction of exhausted CD8+ T cells in chronic infection and cancer. These findings establish Dapl1 as a crucial regulator of CD8+ T cell immunity and a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Flagship Labs 91, Inc., Cambridge, MA, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiseong Kim
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Bristol Myers Squibb, Seattle, WA, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,AbbVie, South San Francisco, CA, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Memorial Hermann-Texas Medical Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Liu X, Deng H, Tang J, Wang Z, Zhu C, Cai X, Rong F, Chen X, Sun X, Jia S, Ouyang G, Li W, Xiao W. OTUB1 augments hypoxia signaling via its non-canonical ubiquitination inhibition of HIF-1α during hypoxia adaptation. Cell Death Dis 2022; 13:560. [PMID: 35732631 PMCID: PMC9217984 DOI: 10.1038/s41419-022-05008-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
As a main regulator of cellular responses to hypoxia, the protein stability of hypoxia-inducible factor (HIF)-1α is strictly controlled by oxygen tension dependent of PHDs-catalyzed protein hydroxylation and pVHL complex-mediated proteasomal degradation. Whether HIF-1α protein stability as well as its activity can be further regulated under hypoxia is not well understood. In this study, we found that OTUB1 augments hypoxia signaling independent of PHDs/VHL and FIH. OTUB1 binds to HIF-1α and depletion of OTUB1 reduces endogenous HIF-1α protein under hypoxia. In addition, OTUB1 inhibits K48-linked polyubiquitination of HIF-1α via its non-canonical inhibition of ubiquitination activity. Furthermore, OTUB1 promotes hypoxia-induced glycolytic reprogramming for cellular metabolic adaptation. These findings define a novel regulation of HIF-1α under hypoxia and demonstrate that OTUB1-mediated HIF-1α stabilization positively regulates HIF-1α transcriptional activity and benefits cellular hypoxia adaptation.
Collapse
Affiliation(s)
- Xing Liu
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China ,Hubei Hongshan Laboratory, Wuhan, 430070 PR China
| | - Hongyan Deng
- grid.49470.3e0000 0001 2331 6153College of Life Science, Wuhan University, Wuhan, 430072 PR China ,grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 PR China
| | - Jinhua Tang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Zixuan Wang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Chunchun Zhu
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xiaolian Cai
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China
| | - Fangjing Rong
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xiaoyun Chen
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xueyi Sun
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Shuke Jia
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Gang Ouyang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China
| | - Wenhua Li
- grid.49470.3e0000 0001 2331 6153College of Life Science, Wuhan University, Wuhan, 430072 PR China ,grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 PR China
| | - Wuhan Xiao
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China ,Hubei Hongshan Laboratory, Wuhan, 430070 PR China
| |
Collapse
|
34
|
Couette N, Jarjour W, Brammer JE, Simon Meara A. Pathogenesis and Treatment of T-Large Granular Lymphocytic Leukemia (T-LGLL) in the Setting of Rheumatic Disease. Front Oncol 2022; 12:854499. [PMID: 35747794 PMCID: PMC9209697 DOI: 10.3389/fonc.2022.854499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
A complex relationship exists between rheumatic diseases and cancer. This delicate balance between chronic inflammation and malignant cell transformation in hematologic neoplasms has been observed, but is not well defined. Large Granular Lymphocyte (LGL) leukemia is at the intersection of a clonal lymphoproliferative disease, chronic inflammation, and autoimmunity. The association between rheumatoid arthritis (RA) and the spectrum of Felty’s Syndrome is well-known. Other rheumatic disorders have been reported including systemic lupus erythematosus (SLE), Sjogren’s Syndrome (SS), vasculitis, Behcet’s Disease (BD) and systemic sclerosis. The association between T-LGLL and rheumatic disease pathogenesis has been hypothesized, but has not yet been fully understood. Components of a shared pathogenesis includes chronic antigen stimulation, JAK-STAT pathway activation and overlap of various cytokines. We will summarize current knowledge on the molecular understanding between T-LGLL and rheumatic disease. There are many potential areas of research to help meet this need and lead to development of targeted therapeutic options.
Collapse
|
35
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
36
|
Zhang X, Meng T, Cui S, Liu D, Pang Q, Wang P. Roles of ubiquitination in the crosstalk between tumors and the tumor microenvironment (Review). Int J Oncol 2022; 61:84. [PMID: 35616129 PMCID: PMC9170352 DOI: 10.3892/ijo.2022.5374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022] Open
Abstract
The interaction between a tumor and the tumor microenvironment (TME) plays a key role in tumorigenesis and tumor progression. Ubiquitination, a crucial post-translational modification for regulating protein degradation and turnover, plays a role in regulating the crosstalk between a tumor and the TME. Thus, identifying the roles of ubiquitination in the process may assist researchers to investigate the mechanisms underlying tumorigenesis and tumor progression. In the present review article, new insights into the substrates for ubiquitination that are involved in the regulation of hypoxic environments, angiogenesis, chronic inflammation-mediated tumor formation, and the function of cancer-associated fibroblasts and infiltrating immune cells (tumor-associated macrophages, T-cells, myeloid-derived suppressor cells, dendritic cells, and natural killer cells) are summarized. In addition, the potential targets of the ubiquitination proteasome system within the TME for cancer therapy and their therapeutic effects are reviewed and discussed.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Dongwu Liu
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Qiuxiang Pang
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| |
Collapse
|
37
|
Liu S, Meng Y, Liu L, Lv Y, Yu W, Liu T, Wang L, Mu D, Zhou Q, Liu M, Ren Y, Zhang D, Li B, Sun Q, Ren X. CD4 + T cells are required to improve the efficacy of CIK therapy in non-small cell lung cancer. Cell Death Dis 2022; 13:441. [PMID: 35523765 PMCID: PMC9076680 DOI: 10.1038/s41419-022-04882-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
As a widely studied adoptive treatment method, CIK (cytokine-induced killer cells) treatment has shown clinical benefits in many clinical trials on non-small cell lung cancer. As a heterogeneous cell population, however, CIK cells have a strong instability and individual differences in their efficacies, which are collaboratively regulated by the tumor microenvironment and CIK subpopulations. Among them, CD4+ T cells belong to a crucial subgroup of the CIK cell population, and their influence on CIK therapy is still unclear. Herein, we show how CD4+ T cells positively regulate the functions of CD3+CD56+ T and CD3+CD8+ T cells. During this process, we found that Th1/Th17 CD4+ subgroups can induce the phosphorylation of the AKT pathway by secreting IL-17A, and upregulate the expression of T-bet/Eomes transcription factors, thereby restoring the function of CD8+/CD3+CD56+ T cells and reversing the exhaustion of PD-1+Tim-3+ T cells. These findings will provide guidance for the clinical screening of suitable populations for CIK treatment and formulation of strategies for CIK therapy plus immune checkpoint treatment. Based on these findings, we are conducting an open-label phase II study (NCT04836728) is to evaluate the effects of autologous CIKs in combination with PD-1 inhibitor in the first-line treatment of IV NSCLC, and hope to observe patients' benefits in this clinical trial.
Collapse
Affiliation(s)
- Shaochuan Liu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuan Meng
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liang Liu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yingge Lv
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Yu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ting Liu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Limei Wang
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Di Mu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiuru Zhou
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Min Liu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yulin Ren
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dong Zhang
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Baihui Li
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qian Sun
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
38
|
Liao Y, Yang M, Wang K, Wang Y, Zhong B, Jiang N. Deubiquitinating enzyme OTUB1 in immunity and cancer: Good player or bad actor? Cancer Lett 2022; 526:248-258. [PMID: 34875341 DOI: 10.1016/j.canlet.2021.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
OTU domain-containing ubiquitin aldehyde-binding proteins 1 (OTUB1) is the most important element of the deubiquitinase OTU superfamily, which has been identified as an essential regulator of diverse physiological processes, such as DNA damage repair and cytokines secretion. Recently, we found that the pro-carcinogenesis role of OTUB1 and the relationship between OTUB1 and immune response have gradually become the research hot-spot. OTUB1 regulates NK/CD8 T cell activation, autoimmune diseases, PD-L1 mediated immune evasion, viral or bacterial infection related immune response and the occurrence and progression of various cancers via deubiquitinating and stabilizing related proteins. This review provides a comprehensive description about the role and regulatory axis of OTUB1. We can explore the balance between immune response and defense via regulating the level of OTUB1, and targeting OTUB1 might restrain the progression of cancers. This review highlights the experimental evidence that OTUB1 is a feasible and potential therapeutic target against various cancers progression and immune diseases or disorder.
Collapse
Affiliation(s)
- Yihao Liao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Mengyue Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150000, China
| | - Keke Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Youzhi Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boqiang Zhong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ning Jiang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
39
|
Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, Chen J, Qiu S. Interleukins and Ischemic Stroke. Front Immunol 2022; 13:828447. [PMID: 35173738 PMCID: PMC8841354 DOI: 10.3389/fimmu.2022.828447] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke after cerebral artery occlusion is one of the major causes of chronic disability worldwide. Interleukins (ILs) play a bidirectional role in ischemic stroke through information transmission, activation and regulation of immune cells, mediating the activation, multiplication and differentiation of T and B cells and in the inflammatory reaction. Crosstalk between different ILs in different immune cells also impact the outcome of ischemic stroke. This overview is aimed to roughly discuss the multiple roles of ILs after ischemic stroke. The roles of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-16, IL-17, IL-18, IL-19, IL-21, IL-22, IL-23, IL-32, IL-33, IL-34, IL-37, and IL-38 in ischemic stroke were discussed in this review.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siping Hu
- Department of Anesthesiology, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Sun
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junjing Chen
- Department of General Surgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- *Correspondence: Junjing Chen, ; Sheng Qiu,
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- *Correspondence: Junjing Chen, ; Sheng Qiu,
| |
Collapse
|
40
|
The Deubiquitinase OTUB1 Is a Key Regulator of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23031536. [PMID: 35163456 PMCID: PMC8836018 DOI: 10.3390/ijms23031536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the physiological relevance of OTUB1 is unclear. Here, we report that the induced global deletion of OTUB1 in adult mice (Otub1 iKO) elevated energy expenditure, reduced age-dependent body weight gain, facilitated blood glucose clearance and lowered basal plasma insulin levels. The respiratory exchange ratio was maintained, indicating an unaltered nutrient oxidation. In addition, Otub1 deletion in cells enhanced AKT activity, leading to a larger cell size, higher ATP levels and reduced AMPK phosphorylation. AKT is an integral part of insulin-mediated signaling and Otub1 iKO mice presented with increased AKT phosphorylation following acute insulin administration combined with insulin hypersensitivity. We conclude that OTUB1 is an important regulator of metabolic homeostasis.
Collapse
|
41
|
Gao T, Liu T, Ko CJ, Zhang L, Joo D, Xie X, Zhu L, Li Y, Cheng X, Sun SC. Myeloid cell TBK1 restricts inflammatory responses. Proc Natl Acad Sci U S A 2022; 119:e2107742119. [PMID: 35074921 PMCID: PMC8794809 DOI: 10.1073/pnas.2107742119] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Proinflammatory cytokine production by innate immune cells plays a crucial role in inflammatory diseases, but the molecular mechanisms controlling the inflammatory responses are poorly understood. Here, we show that TANK-binding kinase 1 (TBK1) serves as a vital regulator of proinflammatory macrophage function and protects against tissue inflammation. Myeloid cell-conditional Tbk1 knockout (MKO) mice spontaneously developed adipose hypertrophy and metabolic disorders at old ages, associated with increased adipose tissue M1 macrophage infiltration and proinflammatory cytokine expression. When fed with a high-fat diet, the Tbk1-MKO mice also displayed exacerbated hepatic inflammation and insulin resistance, developing symptoms of nonalcoholic steatohepatitis. Furthermore, myeloid cell-specific TBK1 ablation exacerbates inflammation in experimental colitis. Mechanistically, TBK1 functions in macrophages to suppress the NF-κB and MAP kinase signaling pathways and thus attenuate induction of proinflammatory cytokines, particularly IL-1β. Ablation of IL-1 receptor 1 (IL-1R1) eliminates the inflammatory symptoms of Tbk1-MKO mice. These results establish TBK1 as a pivotal anti-inflammatory mediator that restricts inflammation in different disease models.
Collapse
Affiliation(s)
- Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Ting Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030;
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan 100233
| | - Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Donghyun Joo
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030;
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030
| |
Collapse
|
42
|
Hao M, Dou Z, Xu L, Shao Z, Sun H, Li Z. RNA Sequencing Analysis of Gene Expression by Electroacupuncture in Guinea Pig Gallstone Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3793946. [PMID: 35035504 PMCID: PMC8759925 DOI: 10.1155/2022/3793946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Clinical studies have shown that electroacupuncture (EA) promotes gallbladder motility and alleviates gallstone. However, the mechanism underlying the effects of EA on gallstone is poorly understood. In this study, the mRNA transcriptome analysis was used to study the possible therapeutic targets of EA. METHODS Hartley SPF guinea pigs were employed for the gallstone models. Illumina NovaSeq 6000 platform was used for the RNA sequencing of guinea pig gallbladders in the normal group (Normal), gallstone model group (Model), and EA-treated group (EA). Differently expressed genes (DEGs) were examined separately in Model vs. Normal and EA vs. Model. DEGs reversed by EA were selected by comparing the DEGs of Model vs. Normal and EA vs. Model. Biological functions were enriched by gene ontology (GO) analysis. The protein-protein interaction (PPI) network was analyzed. RESULTS After 2 weeks of EA, 257 DEGs in Model vs. Normal and 1704 DEGs in EA vs. Model were identified. 94 DEGs reversed by EA were identified among these DEGs, including 28 reversed upregulated DEGs and 66 reversed downregulated DEGs. By PPI network analysis, 10 hub genes were found by Cytohubba plugin of Cytoscape. Quantitative real-time PCR (qRT-PCR) verified the changes. CONCLUSION We identified a few GOs and genes that might play key roles in the treatment of gallstone. This study may help understand the therapeutic mechanism of EA for gallstone.
Collapse
Affiliation(s)
- Mingyao Hao
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhiqiang Dou
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Luyao Xu
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zongchen Shao
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Sun
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
43
|
Lee BS, Kang SU, Huang M, Kim YS, Lee YS, Park JY, Kim CH. OTUB1 knockdown promotes apoptosis in melanoma cells by upregulating TRAIL expression. BMB Rep 2021. [PMID: 34488924 PMCID: PMC8728537 DOI: 10.5483/bmbrep.2021.54.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Bok-Soon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Mei Huang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Young-Sun Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, 5Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, 5Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| |
Collapse
|
44
|
Han D, Sun P, Hu Y, Wang J, Hua G, Chen J, Shao C, Tian F, Darwish HYA, Tai Y, Yang X, Chang J, Ma Y. The Immune Barrier of Porcine Uterine Mucosa Differs Dramatically at Proliferative and Secretory Phases and Could Be Positively Modulated by Colonizing Microbiota. Front Immunol 2021; 12:750808. [PMID: 34917075 PMCID: PMC8670328 DOI: 10.3389/fimmu.2021.750808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8+ T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.
Collapse
Affiliation(s)
- Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Sun
- Research and Development Department for Breeding Poultry Feed, Shandong Hekangyuan Biological Breeding Co., Ltd, Jinan, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoying Hua
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfei Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuyun Shao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Fan Tian
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Hesham Y A Darwish
- Department of Applied Biotechnology, Molecular Biology Researches & Studies Institute, Assiut University, Assiut, Egypt
| | - Yurong Tai
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyu Chang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Ruiz-Serrano A, Monné Rodríguez JM, Günter J, Sherman SPM, Jucht AE, Fluechter P, Volkova YL, Pfundstein S, Pellegrini G, Wagner CA, Schneider C, Wenger RH, Scholz CC. OTUB1 regulates lung development, adult lung tissue homeostasis, and respiratory control. FASEB J 2021; 35:e22039. [PMID: 34793600 DOI: 10.1096/fj.202100346r] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/17/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022]
Abstract
OTUB1 is one of the most highly expressed deubiquitinases, counter-regulating the two most abundant ubiquitin chain types. OTUB1 expression is linked to the development and progression of lung cancer and idiopathic pulmonary fibrosis in humans. However, the physiological function of OTUB1 is unknown. Here, we show that constitutive whole-body Otub1 deletion in mice leads to perinatal lethality by asphyxiation. Analysis of (single-cell) RNA sequencing and proteome data demonstrated that OTUB1 is expressed in all lung cell types with a particularly high expression during late-stage lung development (E16.5, E18.5). At E18.5, the lungs of animals with Otub1 deletion presented with increased cell proliferation that decreased saccular air space and prevented inhalation. Flow cytometry-based analysis of E18.5 lung tissue revealed that Otub1 deletion increased proliferation of major lung parenchymal and mesenchymal/other non-hematopoietic cell types. Adult mice with conditional whole-body Otub1 deletion (wbOtub1del/del ) also displayed increased lung cell proliferation in addition to hyperventilation and failure to adapt the respiratory pattern to hypoxia. On the molecular level, Otub1 deletion enhanced mTOR signaling in embryonic and adult lung tissues. Based on these results, we propose that OTUB1 is a negative regulator of mTOR signaling with essential functions for lung cell proliferation, lung development, adult lung tissue homeostasis, and respiratory regulation.
Collapse
Affiliation(s)
| | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | | | | | - Pascal Fluechter
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| |
Collapse
|
46
|
USP12 promotes CD4 + T cell responses through deubiquitinating and stabilizing BCL10. Cell Death Differ 2021; 28:2857-2870. [PMID: 33941870 PMCID: PMC8481463 DOI: 10.1038/s41418-021-00787-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Deubiquitinases (DUBs) regulate diverse biological processes and represent a novel class of drug targets. However, the biological function of only a small fraction of DUBs, especially in adaptive immune response regulation, is well-defined. In this study, we identified DUB ubiquitin-specific peptidase 12 (USP12) as a critical regulator of CD4+ T cell activation. USP12 plays an intrinsic role in promoting the CD4+ T cell phenotype, including differentiation, activation, and proliferation. Although USP12-deficient CD4+ T cells protected mice from autoimmune diseases, the immune response against bacterial infection was subdued. USP12 stabilized B cell lymphoma/leukemia 10 (BCL10) by deubiquitinating, and thereby activated the NF-κB signaling pathway. Interestingly, this USP12 regulatory mechanism was identified in CD4+ T cells, but not in CD8+ T cells. Our study results showed that USP12 activated CD4+ T cell signaling, and targeting USP12 might help develop therapeutic interventions for treating inflammatory diseases or pathogen infections.
Collapse
|
47
|
Song H, Song J, Cheng M, Zheng M, Wang T, Tian S, Flavell RA, Zhu S, Li HB, Ding C, Wei H, Sun R, Peng H, Tian Z. METTL3-mediated m 6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun 2021; 12:5522. [PMID: 34535671 PMCID: PMC8448775 DOI: 10.1038/s41467-021-25803-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells exert critical roles in anti-tumor immunity but how their functions are regulated by epitranscriptional modification (e.g., N6-methyladenosine (m6A) methylation) is unclear. Here we report decreased expression of the m6A "writer" METTL3 in tumor-infiltrating NK cells, and a positive correlation between protein expression levels of METTL3 and effector molecules in NK cells. Deletion of Mettl3 in NK cells alters the homeostasis of NK cells and inhibits NK cell infiltration and function in the tumor microenvironment, leading to accelerated tumor development and shortened survival in mice. The gene encoding SHP-2 is m6A modified, and its protein expression is decreased in METTL3-deficient NK cells. Reduced SHP-2 activity renders NK cells hyporesponsive to IL-15, which is associated with suppressed activation of the AKT and MAPK signaling pathway in METTL3-deficient NK cells. These findings show that m6A methylation safeguards the homeostasis and tumor immunosurveillance function of NK cells.
Collapse
Affiliation(s)
- Hao Song
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiaxi Song
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ming Cheng
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Tian Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Shu Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hui Peng
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, Anhui, 230027, China.
| |
Collapse
|
48
|
Mysore V, Cullere X, Settles ML, Ji X, Kattan MW, Desjardins M, Durbin-Johnson B, Gilboa T, Baden LR, Walt DR, Lichtman AH, Jehi L, Mayadas TN. Protective heterologous T cell immunity in COVID-19 induced by the trivalent MMR and Tdap vaccine antigens. MED 2021; 2:1050-1071.e7. [PMID: 34414383 PMCID: PMC8363466 DOI: 10.1016/j.medj.2021.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND T cells control viral infection, promote vaccine durability, and in coronavirus disease 2019 (COVID-19) associate with mild disease. We investigated whether prior measles-mumps-rubella (MMR) or tetanus-diphtheria-pertussis (Tdap) vaccination elicits cross-reactive T cells that mitigate COVID-19. METHODS Antigen-presenting cells (APC) loaded ex vivo with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), MMR, or Tdap antigens and autologous T cells from COVID-19-convalescent participants, uninfected individuals, and COVID-19 mRNA-vaccinated donors were co-cultured. T cell activation and phenotype were detected by interferon-γ (IFN-γ) enzyme-linked immunospot (ELISpot) assays and flow cytometry. ELISAs (enzyme-linked immunosorbant assays) and validation studies identified the APC-derived cytokine(s) driving T cell activation. TCR clonotyping and single-cell RNA sequencing (scRNA-seq) identified cross-reactive T cells and their transcriptional profile. A propensity-weighted analysis of COVID-19 patients estimated the effects of MMR and Tdap vaccination on COVID-19 outcomes. FINDINGS High correlation was observed between T cell responses to SARS-CoV-2 (spike-S1 and nucleocapsid) and MMR and Tdap proteins in COVID-19-convalescent and -vaccinated individuals. The overlapping T cell population contained an effector memory T cell subset (effector memory re-expressing CD45RA on T cells [TEMRA]) implicated in protective, anti-viral immunity, and their detection required APC-derived IL-15, known to sensitize T cells to activation. Cross-reactive TCR repertoires detected in antigen-experienced T cells recognizing SARS-CoV-2, MMR, and Tdap epitopes had TEMRA features. Indices of disease severity were reduced in MMR- or Tdap-vaccinated individuals by 32%-38% and 20%-23%, respectively, among COVID-19 patients. CONCLUSIONS Tdap and MMR memory T cells reactivated by SARS-CoV-2 may provide protection against severe COVID-19. FUNDING This study was supported by a National Institutes of Health (R01HL065095, R01AI152522, R01NS097719) donation from Barbara and Amos Hostetter and the Chleck Foundation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Xavier Cullere
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Matthew L Settles
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Xinge Ji
- Quantitative Health Science Department, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael W Kattan
- Quantitative Health Science Department, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michaël Desjardins
- Department of Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | | | - Tal Gilboa
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Lara Jehi
- Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
50
|
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021; 21:481-499. [PMID: 34083781 PMCID: PMC8173513 DOI: 10.1038/s41568-021-00363-z] [Citation(s) in RCA: 377] [Impact Index Per Article: 125.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Interleukins and associated cytokines serve as the means of communication for innate and adaptive immune cells as well as non-immune cells and tissues. Thus, interleukins have a critical role in cancer development, progression and control. Interleukins can nurture an environment enabling and favouring cancer growth while simultaneously being essential for a productive tumour-directed immune response. These properties of interleukins can be exploited to improve immunotherapies to promote effectiveness as well as to limit side effects. This Review aims to unravel some of these complex interactions.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Janina Dörr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|