1
|
Barton RD, Tregoning JS, Wang Z, Gonçalves-Carneiro D, Patel R, McKay PF, Shattock RJ. A sort and sequence approach to dissect heterogeneity of response to a self-amplifying RNA vector in a novel human muscle cell line. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102400. [PMID: 39759876 PMCID: PMC11700297 DOI: 10.1016/j.omtn.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Self-amplifying RNA (saRNA) is an extremely promising platform because it can produce more protein for less RNA. We used a sort and sequence approach to identify host cell factors associated with transgene expression from saRNA; the hypothesis was that cells with different expression levels would have different transcriptomes. We tested this in CDK4/hTERT immortalized human muscle cells transfected with Venezuelan equine encephalitis virus (VEEV)-derived saRNA encoding GFP. Cells with the highest expression levels had very high levels of transgene mRNA (5%-10% total reads); the cells sorted with low and negative levels of GFP protein also had detectable levels of both VEEV and GFP RNA. To understand host responses, we performed RNA sequencing. Differentially expressed gene (DEG) patterns varied with GFP expression; GFP high cells had many more DEGs, which were associated with protein synthesis and cell metabolism. Comparing profiles by an unsupervised approach revealed that negative cells expressed higher levels of cell-intrinsic immunity genes such as IFIT1, MX1, TLR3, and MyD88. To explore the role of interferon, cells were treated with the Jak inhibitor ruxolitinib. This reduced the number of DEGs, but differences between cells sorted by expression level remained. These studies demonstrate the complex interplay of factors, some immune related, affecting saRNA transgenes.
Collapse
Affiliation(s)
- Rachel D. Barton
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Ziyin Wang
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Radhika Patel
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Paul F. McKay
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Robin J. Shattock
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|
2
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2025; 25:195-211. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Baimanov D, Wang J, Liu Y, Zheng P, Yu S, Liu F, Wang J, Boraschi D, Zhao Y, Chen C, Wang L. Identification of Cell Receptors Responsible for Recognition and Binding of Lipid Nanoparticles. J Am Chem Soc 2025. [PMID: 39993835 DOI: 10.1021/jacs.4c16987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Effective delivery of lipid nanoparticles (LNPs) and their organ- or cell-type targeting are paramount for therapeutic success. Achieving this requires a comprehensive understanding of protein corona dynamics and the identification of cell receptors involved in the recognition and uptake of LNPs. We introduce a simple, fast, and in situ strategy by a biosensor-based "Fishing" method to uncover protein corona formation on LNPs and identify key receptors of human blood cells that are responsible for the recognition and binding of human plasma corona on the surface of LNPs. Unexpectedly, we observed a significant presence of immunoglobulins with high abundance, especially anti-PEG antibodies, within the LNP corona. These antibodies, along with complement opsonization, drive colony-stimulating factor 2 receptor β (CSF2RB)-mediated phagocytosis by human myeloid cells. These compositions of the human plasma corona and their interactions with neighboring proteins are critical for the recognition and binding of LNPs by cell receptors and cellular uptake. Our findings highlight the pivotal role of anti-PEG antibodies in the circulation and phagocytosis of LNPs in vivo. This approach offers profound insights into nanomaterial behavior in vivo, paving the way for the enhanced design and efficacy of LNP-based therapies.
Collapse
Affiliation(s)
- Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
- Peking University Ningbo Institute of Marine Medicines, Ningbo 315832, P. R. China
| | - Yuchen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Pingping Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| | - Shengtao Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Diana Boraschi
- Laboratory of Inflammation and Vaccines, China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou 510700, Guangdong, P. R. China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou 510700, Guangdong, P. R. China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Lukeman H, Al-Wassiti H, Fabb SA, Lim L, Wang T, Britton WJ, Steain M, Pouton CW, Triccas JA, Counoupas C. An LNP-mRNA vaccine modulates innate cell trafficking and promotes polyfunctional Th1 CD4 + T cell responses to enhance BCG-induced protective immunity against Mycobacterium tuberculosis. EBioMedicine 2025; 113:105599. [PMID: 39955975 PMCID: PMC11871481 DOI: 10.1016/j.ebiom.2025.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Mycobacterium tuberculosis remains the largest infectious cause of mortality worldwide, even with over a century of widespread administration of the only licenced tuberculosis (TB) vaccine, Bacillus Calmette-Guérin (BCG). mRNA technology remains an underexplored approach for combating chronic bacterial infections such as TB. METHODS We have developed a lipid nanoparticle (LNP)-mRNA vaccine, termed mRNACV2, encoding for the M. tuberculosis CysVac2 fusion protein, which we have previously formulated as an adjuvanted subunit vaccine. This LNP-mRNA vaccine was administered intramuscularly to female C57BL/6 mice as a standalone vaccine or as booster to BCG to assess immunogenicity and efficacy of the construct. FINDINGS Vaccination with mRNACV2 induced high frequencies of polyfunctional, antigen-specific Th1 CD4+ T cells in the blood and lungs, which was associated with the rapid recruitment of both innate and adaptive immune cells to lymph nodes draining the site of immunisation. mRNACV2 vaccination also provided significant pulmonary protection in M. tuberculosis-infected mice, reducing bacterial load and inflammatory infiltration in the lungs. Importantly, mRNACV2 enhanced immune responses and long-term protection when used to boost BCG-primed mice. INTERPRETATION These findings of a protective LNP-mRNA vaccine for TB highlight the potential of the LNP-mRNA platform for TB control and support further research to facilitate translation to humans. FUNDING This work was supported by the NHMRC Centre of Research Excellence in Tuberculosis Control to JAT and WJB (APP1153493), and MRFF mRNA Clinical Trial Enabling Infrastructure grant to CWP and HAW (MRFCTI000006).
Collapse
Affiliation(s)
- Hannah Lukeman
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Hareth Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Leonard Lim
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Trixie Wang
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Warwick J Britton
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Megan Steain
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - James A Triccas
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
5
|
Ben-Akiva E, Chapman A, Mao T, Irvine DJ. Linking vaccine adjuvant mechanisms of action to function. Sci Immunol 2025; 10:eado5937. [PMID: 39951545 DOI: 10.1126/sciimmunol.ado5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Vaccines deliver an immunogen in a manner designed to safely provoke an immune response, leading to the generation of memory T and B cells and long-lived antibody-producing plasma cells. Adjuvants play a critical role in vaccines by controlling how the immune system is exposed to the immunogen and providing inflammatory cues that enable productive immune priming. However, mechanisms of action underlying adjuvant function at the molecular, cell, and tissue levels are diverse and often poorly understood. Here, we review the current understanding of mechanisms of action underlying adjuvants used in subunit protein/polysaccharide vaccines and mRNA vaccines, discuss where possible how these mechanisms of action link to downstream effects on the immune response, and identify knowledge gaps that will be important to fill in order to enable the continued development of more effective adjuvants for challenging pathogens such as HIV and emerging threats.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Asheley Chapman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Tianyang Mao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
6
|
De Voss CJ, Korompis M, Li S, Ateere A, McShane H, Stylianou E. Novel mRNA vaccines induce potent immunogenicity and afford protection against tuberculosis. Front Immunol 2025; 16:1540359. [PMID: 40018046 PMCID: PMC11865049 DOI: 10.3389/fimmu.2025.1540359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a disease with a severe global burden. The intractability of Mtb has prevented the identification of clear correlates of protection against TB and hindered the development of novel TB vaccines that are urgently required. Lipid nanoparticle (LNP)-formulated mRNA is a highly promising vaccine platform that has yet to be thoroughly applied to TB. Methods We selected five Mtb antigens (PPE15, ESAT6, EspC, EsxI, MetE) and evaluated their potential as LNP-formulated mRNA vaccines, both when each antigen was delivered individually, and when all five antigens were combined in a mix regimen (m-Mix). Results Each mRNA construct demonstrated unique cellular and humoral immunogenicity, and both m-Mix, as well as the single antigen EsxI, conferred significant protection in a murine Mtb challenge model. Whilst the potent immune responses of each mRNA were maintained when applied as a boost to BCG, there was no additional increase to the efficacy of BCG. Combination of m-Mix with a recombinant, replication-deficient chimpanzee adenovirus (ChAdOx1), in a heterologous prime-boost delivery (C-m-Mix), appeared to result in increased protection upon murine Mtb infection, than either regimen alone. Discussion This work warrants further investigation of LNP-formulated mRNA vaccines for TB, whilst indicating the potential of m-Mix and C-m-Mix to progress to further stages of vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Stylianou
- The Jenner Institute, University of Oxford,
Oxford, United Kingdom
| |
Collapse
|
7
|
Jiang Y, Sanyal M, Hussein NA, Baghdasaryan A, Zhang M, Wang F, Ren F, Li J, Zhu G, Meng Y, Adamska JZ, Mellins E, Dai H. A SARS-CoV-2 vaccine on an NIR-II/SWIR emitting nanoparticle platform. SCIENCE ADVANCES 2025; 11:eadp5539. [PMID: 39919189 PMCID: PMC11804919 DOI: 10.1126/sciadv.adp5539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
The COVID-19 pandemic caused a global health crisis that resulted in millions of deaths. Effective vaccines have played central roles in curtailing the pandemic. Here, we developed a down-converting near-infrared IIb (NIR-IIb; 1500 to 1700 nanometers) luminescent, pure NaErF4@NaYF4 rare-earth nanoparticle (pEr) as vaccine carriers. The pEr nanoparticles were coated with three layers of cross-linked biocompatible polymers (pEr-P3; ~55 nanometers) and conjugated to the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Upon subcutaneous injection of the pEr-P3-RBD nanovaccine in mice, in vivo NIR-IIb imaging revealed active vaccine trafficking and migration to lymph nodes through lymphatic vessels. Two doses of the adjuvant-free vaccine elicited long-lasting (>7 months) high titers of serum viral neutralization antibody and anti-RBD immunoglobulin G, along with robust RBD-specific germinal center B cells and T follicular helper cells. We devised in vivo NIR-II molecular imaging of RBD-specific cells in lymph nodes, opening noninvasive assessments of vaccine-elicited immune responses longitudinally.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Noor A. Hussein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Mengzhen Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yifan Meng
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Julia Zofia Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| |
Collapse
|
8
|
Wang Y, Wang S, Huang L, Mao W, Li F, Lin A, Zhao W, Zeng X, Zhang Y, Yang D, Han Y, Li Y, Ren L, Li Y, Zhang L, Yan F, Yang Y, Tang X. A nucleoside-modified rabies mRNA vaccine induces long-lasting and comprehensive immune responses in mice and non-human primates. Mol Ther 2025; 33:548-559. [PMID: 39741409 PMCID: PMC11853375 DOI: 10.1016/j.ymthe.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/29/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Rabies is a lethal zoonotic infectious disease. Vaccines against the rabies virus have significantly reduced the number of deaths from the disease. However, all licensed rabies vaccines are inactivated vaccines, which have limited immunogenicity and complicated immunization procedures. A novel vaccine that provides sustained and comprehensive protection is urgently needed. Here, we developed a novel rabies mRNA vaccine candidate containing sequence-optimized mRNAs encoding full-length glycoprotein encapsulated in ionizable lipid nanoparticles. In mice and rhesus macaques, the rabies mRNA exhibited superior immunogenicity over licensed vaccines, especially in inducing long-lasting neutralizing antibodies and memory B cells. A single administration of 1.5 μg mRNA vaccine could provide complete protection against a lethal rabies virus challenge in mice. Additionally, the mRNA vaccine could robustly activate cellular immune responses with moderate release of several cytokines. In summary, our data demonstrated that the rabies mRNA vaccine outperformed approved inactivated vaccines in both mice and rhesus macaques. This highlights the potential of the mRNA platform in developing next-generation rabies vaccines.
Collapse
Affiliation(s)
- Yu Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China; Xuzhou Medical University, Xuzhou 221004, China
| | - Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| | - Lulu Huang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China
| | - Wenhao Mao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China
| | - Fangmeng Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China
| | - Ang Lin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China; Institute of Translational Medicine, China Pharmaceutical University, Nanjing 211112, China
| | - Weijun Zhao
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing 211112, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211112, China
| | - Xianhuan Zeng
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211112, China
| | - Yue Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China
| | - Dingcao Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China
| | - Yuhong Han
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211112, China
| | - Yidan Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China
| | - Leyuan Ren
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China
| | - Ying Li
- Translational Medicine Research Institute, Yangzhou University, Yangzhou 225001, China
| | - Liang Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130000, China.
| | - Yong Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China; Institute of Translational Medicine, China Pharmaceutical University, Nanjing 211112, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211112, China; Xuzhou Medical University, Xuzhou 221004, China.
| | - Xinying Tang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China; Institute of Translational Medicine, China Pharmaceutical University, Nanjing 211112, China.
| |
Collapse
|
9
|
Kawai A, Shimizu T, Tanaka H, Shichinohe S, Anindita J, Hirose M, Kawahara E, Senpuku K, Shimooka M, Quynh Mai LT, Suzuki R, Nogimori T, Yamamoto T, Hirai T, Kato T, Watanabe T, Akita H, Yoshioka Y. Low-inflammatory lipid nanoparticle-based mRNA vaccine elicits protective immunity against H5N1 influenza virus with reduced adverse reactions. Mol Ther 2025; 33:529-547. [PMID: 39690742 PMCID: PMC11852987 DOI: 10.1016/j.ymthe.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
Messenger RNA vaccines based on lipid nanoparticles (mRNA-LNPs) are promising vaccine modalities. However, mRNA-LNP vaccines frequently cause adverse reactions such as swelling and fever in humans, partly due to the inflammatory nature of LNP. Modification of the ionizable lipids used in LNPs is one approach to avoid these adverse reactions. Here, we report the development of mRNA-LNP vaccines with better protective immunity and reduced adverse reactions using LNPs, which contain a disulfide (SS)-cleavable bond and pH-activated lipid-like materials with oleic acid (ssPalmO) as an ionizable lipid (LNPssPalmO). We used mRNA expressing H5N1 subtype high-pathogenicity avian influenza virus-derived hemagglutinin or neuraminidase to generate mRNA-LNP vaccines against H5N1 influenza. Compared with conventional LNPs, mRNA-LNPssPalmO induced comparable antigen-specific antibodies and better interferon-γ (IFN-γ)-producing T helper type 1 responses in mice. Both mRNA-LNPssPalmO and conventional mRNA-LNPs conferred strong protection against homologous H5N1 virus challenge. In addition, mRNA-LNPssPalmO showed better cross-protection against heterologous H5N1 virus challenge compared with conventional mRNA-LNPs. Furthermore, we observed that mRNA-LNPssPalmO induced less-inflammatory responses (e.g., inflammatory cytokine production, vascular hyperpermeability) and fewer adverse reactions (e.g., weight loss, fever) compared with conventional mRNA-LNPs. These results suggest that mRNA-LNPssPalmO would be a safe alternative to conventional vaccines to overcome mRNA-LNP vaccine hesitancy.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taro Shimizu
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Tanaka
- Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi 980-8578, Japan
| | - Shintaro Shichinohe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jessica Anindita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi 980-8578, Japan
| | - Mika Hirose
- Laboratory for Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eigo Kawahara
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kota Senpuku
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Shimooka
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Le Thi Quynh Mai
- Department of Virology, National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi 100000, Vietnam
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory for Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tokiko Watanabe
- Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidetaka Akita
- Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi 980-8578, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Bahl A, Pandey S, Rakshit R, Kant S, Tripathi D. Infection-induced trained immunity: a twist in paradigm of innate host defense and generation of immunological memory. Infect Immun 2025; 93:e0047224. [PMID: 39655962 PMCID: PMC11784091 DOI: 10.1128/iai.00472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
In contrast to adaptive immunity, which relies on memory T and B cells for long-term pathogen-specific responses, trained immunity involves the enhancement of innate immune responses through cellular reprogramming. Experimental evidence from animal models and human studies supports the concept of trained immunity and its potential therapeutic applications in the development of personalized medicine. However, there remains a huge gap in understanding the mechanisms, identifying specific microbial triggers responsible for the induction of trained immunity. This underscores the importance of investigating the potential role of trained immunity in redefining host defense and highlights future research directions. This minireview will provide a comprehensive summary of the new paradigm of trained immunity or innate memory pathways. It will shed light on infection-induced pathways through non-specific stimulation within macrophages and natural killer cells, which will be further elaborated in multiple disease perspectives caused by infectious agents such as bacteria, fungi, and viruses. The article further elaborates on the biochemical and cellular basis of trained immunity and its impact on disease status during recurrent exposures. The review concludes with a perspective segment discussing potential therapeutic benefits, limitations, and future challenges in this area of study. The review also sheds light upon potential risks involved in the induction of trained immunity.
Collapse
Affiliation(s)
- Aayush Bahl
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, Delhi, India
| | - Roopshali Rakshit
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sashi Kant
- Bacterial Pathogenesis, Boehringer Ingelheim Animal Health USA Inc, Ames, Iowa, USA
| | - Deeksha Tripathi
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
11
|
De Pasquale C, Drommi F, Calabrò A, Botta C, Sidoti Migliore G, Carrega P, Vento G, Gaeini A, Pezzino G, Freni J, Bonaccorsi I, Vitale M, Filaci G, Fenoglio D, Iemmo R, Costa G, Cavaliere R, Ferlazzo G, Campana S. BNT162b2 COVID-19 vaccination elicits the expansion of CD16 +CD8 + T cells endowed with natural killer cell features. J Allergy Clin Immunol 2025:S0091-6749(25)00112-5. [PMID: 39894227 DOI: 10.1016/j.jaci.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/21/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The Pfizer-BioNtech vaccine, also known as BNT162b2, was developed using a novel technology based on mRNA and protects against coronavirus disease 2019 (COVID-19) via induction of specific antibody and T-cell responses. Much less is known about the broader effects of this new class of vaccines on unconventional cellular components of the immune system. OBJECTIVES We aimed to characterize a subset of unconventional T cells emerging following BNT162b2 mRNA vaccination. METHODS Peripheral blood from a total of 30 human healthy individuals who received 2 doses of the BNT162b2 mRNA vaccine was collected for the analysis of T-cell compartment by using multiparametric flow cytometry and single-cell transcriptome analyses. RESULTS In the peripheral blood of individuals undergoing BNT162b2 vaccination, we observed a sizable fraction of CD8+ T cells expressing CD16, a low-affinity FcR for IgG. These cells were severe acute respiratory coronavirus 2-specific, characterized by IFN-γ response gene transcripts and stimulation through CD16 and other natural killer (NK)-cell innate receptors elicited a functional response. Both CD16 and NKp30 could be induced on NKp80+ CD8+ T cells and the engagement of NKp80 in combination with CD16 resulted in synergic effects. CD16+ CD8+ T cells also showed a high expression of the inhibitory receptor G protein-coupled receptor 56 (GPR56), capable of limiting their activation via CD16. CONCLUSIONS These data indicate that BNT162b2 COVID-19 vaccination provides an additional large fraction of antibody-dependent cellular cytotoxicity (ADCC)-capable effector cells, endowed with innate functions and therefore able to potentially counteract a much wider array of diseases, including cancer.
Collapse
Affiliation(s)
- Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Fabiana Drommi
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Alessia Calabrò
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giacomo Sidoti Migliore
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Grazia Vento
- Department of Experimental Medicine, University of Genoa, Genova, Italy
| | | | - Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - José Freni
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Massimo Vitale
- Unit of Experimental Pathology and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Gilberto Filaci
- Biotherapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Daniela Fenoglio
- Biotherapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Raffaella Iemmo
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Gregorio Costa
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy; Clinical Pathology Unit, University Hospital Policlinico G. Martino, Messina, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy; Clinical Pathology Unit, University Hospital Policlinico G. Martino, Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine, University of Genoa, Genova, Italy; Unit of Experimental Pathology and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
12
|
Phan AT, Aunins E, Cruz-Morales E, Dwivedi G, Bunkofske M, Eberhard JN, Aldridge DL, Said H, Banda O, Tam Y, Christian DA, Vonderheide RH, Kedl RM, Weissman D, Alameh MG, Hunter CA. The type I IFN-IL-27 axis promotes mRNA vaccine-induced CD8 + T cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633383. [PMID: 39896632 PMCID: PMC11785111 DOI: 10.1101/2025.01.16.633383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The ability of lipid nanoparticle (LNP)-delivered mRNA vaccines to induce type I IFNs is critical to promote CD8 + T cell responses. The studies presented here indicate that immunization with nucleoside modified mRNA-LNP vaccines drives myeloid cell expression of the cytokine IL-27, which acts on antigen-specific CD8 + T cells to sustain T cell expansion. In vitro and in vivo studies revealed that type I IFN signaling is necessary for mRNA-LNP-induced IL-27 production, that immunization failed in IL-27 KO mice, and that immunization of IFNAR1-deficient mice with mRNA-LNP particles that also encode IL-27 mRNA restored antigen-specific CD8 + T cell responses. In addition, IL-27 mRNA-LNPs served as an adjuvant that improved cytolytic CD8 + T cell responses and the therapeutic efficacy of mRNA-LNPs to drive anti-pathogen and anti-tumor immunity. These studies highlight the central role of IL-27 in mRNA-LNP induced CD8 + T cell responses and the ability of this cytokine to augment the functionality of the CD8 + T cell response for prophylactic or therapeutic immunization.
Collapse
|
13
|
You Y, Tian Y, Guo R, Shi J, Kwak KJ, Tong Y, Estania AP, Hsu WH, Liu Y, Hu S, Cao J, Yang L, Bai R, Huang P, Lee LJ, Jiang W, Kim BYS, Ma S, Liu X, Shen Z, Lan F, Phuong Nguyen PK, Lee AS. Extracellular vesicle-mediated VEGF-A mRNA delivery rescues ischaemic injury with low immunogenicity. Eur Heart J 2025:ehae883. [PMID: 39831819 DOI: 10.1093/eurheartj/ehae883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/09/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND AIMS Lackluster results from recently completed gene therapy clinical trials of VEGF-A delivered by viral vectors have heightened the need to develop alternative delivery strategies. This study aims to demonstrate the pre-clinical efficacy and safety of extracellular vesicles (EVs) loaded with VEGF-A mRNA for the treatment of ischaemic vascular disease. METHODS After encapsulation of full-length VEGF-A mRNA into fibroblast-derived EVs via cellular nanoporation (CNP), collected VEGF-A EVs were delivered into mouse models of ischaemic injury. Target tissue delivery was verified by in situ analysis of protein and gene expression. Functional rescue was confirmed by in vivo imaging and histology. The safety of single and serial delivery was demonstrated using immune-based assays. RESULTS VEGF-A EVs were generated with high mRNA content using a CNP methodology. VEGF-A EV administration demonstrated expression of exogenous VEGF-A mRNA by in situ RNA hybridization and elevated protein expression by western blot, microscopy, and enzyme-linked immunosorbent assay. Mice treated with human VEGF-A EVs after femoral or coronary artery ligation exhibited heightened neovascularization in ischaemic tissues with increased arterial perfusion and improvement in left ventricular function, respectively. Serial delivery of VEGF-EVs in injured skin showed improved wound healing with repeat administration. Importantly, as compared with adeno-associated viral and lipid nanoparticle VEGF-A gene therapy modalities, murine VEGF-A EV delivery did not trigger innate or adaptive immune responses at the injection site or systemically. CONCLUSIONS This study demonstrated that VEGF-A EV therapy offers efficient, dose-dependent VEGF-A protein formation with low immunogenicity, resulting in new vessel formation in murine models of ischaemic vascular disease.
Collapse
Affiliation(s)
- Yi You
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518055, China
| | - Yu Tian
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518055, China
| | - Rui Guo
- Department of Cardiac Surgery, Peking University Third Hospital, 49 Huayuan N Rd, Haidian District, Beijing 100191, China
| | - Junfeng Shi
- Department of Chemical and Biomolecular Engineering, 151 W Woodruff Ave, Columbus, The Ohio State University, Columbus, OH 43210, USA
| | - Kwang Joo Kwak
- Department of Chemical and Biomolecular Engineering, 151 W Woodruff Ave, Columbus, The Ohio State University, Columbus, OH 43210, USA
| | - Yuhao Tong
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518055, China
| | - Andreanne Poppy Estania
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518055, China
| | - Wei-Hsiang Hsu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518055, China
| | - Yutong Liu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518055, China
| | - Shijun Hu
- Department of Cardiovascular Surgery for the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215000, China
| | - Jianhong Cao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518055, China
| | - Liqun Yang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518055, China
| | - Rui Bai
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, No. 12 Langshan Road, Nanshan District, Shenzhen 518057, China
| | - Pufeng Huang
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, No. 12 Langshan Road, Nanshan District, Shenzhen 518057, China
| | - Ly James Lee
- Spot Biosystems Ltd, 432 High Street, Apartment 201, Palo Alto, CA 94301, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Shuhong Ma
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, No. 12 Langshan Road, Nanshan District, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Xujie Liu
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, No. 12 Langshan Road, Nanshan District, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery for the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215000, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, No. 12 Langshan Road, Nanshan District, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Patricia Kim Phuong Nguyen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, 870 Quarry Road, Rm 183, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, 265 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew S Lee
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518055, China
- Greater Bay Area International Clinical Trials Center, Shenzhen Medical Academy of Research and Translation, Shenzhen 518055, China
| |
Collapse
|
14
|
Komori Y, Kobayashi S, Hatano K, Saito Y, Arai T, Kubo K. Elderly-onset inflammatory myopathy associated with Sjögren's syndrome following SARS-CoV-2 vaccination. Mod Rheumatol Case Rep 2025; 9:104-109. [PMID: 39302732 DOI: 10.1093/mrcr/rxae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
As vaccination against SARS-CoV-2 has progressed, various autoimmune diseases, including inflammatory myopathies, have been reported to develop after vaccination. Sjögren's syndrome (SS) sometimes presents as extra-glandular manifestations including inflammatory myopathy. In this report, we describe a case of inflammatory myopathy associated with SS that occurred in an atypically elderly patient after receiving the first dose of the SARS-CoV-2 mRNA vaccine (BNT162b2). The inflammatory myopathy was pathologically classified into non-specific myositis and characterised by predominant infiltration of the B cell lineage in this case. Combined treatment with glucocorticoid, intravenous immunoglobulin, and immunosuppressant resulted in an improvement in swallowing function and muscle strength. While we recognise the efficacy and safety of SARS-CoV-2 vaccines, we also emphasise the importance of recognising that individuals with an immunogenetic predisposition such as positivity of anti SS-A antibody may show disease activity including inflammatory myopathy following vaccination in SS, even at an atypically old age.
Collapse
Affiliation(s)
- Yuta Komori
- Department of Medicine and Rheumatology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satomi Kobayashi
- Department of Medicine and Rheumatology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Keiko Hatano
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuko Saito
- Department of Neurology and Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kanae Kubo
- Department of Medicine and Rheumatology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
15
|
Lürken K, Meinecke A, Manthey LA, Cossmann A, Stankov MV, Klawonn F, Zychlinsky Scharff A, Steffens S, Dopfer-Jablonka A, Müller F, Behrens GMN, Happle C. Impaired Hepatitis B and COVID-19 vaccination responses show strong concordance in hemodialysis patients with end stage renal disease. Eur J Med Res 2025; 30:34. [PMID: 39819737 PMCID: PMC11736940 DOI: 10.1186/s40001-025-02274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Patients with end stage renal disease (ESRD) undergoing hemodialysis are at increased risk for infection and impaired vaccination responses. We analyzed overlap and influencing factors of vaccination responses against severe acute respiratory syndrome corona virus disease 2 (SARS-CoV-2) and Hepatitis B virus (HBV). METHODS SARS-CoV-2 and HBV vaccination response was assessed in a cohort of German ESRD hemodialysis patients. Anti-HBs- and SARS-CoV-2 anti-S-IgG were analyzed by ELISA. Demographic and clinical data were extracted from clinical files. RESULTS Sixty-four patients with complete information on HBV and SARS-CoV-2 vaccination responses were included. More than one-third (35.4%) of non-responders upon HBV vaccination were identified. Unresponsiveness after HBV and poor response after SARS-CoV-2 vaccination showed strong overlap, and overall, 70.3% of patients were classified into concordant HBV/SARS vaccination response groups. HBV vaccination non-responsiveness, but not poor SARS-CoV-2 post-vaccination immunity was associated with obesity, while poor SARS-CoV-2 vaccination responses were associated increased age. CONCLUSION Our findings confirm previous reports on impaired vaccination response in hemodialysis patients and show that post-vaccination humoral responses against SARS-CoV-2 and HBV display strong overlap in this vulnerable patient group. These results may help to adapt vaccination strategies in this highly vulnerable population. TRIAL REGISTRATION German Clinical Trial Registry, DRKS00021152.
Collapse
Affiliation(s)
- Karsten Lürken
- Dialysis Centre Eickenhof, Langenhagen, Germany
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Anna Meinecke
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Luis A Manthey
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Anne Cossmann
- Dialysis Centre Eickenhof, Langenhagen, Germany
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Metodi V Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Frank Klawonn
- Institute of Information Engineering, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
- Biostatistics Research Group, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Anna Zychlinsky Scharff
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
- Department of Pediatric Oncology and Hematology, Hannover Medical School, Hannover, Germany
| | - Sandra Steffens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Frank Müller
- Department of General Practice, University Medical Center Göttingen, Göttingen, Germany
- Department of Family Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- CiiM - Centre for Individualized Infection Medicine, Hannover, Germany
| | - Christine Happle
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany.
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.
- Biomedical Research in End Stage and Obstructive Lung Disease/BREATH Hannover, German Centre for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
16
|
Jarras H, Blais I, Goyer B, Bazié WW, Rabezanahary H, Thériault M, Santerre K, Langlois MA, Masson JF, Pelletier JN, Brousseau N, Boudreau D, Trottier S, Baz M, Gilbert C. Impact of SARS-CoV-2 vaccination and of seasonal variations on the innate immune inflammatory response. Front Immunol 2025; 15:1513717. [PMID: 39877354 PMCID: PMC11772892 DOI: 10.3389/fimmu.2024.1513717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction The innate immune response is an important first checkpoint in the evolution of an infection. Although adaptive immunity is generally considered the immune component that retains antigenic memory, innate immune responses can also be affected by previous stimulations. This study evaluated the impact of vaccination on innate cell activation by TLR7/8 agonist R848, as well as seasonal variations. Methods To this end, blood samples from a cohort of 304 food and retail workers from the Quebec City region were collected during three visits at 12-week intervals. Peripheral blood mononuclear cells and polymorphonuclear neutrophils were isolated during the first and third visits and were stimulated with R848 to assess the innate immune response. Results Our results show that IL-8 production after stimulation decreased after vaccination. In addition, the IL-8 response was significantly different depending on the season when the visit occurred, for both COVID-19 vaccinated and unvaccinated individuals. Discussion This study highlights that innate immune responses can be affected by SARS-CoV-2 vaccination and fluctuate seasonally.
Collapse
Affiliation(s)
- Hend Jarras
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Isalie Blais
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Benjamin Goyer
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Wilfried W. Bazié
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Programme de Recherche sur les Maladies Infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Houet, Burkina Faso
| | - Henintsoa Rabezanahary
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Mathieu Thériault
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Kim Santerre
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean-François Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials, Regroupement québécois sur les matériaux de pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage, Université de Montréal, Montreal, QC, Canada
| | - Joelle N. Pelletier
- Department of Chemistry, Department of Biochemistry, Université de Montréal, Montreal, QC, Canada
- PROTEO — The Québec Network for Research on Protein Function, Engineering, and Applications, Quebec City, QC, Canada
| | - Nicholas Brousseau
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Biological Risks Department, Institut national de santé publique du Québec, Quebec City, QC, Canada
| | - Denis Boudreau
- Département de Chimie et Center for Optics, Photonics and Lasers (COPL), Université Laval, Quebec City, QC, Canada
| | - Sylvie Trottier
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Mariana Baz
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Caroline Gilbert
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
17
|
Buckley M, Araínga M, Maiorino L, Pires IS, Kim BJ, Michaels KK, Dye J, Qureshi K, Zhang YJ, Mak H, Steichen JM, Schief WR, Villinger F, Irvine DJ. Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates. Mol Ther 2025:S1525-0016(25)00012-7. [PMID: 39797396 DOI: 10.1016/j.ymthe.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/23/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
mRNA delivered using lipid nanoparticles (LNPs) has become an important subunit vaccine modality, but mechanisms of action for mRNA vaccines remain incompletely understood. Here, we synthesized a metal chelator-lipid conjugate enabling positron emission tomography (PET) tracer labeling of LNP/mRNA vaccines for quantitative visualization of vaccine trafficking in live mice and non-human primates (NHPs). Following intramuscular injection, we observed LNPs distributing through injected muscle tissue, simultaneous with rapid trafficking to draining lymph nodes (dLNs). Deltoid injection of LNPs mimicking human vaccine administration led to stochastic LNP delivery to three different sets of dLNs. LNP uptake in dLNs was confirmed by histology, and cellular analysis of tissues via flow cytometry identified antigen-presenting cells as the primary immune cell type responsible for early LNP uptake and mRNA translation. These results provide insights into the biodistribution of mRNA vaccines administered at clinically relevant doses, injection volumes, and injection sites in an important large animal model for vaccine development.
Collapse
Affiliation(s)
- Maureen Buckley
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - B J Kim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jonathan Dye
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kashif Qureshi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yiming J Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Howard Mak
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jon M Steichen
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Materials Science of Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Gawande MS, Zade N, Kumar P, Gundewar S, Weerarathna IN, Verma P. The role of artificial intelligence in pandemic responses: from epidemiological modeling to vaccine development. MOLECULAR BIOMEDICINE 2025; 6:1. [PMID: 39747786 PMCID: PMC11695538 DOI: 10.1186/s43556-024-00238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Integrating Artificial Intelligence (AI) across numerous disciplines has transformed the worldwide landscape of pandemic response. This review investigates the multidimensional role of AI in the pandemic, which arises as a global health crisis, and its role in preparedness and responses, ranging from enhanced epidemiological modelling to the acceleration of vaccine development. The confluence of AI technologies has guided us in a new era of data-driven decision-making, revolutionizing our ability to anticipate, mitigate, and treat infectious illnesses. The review begins by discussing the impact of a pandemic on emerging countries worldwide, elaborating on the critical significance of AI in epidemiological modelling, bringing data-driven decision-making, and enabling forecasting, mitigation and response to the pandemic. In epidemiology, AI-driven epidemiological models like SIR (Susceptible-Infectious-Recovered) and SIS (Susceptible-Infectious-Susceptible) are applied to predict the spread of disease, preventing outbreaks and optimising vaccine distribution. The review also demonstrates how Machine Learning (ML) algorithms and predictive analytics improve our knowledge of disease propagation patterns. The collaborative aspect of AI in vaccine discovery and clinical trials of various vaccines is emphasised, focusing on constructing AI-powered surveillance networks. Conclusively, the review presents a comprehensive assessment of how AI impacts epidemiological modelling, builds AI-enabled dynamic models by collaborating ML and Deep Learning (DL) techniques, and develops and implements vaccines and clinical trials. The review also focuses on screening, forecasting, contact tracing and monitoring the virus-causing pandemic. It advocates for sustained research, real-world implications, ethical application and strategic integration of AI technologies to strengthen our collective ability to face and alleviate the effects of global health issues.
Collapse
Affiliation(s)
- Mayur Suresh Gawande
- Department of Artificial Intelligence and Data Science, Faculty of Engineering and Technology, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Sawangi (Meghe), Wardha, Maharashtra, 442001, India
| | - Nikita Zade
- Department of Artificial Intelligence and Data Science, Faculty of Engineering and Technology, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Sawangi (Meghe), Wardha, Maharashtra, 442001, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, Faculty of Engineering and Technology, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Sawangi (Meghe), Wardha, Maharashtra, 442001, India.
| | - Swapnil Gundewar
- Department of Artificial Intelligence and Machine Learning, Faculty of Engineering and Technology, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Induni Nayodhara Weerarathna
- Department of Biomedical Sciences, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Prateek Verma
- Department of Artificial Intelligence and Machine Learning, Faculty of Engineering and Technology, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| |
Collapse
|
19
|
Zhang M, Wang C, Pan J, Cui H, Zhao X. Advancing novel veterinary vaccines: From comprehensive antigen and adjuvant design to preparation process optimization. Int Immunopharmacol 2025; 145:113784. [PMID: 39672026 DOI: 10.1016/j.intimp.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Vaccination stands as the paramount and cost-effective strategy for the prevention and management of animal infectious diseases. With the advances in biological technology, materials science and industrial optimization, substantial progress has been made in the development of innovative veterinary vaccines. A majority of the novel vaccines under current investigation tend to stimulate multiple immune pathways and to achieve long-term resistance against infectious diseases, yet it remains imperative to concentrate research efforts on the efficient utilization of vaccines, mitigating toxic side effects, and ensuring safe production processes. This article presents an overview of research progress in veterinary vaccines, encompassing comprehensive antigen design, adjuvant formulation advancements, preparation process optimization, and rigorous immune efficacy evaluation. It summarizes cutting-edge vaccines derived from in vitro synthesis and in vivo application, emphasizing immunogenic components and immune response mechanisms. It also highlights novel biological adjuvants that enhance immune efficacy, diversify raw materials, and possess targeted functions, while comprehensively exploring advancements in production methodologies and compatible vaccine products. By establishing a foundation for the integrated use of these innovative veterinary vaccines, this work facilitates future interdisciplinary cooperation in their advancement, aiming to accelerate the achievement of herd immunity through concerted efforts.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
20
|
Li R, Hu JC, Rong L, He Y, Wang X, Lin X, Li W, Wu Y, Kuwentrai C, Su C, Yau T, Hung IFN, Gao X, Huang JD. The guided fire from within: intratumoral administration of mRNA-based vaccines to mobilize memory immunity and direct immune responses against pathogen to target solid tumors. Cell Discov 2025; 10:127. [PMID: 39743545 DOI: 10.1038/s41421-024-00743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/30/2024] [Indexed: 01/04/2025] Open
Abstract
We investigated a novel cancer immunotherapy strategy that effectively suppresses tumor growth in multiple solid tumor models and significantly extends the lifespan of tumor-bearing mice by introducing pathogen antigens into tumors via mRNA-lipid nanoparticles. The pre-existing immunity against the pathogen antigen can significantly enhance the efficacy of this approach. In mice previously immunized with BNT162b2, an mRNA-based COVID-19 vaccine encoding the spike protein of the SARS-CoV-2 virus, intratumoral injections of the same vaccine efficiently tagged the tumor cells with mRNA-expressed spike protein. This action rapidly mobilized the pre-existing memory immunity against SARS-CoV-2 to kill the cancer cells displaying the spike protein, while concurrently reprogramming the tumor microenvironment (TME) by attracting immune cells. The partial elimination of tumor cells in a normalized TME further triggered extensive tumor antigen-specific T cell responses through antigen spreading, eventually resulting in potent and systemic tumor-targeting immune responses. Moreover, combining BNT162b2 treatment with anti-PD-L1 therapy yielded a more substantial therapeutic impact, even in "cold tumor" types that are typically less responsive to treatment. Given that the majority of the global population has acquired memory immunity against various pathogens through infection or vaccination, we believe that, in addition to utilizing the widely held immune memory against SARS-CoV-2 via COVID-19 vaccine, mRNA vaccines against other pathogens, such as Hepatitis B Virus (HBV), Common Human Coronaviruses (HCoVs), and the influenza virus, could be rapidly transitioned into clinical use and holds great promise in treating different types of cancer. The extensive selection of pathogen antigens expands therapeutic opportunities and may also overcome potential drug resistance.
Collapse
Affiliation(s)
- Renhao Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jing-Chu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Rong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yige He
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenjun Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yangfan Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chaiyaporn Kuwentrai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Canhui Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Thomas Yau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen University, Guangzhou, China.
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, Guangdong, China.
| |
Collapse
|
21
|
Yong L, Hutchings C, Barnes E, Klenerman P, Provine NM. Distinct Requirements for CD4 + T Cell Help for Immune Responses Induced by mRNA and Adenovirus-Vector SARS-CoV-2 Vaccines. Eur J Immunol 2025; 55:e202451142. [PMID: 39604225 PMCID: PMC11739681 DOI: 10.1002/eji.202451142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
CD4+ T cells have been established as central orchestrators of cellular and humoral immune responses to infection or vaccination. However, the need for CD4+ T cell help to generate primary CD8+ T cell responses is variable depending on the infectious agent or vaccine and yet consistently required for the recall of CD8+ T cell memory responses or antibody responses. Given the deployment of new vaccine platforms such as nucleoside-modified mRNA vaccines, we sought to elucidate the requirement for CD4+ T cell help in the induction of cellular and antibody responses to mRNA and adenovirus (Ad)-vectored vaccines against SARS-CoV-2. Using antibody-mediated depletion of CD4+ T cells in a mouse immunization model, we observed that CD4+ T cell help was dispensable for both primary and secondary CD8+ T cell responses to the BNT162b2 and mRNA-1273 mRNA vaccines but required for the AZD1222 Ad-vectored vaccine. Nonetheless, CD4+ T cell help was needed by both mRNA and Ad-vectored vaccine platforms for the generation of antibodies, demonstrating the centrality of CD4+ T cells in vaccine-induced protective immunity against SARS-CoV-2. Ultimately, this highlights the shared and distinct regulation of humoral and cellular responses induced by these vaccine platforms.
Collapse
Affiliation(s)
- Lyn Yong
- Pandemic Sciences InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine–Experimental MedicineUniversity of OxfordOxfordUK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine–Experimental MedicineUniversity of OxfordOxfordUK
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Paul Klenerman
- Pandemic Sciences InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine–Experimental MedicineUniversity of OxfordOxfordUK
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Nicholas M. Provine
- Pandemic Sciences InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
- Centre for Human GeneticsNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
22
|
Nguema L, Picard F, El Hajj M, Dupaty L, Fenwick C, Cardinaud S, Wiedemann A, Pantaleo G, Zurawski S, Centlivre M, Zurawski G, Lévy Y, Godot V. Subunit protein CD40.SARS.CoV2 vaccine induces SARS-CoV-2-specific stem cell-like memory CD8 + T cells. EBioMedicine 2025; 111:105479. [PMID: 39667270 PMCID: PMC11697708 DOI: 10.1016/j.ebiom.2024.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Ideally, vaccination should induce protective long-lived humoral and cellular immunity. Current licensed COVID-19 mRNA vaccines focused on the spike (S) region induce neutralizing antibodies that rapidly wane. METHODS Herein, we show that a subunit vaccine (CD40.CoV2) targeting spike and nucleocapsid antigens to CD40-expressing cells elicits broad specific human (hu)Th1 CD4+ and CD8+ T cells in humanized mice. FINDINGS CD40.CoV2 vaccination selectively enriched long-lived spike- and nucleocapsid-specific CD8+ progenitors with stem-cell-like memory (Tscm) properties, whereas mRNA BNT162b2 induced effector memory CD8+ T cells. CD8+ Tscm cells produced IFNγ and TNF upon antigenic restimulation and showed a high proliferation rate. We demonstrate that CD40 activation is specifically required for the generation of huCD8+ Tscm cells. INTERPRETATION These results support the development of a CD40-vaccine platform capable of eliciting long-lasting T-cell immunity. FUNDING This work was supported by Inserm, Université Paris-Est Créteil, and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR.
Collapse
Affiliation(s)
- Laury Nguema
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Florence Picard
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Marwa El Hajj
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Léa Dupaty
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Craig Fenwick
- Service of Immunology and Allergy Lausanne University Hospital, Swiss Vaccine Research Institute, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Cardinaud
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Aurélie Wiedemann
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Giuseppe Pantaleo
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Service of Immunology and Allergy Lausanne University Hospital, Swiss Vaccine Research Institute, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sandra Zurawski
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Mireille Centlivre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Gerard Zurawski
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yves Lévy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| | - Véronique Godot
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France.
| |
Collapse
|
23
|
Wang H, Peng Q, Dai X, Ying Z, Wu X, Liu X, Xu H, Li J, Shi L, Liu J, Wang Y, Zhao D, Huang Y, Yang L, Yang R, Yue G, Suo Y, Ye Q, Cao S, Li Y. A SARS-CoV-2 EG.5 mRNA vaccine induces a broad-spectrum immune response in mice. MedComm (Beijing) 2025; 6:e779. [PMID: 39760111 PMCID: PMC11695206 DOI: 10.1002/mco2.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 01/07/2025] Open
Abstract
The emerging of emergent SARS-CoV-2 subvariants has reduced the protective efficacy of COVID-19 vaccines. Therefore, novel COVID-19 vaccines targeting these emergent variants are needed. We designed and prepared CoV072, an mRNA-based vaccine against SARS-CoV-2 Omicron (EG.5) and other emergent SARS-CoV-2 subvariants that encodes the EG.5 spike protein. Six-week-old female BALB/C mice were used to assess humoral and cellular immune responses and cross-reactive neutralizing activity against various SARS-CoV-2 subvariants. Meanwhile different immunization strategies and doses were performed to detect the immunogenicity of this mRNA vaccine. Our results show that two doses of 5 µg CoV072 or a single dose of 15 µg CoV072 both induced broad-spectrum cross-protection ability in mice. Compared with a single dose of 15 µg CoV072, two doses of 5 µg COV072 exhibited higher levels of pseudovirus neutralizing antibody (PNAb) and cross-reactive IgG responses to multiple variants. Moreover, higher levels of neutralizing antibody (NAb) against live XBB and EG.5 variants were also induced. Th1-biased cellular immune response was induced in all vaccination groups. The antigen design and immunization strategy of this study have reference significance for the research of the next generation of COVID-19 vaccine and other vaccines.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Qinhua Peng
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Xinxian Dai
- Etiology Laboratory,National Vaccine and Serum InstituteBeijingChina
| | - Zhifang Ying
- Division of Respiratory Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Xiaohong Wu
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Xinyu Liu
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Hongshan Xu
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Jia Li
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Leitai Shi
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Jingjing Liu
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Yunpeng Wang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Danhua Zhao
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Yanqiu Huang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Lihong Yang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Ren Yang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Guangzhi Yue
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Yue Suo
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Qiang Ye
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Shouchun Cao
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Yuhua Li
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| |
Collapse
|
24
|
Cortese M, Hagan T, Rouphael N, Wu SY, Xie X, Kazmin D, Wimmers F, Gupta S, van der Most R, Coccia M, Aranuchalam PS, Nakaya HI, Wang Y, Coyle E, Horiuchi S, Wu H, Bower M, Mehta A, Gunthel C, Bosinger SE, Kotliarov Y, Cheung F, Schwartzberg PL, Germain RN, Tsang J, Li S, Albrecht R, Ueno H, Subramaniam S, Mulligan MJ, Khurana S, Golding H, Pulendran B. System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans. Nat Immunol 2025; 26:116-130. [PMID: 39747435 DOI: 10.1038/s41590-024-02036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity. We found that TPO administration enhanced the durability of vaccine-induced antibody responses. TPO-activated megakaryocytes also promoted survival of human bone-marrow plasma cells through integrin β1/β2-mediated cell-cell interactions, along with survival factors APRIL and the MIF-CD74 axis. Using machine learning, we developed a classifier based on this platelet-associated signature, which predicted antibody response longevity across six vaccines from seven independent trials, highlighting a conserved mechanism for vaccine durability.
Collapse
Affiliation(s)
- Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Sheng-Yang Wu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Prabhu S Aranuchalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Yating Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Elizabeth Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shu Horiuchi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanchih Wu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Bower
- Hope Clinic of the Emory Vaccine Center, Decatur, GA, USA
| | - Aneesh Mehta
- Hope Clinic of the Emory Vaccine Center, Decatur, GA, USA
| | | | - Steve E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
- Yerkes Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Ronald N Germain
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - John Tsang
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Shuzhao Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Randy Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology, Kyoto University, Kyoto, Japan
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mark J Mulligan
- Division of Infectious Diseases and Immunology, Department of Medicine and NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Maltseva M, Keeshan A, Cooper C, Langlois MA. Immune imprinting: The persisting influence of the first antigenic encounter with rapidly evolving viruses. Hum Vaccin Immunother 2024; 20:2384192. [PMID: 39149872 PMCID: PMC11328881 DOI: 10.1080/21645515.2024.2384192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024] Open
Abstract
Immune imprinting is a phenomenon that stems from the fundamentals of immunological memory. Upon recurrent exposures to an evolving pathogen, the immune system must weigh the benefits of rapidly recalling established antibody repertoires with greater affinity to the initial variant or invest additional time and energy in producing de novo responses specific to the emerging variant. In this review, we delve into the mechanistic complexities of immune imprinting and its role in shaping subsequent immune responses, both de novo and recall, against rapidly evolving respiratory viruses such as influenza and coronaviruses. By exploring the duality of immune imprinting, we examine its potential to both enhance or hinder immune protection against disease, while emphasizing the role of host and viral factors. Finally, we explore how different vaccine platforms may affect immune imprinting and comment on vaccine strategies that can favor de novo variant-specific antibody responses.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
26
|
Jo H, Jeoung J, Kim W, Jeoung D. Regulating Immune Responses Induced by PEGylated Messenger RNA-Lipid Nanoparticle Vaccine. Vaccines (Basel) 2024; 13:14. [PMID: 39852793 PMCID: PMC11768904 DOI: 10.3390/vaccines13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Messenger RNA (mRNA)-based therapeutics have shown remarkable progress in the treatment and prevention of diseases. Lipid nanoparticles (LNPs) have shown great successes in delivering mRNAs. After an mRNA-LNP vaccine enters a cell via an endosome, mRNA is translated into an antigen, which can activate adaptive immunity. mRNAs can bind to various pattern recognition receptors (PRRs), including toll-like receptors (TLRs), and increase the production of inflammatory cytokines. This review summarizes mechanisms of innate immunity induced by mRNAs. Polyethylene glycol (PEG) has been employed as a component of the mRNA-LNP vaccine. PEGylated nanoparticles display enhanced stability by preventing aggregation of particles. However, PEGylation can cause adverse reactions, including blood clearance (ABC) of nanoparticles via complement activation and anaphylaxis. Mechanisms of PEG-induced ABC phenomenon and anaphylaxis are presented and discussed. There have been studies aimed at reducing immune responses associated with PEG to make safe and effective vaccines. Effects of modifying or replacing PEG in reducing immune responses associated with PEGylated nanoparticles are also discussed. Modifying mRNA can induce immune tolerance, which can prevent hypersensitivity reactions induced by PEGylated mRNA-LNP vaccines. Current progress of immune tolerance induction in association with mRNA-LNP is also summarized. This review might be helpful for developing safe and effective PEGylated mRNA-LNP vaccines.
Collapse
Affiliation(s)
| | | | | | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.J.); (J.J.); (W.K.)
| |
Collapse
|
27
|
Grewe I, Friedrich M, Dieck ML, Spohn M, Ly ML, Krähling V, Mayer L, Mellinghoff SC, Rottstegge M, Kraemer R, Volz A, Becker S, Fathi A, Dahlke C, Weskamm LM, Addo MM. MVA-based SARS-CoV-2 vaccine candidates encoding different spike protein conformations induce distinct early transcriptional responses which may impact subsequent adaptive immunity. Front Immunol 2024; 15:1500615. [PMID: 39749328 PMCID: PMC11693667 DOI: 10.3389/fimmu.2024.1500615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity. Integrating data on both innate and adaptive immunity, systems vaccinology approaches can improve the understanding of vaccine-induced immune mechanisms. Methods Two vaccine candidates against SARS-CoV-2, both based on the viral vector Modified Vaccinia virus Ankara (MVA) and encoding the native (MVA-SARS-2-S) or prefusion-stabilized spike protein (MVA-SARS-2-ST), were evaluated in phase 1 clinical trials (ClinicalTrials.gov: NCT04569383, NCT04895449). Longitudinal dynamics of innate and early adaptive immune responses induced by vaccination in SARS-CoV-2-naïve individuals were analyzed based on transcriptome and flow cytometry data, in comparison to the licensed ChAd and mRNA vaccines. Results Compared to MVA-SARS-2-S, MVA-SARS-2-ST (encoding the prefusion-stabilized spike protein) induced a stronger transcriptional activation early after vaccination, as well as higher virus neutralizing antibodies. Positive correlations were observed between innate and adaptive immune responses induced by a second MVA-SARS-2-ST vaccination. MVA-, ChAd- and mRNA-based vaccines induced distinct immune signatures, with the overall strongest transcriptional activation as well as monocyte and circulating T follicular helper (cTFH) cell responses induced by ChAd. Discussion Our findings suggest a potential impact of the spike protein conformation not only on adaptive but also on innate immune responses. As indicated by positive correlations between several immune parameters induced by MVA-SARS-2-ST, the distinct transcriptional activation early after vaccination may be linked to the induction of classical monocytes and activation of cTFH1 cells, which may in turn result in the superior adaptive immunogenicity of MVA-SARS-2-ST, compared to MVA-SARS-2-S. Overall, our data demonstrate that both the vaccine platform and antigen insert can affect innate immune responses and subsequent vaccine immunogenicity in humans.
Collapse
Affiliation(s)
- Ilka Grewe
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marie-Louise Dieck
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - My Linh Ly
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Verena Krähling
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Leonie Mayer
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sibylle C. Mellinghoff
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Translational Research, Cluster of Excellence for Aging Research (CECAD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Monika Rottstegge
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Rebekka Kraemer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Leonie M. Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M. Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
28
|
Peng W, Guo K, Hu J, Wang Q. Inhibition of Pyroptosis by Hydroxychloroquine as a Neuroprotective Strategy in Ischemic Stroke. eNeuro 2024; 12:ENEURO.0254-24.2024. [PMID: 39694827 PMCID: PMC11728853 DOI: 10.1523/eneuro.0254-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Hydroxychloroquine (HCQ), a well-known antimalarial and anti-inflammatory drug, has demonstrated potential neuroprotective effects in ischemic stroke by inhibiting pyroptosis, a programmed cell death associated with inflammation. This study investigates the impact of HCQ on ischemic stroke pathology using both in vivo and in vitro models. In vivo, C57BL/6 mice subjected to middle cerebral artery occlusion (MCAO) were treated with HCQ. Neurological deficits, infarct volume, and the expression of pyroptosis markers were evaluated. The results demonstrated that HCQ significantly improved motor function and reduced infarct volume in the MCAO mouse model. In vitro, BV2 microglial cells exposed to lipopolysaccharide (LPS) and oxygen-glucose deprivation (OGD) were treated with HCQ. Western blot and immunofluorescence analyses revealed that HCQ effectively suppressed the expression of pyroptosis markers GSDMD and NLRP3 in both in vivo and in vitro models. These findings suggest that HCQ mitigates ischemic stroke damage by inhibiting pyroptosis, highlighting its potential as a therapeutic agent for ischemic stroke. This study provides novel insights into the molecular mechanisms by which HCQ exerts its neuroprotective effects, offering a promising new avenue for developing safe, cost-effective, and widely applicable stroke treatments. The potential of HCQ to modulate neuroinflammatory pathways presents a significant advancement in ischemic stroke therapy, emphasizing the importance of targeting pyroptosis in stroke management and the broader implications for treating neuroinflammatory conditions.Significance Statement Ischemic stroke remains a leading cause of disability and death globally, with limited effective treatments. This study reveals that HCQ significantly mitigates ischemic stroke damage by inhibiting pyroptosis, a form of programmed cell death. Using in vivo and in vitro models, HCQ was shown to improve motor function and reduce infarct volume, highlighting its potential as a neuroprotective agent. These findings offer a promising new therapeutic approach for ischemic stroke, emphasizing the importance of targeting pyroptosis in stroke treatment.
Collapse
Affiliation(s)
- Wenshuo Peng
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Kaiming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University,Wenzhou 325015, China
| | - Jian Hu
- Department of pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Wenzhou 325015, China
| | - Qianchun Wang
- Department of gastroenterology, The First affiliated hospital of Wenzhou Medical University, Wenzhou 325015, China
| |
Collapse
|
29
|
Dai W, Xing M, Sun L, Lv L, Wang X, Wang Y, Pang X, Guo Y, Ren J, Zhou D. Lipid nanoparticles as adjuvant of norovirus VLP vaccine augment cellular and humoral immune responses in a TLR9- and type I IFN-dependent pathway. J Virol 2024; 98:e0169924. [PMID: 39494905 DOI: 10.1128/jvi.01699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Norovirus (NoV) virus-like particles (VLPs) adjuvanted with aluminum hydroxide (Alum) are common vaccine candidates in clinical studies. Alum adjuvants usually inefficiently assist recombinant proteins to induce cellular immune responses. Thus, novel adjuvants are required to develop NoV vaccines that could induce both efficient humoral and robust cellular immune responses. Lipid nanoparticles (LNPs) are well-known mRNA delivery vehicles. Increasing evidence suggests that LNPs may have intrinsic adjuvant activity and can be used as adjuvants for recombinant protein vaccines; however, the underlying mechanism remains poorly understood. In this study, we compared the adjuvant effect of LNPs and Alum for a bivalent GI.1/GII.4 NoV VLP vaccine. Compared with Alum, LNP-adjuvanted vaccines induced earlier production of binding, blocking, and neutralizing antibodies and promoted a more balanced IgG2a/IgG1 ratio. It is crucial that LNP-adjuvanted vaccines induced stronger Th1-type cytokine-producing CD4+ T cell and CD8+ T cell responses than Alum. The adjuvant activity of LNPs depended on the ionizable lipid components. Mechanistically, LNPs activated innate immune responses in a type I IFN-dependent manner and were partially dependent on Toll-like receptor (TLR) 9, thus affecting the adaptive immune responses of the vaccine. This conclusion was supported by RNA-seq analysis and in vitro cell experiments and by the deeply blunted T cell responses in IFNαR1-/- mice immunized with LNP-adjuvanted vaccines. This study not only identified LNPs as a high quality adjuvant for NoV VLP vaccines, but also clarified the underlying mechanism of LNPs as a potent immunostimulatory component for improving protein subunit vaccines.IMPORTANCEWith the rapid development of mRNA vaccines, recurrent studies show that lipid nanoparticles (LNPs) have adjuvant activity. However, the mechanism of its adjuvant effect in protein vaccines remains unknown. In this study, we found that the LNP-adjuvanted norovirus bivalent virus-like particle vaccines led to durable antibody responses as well as Th1-type cytokine-producing CD4+ T cell and CD8+ T cell responses, which exceeded the efficiency of the conventional adjuvant aluminum hydroxide. Mechanistically, LNPs activated innate immune responses in a type I IFN-dependent manner and were partially dependent on Toll-like receptor 9, thus affecting the adaptive immune responses of the vaccine. This work unveils that LNPs as a potent immunostimulatory component may be ideal for generating CD8+ T cell and B cell responses for recombinant protein vaccines.
Collapse
MESH Headings
- Animals
- Nanoparticles/administration & dosage
- Mice
- Norovirus/immunology
- Immunity, Humoral
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- Interferon Type I/immunology
- Immunity, Cellular
- Antibodies, Viral/immunology
- Caliciviridae Infections/prevention & control
- Caliciviridae Infections/immunology
- Toll-Like Receptor 9/immunology
- Antibodies, Neutralizing/immunology
- Mice, Inbred C57BL
- Adjuvants, Vaccine
- Female
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Immunoglobulin G/immunology
- Immunity, Innate
- Humans
- Mice, Knockout
- CD8-Positive T-Lymphocytes/immunology
- Lipids/immunology
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/pharmacology
- Aluminum Hydroxide/immunology
- Liposomes
Collapse
Affiliation(s)
- Weiqian Dai
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Man Xing
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Lingjin Sun
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Lihui Lv
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yihan Wang
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Xueyang Pang
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Jiling Ren
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Dongming Zhou
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Brandi R, Paganelli A, D’Amelio R, Giuliani P, Lista F, Salemi S, Paganelli R. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines (Basel) 2024; 12:1418. [PMID: 39772079 PMCID: PMC11680146 DOI: 10.3390/vaccines12121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity. METHODS To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein-Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases. RESULTS RNA viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-2, HIV, and influenza, are characterized by high variability, thus creating the need to rapidly adapt the vaccines to the circulating viral strain, a task that mRNA vaccines can easily accomplish; however, the speed of variability may be higher than the time needed for a vaccine to be adapted. mRNA vaccines, using lipid nanoparticles as the delivery system, may act as adjuvants, thus powerfully stimulating innate as well as adaptive immunity, both humoral, which is rapidly waning, and cell-mediated, which is highly persistent. Safety profiles were satisfactory, considering that only a slight increase in prognostically favorable anaphylactic reactions in young females and myopericarditis in young males has been observed. CONCLUSIONS The COVID-19 pandemic determined a shift in the use of RNA: after having been used in medicine as micro-RNAs and tumor vaccines, the new era of anti-infectious mRNA vaccines has begun, which is currently in great development, to either improve already available, but unsatisfactory, vaccines or develop protective vaccines against infectious agents for which no preventative tools have been realized yet.
Collapse
Affiliation(s)
- Rossella Brandi
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | | | | | - Paolo Giuliani
- Poliambulatorio Montezemolo, Ente Sanitario Militare del Ministero Della Difesa Presso la Corte dei Conti, 00195 Rome, Italy;
| | - Florigio Lista
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | - Simonetta Salemi
- Division of Internal Medicine, Azienda Ospedaliero-Universitaria S. Andrea, 00189 Rome, Italy
| | - Roberto Paganelli
- Internal Medicine, Faculty of Medicine and Surgery, Unicamillus, International School of Medicine, 00131 Rome, Italy
| |
Collapse
|
31
|
Abt ER, Lam AK, Noguchi M, Rashid K, McLaughlin J, Teng PL, Tran W, Cheng D, Nesterenko PA, Mao Z, Creech AL, Burton Sojo G, Jeyachandran AV, Tam YK, Henley JE, Comai L, Pardi N, Arumugaswami V, Witte ON, Radu CG, Wu TT. Staggered immunization with mRNA vaccines encoding SARS-CoV-2 polymerase or spike antigens broadens the T cell epitope repertoire. Proc Natl Acad Sci U S A 2024; 121:e2406332121. [PMID: 39589869 PMCID: PMC11626164 DOI: 10.1073/pnas.2406332121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Combining a T cell-targeting mRNA vaccine encoding the conserved SARS-CoV-2 RNA-dependent RNA polymerase, RdRp, with a Spike-encoding mRNA vaccine may offer an additional pathway toward COVID-19 protection. Here, we show that a nucleoside-modified RdRp mRNA vaccine raises robust and durable CD8+ T cell responses in mice. Immunization drives a CD8+ T cell response enriched toward a specific RdRp epitope. Unexpectedly, coadministration of mRNA vaccines encoding RdRp or the Spike Receptor Binding Domain (RBD) dampens RBD-specific immune responses. Contralateral administration reduces the suppression of RBD-specific T cell responses while type I interferon signaling blockade restores RBD-specific antibodies. A staggered immunization strategy maintains both RBD vaccine-mediated antibody and T cell responses as well as protection against lethal SARS-CoV-2 challenge in human ACE2 transgenic mice. In HLA-A2.1 transgenic mice, the RdRp vaccine elicits CD8+ T cell responses against HLA-A*02:01-restricted epitopes recognized by human donor T cells. These results highlight RdRp as a candidate antigen for COVID-19 vaccines. The findings also offer insights into crafting effective multivalent mRNA vaccines to broaden CD8+ T cell responses against SARS-CoV-2 and potentially other viruses with pandemic potential.
Collapse
Affiliation(s)
- Evan R. Abt
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Alex K. Lam
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Khalid Rashid
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Jami McLaughlin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Pu-Lin Teng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Donghui Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Pavlo A. Nesterenko
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Amanda L. Creech
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, BCV6T 1Z3, Canada
| | - Jill E. Henley
- Department of Molecular Microbiology and Immunology, The Hastings and Wright Laboratories, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, The Hastings and Wright Laboratories, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, University of California Los Angeles, Los Angeles, CA90095
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA90095
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA90095
- AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
32
|
Aljaber L, Schutz P, Ennis D, Jack K, Huang K. Severe Edematous Facial Myositis Following Dual Influenza and COVID-19 Vaccination: A Case Report. Cureus 2024; 16:e76540. [PMID: 39872589 PMCID: PMC11772080 DOI: 10.7759/cureus.76540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
Idiopathic inflammatory myopathies (IIM), or myositis, are a heterogeneous group of autoimmune disorders that can affect multiple organs, including the muscles, skin, joints, lungs, heart, and gastrointestinal tract. While new-onset myositis has been reported following SARS-CoV-2 infection, cases associated with COVID-19 vaccination remain rare. We describe a unique case of severe progressive edematous facial myositis resembling angioedema in a 22-year-old man, with onset one to two weeks after receiving dual SARS-CoV-2 and influenza vaccinations. This ultimately led to a diagnosis of systemic inflammatory myositis with extensive involvement of proximal muscles in the arms and legs. We outline the clinical course, diagnostic investigations, and treatments, and discuss the potential molecular mechanisms and existing literature on inflammatory myositis induced by SARS-CoV-2 infection or mRNA-based vaccination.
Collapse
Affiliation(s)
- Latifa Aljaber
- Internal Medicine, University of British Columbia, Faculty of Medicine, Vancouver, CAN
| | - Peter Schutz
- Pathology, University of British Columbia, Faculty of Medicine, Vancouver, CAN
| | - Daniel Ennis
- Rheumatology, University of British Columbia, Faculty of Medicine, Vancouver, CAN
| | - Kristin Jack
- Neurology, University of British Columbia, Faculty of Medicine, Vancouver, CAN
| | - Kun Huang
- Rheumatology, University of British Columbia, Faculty of Medicine, Vancouver, CAN
| |
Collapse
|
33
|
Huang L, Zhao T, Zhao W, Shao A, Zhao H, Ma W, Gong Y, Zeng X, Weng C, Bu L, Di Z, Sun S, Dai Q, Sun M, Wang L, Liu Z, Shi L, Hu J, Fang S, Zhang C, Zhang J, Wang G, Loré K, Yang Y, Lin A. Herpes zoster mRNA vaccine induces superior vaccine immunity over licensed vaccine in mice and rhesus macaques. Emerg Microbes Infect 2024; 13:2309985. [PMID: 38258878 PMCID: PMC10860463 DOI: 10.1080/22221751.2024.2309985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Herpes zoster remains an important global health issue and mainly occurs in aged and immunocompromised individuals with an early exposure history to Varicella Zoster Virus (VZV). Although the licensed vaccine Shingrix has remarkably high efficacy, undesired reactogenicity and increasing global demand causing vaccine shortage urged the development of improved or novel VZV vaccines. In this study, we developed a novel VZV mRNA vaccine candidate (named as ZOSAL) containing sequence-optimized mRNAs encoding full-length glycoprotein E encapsulated in an ionizable lipid nanoparticle. In mice and rhesus macaques, ZOSAL demonstrated superior immunogenicity and safety in multiple aspects over Shingrix, especially in the induction of strong T-cell immunity. Transcriptomic analysis revealed that both ZOSAL and Shingrix could robustly activate innate immune compartments, especially Type-I IFN signalling and antigen processing/presentation. Multivariate correlation analysis further identified several early factors of innate compartments that can predict the magnitude of T-cell responses, which further increased our understanding of the mode of action of two different VZV vaccine modalities. Collectively, our data demonstrated the superiority of VZV mRNA vaccine over licensed subunit vaccine. The mRNA platform therefore holds prospects for further investigations in next-generation VZV vaccine development.
Collapse
Affiliation(s)
- Lulu Huang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Tongyi Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Weijun Zhao
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Andong Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| | - Wenxuan Ma
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yingfei Gong
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Xianhuan Zeng
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Changzhen Weng
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Lingling Bu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Zhenhua Di
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Shiyu Sun
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qinsheng Dai
- Targeted Discovery Center, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Minhui Sun
- Targeted Discovery Center, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Limei Wang
- Advanced Medical Research Institute, Shandong University, Jinan, People’s Republic of China
| | - Zhenguang Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiesen Hu
- Firestone Biotechnologies, Shanghai, People’s Republic of China
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Cheng Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People’s Republic of China
| | - Jian Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People’s Republic of China
| | - Karin Loré
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yong Yang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Ang Lin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
34
|
Meng X, Yan F, Wang W, Wang S, Cong H, Li J, Zhao Y, Wang T, Li N, Gao Y, Wang J, Feng N, Xia X. A single dose of an ALVAC vector-based RABV virus-like particle candidate vaccine induces a potent immune response in mice, cats and dogs. Emerg Microbes Infect 2024; 13:2406280. [PMID: 39295522 PMCID: PMC11443554 DOI: 10.1080/22221751.2024.2406280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024]
Abstract
Rabies, caused by the Rabies virus (RABV), is a highly fatal zoonotic disease. Existing rabies vaccines have demonstrated good immune efficacy, but the complexity of immunization procedures and high cost has impeded the elimination of RABV, particularly in the post-COVID-19 era. There is a pressing need for safer and more effective rabies vaccines that streamline vaccination protocols and reduce expense. To meet this need, we have developed a potential rabies vaccine candidate called ALVAC-RABV-VLP, utilizing CRISPR/Cas9 gene editing technology. This vaccine employs a canarypox virus vector (ALVAC) to generate RABV virus-like particles (VLPs). In mice, a single dose of ALVAC-RABV-VLP effectively activated dendritic cells (DCs), follicular helper T cells (Tfh), and the germinal centre (GC)/plasma cell axis, resulting in durable and effective humoral immune responses. The survival rate of mice challenged with lethal RABV was 100%. Similarly, in dogs and cats, a single immunization with ALVAC-RABV-VLP elicited a stronger and longer-lasting antibody response. ALVAC-RABV-VLP induced superior cellular and humoral immunity in both mice and beagles compared to the commercial inactivated rabies vaccine. In conclusion, ALVAC-RABV-VLP induced robust protective immune responses in mice, dogs and cats, offering a novel, cost-effective, efficient, and promising approach for herd prevention of rabies.
Collapse
Affiliation(s)
- Xianyong Meng
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Haiyang Cong
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Jiaqi Li
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
| | - Na Feng
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
35
|
Chen Y, Li K, Lv W, Xie J, Qian Y, Cui C, Deng B. What Is the Impact of the Novel Coronavirus and the Vaccination on Guillain-Barre Syndrome? Mol Neurobiol 2024; 61:9835-9850. [PMID: 37728848 DOI: 10.1007/s12035-023-03638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has resulted in devastating medical and economic consequences worldwide over the past 3 years. As the pandemic enters a new stage, it is essential to consider the potential impact on rare diseases such as Guillain-Barre syndrome (GBS), which has been intimately associated with COVID-19 since the first COVID-19-related GBS case was reported in January 2020. There are notable differences between COVID-19-related GBS and GBS without COVID-19 in terms of diagnostic types and clinical manifestations. Furthermore, with the widespread administration of COVID-19 vaccines, there have been reports of GBS occurring shortly after vaccination, which requires close attention despite its rarity. This review also explores the vaccines associated with heightened GBS risks, offering insights that may guide vaccination policies and clinical practice. To provide a visual summary of these findings, we have included a graphical abstract.
Collapse
Affiliation(s)
- Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- First Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- First Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Wenjing Lv
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Yuqin Qian
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Can Cui
- Department of Clinical Sciences Malmö, Lund University, Skåne, Sweden
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- First Clinical College of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
36
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
37
|
Bayraktutan H, Symonds P, Brentville VA, Moloney C, Galley C, Bennett CL, Mata A, Durrant L, Alexander C, Gurnani P. Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine. Biomaterials 2024; 311:122647. [PMID: 38878479 DOI: 10.1016/j.biomaterials.2024.122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/06/2024]
Abstract
DNA technology has emerged as a promising route to accelerated manufacture of sequence agnostic vaccines. For activity, DNA vaccines must be protected and delivered to the correct antigen presenting cells. However, the physicochemical properties of the vector must be carefully tuned to enhance interaction with immune cells and generate sufficient immune response for disease protection. In this study, we have engineered a range of polymer-based nanocarriers based on the poly(beta-amino ester) (PBAE) polycation platform to investigate the role that surface poly(ethylene glycol) (PEG) density has on pDNA encapsulation, formulation properties and gene transfectability both in vitro and in vivo. We achieved this by synthesising a non-PEGylated and PEGylated PBAE and produced formulations containing these PBAEs, and mixed polyplexes to tune surface PEG density. All polymers and co-formulations produced small polyplex nanoparticles with almost complete encapsulation of the cargo in all cases. Despite high gene transfection in HEK293T cells, only the fully PEGylated and mixed formulations displayed significantly higher expression of the reporter gene than the negative control in dendritic cells. Further in vivo studies with a bivalent SARS-CoV-2 pDNA vaccine revealed that only the mixed formulation led to strong antigen specific T-cell responses, however this did not translate into the presence of serum antibodies indicating the need for further studies into improving immunisation with polymer delivery systems.
Collapse
Affiliation(s)
- Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Peter Symonds
- Scancell Ltd, University of Nottingham Biodiscovery Institute, Nottingham, NG7 2RD, UK
| | - Victoria A Brentville
- Scancell Ltd, University of Nottingham Biodiscovery Institute, Nottingham, NG7 2RD, UK
| | - Cara Moloney
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Charlotte Galley
- Department of Haematology, UCL Cancer Institute, 72 Huntley Street, University College London, London, WC1E 6DD, UK
| | - Clare L Bennett
- Department of Haematology, UCL Cancer Institute, 72 Huntley Street, University College London, London, WC1E 6DD, UK
| | - Alvaro Mata
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Lindy Durrant
- Scancell Ltd, University of Nottingham Biodiscovery Institute, Nottingham, NG7 2RD, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Pratik Gurnani
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
38
|
Dowell W, Dearborn J, Languon S, Miller Z, Kirch T, Paige S, Garvin O, Kjendal L, Harby E, Zuchowski AB, Clark E, Lescieur-Garcia C, Vix J, Schumer A, Mistri SK, Snoke DB, Doiron AL, Freeman K, Toth MJ, Poynter ME, Boyson JE, Majumdar D. Distinct Inflammatory Programs Underlie the Intramuscular Lipid Nanoparticle Response. ACS NANO 2024. [PMID: 39563529 DOI: 10.1021/acsnano.4c08490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Developments in mRNA/lipid nanoparticle (LNP) technology have advanced the fields of vaccinology and gene therapy, raising questions about immunogenicity. While some mRNA/LNPs generate an adjuvant-like environment in muscle tissue, other mRNA/LNPs are distinct in their capacity for multiple rounds of therapeutic delivery. We evaluate the adjuvancy of components of mRNA/LNPs by phenotyping cellular infiltrate at injection sites, tracking uptake by immune cells, and assessing the inflammatory state. Delivery of 9 common, but chemically distinct, LNPs to muscle revealed two classes of inflammatory gene expression programs: inflammatory (Class A) and noninflammatory (Class B). We find that intramuscular injection with Class A, but not Class B, empty LNPs (eLNPs) induce robust neutrophil infiltration into muscle within 2 h and a diverse myeloid population within 24 h. Single-cell RNA sequencing revealed SM-102-mediated expression of inflammatory chemokines by myeloid infiltrates within muscle 1 day after injection. Surprisingly, we found direct transfection of muscle infiltrating myeloid cells and splenocytes 24 h after intramuscular mRNA/LNP administration. Transfected myeloid cells within the muscle exhibit an activated phenotype 24 h after injection. Similarly, directly transfected splenic lymphocytes and dendritic cells (DCs) are differentially activated by Class A or Class B containing mRNA/LNP. Within the splenic DC compartment, type II conventional DCs (cDC2s) are directly transfected and activated by Class A mRNA/LNP. Together, we show that mRNA and LNPs work synergistically to provide the necessary innate immune stimuli required for effective vaccination. Importantly, this work provides a design framework for vaccines and therapeutics alike.
Collapse
Affiliation(s)
- William Dowell
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Jacob Dearborn
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Sylvester Languon
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Zachary Miller
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Tylar Kirch
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Stephen Paige
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Olivia Garvin
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Lily Kjendal
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Ethan Harby
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Adam B Zuchowski
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Emily Clark
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Carlos Lescieur-Garcia
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jesse Vix
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amy Schumer
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Somen K Mistri
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Deena B Snoke
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Kalev Freeman
- Department of Emergency Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Michael J Toth
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jonathan E Boyson
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Devdoot Majumdar
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
39
|
Brook B, Checkervarty AK, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The BNT162b2 mRNA vaccine demonstrates reduced age-associated T H1 support in vitro and in vivo. iScience 2024; 27:111055. [PMID: 39569372 PMCID: PMC11576392 DOI: 10.1016/j.isci.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
mRNA vaccines demonstrate impaired immunogenicity and durability in vulnerable older populations. We hypothesized that human in vitro modeling and proteomics could elucidate age-specific mRNA vaccine actions. BNT162b2-stimulation changed the plasma proteome of blood samples from young (18-50Y) and older adult (≥60Y) participants, assessed by mass spectrometry, proximity extension assay, and multiplex. Young adult up-regulation (e.g., PSMC6, CPN1) contrasted reduced induction in older adults (e.g., TPM4, APOF, APOC2, CPN1, PI16). 30-85% lower TH1-polarizing cytokines and chemokines were induced in elderly blood (e.g., IFNγ, CXCL10). Analytes lower in older adult samples included human in vivo mRNA immunogenicity biomarkers (e.g., IFNγ, CXCL10, CCL4, IL-1RA). BNT162b2 also demonstrated reduced CD4+ TH1 responses in aged vs. young adult mice. Our study demonstrates the utility of human in vitro platforms modeling age-specific mRNA vaccine immunogenicity, highlights impaired support of TH1 polarization in older adults, and provides a rationale for precision mRNA vaccine adjuvantation to induce greater immunogenicity.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 2K5, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy C Sherman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine- Chair of Pediatrics, University of Rome, 00133 Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dheeraj Soni
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02142, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
40
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Ustiuzhanina MO, Boyko AA, Vavilova JD, Siniavin AE, Streltsova MA, Astrakhantseva IV, Drutskaya MS, Chudakov DM, Kovalenko EI. The Antigen-Specific Response of NK Cells to SARS-CoV-2 Correlates With KIR2DS4 Expression. J Med Virol 2024; 96:e70057. [PMID: 39540437 DOI: 10.1002/jmv.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Natural killer (NK) cells play a pivotal role in the immune response against viral infections, including SARS-CoV-2. However, our understanding of memory NK cell responses in the context of SARS-CoV-2 remains limited. To address this, we investigated the memory-like response of NK cells to SARS-CoV-2 peptides, presented by autologous cells. Blood samples from 45 donors underwent analysis for SARS-CoV-2 IgG antibodies, categorizing them into four groups based on the antibody kind and level. NK cells from SARS-CoV-2-experienced donors demonstrated enhanced degranulation and activation levels, IFNγ production and proliferative potential in response to SARS-CoV-2 peptides. Investigation of highly proliferating NK cells demonstrated the formation of distinct clusters depending on the SARS-CoV-2 peptide supplementation and the donor group. RNA sequencing revealed differential gene expression patterns, highlighting metabolism, protein transport, and immune response genes. Notably, KIR2DS4 expression correlated with enhanced IFNγ production, degranulation and proliferation levels, suggesting a role in SARS-CoV-2 recognition. Collectively, these findings provide detailed insights into antigen-specific NK cell responses to SARS-CoV-2 peptides, indicating potential mechanisms underlying NK cell activation in antiviral immunity.
Collapse
Affiliation(s)
- M O Ustiuzhanina
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Boyko
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - J D Vavilova
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A E Siniavin
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Arbovirus and Experimental Production Department, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Streltsova
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I V Astrakhantseva
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Russia
| | - M S Drutskaya
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D M Chudakov
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department Bioinformatics, Abu Dhabi Stem Cell Center, Al Muntazah, Abu Dhabi, United Arab Emirates
| | - E I Kovalenko
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Kim HJ, Kim MH, Choi MG, Chun EM. Psychiatric adverse events following COVID-19 vaccination: a population-based cohort study in Seoul, South Korea. Mol Psychiatry 2024; 29:3635-3643. [PMID: 38834668 PMCID: PMC11541197 DOI: 10.1038/s41380-024-02627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Evidence has suggested an increased risk of psychiatric manifestations following viral infections including coronavirus disease-2019 (COVID-19). However, psychiatric adverse events (AEs) after COVID-19 vaccination, which were documented in case reports and case series, remain unclear. This study is aimed to investigate the psychiatric AEs after COVID-19 vaccination from a large population-based cohort in Seoul, South Korea. We recruited 50% of the Seoul-resident population randomly selected from the Korean National Health Insurance Service (KNHIS) claims database on 1, January, 2021. The included participants (n = 2,027,353) from the Korean National Health Insurance Service claims database were divided into two groups according to COVID-19 vaccination. The cumulative incidences per 10,000 of psychiatric AEs were assessed on one week, two weeks, one month, and three months after COVID-19 vaccination. Hazard ratios (HRs) and 95% Confidence interval (CIs) of psychiatric AEs were measured for the vaccinated population. The cumulative incidence of depression, anxiety, dissociative, stress-related, and somatoform disorders, sleep disorders, and sexual disorders at three months following COVID-19 vaccination were higher in the vaccination group than no vaccination group. However, schizophrenia and bipolar disorders showed lower cumulative incidence in the vaccination group than in the non-vaccinated group. Depression (HR [95% CI] = 1.683 [1.520-1.863]), anxiety, dissociative, stress-related, and somatoform disorders (HR [95% CI] = 1.439 [1.322-1.568]), and sleep disorders (HR [95% CI] = 1.934 [1.738-2.152]) showed increased risks after COVID-19 vaccination, whereas the risks of schizophrenia (HR [95% CI] = 0.231 [0.164-0.326]) and bipolar disorder (HR [95% CI] = 0.672 [0.470-0.962]). COVID-19 vaccination increased the risks of depression, anxiety, dissociative, stress-related, and somatoform disorders, and sleep disorders while reducing the risk of schizophrenia and bipolar disorder. Therefore, special cautions are necessary for administering additional COVID-19 vaccinations to populations vulnerable to psychiatric AEs.
Collapse
Affiliation(s)
- Hong Jin Kim
- Department of Orthopedic Surgery, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Republic of Korea
| | - Min-Ho Kim
- Informatization Department, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Myeong Geun Choi
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Mi Chun
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Chaudhary N, Kasiewicz LN, Newby AN, Arral ML, Yerneni SS, Melamed JR, LoPresti ST, Fein KC, Strelkova Petersen DM, Kumar S, Purwar R, Whitehead KA. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat Biomed Eng 2024; 8:1483-1498. [PMID: 39363106 PMCID: PMC11863198 DOI: 10.1038/s41551-024-01256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicle for RNA therapeutics, partly because of established lipid structure-activity relationships focused on formulation potency. Yet such knowledge has not extended to LNP immunogenicity. Here we show that the innate and adaptive immune responses elicited by LNPs are linked to their ionizable lipid chemistry. Specifically, we show that the amine headgroups in ionizable lipids drive LNP immunogenicity by binding to Toll-like receptor 4 and CD1d and by promoting lipid-raft formation. Immunogenic LNPs favour a type-1 T-helper-cell-biased immune response marked by increases in the immunoglobulins IgG2c and IgG1 and in the pro-inflammatory cytokines tumour necrosis factor, interferon γ and the interleukins IL-6 and IL-2. Notably, the inflammatory signals originating from these receptors inhibit the production of anti-poly(ethylene glycol) IgM antibodies, preventing the often-observed loss of efficacy in the LNP-mediated delivery of siRNA and mRNA. Moreover, we identified computational methods for the prediction of the structure-dependent innate and adaptive responses of LNPs. Our findings may help accelerate the discovery of well-tolerated ionizable lipids suitable for repeated dosing.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lisa N Kasiewicz
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexandra N Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mariah L Arral
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Jilian R Melamed
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Samuel T LoPresti
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Sushant Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Riemann L, Weskamm LM, Mayer L, Odak I, Hammerschmidt S, Sandrock I, Friedrichsen M, Ravens I, Fuss J, Hansen G, Addo MM, Förster R. Blood transcriptome profiling reveals distinct gene networks induced by mRNA vaccination against COVID-19. Eur J Immunol 2024; 54:e2451236. [PMID: 39402787 DOI: 10.1002/eji.202451236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 11/08/2024]
Abstract
Messenger RNA (mRNA) vaccines represent a new class of vaccines that has been shown to be highly effective during the COVID-19 pandemic and that holds great potential for other preventative and therapeutic applications. While it is known that the transcriptional activity of various genes is altered following mRNA vaccination, identifying and studying gene networks could reveal important scientific insights that might inform future vaccine designs. In this study, we conducted an in-depth weighted gene correlation network analysis of the blood transcriptome before and 24 h after the second and third vaccination with licensed mRNA vaccines against COVID-19 in humans, following a prime vaccination with either mRNA or ChAdOx1 vaccines. Utilizing this unsupervised gene network analysis approach, we identified distinct modular networks of co-varying genes characterized by either an expressional up- or downregulation in response to vaccination. Downregulated networks were associated with cell metabolic processes and regulation of transcription factors, while upregulated networks were associated with myeloid differentiation, antigen presentation, and antiviral, interferon-driven pathways. Within this interferon-associated network, we identified highly connected hub genes such as STAT2 and RIGI and associated upstream transcription factors, potentially playing important regulatory roles in the vaccine-induced immune response. The expression profile of this network significantly correlated with S1-specific IgG levels at the follow-up visit in vaccinated individuals. Those findings could be corroborated in a second, independent cohort of mRNA vaccine recipients. Collectively, results from this modular gene network analysis enhance the understanding of mRNA vaccines from a systems immunology perspective. Influencing specific gene networks could lead to optimized vaccines that elicit augmented vaccine responses.
Collapse
Affiliation(s)
- Lennart Riemann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20246, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, 20246, Germany
| | - Leonie Mayer
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20246, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, 20246, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center of Lung Research (DZL), BREATH, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20246, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, 20246, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, 20246, Germany
- German Center of Lung Research (DZL), BREATH, Hannover, Germany
- German Centre for Infection Research, partner site Braunschweig-Hannover, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Pardi N, Krammer F. mRNA vaccines for infectious diseases - advances, challenges and opportunities. Nat Rev Drug Discov 2024; 23:838-861. [PMID: 39367276 DOI: 10.1038/s41573-024-01042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
The concept of mRNA-based vaccines emerged more than three decades ago. Groundbreaking discoveries and technological advancements over the past 20 years have resolved the major roadblocks that initially delayed application of this new vaccine modality. The rapid development of nucleoside-modified COVID-19 mRNA vaccines demonstrated that this immunization platform is easy to develop, has an acceptable safety profile and can be produced at a large scale. The flexibility and ease of antigen design have enabled mRNA vaccines to enter development for a wide range of viruses as well as for various bacteria and parasites. However, gaps in our knowledge limit the development of next-generation mRNA vaccines with increased potency and safety. A deeper understanding of the mechanisms of action of mRNA vaccines, application of novel technologies enabling rational antigen design, and innovative vaccine delivery strategies and vaccination regimens will likely yield potent novel vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
46
|
Wan L, Xie B, Shuda M, Delgoffe G, Chang Y, Moore PS. Engineered protein destabilization reverses intrinsic immune evasion for candidate vaccine pan-strain KSHV and SARS-CoV-2 antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619692. [PMID: 39484438 PMCID: PMC11526888 DOI: 10.1101/2024.10.22.619692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Both Kaposi sarcoma herpesvirus LANA and SARS coronavirus 2 RdRp/nsp12 are highly conserved replication proteins that evade immune processing. By deleting the LANA central repeat 1 domain (LANA ΔCR1 ) or by dividing RdRp into two separated fragments (RdRp Frag ) to maximize nascent protein mis-folding, cis peptide presentation was increased. Native LANA or RdRp SIINFEKL fusion proteins expressed in MC38 cancer cells were not recognized by activated OT-1 CD8 + cells against SIINFEKL but cytotoxic recognition was restored by expression of the corresponding modified proteins. Immunocompetent syngeneic mice injected with LANA- or RdRp-SIINFEKL MC38 cells developed rapidly-growing tumors with short median survival times. Mice injected with LANA ΔCR1 - or RdRp Frag -SIINFEKL had partial tumor regression, slower tumor growth, longer median survival, as well as increased effector-specific tumor-infiltrating lymphocytes. These mice developed robust T cell responses lasting at least 90 days post-injection that recognized native viral protein epitopes. Engineered vaccine candidate antigens can unmask virus-specific CTL responses that are typically suppressed during native viral infection.
Collapse
|
47
|
Fan T, Xu C, Wu J, Cai Y, Cao W, Shen H, Zhang M, Zhu H, Yang J, Zhu Z, Ma X, Ren J, Huang L, Li Q, Tang Y, Yu B, Chen C, Xu M, Wang Q, Xu Z, Chen F, Liang S, Zhong Z, Jamroze A, Tang DG, Li H, Dong C. Lipopolyplex-formulated mRNA cancer vaccine elicits strong neoantigen-specific T cell responses and antitumor activity. SCIENCE ADVANCES 2024; 10:eadn9961. [PMID: 39392882 PMCID: PMC11468906 DOI: 10.1126/sciadv.adn9961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
mRNA neoantigen cancer vaccine inducing neoantigen-specific T cell responses holds great promise for cancer immunotherapy; however, its clinical translation remains challenging because of suboptimal neoantigen prediction accuracy and low delivery efficiency, which compromise the in vivo therapeutic efficacy. We present a lipopolyplex (LPP)-formulated mRNA cancer vaccine encoding tandem neoantigens as a cancer therapeutic regimen. The LPP-formulated mRNA vaccines elicited robust neoantigen-specific CD8+ T cell responses in three syngeneic murine tumor models (CT26, MC38, and B16F10) to suppress tumor growth. Prophylactic cancer vaccine treatment completely prevented tumor development, and long-lasting memory T cells protected mice from tumor cell rechallenge. Combining the vaccine with immune checkpoint inhibitor further boosted the antitumor activity. Of note, LPP-based personalized cancer vaccine was administered in two cancer patients and induced meaningful neoantigen-specific T cell and clinical responses. In conclusion, we demonstrated that the LPP-based mRNA vaccine can elicit strong antitumor immune responses, and the results support further clinical evaluation of the therapeutic mRNA cancer vaccine.
Collapse
Affiliation(s)
- Ting Fan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Congcong Xu
- StemiRNA Therapeutics Inc., Shanghai, China
- Biomedical Polymers Laboratory, College of Chemistry Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | - Jichuan Wu
- StemiRNA Therapeutics Inc., Shanghai, China
- Biomedical Polymers Laboratory, College of Chemistry Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yihua Cai
- StemiRNA Therapeutics Inc., Shanghai, China
| | - Wanlu Cao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Haifa Shen
- StemiRNA Therapeutics Inc., Shanghai, China
| | - Mingna Zhang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hanfei Zhu
- StemiRNA Therapeutics Inc., Shanghai, China
| | - Jingxian Yang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhounan Zhu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaopin Ma
- StemiRNA Therapeutics Inc., Shanghai, China
| | - Jiale Ren
- StemiRNA Therapeutics Inc., Shanghai, China
| | - Lei Huang
- StemiRNA Therapeutics Inc., Shanghai, China
| | - Qianyun Li
- StemiRNA Therapeutics Inc., Shanghai, China
| | | | - Bo Yu
- StemiRNA Therapeutics Inc., Shanghai, China
| | | | | | - Qiuhe Wang
- StemiRNA Therapeutics Inc., Shanghai, China
| | - Zhuya Xu
- StemiRNA Therapeutics Inc., Shanghai, China
| | | | - Shujing Liang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhixian Zhong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Anmbreen Jamroze
- Department of Pharmacology & Therapeutics and Experimental Therapeutics (ET) Graduate Program, University at Buffalo and Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Dean G. Tang
- Department of Pharmacology & Therapeutics and Experimental Therapeutics (ET) Graduate Program, University at Buffalo and Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hangwen Li
- StemiRNA Therapeutics Inc., Shanghai, China
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
48
|
Roh JH, Jung I, Suh Y, Kim MH. A potential association between COVID-19 vaccination and development of Alzheimer's disease. QJM 2024; 117:709-716. [PMID: 38806183 DOI: 10.1093/qjmed/hcae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The challenges of the COVID-19 pandemic extend to concerns about vaccine side effects, particularly potential links to neurodegenerative diseases such as Alzheimer's disease (AD). AIM This study investigates the association between COVID-19 vaccination and the onset of AD and its prodromal state, mild cognitive impairment (MCI). DESIGN A nationwide, retrospective cohort study leveraging data from the Korean National Health Insurance Service was conducted. METHODS The study, conducted in Seoul, South Korea, analyzed data from a random 50% sample of city residents aged 65 and above, totaling 558 017 individuals. Participants were divided into vaccinated and unvaccinated groups, with vaccinations including mRNA and cDNA vaccines. The study focused on AD and MCI incidences post-vaccination, identified via ICD-10 codes, using multivariable logistic and Cox regression analyses. Patients with vascular dementia or Parkinson's disease served as controls. RESULTS Findings showed an increased incidence of MCI and AD in vaccinated individuals, particularly those receiving mRNA vaccines, within three months post-vaccination. The mRNA vaccine group exhibited a significantly higher incidence of AD (odds ratio [OR]: 1.225; 95% confidence interval [CI]: 1.025-1.464; P = 0.026) and MCI (OR: 2.377; CI: 1.845-3.064; P < 0.001) compared to the unvaccinated group. No significant relationship was found with vascular dementia or Parkinson's disease. CONCLUSIONS Preliminary evidence suggests a potential link between COVID-19 vaccination, particularly mRNA vaccines, and increased incidences of AD and MCI. This warrants the need for further research to elucidate the relationship between vaccine-induced immune responses and neurodegenerative processes, advocating for continuous monitoring and investigation into the vaccines' long-term neurological impacts.
Collapse
Affiliation(s)
- Jee Hoon Roh
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Inha Jung
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yunsun Suh
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY, USA
| | - Min-Ho Kim
- Informatization Department, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| |
Collapse
|
49
|
Awaya T, Hara H, Moroi M. Cytokine Storms and Anaphylaxis Following COVID-19 mRNA-LNP Vaccination: Mechanisms and Therapeutic Approaches. Diseases 2024; 12:231. [PMID: 39452475 PMCID: PMC11507195 DOI: 10.3390/diseases12100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Acute adverse reactions to COVID-19 mRNA vaccines are a major concern, as autopsy reports indicate that deaths most commonly occur on the same day of or one day following vaccination. These acute reactions may be due to cytokine storms triggered by lipid nanoparticles (LNPs) and anaphylaxis induced by polyethene glycol (PEG), both of which are vital constituents of the mRNA-LNP vaccines. Kounis syndrome, in which anaphylaxis triggers acute coronary syndrome (ACS), may also be responsible for these cardiovascular events. Furthermore, COVID-19 mRNA-LNP vaccines encompass adjuvants, such as LNPs, which trigger inflammatory cytokines, including interleukin (IL)-1β and IL-6. These vaccines also produce spike proteins which facilitate the release of inflammatory cytokines. Apart from this, histamine released from mast cells during allergic reactions plays a critical role in IL-6 secretion, which intensifies inflammatory responses. In light of these events, early reduction of IL-1β and IL-6 is imperative for managing post-vaccine cytokine storms, ACS, and myocarditis. Corticosteroids can restrict inflammatory cytokines and mitigate allergic responses, while colchicine, known for its IL-1β-reducing capabilities, could also prove effective. The anti-IL-6 antibody tocilizumab also displays promising treatment of cytokine release syndrome. Aside from its significance for treating anaphylaxis, epinephrine can induce coronary artery spasms and myocardial ischemia in Kounis syndrome, making accurate diagnosis essential. The upcoming self-amplifying COVID-19 mRNA-LNP vaccines also contain LNPs. Given that these vaccines can cause a cytokine storm and allergic reactions post vaccination, it is crucial to consider corticosteroids and measure IL-6 levels for effective management.
Collapse
Affiliation(s)
- Toru Awaya
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Hidehiko Hara
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
- Department of Internal Medicine, Misato Central General Hospital, Saitama 341-8526, Japan
| |
Collapse
|
50
|
Moor J, Toepfner N, von Meißner WCG, Berner R, Moor MB, Kublickiene K, Strumann C, Chao CM. Sex differences in symptoms following the administration of BNT162b2 mRNA COVID-19 vaccine in children below 5 years of age in Germany (CoVacU5): a retrospective cohort study. Biol Sex Differ 2024; 15:74. [PMID: 39327617 PMCID: PMC11426002 DOI: 10.1186/s13293-024-00651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Sex differences exist not only in the efficacy but also in adverse event rates of many vaccines. Here we compared the safety of BNT162b2 vaccine administered off-label in female and male children younger than 5 years in Germany. METHODS This is a retrospective cohort study, in which we performed a post-hoc analysis of a dataset collected through an authentication-based survey of individuals having registered children aged 0-<5 years for vaccination against SARS-CoV-2 in six private practices and/or two lay person-initiated vaccination campaigns. We analyzed the safety profiles of the first 3 doses of 3-10 µg BNT162b2. Primary outcome was comparison in frequencies of 4 common post-vaccination symptom categories such as local, general, musculoskeletal symptoms and fever. Data were analyzed according to sex in bivariate analyses and regression models adjusting for age, weight, and dosage. Interaction between sex and BNT162b2 dosage was assessed. An active-comparator analysis was applied to compare post-vaccination symptoms after BNT162b2 versus non-SARS-CoV-2 vaccines. RESULTS The dataset for the present analysis consisted of 7801 participants including 3842 females (49%) and 3977 males (51%) with an age of 3 years (median, interquartile: 2 years). Among individuals receiving 3 µg BNT162b2, no sex differences were noted, but after a first dose of 5-10 µg BNT162b2, local injection-site symptoms were more prevalent in girls compared to boys. In logistic regression, female sex was associated with higher odds of local symptoms, odds ratio (OR) of 1.33 (95% confidence interval [CI]: 1.15-1.55, p < 0.05) and general symptoms with OR 1.21 (95% CI: 1.01-1.44, p < 0.05). Following non-BNT162b2 childhood vaccinations, female sex was associated with a lower odds of post-vaccination musculoskeletal symptoms (OR: 0.29, 95% CI: 0.11-0.82, p < 0.05). An active comparator analysis between BNT162b2 and non-SARS-CoV-2 vaccinations revealed that female sex positively influenced the association between BNT162b2 vaccine type and musculoskeletal symptoms. CONCLUSIONS Sex differences exist in post-vaccination symptoms after BNT162b2 administration even in young children. These are of importance for the conception of approval studies, for post-vaccination monitoring and for future vaccination strategies (German Clinical Trials Register ID: DRKS00028759).
Collapse
Affiliation(s)
- Jeanne Moor
- CLINTEC Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Wolfgang C G von Meißner
- Europäische Fachhochschule, Brühl, Germany
- Institute of Family Medicine, University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Reinhard Berner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias B Moor
- CLINTEC Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- LABMED Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Christoph Strumann
- Institute of Family Medicine, University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, Helios University Medical Center, Witten/Herdecke University, Heusnerstraße 40, 42283, Wuppertal, Germany.
- University Children's Hospital, University Medical Center Rostock, University of Rostock, Rostock, Germany.
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|