1
|
Shehu N, Luka P, Bente D, Weka R, Weldon C, Pam DD, Cadmus S, Dami F, Paessler S, Weaver S, Dacso M. Using one health training for interprofessional team building: implications for research, policy, and practice in Nigeria. Front Public Health 2024; 12:1375424. [PMID: 39145181 PMCID: PMC11323119 DOI: 10.3389/fpubh.2024.1375424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
In recent years, the concept of One Health (OH) has arisen as an approach that helps to catalyze the creation of transdisciplinary teams needed for surveillance and investigation of emerging disease dynamics. Besides a wealth of descriptions of what the OH approach encompasses, a dearth of information is available regarding the training of individuals in OH competencies. In 2019, the Nigerian Center for Disease Control developed an OH strategic plan to meet the country's human, animal, and environmental health challenges. In response to the demand for clinicians, scientists, climatologists, conservationists, and environmentalists, who have expertise in environment, human, plant, and animal health to work collaboratively in addressing OH challenges in Nigeria. An interprofessional group of faculty from the University of Texas Medical Branch, the University of Jos, and the National Veterinary Research Institute convened to develop a novel OH course 'entitled 'One Health for Translational Team Science. The objective of the course was to explore the evolution of an emerging epidemic, capitalizing on various learning environments, including animal, environmental, human, and public health perspectives. The 6-week course comprised of three parts: 2-weeks virtual part of case-based group discussions focusing on animal and environmental aspects, 2 weeks of individual field experiences, and a final virtual part focusing on human health. Pedagogical tools used were: case-based group discussions, breakout group presentations, role-play activities, field project write-up, peer evaluation, group writing assignments, and weekly reflections with the goal of working in teams to develop and practice the fundamental leadership and management skills in addressing emerging public health challenges. Post-course evaluations showed that all participants felt more confident identifying and practicing the necessary attitudes and skills to participate effectively in the evaluation of an outbreak. Furthermore, the roles, responsibilities, and "One Health ways of thinking" for the various disciplines and professions involved in improving global health were articulated and identified.
Collapse
Affiliation(s)
- Nathan Shehu
- West African Center for Emerging Infectious Diseases, Jos University Teaching Hospital, Jos, Nigeria
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Pam Luka
- National Veterinary Research Institute, Vom, Nigeria
| | - Dennis Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rebecca Weka
- National Veterinary Research Institute, Vom, Nigeria
| | - Caroline Weldon
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Dung D. Pam
- Department of Zoology, University of Jos, Jos, Nigeria
| | - Simeon Cadmus
- University of Ibadan, Oyo, Nigeria
- Department of Veterinary, Public Health and Preventive and Centre for Control and Prevention of Zoonoses, University of Ibadan, Oyo, Nigeria
- Department of Microbiology Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Filibus Dami
- Department of Zoology, University of Jos, Jos, Nigeria
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Scott Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Matthew Dacso
- Department of Global Health and Emerging Diseases and Department of Internal Medicine. University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
2
|
Bessler AL, Hoet AE, Nigatu S, Swisher S, Fentie T, Admassu B, Molla A, Brown M, Berrian AM. Advancing One Health through veterinary education: a mixed methods needs assessment for implementing a WOAH-harmonized national veterinary medicine curriculum in Ethiopia. Front Vet Sci 2024; 11:1357855. [PMID: 38601911 PMCID: PMC11005791 DOI: 10.3389/fvets.2024.1357855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction International organizations now actively promote and implement One Health collaborative approaches to prevent, detect, and control diseases in humans and animals, recognizing the critical importance of the veterinary and agricultural sectors. Moreover, Veterinary Services are chronically under-resourced, especially in low- and middle-income countries. Given the importance of National Veterinary Services to food security, nutrition, poverty alleviation, and global health security, strengthening veterinary capacity is a priority for the international community. The World Organisation for Animal Health (WOAH) outlines a set of minimum competencies veterinarians need to support National Veterinary Services effectively. To improve the quality of veterinary education, Ethiopia has developed a new 2020 national curriculum that is harmonized with the WOAH competencies. Methods A mixed methods needs assessment was conducted to identify barriers and challenges that Ethiopian veterinary medicine programs have faced in implementing the new WOAH-harmonized national curriculum. Representatives from active veterinary programs granting a Doctor of Veterinary Medicine (DVM) degree were invited to share their experiences via an online survey and follow-up focus group discussion. Results Fourteen veterinary programs, representing 93% of eligible programs nationwide, participated in the needs assessment. Quantitative analysis indicated that the most difficult topics associated with the new curriculum included Organization of Veterinary Services (Competency 3.1), Inspection and Certification Procedures (3.2), and practical applications of the regulatory framework for disease prevention and control (multiple competencies). Challenges associated with specific instructional methodologies, particularly the facilitation of off-site (private and public sector) student training, were also perceived as barriers to implementation. Focus group discussions elucidated reasons for these challenges and included limitations in faculty expertise, resource constraints (e.g., supplies, infrastructure), and access to off-site facilities for hands-on teaching. Conclusion The results of this needs assessment will be used to identify and prioritize solutions to implementation challenges, helping Ethiopian veterinary medicine programs move the new WOAH-harmonized curriculum from theory to practice. As veterinarians are integral partners in advancing One Health, strengthening the capacity of Veterinary Services can ultimately safeguard animal and human health, grow economies, and improve lives.
Collapse
Affiliation(s)
- Andrea L. Bessler
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Armando E. Hoet
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Shimelis Nigatu
- College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Samantha Swisher
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Tsegaw Fentie
- College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Bemrew Admassu
- College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Adugna Molla
- College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Manon Brown
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Amanda M. Berrian
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- College of Public Health, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Zyoud S. Global Mapping and Visualization Analysis of One Health Knowledge in the COVID-19 Context. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241236017. [PMID: 38449589 PMCID: PMC10916474 DOI: 10.1177/11786302241236017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Globally, the COVID-19 pandemic had a significant impact on the health, social, and economic systems, triggering lasting damage and exposing the complexity of the problem beyond just being a health emergency. This crisis has highlighted the need for a comprehensive and collaborative strategy to successfully counter infectious diseases and other global challenges. With the COVID-19 pandemic pushing One Health to the forefront of global health and sustainable development agendas, this concept has emerged as a potential approach for addressing these challenges. In the context of COVID-19, this study investigates global knowledge about One Health by examining its state, significant contributions, and future directions. It seeks to offer an integrated framework of insights guiding the development of well-informed decisions. A comprehensive search using the Scopus database was conducted, employing specific terms related to One Health and COVID-19. VOSviewer 1.6.19 software was used to generate network visualization maps. Countries' research output was adjusted based on their gross domestic product (GDP) and population size. The study identified a total of 527 publications. The United States led with 134 documents (25.4%), but India topped the adjusted ranking. One Health journal stood as the most common outlet for disseminating knowledge (49 documents; 9.3%), while Centers for Disease Control and Prevention (CDC), the United States emerged as the most prolific institution (13 documents; 2.5%). Key topics were related to the virus transmission mechanisms, climate change impacts, antimicrobial resistance, ecosystem health, preparedness, collaboration, community engagement, and developing of efficient surveillance systems. The study emphasizes how critical it is to capitalize on the present momentum of COVID-19 to advance One Health concepts. Integrating social and environmental sciences, and a variety of professions for better interaction and collaboration is crucial. Additionally, increased funding for developing countries, and legislative empowerment are vital to advance One Health and boost disease prevention.
Collapse
Affiliation(s)
- Shaher Zyoud
- Department of Building Engineering & Environment,Palestine Technical University (Kadoorie), Tulkarem, Palestine
- Department of Civil Engineering & Sustainable Structures,Palestine Technical University (Kadoorie), Tulkarem, Palestine
| |
Collapse
|
4
|
Ajayi AO, Odeyemi AT, Akinjogunla OJ, Adeyeye AB, Ayo-ajayi I. Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infect Ecol Epidemiol 2024; 14:2312953. [PMID: 38371518 PMCID: PMC10868463 DOI: 10.1080/20008686.2024.2312953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics.
Collapse
Affiliation(s)
| | - Adebowale Toba Odeyemi
- Department of Microbiology, Landmark University SDG Groups 2 and 3, Omu-Aran, Kwara State, Nigeria
| | | | | | - Ibiwumi Ayo-ajayi
- Department of Computer Science, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| |
Collapse
|
5
|
Clements HS, Do Linh San E, Hempson G, Linden B, Maritz B, Monadjem A, Reynolds C, Siebert F, Stevens N, Biggs R, De Vos A, Blanchard R, Child M, Esler KJ, Hamann M, Loft T, Reyers B, Selomane O, Skowno AL, Tshoke T, Abdoulaye D, Aebischer T, Aguirre-Gutiérrez J, Alexander GJ, Ali AH, Allan DG, Amoako EE, Angedakin S, Aruna E, Avenant NL, Badjedjea G, Bakayoko A, Bamba-Kaya A, Bates MF, Bates PJJ, Belmain SR, Bennitt E, Bradley J, Brewster CA, Brown MB, Brown M, Bryja J, Butynski TM, Carvalho F, Channing A, Chapman CA, Cohen C, Cords M, Cramer JD, Cronk N, Cunneyworth PMK, Dalerum F, Danquah E, Davies-Mostert HT, de Blocq AD, De Jong YA, Demos TC, Denys C, Djagoun CAMS, Doherty-Bone TM, Drouilly M, du Toit JT, Ehlers Smith DA, Ehlers Smith YC, Eiseb SJ, Fashing PJ, Ferguson AW, Fernández-García JM, Finckh M, Fischer C, Gandiwa E, Gaubert P, Gaugris JY, Gibbs DJ, Gilchrist JS, Gil-Sánchez JM, Githitho AN, Goodman PS, Granjon L, Grobler JP, Gumbi BC, Gvozdik V, Harvey J, Hauptfleisch M, Hayder F, Hema EM, Herbst M, Houngbédji M, Huntley BJ, Hutterer R, Ivande ST, Jackson K, Jongsma GFM, Juste J, Kadjo B, Kaleme PK, Kamugisha E, Kaplin BA, Kato HN, Kiffner C, Kimuyu DM, Kityo RM, Kouamé NG, Kouete T M, le Roux A, Lee ATK, Lötter MC, Lykke AM, MacFadyen DN, Macharia GP, Madikiza ZJK, Mahlaba TAM, Mallon D, Mamba ML, Mande C, Marchant RA, Maritz RA, Markotter W, McIntyre T, Measey J, Mekonnen A, Meller P, Melville HI, Mganga KZ, Mills MGL, Minnie L, Missoup AD, Mohammad A, Moinde NN, Moise BFE, Monterroso P, Moore JF, Musila S, Nago SGA, Namoto MW, Niang F, Nicolas V, Nkenku JB, Nkrumah EE, Nono GL, Norbert MM, Nowak K, Obitte BC, Okoni-Williams AD, Onongo J, O'Riain MJ, Osinubi ST, Parker DM, Parrini F, Peel MJS, Penner J, Pietersen DW, Plumptre AJ, Ponsonby DW, Porembski S, Power RJ, Radloff FGT, Rambau RV, Ramesh T, Richards LR, Rödel MO, Rollinson DP, Rovero F, Saleh MA, Schmiedel U, Schoeman MC, Scholte P, Serfass TL, Shapiro JT, Shema S, Siebert SJ, Slingsby JA, Sliwa A, Smit-Robinson HA, Sogbohossou EA, Somers MJ, Spawls S, Streicher JP, Swanepoel L, Tanshi I, Taylor PJ, Taylor WA, Te Beest M, Telfer PT, Thompson DI, Tobi E, Tolley KA, Turner AA, Twine W, Van Cakenberghe V, Van de Perre F, van der Merwe H, van Niekerk CJG, van Wyk PCV, Venter JA, Verburgt L, Veron G, Vetter S, Vorontsova MS, Wagner TC, Webala PW, Weber N, Weier SM, White PA, Whitecross MA, Wigley BJ, Willems FJ, Winterbach CW, Woodhouse GM. The bii4africa dataset of faunal and floral population intactness estimates across Africa's major land uses. Sci Data 2024; 11:191. [PMID: 38346970 PMCID: PMC10861571 DOI: 10.1038/s41597-023-02832-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/07/2023] [Indexed: 02/15/2024] Open
Abstract
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species' population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate 'intactness scores': the remaining proportion of an 'intact' reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region's major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems.
Collapse
Affiliation(s)
- Hayley S Clements
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa.
- Helsinki Lab of Interdisciplinary Conservation Science, University of Helsinki, Helsinki, Finland.
| | - Emmanuel Do Linh San
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
| | - Gareth Hempson
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Birthe Linden
- Chair in Biodiversity Value & Change, Faculty of Science, Engineering & Agriculture, University of Venda, Thohoyandou, South Africa
| | - Bryan Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Ara Monadjem
- Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Chevonne Reynolds
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Siebert
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nicola Stevens
- Environmental Change Institute, University of Oxford, Oxford, United Kingdom
| | - Reinette Biggs
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Alta De Vos
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Department of Environmental Sciences, Rhodes University, Makhanda, South Africa
| | - Ryan Blanchard
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Fynbos Node of the South African Environmental Observation Network, Cape Town, South Africa
| | - Matthew Child
- South African National Biodiversity Institute, Cape Town, South Africa
| | - Karen J Esler
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Maike Hamann
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Centre for Geography and Environmental Science, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Ty Loft
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, United Kingdom
| | - Belinda Reyers
- Centre for Environmental Studies, University of Pretoria, Pretoria, South Africa
| | - Odirilwe Selomane
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Department of Agricultural Economics, Extension and Rural Development, University of Pretoria, Pretoria, South Africa
| | - Andrew L Skowno
- South African National Biodiversity Institute, Cape Town, South Africa
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Tshegofatso Tshoke
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | | | | | - Jesús Aguirre-Gutiérrez
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Graham J Alexander
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - David G Allan
- Bird Department, Durban Natural Science Museum, Durban, South Africa
| | - Esther E Amoako
- Department of Environment and Sustainability Sciences, University for Development Studies, Tamale, Ghana
| | - Samuel Angedakin
- Department of Environmental Management, Makerere University, Kampala, Uganda
| | - Edward Aruna
- Biodiversity Conservation, Reptile and Amphibian Program - Sierra Leone, Freetown, Sierra Leone
| | - Nico L Avenant
- Department of Mammalogy, National Museum, Bloemfontein, South Africa
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Gabriel Badjedjea
- Aquatic Ecology, University of Kisangani/Biodiversity Monitoring Center, Kisangani, Democratic Republic of the Congo
| | - Adama Bakayoko
- UFR Sciences de la Nature, Universite NanguiI Abrogoua, Abidjan, Côte d'Ivoire
| | - Abraham Bamba-Kaya
- Institut de Recherches Agronomiques et Forestières (IRAF), Centre National de la Recherche Scientifique et Technologique (CENAREST), Libreville, Gabon
| | - Michael F Bates
- Department of Animal and Plant Systematics, National Museum, Bloemfontein, South Africa
- Department of Zoology & Entomology, University of the Free State, Bloemfontein, South Africa
| | | | - Steven R Belmain
- Agriculture, Health and Environment, Natural Resources Institute, University of Greenwich, Chatham, Maritime, United Kingdom
| | - Emily Bennitt
- Okavango Research Institute, University of Botswana, Maun, Botswana
| | - James Bradley
- Kalahari Research and Conservation, Botswana, Botswana
| | | | | | - Michelle Brown
- Department of Anthropology, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program, Nanyuki, Kenya
| | - Filipe Carvalho
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
- BIOPOLIS-CIBIO/InBIO, University of Porto, Porto, Portugal
| | - Alan Channing
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - Callan Cohen
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Marina Cords
- Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY, USA
| | | | - Nadine Cronk
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Fredrik Dalerum
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Biodiversity Research Institute (CSIC-UO-PA), Mieres, Spain
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Harriet T Davies-Mostert
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Conserve Global, London, United Kingdom
| | | | - Yvonne A De Jong
- Eastern Africa Primate Diversity and Conservation Program, Nanyuki, Kenya
| | - Terrence C Demos
- Negaunee Integrative Research Center, The Field Museum, Chicago, United States of America
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Chabi A M S Djagoun
- Faculty of Agronomic Sciences, Laboratory of Applied Ecology, University of Abomey Calavi, Cotonou, Benin
| | - Thomas M Doherty-Bone
- Conservation Programs, Royal Zoological Society of Scotland, Edinburgh, United Kingdom
| | - Marine Drouilly
- Institute for Communities and Wildlife in Africa (iCWild), University of Cape Town, Cape Town, South Africa
- Centre for Social Science Research (CSSR), University of Cape Town, Cape Town, South Africa
- Panthera, New York, USA
| | - Johan T du Toit
- Institute of Zoology, Zoological Society of London, London, United Kingdom
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - David A Ehlers Smith
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Yvette C Ehlers Smith
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Ezemvelo KZN Wildlife, Pietermaritzburg, South Africa
| | - Seth J Eiseb
- Department of Environmental Science, School of Science, University of Namibia, Windhoek, Namibia
| | - Peter J Fashing
- Anthropology Department & Environmental Studies Program, California State University Fullerton, Fullerton, United States of America
| | - Adam W Ferguson
- Gantz Family Collection Center, Field Museum of Natural History, Chicago, USA
| | | | - Manfred Finckh
- Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Claude Fischer
- Nature Management, University of Applied Sciences of Western Switzerland, Geneva, Jussy, Switzerland
| | - Edson Gandiwa
- Scientific Services, Zimbabwe Parks and Wildlife Management Authority, Harare, Zimbabwe
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique, IRD/CNRS/UPS, Université Toulouse III Paul Sabatier, Toulouse, cedex, 9, France
| | - Jerome Y Gaugris
- Flora Fauna & Man, Ecological Services Limited, Tortola, British Virgin Islands
| | | | - Jason S Gilchrist
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK
| | | | | | | | - Laurent Granjon
- CBGP, IRD, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - J Paul Grobler
- Genetics, University of the Free State, Bloemfontein, South Africa
| | - Bonginkosi C Gumbi
- Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Vaclav Gvozdik
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | | | - Morgan Hauptfleisch
- Biodiversity Research Centre, Namibia University of Science and Technology, Windhoek, Namibia
| | - Firas Hayder
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
| | - Emmanuel M Hema
- Unité de Formation et de Recherche en Sciences Appliquées et Technologies (UFR-SAT), Université de Dédougou, Dédougou, Burkina Faso
| | - Marna Herbst
- Conservation Services, South African National Parks, Pretoria, South Africa
| | - Mariano Houngbédji
- Organisation pour le Développement Durable et la Biodiversité, Cotonou, Benin
| | - Brian J Huntley
- CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Vairao, Portugal
| | | | - Samuel T Ivande
- A.P. Leventis Ornithological Research Institute (APLORI), University of Jos, Jos, Nigeria
| | - Kate Jackson
- Biology Department, Whitman College, Walla Walla, WA, USA
| | | | - Javier Juste
- Evolutionary Biology, Estación Biológica de Doñana (CSIC), Seville, Spain; CIBER, CIBERESP, Madrid, Spain
| | - Blaise Kadjo
- Natural habitats and biodiversity management, University Félix Houphouet-Boigny, Abidjan, Côte d'Ivoire
| | - Prince K Kaleme
- Department of Biology, CRSN/ LWIRO, DS Bukavu, DR Congo, Bukavu, Democratic Republic of the Congo
| | | | - Beth A Kaplin
- Center of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye, Rwanda
| | - Humphrey N Kato
- Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Christian Kiffner
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of California, Los Angeles, USA
| | - Duncan M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Robert M Kityo
- Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - N'goran G Kouamé
- UFR Environnement, Laboratoire de Biodiversité et Ecologie Tropicale, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Marcel Kouete T
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, USA
| | - Aliza le Roux
- Zoology and Entomology, University of the Free State, Qwaqwa campus, Phuthaditjhaba, South Africa
| | - Alan T K Lee
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Mervyn C Lötter
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Duncan N MacFadyen
- Research and Conservation, Oppenheimer Generations, Parktown, Johannesburg, South Africa
| | | | - Zimkitha J K Madikiza
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - David Mallon
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mnqobi L Mamba
- Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
| | - Claude Mande
- Department of Ecology and Wildlife Management, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Rob A Marchant
- York institute for Tropical Ecosystems, University of York, York, United Kingdom
| | - Robin A Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
- Conservation Alpha, Cape Town, South Africa
| | - Wanda Markotter
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Roodepoort, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming, UMR7179, China
- MECADEV CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Bâtiment d'Anatomie Comparée, Paris, France
| | - Addisu Mekonnen
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Paulina Meller
- Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Haemish I Melville
- Department of Environmental Sciences, University of South Africa, Florida, South Africa
| | - Kevin Z Mganga
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Michael G L Mills
- School of Biology and Environmental Science, University of Mpumalanga, Mbombela, South Africa
| | - Liaan Minnie
- School of Biology and Environmental Science, University of Mpumalanga, Mbombela, South Africa
- Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
| | - Alain Didier Missoup
- Faculty of Science, Laboratory of Biology and Physiology of Animal Organisms, Zoology Unit, University of Douala, Douala, Cameroon
| | - Abubakr Mohammad
- Researcher, Conflict and Environmental Observatory, Manchester, United Kingdom
| | - Nancy N Moinde
- Conservation Biology, Institute of Primate Research-National Museums of Kenya, Nairobi, Kenya
| | | | - Pedro Monterroso
- Wildlife Conservation Ecology Research Group, CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairã, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- African Parks, Johannesburg, South Africa
| | | | - Simon Musila
- Mammalogy Section-Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Sedjro Gilles A Nago
- Laboratoire d'Ecologie, de Botanique et de Biologie végétale, University of Parakou, Parakou, Benin
| | - Maganizo W Namoto
- Indigenous Woodland Strategy Area, Forestry Research Institute of Malawi, Zomba, Malawi
| | - Fatimata Niang
- Institute of Environmental Sciences, Faculty of Technology and Sciences, University Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Jerry B Nkenku
- Departement of Biology, Faculty of Science, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Evans E Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gonwouo L Nono
- Department of Animal Biologie and Physiologie, University of Yaounde I, Yaounde, Cameroon
| | - Mulavwa M Norbert
- Primatology, Center for Research in Ecology and Forestry (CREF), Bikoro, Democratic Republic of the Congo
| | - Katarzyna Nowak
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | - Benneth C Obitte
- Small Mammal Conservation Organization, Benin City, Nigeria
- Biological Sciences, Texas Tech University, Lubbock, United States of America
| | | | | | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa, University of Cape Town, Cape Town, South Africa
| | - Samuel T Osinubi
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | - Daniel M Parker
- School of Biology and Environmental Science, University of Mpumalanga, Mbombela, South Africa
| | - Francesca Parrini
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mike J S Peel
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Animal Production Institute, Rangeland Ecology, Agricultural Research Council, Pretoria, South Africa
- College of Agriculture and Environmental Sciences: Department of Environmental Sciences (ABEERU), University of South Africa, Pretoria, South Africa
| | - Johannes Penner
- Frogs & Friends, Berlin, Germany
- Chair of Wildlife Ecology & Management, University of Freiburg, Freiburg, Germany
| | - Darren W Pietersen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Andrew J Plumptre
- KBA Secretariat, c/o BirdLife International, Cambridge, United Kingdom
| | - Damian W Ponsonby
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefan Porembski
- Institute of Biosciences, Department of Botany, University of Rostock, Rostock, Germany
| | - R John Power
- Department of Economic Development, Environment, Conservation & Tourism, North West Provincial Government, Mahikeng, South Africa
| | - Frans G T Radloff
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Ramugondo V Rambau
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Tharmalingam Ramesh
- Division of Conservation Ecology, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India
| | - Leigh R Richards
- Mammalogy Department, Durban Natural Science Museum, Durban, South Africa
| | - Mark-Oliver Rödel
- Herpetology, Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Dominic P Rollinson
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Francesco Rovero
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | | | | | - M Corrie Schoeman
- School of Life Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Paul Scholte
- Gesellschaft fuer Internationale Zusammenarbeit (GIZ), Addis Ababa, Ethiopia
| | - Thomas L Serfass
- Department of Biology and Natural Resources, Frostburg State University, Frostburg, USA
| | - Julie Teresa Shapiro
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Lyon, France
| | - Sidney Shema
- Ornithology Section, Zoology Department, National Museums of Kenya, Nairobi, Kenya
| | - Stefan J Siebert
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Jasper A Slingsby
- Fynbos Node of the South African Environmental Observation Network, Cape Town, South Africa
- Biological Sciences and Centre for Statistics in Ecology, Environment and Conservation, University of Cape Town, Cape Town, South Africa
| | | | - Hanneline A Smit-Robinson
- Conservation Division, BirdLife South Africa, Johannesburg, South Africa
- Applied Behavioural Ecological & Ecosystem Research Unit (ABEERU), University of South Africa, Florida, South Africa
| | | | - Michael J Somers
- Mammal Research Institute, Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | | | - Jarryd P Streicher
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lourens Swanepoel
- Department of Biology, University of Venda, Thohoyandou, South Africa
| | - Iroro Tanshi
- Small Mammal Conservation Organization, Benin City, Nigeria
- Biology, University of Washington, Seattle, USA
| | - Peter J Taylor
- Zoology and Entomology, University of the Free State, Qwaqwa campus, Phuthaditjhaba, South Africa
| | | | - Mariska Te Beest
- Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
- Grasslands-Forests-Wetlands Node of the South African Environmental Observation Network, Pietermaritzburg, South Africa
| | | | - Dave I Thompson
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Ndlovu Node of the South African Environmental Observation Network, Phalaborwa, South Africa
| | - Elie Tobi
- Gabon Biodiversity Program, Smithsonian National Zoo and Conservation Biology Institute, Center for Conservation and Sustainability, Gamba, Gabon
| | - Krystal A Tolley
- South African National Biodiversity Institute, Cape Town, South Africa
| | - Andrew A Turner
- Biodiversity Capabilities Directorate, CapeNature, Cape Town, South Africa
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town, South Africa
| | - Wayne Twine
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Victor Van Cakenberghe
- FunMorph Lab, Department of Biology, University of Antwerp, Antwerp, Belgium
- AfricanBats NPC, Centurion, South Africa
| | | | - Helga van der Merwe
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- Arid Lands Node of the South African Environmental Observation Network, Kimberley, South Africa
| | - Chris J G van Niekerk
- NWU Botanical Garden, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Pieter C V van Wyk
- Richtersveld Desert Botanical Gardens, Richtersveld National Park, SANParks, Sendelingsdrift, South Africa
| | - Jan A Venter
- Department of Conservation Management, Nelson Mandela University, George, South Africa
| | - Luke Verburgt
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Geraldine Veron
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Susanne Vetter
- Department of Botany, Rhodes University, Makhanda, South Africa
| | - Maria S Vorontsova
- Accelerated Taxonomy, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Thomas C Wagner
- Restoration Ecology, Technische Universität München, Freising, Germany
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Natalie Weber
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Ecological Consultant, Fürth, Germany
| | - Sina M Weier
- SARChI (NRF-DST) Research Chair on Biodiversity Value and Change, University of Venda, Thohoyandou, South Africa
| | - Paula A White
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, USA
| | - Melissa A Whitecross
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Landscape Conservation Programme, BirdLife South Africa, Johannesburg, South Africa
| | - Benjamin J Wigley
- Plant Ecology, University of Bayreuth, Bayreuth, Germany
- School of Natural Resource Management, Nelson Mandela University, George, South Africa
- Scientific Services, South African National Parks, Skukuza, South Africa
| | | | | | | |
Collapse
|
6
|
Hegewisch-Taylor J, Dreser A, Aragón-Gama AC, Moreno-Reynosa MA, Ramos Garcia C, Ruckert A, Labonté R. Analyzing One Health governance and implementation challenges in Mexico. Glob Public Health 2024; 19:2377259. [PMID: 39052951 DOI: 10.1080/17441692.2024.2377259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Establishing a robust One Health (OH) governance is essential for ensuring effective coordination and collaboration among human, animal, and environmental health sectors to prevent and address complex health challenges like zoonoses or antimicrobial resistance. This study conducted a mixed-methods environmental scan to assess to what extent Mexico displays a OH governance and identify opportunities for improvement. Through documentary analysis, the study mapped OH national-level governance elements: infrastructure, multi-level regulations, leadership, multi-coordination mechanisms (MCMs), and financial and OH-trained human resources. Key informant interviews provided insights into enablers, barriers, and recommendations to enhance a OH governance. Findings reveal that Mexico has sector-specific governance elements: institutions, surveillance systems and laboratories, laws, and policies. However, the absence of a OH governmental body poses a challenge. Identified barriers include implementation challenges, non-harmonised legal frameworks, and limited intersectoral information exchange. Enablers include formal and ad hoc MCMs, OH-oriented policies, and educational initiatives. Like other middle-income countries in the region, institutionalising a OH governance in Mexico, may require a OH-specific framework and governing body, infrastructure rearrangements, and policy harmonisation. Strengthening coordination mechanisms, training OH professionals, and ensuring data-sharing surveillance systems are essential steps toward successful implementation, with adequate funding being a relevant factor.
Collapse
Affiliation(s)
| | - Anahí Dreser
- Center for Health Systems Research, National Institute of Public Health, Cuernavaca, Mexico
| | | | - María Antonieta Moreno-Reynosa
- National Laboratory of Sustainability Sciences, Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Celso Ramos Garcia
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Arne Ruckert
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ronald Labonté
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Yopa DS, Massom DM, Kiki GM, Sophie RW, Fasine S, Thiam O, Zinaba L, Ngangue P. Barriers and enablers to the implementation of one health strategies in developing countries: a systematic review. Front Public Health 2023; 11:1252428. [PMID: 38074697 PMCID: PMC10701386 DOI: 10.3389/fpubh.2023.1252428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction One Health is a concept that establishes the link between humans, animals and the environment in a collaborative approach. Since One Health's inception, several interventions have been developed in many regions and countries worldwide to tackle complex health problems, including epidemics and pandemics. In the developed world, many collaborative platforms have been created with an international strategy to address issues specific or not to their environment. Unfortunately, there is a lack of synthesis on the challenges and opportunities Low and Middle-Income Countries (LMICs) face. Methods Following The Preferred Reporting Elements for PRISMA Systematic Reviews and Meta-Analyses (PRISMA), we conducted a systematic review. We applied a search strategy to electronic bibliographic databases (PubMed, Embase, Global Health, Web of Science and CINAHL). We assessed the included articles' quality using the Mixed Methods Appraisal tool (MMAT). Results and discussion A total of 424 articles were initially identified through the electronic database search. After removing duplicates (n = 68), 356 articles were screened for title and abstract, and 16 were retained for full-text screening. The identified barriers were the lack of political will, weak governance and lack of human, financial and logistics resources. Concerning the enablers, we listed the existence of a reference framework document for One Health activities, good coordination between the different sectors at the various levels, the importance of joint and multisectoral meetings that advocated the One Health approach and the Availability of funds and adequate resources coupled with the support of Technical and Financial partners. Conclusion One Health strategy and interventions must be implemented widely to address the rising burden of emerging infectious diseases, zoonotic diseases, and antimicrobial resistance. Addressing those challenges and reinforcing the enablers to promote managing global health challenges is necessary. Systematic Review Registration https://www.crd.york.ac.uk/prospero/record_email.php, Unique Identifier: CRD42023393693.
Collapse
Affiliation(s)
- Daniele Sandra Yopa
- Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaoundé, Cameroon
| | - Douglas Mbang Massom
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Gbètogo Maxime Kiki
- Rehabilitation Department, Université Laval, Québec, QC, Canada
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada
| | | | - Sylvie Fasine
- National Institute of Biomedical Research, Ministry of Public Health, Kinshasa, Democratic Republic of Congo
| | - Oumou Thiam
- Ministry of Health and Public Hygiene, Conakry, Guinea
| | - Lassane Zinaba
- Institute for Interdisciplinary Training and Research in Health Sciences and Education, Ouagadougou, Burkina Faso
| | - Patrice Ngangue
- Rehabilitation Department, Université Laval, Québec, QC, Canada
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada
- Institute for Interdisciplinary Training and Research in Health Sciences and Education, Ouagadougou, Burkina Faso
- Faculty of Nursing Sciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Mitchell J. Antimicrobial resistance (AMR) as a form of human-wildlife conflict: Why and how nondomesticated species should be incorporated into AMR guidance. Ecol Evol 2023; 13:e10421. [PMID: 37664497 PMCID: PMC10468991 DOI: 10.1002/ece3.10421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The challenge of antimicrobial resistance (AMR) continues to receive significant global attention as common infections become increasingly resistant to the drugs used to treat them. Once an infectious microbe has developed a mechanism of resistance, it can cause longer, more damaging infections which are more costly, time-consuming, and sometimes impossible to treat. Such impacts occur across the health of humans, animals, plants, and the environment. Thus, AMR is considered a One Health issue. However, current narratives on AMR focus on humans, food-producing animals, crops, and their immediate environments. Very little attention is given to wildlife in terms of the impact of AMR on their health, nor their role in the evolution and spread of AMR. This article (1) discusses an absence of wildlife in current AMR guidance, (2) suggests how this absence of wildlife could limit understanding of, and action on, AMR, (3) proposes that considering AMR as a form of human-wildlife conflict could enable AMR guidance to better incorporate wildlife into action planning and create a truly One Health approach to tackle AMR.
Collapse
Affiliation(s)
- Jessica Mitchell
- Nuffield Centre for International Health and Development, Leeds Institute for Health Sciences, Faculty of Medicine and HealthUniversity of LeedsLeedsUK
| |
Collapse
|
9
|
Alimi Y, Wabacha J. Strengthening coordination and collaboration of one health approach for zoonotic diseases in Africa. ONE HEALTH OUTLOOK 2023; 5:10. [PMID: 37533113 PMCID: PMC10394936 DOI: 10.1186/s42522-023-00082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/04/2023] [Indexed: 08/04/2023]
Abstract
Despite the One Health progress made in some African countries in addressing zoonotic disease outbreaks, many still lack formal and funded One Health programs. Countries lack diagnostic capacity for zoonotic diseases, coordinated surveillance mechanisms, multisectoral response strategies and skilled workforce. With the devasting impacts of zoonotic disease outbreaks, recent epidemics have caused a loss of lives and negatively impacted the economy. Strengthening One Health approach across African Union (AU) Member States will improve the continent's ability and capacity to efficiently prevent, detect, and respond to emerging and re-emerging zoonotic diseases. The policy and practice changes needed to address zoonotic diseases require strong political commitment, financial investments, and institutionalised national One Health programs. The African Union endorses a One Health approach in which multiple sectors work jointly to raise awareness, gather credible data, implement programs, and promote evidence-based policy and practice in improve human, animal, and environmental health. The African Union working through its technical agencies set up an interagency multidisciplinary group "the One Health Coordinating Group on Zoonotic Diseases" to strengthen coordinated surveillance, prevention and control of zoonotic diseases on the continent. There is an urgent need to strengthen the coordination of One Health activities across the African continent. The African Union will leverage its unique political position on the continent to raise awareness, secure commitments, and influence policy at the head of state level. This manuscript highlights the opportunity to improve and strengthen One Health coordination and harmonisation of efforts through a continental strategy for zoonotic disease control.
Collapse
Affiliation(s)
- Yewande Alimi
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia.
| | - James Wabacha
- African Union InterAfrican Bureau for Animal Resources, Nairobi, Kenya
| |
Collapse
|
10
|
Pungartnik PC, Abreu A, dos Santos CVB, Cavalcante JR, Faerstein E, Werneck GL. The interfaces between One Health and Global Health: A scoping review. One Health 2023; 16:100573. [PMID: 37363235 PMCID: PMC10288129 DOI: 10.1016/j.onehlt.2023.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
One Health (OH) and Global Health (GH) are interconnected perspectives that may contribute to subsidizing GH policies. This scoping review aims to map the volume, nature, and characteristics of studies focused on the interface of OH and GH concepts. We used PubMed (MEDLINE), Embase, Scopus, and The Virtual Health Library (BVS) as the literature data sources for the review. The search strategy used the descriptors "one health", "one health concept", "one medicine", "global health", "international health", and "planetary health" in title and abstracts. We included original research presented as articles in scientific journals, book chapters or conference papers written in English, Spanish, or Portuguese, exploring the intersections between OH and GH concepts, not necessarily as their primary objectives, and published up to December 31, 2021. A total of 1.060 references were identified in the databases after removing duplicates, 139 publications selected for full-text evaluation and 45 publications were included for analysis. All included publications were published between 2011 and 2021, with the highest concentration in 2014 (22.2%). First authors were most frequently from the United States (35.6%), followed by the United Kingdom (15.6%). Overall, seven key themes were identified zoonosis, emerging infectious diseases, antimicrobial resistance, food safety, policy, human resources, and Sustainable Development Goals (SDG). The majority of the included publications employed OH concepts based on the United States Centre for Disease Control and Prevention, and the American Veterinary Medical Association definitions. We observed a common understanding of OH as an area of knowledge involving multiple disciplines and professionals and recognizing that both humans' and animals' health and the environment are interdependent. Although most authors demonstrated that health issues transcend national boundaries, a formal definition for GH was frequently not clearly identified. OH and GH interfaces are essential for accomplishing the 2030 Agenda and its SDG.
Collapse
Affiliation(s)
- Paula Cristina Pungartnik
- Institute of Colletive Health Studies, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Epidemiology, Social Medicine Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Ariane Abreu
- Public Health School, University of São Paulo (USP), São Paulo, Brazil
| | | | - João Roberto Cavalcante
- Department of Epidemiology, Social Medicine Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Eduardo Faerstein
- Department of Epidemiology, Social Medicine Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Guilherme Loureiro Werneck
- Institute of Colletive Health Studies, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Epidemiology, Social Medicine Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Olatunji DI, Okusanya BO, Ebenso B, IfeomaUsuwa S, Akeju D, Adejoh S, Ochu CL, Onoja MA, Okediran JO, Nwiyi GO, Yahya D, Eziechina S, Igumbor E. Places Nigerians visited during COVID-19 government stay-home policy: evidence from secondary analysis of data collected during the lockdown. J Public Health Afr 2023; 14:2244. [PMID: 37197263 PMCID: PMC10184172 DOI: 10.4081/jphia.2023.2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 05/19/2023] Open
Abstract
Introduction Compliance with the Government's lockdown policy is required to curtail community transmission of Covid-19 infection. The objective of this research was to identify places Nigerians visited during the lockdown to help prepare for a response towards future infectious diseases of public health importance similar to Covid-19. Methods This was a secondary analysis of unconventional data collected using Google Forms and online social media platforms during the COVID-19 lockdown between April and June 2020 in Nigeria. Two datasets from: i) partnership for evidencebased response to COVID-19 (PERC) wave-1 and ii) College of Medicine, University of Lagos perception of and compliance with physical distancing survey (PCSH) were used. Data on places that people visited during the lockdown were extracted and compared with the sociodemographic characteristics of the respondents. Descriptive statistics were calculated for all independent variables and focused on frequencies and percentages. Chi-squared test was used to determine the significance between sociodemographic variables and places visited during the lockdown. Statistical significance was determined by P<0.05. All statistical analyses were carried out using SPSS version 22. Results There were 1304 and 879 participants in the PERC wave-1 and PCSH datasets, respectively. The mean age of PERC wave-1 and PCSH survey respondents was 31.8 [standard deviation (SD)=8.5] and 33.1 (SD=8.3) years, respectively.In the PCSH survey, 55.9% and 44.1% of respondents lived in locations with partial and complete covid-19 lockdowns, respectively. Irrespective of the type of lockdown, the most common place visited during the lockdown was the market (shopping); reported by 73% of respondents in states with partial lockdown and by 68% of respondents in states with the complete lockdown. Visits to families and friends happened more in states with complete (16.1%) than in states with partial (8.4%) lockdowns. Conclusions Markets (shopping) were the main places visited during the lockdown compared to visiting friends/family, places of worship, gyms, and workplaces. It is important in the future for the Government to plan how citizens can safely access markets and get other household items during lockdowns for better adherence to stay-at-home directives for future infectious disease epidemics.
Collapse
Affiliation(s)
| | - Babasola Oluwatomi Okusanya
- Department of Obstetrics and Gynecology, College of Medicine, University of Lagos, Nigeria
- Department of Obstetrics and Gynecology, College of Medicine University of Lagos, Idi-Araba, Lagos, Nigeria. +2348035802349.
| | - Bassey Ebenso
- Nuffield Centre for International Health & Development, University of Leeds, United Kingdom
| | - Sophia IfeomaUsuwa
- Nigeria Field Epidemiology and Laboratory Training Programme, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - David Akeju
- Department of Sociology, Faculty of Social Sciences, University of Lagos, Nigeria
| | - Samuel Adejoh
- Department of Social Work, Faculty of Social Sciences, University of Lagos, Nigeria
| | | | | | - James Olatunde Okediran
- Nigeria Field Epidemiology and Laboratory Training Programme, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Disu Yahya
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Ehimario Igumbor
- Nigeria Centre for Disease Control, Abuja, Nigeria
- School of Public Health, University of the Western Cape, South Africa
| |
Collapse
|
12
|
Ahmed SA, Kotepui M, Masangkay FR, Milanez GD, Karanis P. Gastrointestinal parasites in Africa: A review. ADVANCES IN PARASITOLOGY 2023; 119:1-64. [PMID: 36707173 DOI: 10.1016/bs.apar.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Data on human gastrointestinal parasites (GIP) infections in the african sub-regions and countries are mainly lacking in terms of prevalence and population stratification by afflicted age group, symptomatology, multi-parasitism, and diagnostic methods. This study aims to describe the GIP reported in african countries and discuss the extent of the burden in the african context. Only 68.42% (39/57) of african countries reported human cases of GIP with helminths (45%, CI: 40-50%, I2: 99.79%) as the predominant parasitic group infecting the african population. On a regional scale, Central Africa had the highest pooled prevalence for GIP (43%, CI: 32-54%, I2: 99.74%), while the Central African Republic led all countries with a pooled prevalence of 90% (CI: 89-92%, I2: 99.96%). The vulnerable population (patients who are minorities, children, old, poor, underfunded, or have particular medical conditions) was the most affected (50%, CI: 37-62%, I2: 99.33%), with the predominance of GIP in the 6 to <20 years age group (48%, CI: 43-54%, I2: 99.68%). Reports on multi-parasitism (44%, CI: 40-48%, I2: 99.73%) were almost double the reports of single infections (43%, CI: 27-59%, I2: 99.77%) with combined molecular and non-molecular techniques demonstrating the best performance for GIP identification. The current review spans more than 40 years of GIP reports from the african continent. Geographical characteristics, environmental factors, habits of its inhabitants, and their health status play a crucial role in GIP modulation and behaviour in its captive hosts. Strategies for regular and enhanced surveillance, policy formation, and high-level community awareness are necessary to identify the true incidence in Africa and the transmission of the pathogens via water and food.
Collapse
Affiliation(s)
- Shahira A Ahmed
- Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manas Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Frederick R Masangkay
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Giovanni D Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne, Germany; University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
13
|
Mubareka S, Amuasi J, Banerjee A, Carabin H, Copper Jack J, Jardine C, Jaroszewicz B, Keefe G, Kotwa J, Kutz S, McGregor D, Mease A, Nicholson L, Nowak K, Pickering B, Reed MG, Saint-Charles J, Simonienko K, Smith T, Scott Weese J, Jane Parmley E. Strengthening a One Health approach to emerging zoonoses. Facets (Ott) 2023. [DOI: 10.1139/facets-2021-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Given the enormous global impact of the COVID-19 pandemic, outbreaks of highly pathogenic avian influenza in Canada, and manifold other zoonotic pathogen activity, there is a pressing need for a deeper understanding of the human-animal-environment interface and the intersecting biological, ecological, and societal factors contributing to the emergence, spread, and impact of zoonotic diseases. We aim to apply a One Health approach to pressing issues related to emerging zoonoses, and propose a functional framework of interconnected but distinct groups of recommendations around strategy and governance, technical leadership (operations), equity, education and research for a One Health approach and Action Plan for Canada. Change is desperately needed, beginning by reorienting our approach to health and recalibrating our perspectives to restore balance with the natural world in a rapid and sustainable fashion. In Canada, a major paradigm shift in how we think about health is required. All of society must recognize the intrinsic value of all living species and the importance of the health of humans, other animals, and ecosystems to health for all.
Collapse
Affiliation(s)
| | - John Amuasi
- Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana
| | | | | | - Joe Copper Jack
- Indigenous Knowledge Holder, Whitehorse, Yukon Territory, Canada
| | | | | | - Greg Keefe
- University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | - Susan Kutz
- University of Calgary, Calgary, Alberta, Canada
| | | | - Anne Mease
- Selkirk First Nation Citizen, Selkirk First Nation, Yukon Territory, Canada
| | | | | | - Brad Pickering
- Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Odetokun IA, Alhaji NB, Aminu J, Lawan MK, Abdulkareem MA, Ghali-Mohammed I. One Health risk challenges and preparedness regarding bovine tuberculosis at abattoirs in North-central Nigeria: Associated drivers and health belief. PLoS Negl Trop Dis 2022; 16:e0010729. [PMID: 36067228 PMCID: PMC9481158 DOI: 10.1371/journal.pntd.0010729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/16/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Bovine tuberculosis (bTB) is a serious public health and neglected zoonotic disease responsible for 147,000 human cases and 12,500 deaths annually. This study assessed knowledge, risk perceptions, and preventive practices regarding bTB among occupationally exposed abattoir workers and drivers for transmission in slaughterhouses.
Methods
Using a pre-tested questionnaire, we surveyed a cross-section of workers in five main abattoirs in North-central Nigeria between 2018 and 2019. Data were analysed using descriptive statistics and univariable/multivariable logistic regression analyses at a 95% confidence level.
Results
All recruited respondents (n = 422: 77.7% meat processors and 22.3% meat and sanitary inspectors) participated and 10.4% had no formal education. About 44.0% and 27.0% of workers knew about bTB occurrence at the abattoirs and its transmission to humans, respectively. Less than one-third use personal protective equipment (PPE) during meat handling, only a few workers correctly practised routine handwashing, and 21.8% sterilized meat handling tools. A few participants (6.4%) had BCG vaccination against tuberculosis. Demographic characteristics (age, gender, occupation, and formal education) significantly influenced the perception and practices about bTB. A few workers perceived raw meat and milk, direct contact with infected carcasses, organs and contaminated fomites, contaminated environment through infected blood, dirty slaughtering floor, and aerosols of contaminated faeces as high-risk bTB transmission routes. Perceived drivers that influenced bTB transmission at abattoirs include unhygienic meat processing (OR = 5.4, 95%CI = 3.1–9.4, p < 0.001) and non-enforcement of abattoir standard operating systems (OR = 10.4, 95%CI = 6.0–18.5, p = 0.001).
Conclusion
The workers have low knowledge levels, perceptions, and practices toward bTB emergence. These demand the workers’ education on hygienic meat handling to mitigate the menace of the disease. Surveillance and preventive preparedness considering the identified drivers through the ’One Health’ approach are recommended.
Collapse
Affiliation(s)
- Ismail Ayoade Odetokun
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
- * E-mail:
| | - Nma Bida Alhaji
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Abuja, Nigeria
| | - Jibrin Aminu
- Department of Public Health and Epidemiology, Niger State Ministry of Fisheries and Animal Resources, Minna, Nigeria
| | - Mohammad Kabir Lawan
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | | | - Ibraheem Ghali-Mohammed
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
15
|
Al Huraimel K, Alhosani M, Gopalani H, Kunhabdulla S, Stietiya MH. Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 3:100006. [PMID: 37519421 PMCID: PMC9095661 DOI: 10.1016/j.heha.2022.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
The increasing frequency of zoonotic diseases is amongst several catastrophic repercussions of inadequate environmental management. Emergence, prevalence, and lethality of zoonotic diseases is intrinsically linked to environmental management which are currently at a destructive level globally. The effects of these links are complicated and interdependent, creating an urgent need of elucidating the role of environmental mismanagement to improve our resilience to future pandemics. This review focused on the pertinent role of forests, outdoor air, indoor air, solid waste and wastewater management in COVID-19 dissemination to analyze the opportunities prevailing to control infectious diseases considering relevant data from previous disease outbreaks. Global forest management is currently detrimental and hotspots of forest fragmentation have demonstrated to result in zoonotic disease emergences. Deforestation is reported to increase susceptibility to COVID-19 due to wildfire induced pollution and loss of forest ecosystem services. Detection of SARS-CoV-2 like viruses in multiple animal species also point to the impacts of biodiversity loss and forest fragmentation in relation to COVID-19. Available literature on air quality and COVID-19 have provided insights into the potential of air pollutants acting as plausible virus carrier and aggravating immune responses and expression of ACE2 receptors. SARS-CoV-2 is detected in outdoor air, indoor air, solid waste, wastewater and shown to prevail on solid surfaces and aerosols for prolonged hours. Furthermore, lack of protection measures and safe disposal options in waste management are evoking concerns especially in underdeveloped countries due to high infectivity of SARS-CoV-2. Inadequate legal framework and non-adherence to environmental regulations were observed to aggravate the postulated risks and vulnerability to future waves of pandemics. Our understanding underlines the urgent need to reinforce the fragile status of global environmental management systems through the development of strict legislative frameworks and enforcement by providing institutional, financial and technical supports.
Collapse
Affiliation(s)
- Khaled Al Huraimel
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohamed Alhosani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Hetasha Gopalani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Shabana Kunhabdulla
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohammed Hashem Stietiya
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Tiu CK, Zhu F, Wang LF, de Alwis R. Phage ImmunoPrecipitation Sequencing (PhIP-Seq): The Promise of High Throughput Serology. Pathogens 2022; 11:pathogens11050568. [PMID: 35631089 PMCID: PMC9143919 DOI: 10.3390/pathogens11050568] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Determining the exposure or infection history of a person to a multitude of viruses is not an easy task. Typically, antibody tests detect antibodies against proteins (antigens) to only one or a few viruses. Here, we review an emerging technology called Phage ImmunoPrecipitation Sequencing (PhIP-Seq), that allows us to study the infection history of individuals to large numbers of viruses simultaneously. This technology uses bacteriophages to express and display viral antigens of choice, which are then bound by antigen-specific antibodies in patient samples. Antibody-bound bacteriophages are pulled down and identified through molecular techniques. This technology has been used in various infectious disease scenarios, including assessing exposure to different viruses, studying vaccine responses, and identifying viral cause of diseases. Despite inherent limitations in presenting only peptides, this technology holds great promise for future application in identifying novel pathogens, one health and pandemic preparedness. Abstract Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a high throughput serological technology that is revolutionizing the manner in which we track antibody profiles. In this review, we mainly focus on its application to viral infectious diseases. Through the pull-down of patient antibodies using peptide-tile-expressing T7 bacteriophages and detection using next-generation sequencing (NGS), PhIP-Seq allows the determination of antibody repertoires against peptide targets from hundreds of proteins and pathogens. It differs from conventional serological techniques in that PhIP-Seq does not require protein expression and purification. It also allows for the testing of many samples against the whole virome. PhIP-Seq has been successfully applied in many infectious disease investigations concerning seroprevalence, risk factors, time trends, etiology of disease, vaccinology, and emerging pathogens. Despite the inherent limitations of this technology, we foresee the future expansion of PhIP-Seq in both investigative studies and tracking of current, emerging, and novel viruses. Following the review of PhIP-Seq technology, its limitations, and applications, we recommend that PhIP-Seq be integrated into national surveillance programs and be used in conjunction with molecular techniques to support both One Health and pandemic preparedness efforts.
Collapse
Affiliation(s)
- Charles Kevin Tiu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
- Correspondence:
| |
Collapse
|
17
|
Palomar AM, Molina I, Bocanegra C, Portillo A, Salvador F, Moreno M, Oteo JA. Old zoonotic agents and novel variants of tick-borne microorganisms from Benguela (Angola), July 2017. Parasit Vectors 2022; 15:140. [PMID: 35449022 PMCID: PMC9022410 DOI: 10.1186/s13071-022-05238-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Ticks and tick-borne diseases constitute a real threat for the livestock industry, which is increasing in Angola. In addition, ticks are vectors of zoonoses of public health concern, and scarce information is available from this country. In an effort to contribute to the prevention of zoonotic infectious diseases affecting humans and animals, the molecular screening of certain tick-related microorganisms collected on cattle in Angola was performed under a ‘One Health’ scope. Methods Ticks collected from cattle in Cubal (Benguela Province, Angola) in July 2017 were analysed in pools using specific PCR assays for bacteria (Rickettsia, Anaplasmataceae, Borrelia, Coxiella and Spiroplasma) and protozoa (Theileria and Babesia) detection. Results A total of 124 tick specimens were grouped in 25 pools (two Amblyomma variegatum, three Hyalomma truncatum, 16 Rhipicephalus decoloratus, two Rhipicephalus duttoni, one Rhipicephalus evertsi mimeticus and one Rhipicephalus sp.). The amplified microorganisms were (pools): Rickettsia africae (two A. variegatum and one R. decoloratus), Rickettsia aeschlimannii (three H. truncatum), Ehrlichia spp. (six R. decoloratus), Coxiella spp. (all but H. truncatum), Francisella sp. (one H. truncatum), Spiroplasma sp. closely related to Spiroplasma ixodetis (three R. decoloratus), Babesia bigemina (two R. decoloratus) and Babesia spp. (two A. variegatum). The obtained nucleotide sequences from Ehrlichia spp., two Coxiella genotypes (from R. duttoni and Rhipicephalus sp.), Francisella sp. and Babesia spp. (from A. variegatum) reached low identities with known genetically characterized species. Conclusions This study demonstrates the circulation in Angola of the pathogen R. aeschlimannii and potential novel tick-related microorganisms belonging to Ehrlichia, Coxiella, Francisella, Spiroplasma and Babesia spp. and corroborates the presence of R. africae and B. bigemina. Our results should be considered in developing protocols for the management of fever of unknown origin and for veterinary practices. Further studies are required to evaluate the risk of tick-borne diseases in Angola. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05238-2.
Collapse
Affiliation(s)
- Ana M Palomar
- Infectious Diseases Department, Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), San Pedro University Hospital-Center of Biomedical Research From La Rioja (CIBIR), Piqueras, 98, 26006, Logroño, La Rioja, Spain
| | - Israel Molina
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, 08035, Barcelona, Spain
| | - Cristina Bocanegra
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, 08035, Barcelona, Spain
| | - Aránzazu Portillo
- Infectious Diseases Department, Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), San Pedro University Hospital-Center of Biomedical Research From La Rioja (CIBIR), Piqueras, 98, 26006, Logroño, La Rioja, Spain
| | - Fernando Salvador
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, 08035, Barcelona, Spain
| | | | - José A Oteo
- Infectious Diseases Department, Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), San Pedro University Hospital-Center of Biomedical Research From La Rioja (CIBIR), Piqueras, 98, 26006, Logroño, La Rioja, Spain.
| |
Collapse
|
18
|
Ebenso B, Otu A, Giusti A, Cousin P, Adetimirin V, Razafindralambo H, Effa E, Gkisakis V, Thiare O, Levavasseur V, Kouhounde S, Adeoti K, Rahim A, Mounir M. Nature-Based One Health Approaches to Urban Agriculture Can Deliver Food and Nutrition Security. Front Nutr 2022; 9:773746. [PMID: 35360699 PMCID: PMC8963785 DOI: 10.3389/fnut.2022.773746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
The increasing global human population is projected to reach 9.7 billion people by 2050. This population growth is currently linked to the trends of world-wide urbanization, growth of megacities and shifting dietary patterns. While humankind faces the daunting challenge of feeding and providing healthy lives for its teeming populations, urban agriculture holds promise for improving the quality of life in cities. Fortunately, policymakers and planners are accepting the need to support peri-urban farmers to increase the resilience of food systems while efficiently managing already strained natural resources. We argue that for urban agriculture to significantly increase food yields, it is crucial to adopt a One Health approach to agriculture and environmental stewardship. Here, we propose six nature-based and climate-smart approaches to accelerate the transition toward more sustainable food systems. These approaches include reducing the reliance on synthetic agricultural inputs, increasing biodiversity through producing locally adapted crops and livestock breeds, using probiotics and postbiotics, and adopting portable digital decision-support systems. Such radical approaches to transforming food production will require cross-sectoral stakeholder engagement at international, national, and community levels to protect biodiversity and the environment whilst ensuring sustainable and nutritious diets that are culturally acceptable, accessible, and affordable for all.
Collapse
Affiliation(s)
- Bassey Ebenso
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Akaninyene Otu
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
- Foundation for Healthcare Innovation and Development (FHIND), Calabar, Nigeria
- Department of Internal Medicine, University of Calabar, Calabar, Nigeria
- Hull University Teaching Hospital, Hull, United Kingdom
| | | | | | - Victor Adetimirin
- Department of Crop and Horticultural Sciences, University of Ibadan, Ibadan, Nigeria
| | | | - Emmanuel Effa
- Foundation for Healthcare Innovation and Development (FHIND), Calabar, Nigeria
- Department of Internal Medicine, University of Calabar, Calabar, Nigeria
| | - Vasileios Gkisakis
- Institute of Olive Tree, Subtropical Crops & Viticulture, Department of Olive and Horticultural crops, ELGO – DIMITRA, Kalamata, Greece
| | - Ousmane Thiare
- Université Gaston Berger de Saint Louis, Saint-Louis, Senegal
| | | | - Sonagnon Kouhounde
- Laboratory of Applied Biologic Sciences, Université Aube Nouvelle, Bobo-Dioulasso, Burkina Faso
| | - Kifouli Adeoti
- Laboratoire de Microbiologie et de Technologie Alimentaire (LAMITA), Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Benin
| | | | - Majid Mounir
- Department of Food Science and Nutrition, Biotransformations Laboratory, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat Instituts, Rabat, Morocco
| |
Collapse
|
19
|
Redford KH, da Fonseca GA, Gascon C, Rodriguez CM, Adams J, Andelman S, Barron DH, Batmanian G, Bierbaum R, Daszak P, Daugherty C, Griffin J, Kemper K, Lee A, Long B, Lovejoy TE, McCauley D, Romanelli C, Paxton M, Sekhran N, Walzer C, Wannous C, West K, Zambrana‐Torrelio C. Healthy planet healthy people. Conserv Lett 2022. [DOI: 10.1111/conl.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kent H. Redford
- Archipelago Consulting Portland Maine
- School of Marine & Environmental Programs University of New England Biddeford Maine
| | | | | | | | | | | | | | | | - Rosina Bierbaum
- Scientific and Technical Advisory Panel Global Environment Facility Ann Arbor Michigan
| | | | | | | | | | - Aileen Lee
- Gordon and Betty Moore Foundation Palo Alto California
| | | | | | | | | | - Midori Paxton
- United Nations Development Programme New York New York
| | | | - Chris Walzer
- Wildlife Conservation Society New York New York
- Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna Austria
| | | | - Kelly West
- United Nations Environment Programme Nairobi Kenya
| | | |
Collapse
|
20
|
Nyaruaba R, Okoye CO, Akan OD, Mwaliko C, Ebido CC, Ayoola A, Ayeni EA, Odoh CK, Abi ME, Adebanjo O, Oyejobi GK. Socio-economic impacts of emerging infectious diseases in Africa. Infect Dis (Lond) 2022; 54:315-324. [PMID: 35007473 DOI: 10.1080/23744235.2021.2022195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Organization of African Academic Doctors, Nairobi, Kenya
| | - Charles Obinwanne Okoye
- Organization of African Academic Doctors, Nairobi, Kenya.,Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Otobong Donald Akan
- Organization of African Academic Doctors, Nairobi, Kenya.,Department of Microbiology, Akwa-Ibom State University, Akwa-Ibom State, Nigeria
| | - Caroline Mwaliko
- Organization of African Academic Doctors, Nairobi, Kenya.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, China
| | - Chike Chukwuenyem Ebido
- Organization of African Academic Doctors, Nairobi, Kenya.,Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Adeola Ayoola
- Organization of African Academic Doctors, Nairobi, Kenya.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, China
| | - Emmanuel Ayodeji Ayeni
- Organization of African Academic Doctors, Nairobi, Kenya.,The Research Unit, New Being Foundation, Abuja, FCT-Nigeria
| | - Chuks Kenneth Odoh
- Organization of African Academic Doctors, Nairobi, Kenya.,Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Manzama-Esso Abi
- Organization of African Academic Doctors, Nairobi, Kenya.,Yunnan Provincial Cancer Biotherapy and Chemotherapy Center, The third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Omosalewa Adebanjo
- Organization of African Academic Doctors, Nairobi, Kenya.,MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Greater Kayode Oyejobi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Organization of African Academic Doctors, Nairobi, Kenya.,Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| |
Collapse
|
21
|
Nnaji ND, Onyeaka H, Reuben RC, Uwishema O, Olovo CV, Anyogu A. The deuce-ace of Lassa Fever, Ebola virus disease and COVID-19 simultaneous infections and epidemics in West Africa: clinical and public health implications. Trop Med Health 2021; 49:102. [PMID: 34965891 PMCID: PMC8716304 DOI: 10.1186/s41182-021-00390-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Globally, the prevailing COVID-19 pandemic has caused unprecedented clinical and public health concerns with increasing morbidity and mortality. Unfortunately, the burden of COVID-19 in Africa has been further exacerbated by the simultaneous epidemics of Ebola virus disease (EVD) and Lassa Fever (LF) which has created a huge burden on African healthcare systems. As Africa struggles to contain the spread of the second (and third) waves of the COVID-19 pandemic, the number of reported cases of LF is also increasing, and recently, new outbreaks of EVD. Before the pandemic, many of Africa's frail healthcare systems were already overburdened due to resource limitations in staffing and infrastructure, and also, multiple endemic tropical diseases. However, the shared epidemiological and pathophysiological features of COVID-19, EVD and LF as well their simultaneous occurrence in Africa may result in misdiagnosis at the onset of infection, an increased possibility of co-infection, and rapid and silent community spread of the virus(es). Other challenges include high population mobility across porous borders, risk of human-to-animal transmission and reverse zoonotic spread, and other public health concerns. This review highlights some major clinical and public health challenges toward responses to the COVID-19 pandemic amidst the deuce-ace of recurrent LF and EVD epidemics in Africa. Applying the One Health approach in infectious disease surveillance and preparedness is essential in mitigating emerging and re-emerging (co-)epidemics in Africa and beyond.
Collapse
Affiliation(s)
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Rine Christopher Reuben
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, USA
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Chinasa Valerie Olovo
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University Zhenjiang, Zhenjiang, 212013 Jiangsu People’s Republic of China
| | - Amarachukwu Anyogu
- School of Biomedical Sciences, University of West London, London, W5 5RF UK
| |
Collapse
|
22
|
Nyasulu PS, Weyer J, Tschopp R, Mihret A, Aseffa A, Nuvor SV, Tamuzi JL, Nyakarahuka L, Helegbe GK, Ntinginya NE, Gebreyesus MT, Doumbia S, Busse R, Drosten C. Rabies mortality and morbidity associated with animal bites in Africa: a case for integrated rabies disease surveillance, prevention and control: a scoping review. BMJ Open 2021; 11:e048551. [PMID: 34857556 PMCID: PMC8640643 DOI: 10.1136/bmjopen-2020-048551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The objective of this scoping review was to map the current situation and available evidence and gaps on rabies morbidity, mortality, integrated rabies surveillance programmes, and existing prevention and control strategies in Africa. METHODS We conducted a systematic scoping review following the Joanna Briggs methodology and Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews checklist. Medline, Embase, CINAHL (EBSCOHost), Scopus, Web of Science and rabies web conferences were used to search for peer-reviewed publications between January 1946 and May 2020. Two researchers reviewed the studies and extracted data based on author (year) and region, study design and data collection duration, participants/comparators, interventions, control conditions/exposures and outcomes (rabies mortality and morbidity) and key findings/gaps/challenges. The results were reported narratively using Arksey and O'Malley's methodological framework. RESULTS Electronic search yielded 2775 records, of which 43 studies were included. A total of 543 714 bite victims were censored through the included studies. Most of the victims were less than 15 years of age. The studies included rabies morbidity (21) and mortality (15) fluctuating in space and time across Africa depending on countries' rabies prevention and control practices (16). Others were surveillance (nine studies); surveillance and prevention (five studies); management and control (seven studies); and surveillance, prevention and control (six studies). We found challenges in rabies reporting, existing dog vaccination programmes and post-exposure prophylaxis availability or compliance. CONCLUSION This study found challenges for dog rabies control and elimination in Africa and the need for a policy to drive the goal of zero dog-transmitted rabies to humans by 2030.This is an open-access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build on this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated and the use is non-commercial (see http://creativecommons.org/licenses/by-nc/4.0/).
Collapse
Affiliation(s)
- Peter Suwirakwenda Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonosis and Parasitic Diseases, National Institute of Communicable Diseases, Johannesburg, South Africa
- Department of Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Rea Tschopp
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jacques Lukenze Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Luke Nyakarahuka
- Department of Biosecurity, Ecosystems and Veterinary Public Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Gideon Kofi Helegbe
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Ghana
| | - Nyanda Elias Ntinginya
- Mbeya Medical Research Centre, National Institute of Medical Research, Mbeya, Tanzania, United Republic of
| | | | - Seydou Doumbia
- Faculty of Medicine and Odontostomatology & University Clinical Research Center, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Reinhard Busse
- Department of Health Care Management, Technical University Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|