1
|
Marynich NK, Boyko KM, Matyuta IO, Minyaev ME, Khadiyatova AA, Popov VO, Savitsky AP. Single-point substitution F97M leads to in cellulo crystallization of the biphotochromic protein moxSAASoti. Biochem Biophys Res Commun 2024; 732:150419. [PMID: 39032411 DOI: 10.1016/j.bbrc.2024.150419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
To enhance the photoconversion performance of biphotochromic moxSAASoti protein, a substitution F97 M was introduced. In addition to enhancing the target properties, this substitution also resulted in the crystallization of the recombinant protein within living HeLa cells (also referred to as in cellulo crystallization). The phenomenon of protein crystallization in living cells is not unique, yet the mechanisms and application of in cellulo crystallization remain significant for further research. However, in cellulo crystallization is atypical for fluorescent proteins and detrimental for their biotechnological application. The objective of this study was to elucidate the underlying mechanisms responsible for the crystallization of moxSAASotiF97Min cellulo. For this purpose, the crystal structure of the green form of biphotochromic protein moxSAASotiF97M was determined at high resolution, which surprisingly has a space group, different from those of parent mSAASotiC21N. The analysis provided allowed to propose a mechanism of new crystal contacts formation, which might be a cause of in cellulo protein crystallization.
Collapse
Affiliation(s)
- N K Marynich
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - K M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - I O Matyuta
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - M E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - A A Khadiyatova
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - V O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - A P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Wang Z, Wang B, Niu D, Yin C, Bi Y, Cattoglio C, Loh KM, Lavis LD, Ge H, Deng W. Mesoscale chromatin confinement facilitates target search of pioneer transcription factors in live cells. Nat Struct Mol Biol 2024:10.1038/s41594-024-01385-5. [PMID: 39367253 DOI: 10.1038/s41594-024-01385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Pioneer transcription factors (PTFs) possess the unique capability to access closed chromatin regions and initiate cell fate changes, yet the underlying mechanisms remain elusive. Here, we characterized the single-molecule dynamics of PTFs targeting chromatin in living cells, revealing a notable 'confined target search' mechanism. PTFs such as FOXA1, FOXA2, SOX2, OCT4 and KLF4 sampled chromatin more frequently than non-PTF MYC, alternating between fast free diffusion in the nucleus and slower confined diffusion within mesoscale zones. Super-resolved microscopy showed closed chromatin organized as mesoscale nucleosome-dense domains, confining FOXA2 diffusion locally and enriching its binding. We pinpointed specific histone-interacting disordered regions, distinct from DNA-binding domains, crucial for confined target search kinetics and pioneer activity within closed chromatin. Fusion to other factors enhanced pioneer activity. Kinetic simulations suggested that transient confinement could increase target association rate by shortening search time and binding repeatedly. Our findings illuminate how PTFs recognize and exploit closed chromatin organization to access targets, revealing a pivotal aspect of gene regulation.
Collapse
Affiliation(s)
- Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bo Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China
| | - Di Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China
| | - Chao Yin
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China
| | - Ying Bi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kyle M Loh
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Hao Ge
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
| |
Collapse
|
3
|
Dong Y, Huang L, Liu L. Comparative analysis of testicular fusion in Spodoptera litura (cutworm) and Bombyx mori (silkworm): Histological and transcriptomic insights. Gen Comp Endocrinol 2024; 356:114562. [PMID: 38848820 DOI: 10.1016/j.ygcen.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Spodoptera litura commonly known as the cutworm, is among the most destructive lepidopteran pests affecting over 120 plants species. The powerful destructive nature of this lepidopteran is attributable to its high reproductive capacity. The testicular fusion that occurs during metamorphosis from larvae to pupa in S.litura positively influences the reproductive success of the offspring. In contrast, Bombyx mori, the silkworm, retains separate testes throughout its life and does not undergo this fusion process. Microscopic examination reveals that during testicular fusion in S.litura, the peritoneal sheath becomes thinner and more translucent, whereas in B.mori, the analogous region thickens. The outer basement membrane in S.litura exhibits fractures, discontinuity, and uneven thickness accompanied by a significant presence of cellular secretions, large cell size, increased vesicles, liquid droplets, and a proliferation of rough endoplasmic reticulum and mitochondria. In contrast, the testicular peritoneal sheath of B.mori at comparable developmental stage exhibits minimal change. Comparative transcriptomic analysis of the testicular peritoneal sheath reveals a substantial difference in gene expression between the two species. The disparity in differential expressed genes (DEGs) is linked to an enrichment of numerous transcription factors, intracellular signaling pathways involving Ca2+ and GTPase, as well as intracellular protein transport and signaling pathways. Meanwhile, structural proteins including actin, chitin-binding proteins, membrane protein fractions, cell adhesion, extracellular matrix proteins are predominantly identified. Moreover, the study highlights the enrichment of endopeptidases, serine proteases, proteolytic enzymes and matrix metalloproteins, which may play a role in the degradation of the outer membrane. Five transcription factors-Slforkhead, Slproline, Slcyclic, Slsilk, and SlD-ETS were identified, and their expression pattern were confirmed by qRT-PCR. they are candidates for participating in the regulation of testicular fusion. Our findings underscore significant morphological and trancriptomic variation in the testicular peritoneal sheath of S.litura compared to the silkworm, with substantial changes at the transcriptomic level coinciding with testicular fusion. The research provides valuable clues for understanding the complex mechanisms underlying this unique phenomenon in insects.
Collapse
Affiliation(s)
- Yaqun Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
4
|
Jaillais Y, Bayer E, Bergmann DC, Botella MA, Boutté Y, Bozkurt TO, Caillaud MC, Germain V, Grossmann G, Heilmann I, Hemsley PA, Kirchhelle C, Martinière A, Miao Y, Mongrand S, Müller S, Noack LC, Oda Y, Ott T, Pan X, Pleskot R, Potocky M, Robert S, Rodriguez CS, Simon-Plas F, Russinova E, Van Damme D, Van Norman JM, Weijers D, Yalovsky S, Yang Z, Zelazny E, Gronnier J. Guidelines for naming and studying plasma membrane domains in plants. NATURE PLANTS 2024; 10:1172-1183. [PMID: 39134664 DOI: 10.1038/s41477-024-01742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/14/2024] [Indexed: 08/22/2024]
Abstract
Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate. For example, in the plant field, membrane domains are often referred to as nanodomains, nanoclusters, microdomains, lipid rafts, membrane rafts, signalling platforms, foci or liquid-ordered membranes without any clear rationale. In the context of plant-microbe interactions, microdomains have sometimes been used to refer to the large area at the plant-microbe interface. Some of these terms have partially overlapping meanings at best, but they are often used interchangeably in the literature. This situation generates much confusion and limits conceptual progress. There is thus an urgent need for us as a scientific community to resolve these semantic and conceptual controversies by defining an unambiguous nomenclature of membrane domains. In this Review, experts in the field get together to provide explicit definitions of plasma membrane domains in plant systems and experimental guidelines for their study. We propose that plasma membrane domains should not be considered on the basis of their size alone but rather according to the biological system being considered, such as the local membrane environment or the entire cell.
Collapse
Affiliation(s)
- Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Emmanuelle Bayer
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Yohann Boutté
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | | | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Véronique Germain
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Ingo Heilmann
- Institute of Biochemistry and Biotechnology, Department of Plant Biochemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Charlotte Kirchhelle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Alexandre Martinière
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sebastien Mongrand
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Sabine Müller
- Department of Biology, Friedrich Alexander Universität Erlangen Nuremberg, Erlangen, Germany
| | - Lise C Noack
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre of Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Xue Pan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Potocky
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Clara Sanchez Rodriguez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo UPM, Pozuelo de Alarcón, Spain
| | | | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Zhenbiao Yang
- Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Enric Zelazny
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Julien Gronnier
- NanoSignaling Lab, Zentrum für Molekularbiologie der Pflanzen, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Ohno N, Karube F, Fujiyama F. Volume electron microscopy for genetically and molecularly defined neural circuits. Neurosci Res 2024:S0168-0102(24)00074-9. [PMID: 38914208 DOI: 10.1016/j.neures.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
The brain networks responsible for adaptive behavioral changes are based on the physical connections between neurons. Light and electron microscopy have long been used to study neural projections and the physical connections between neurons. Volume electron microscopy has recently expanded its scale of analysis due to methodological advances, resulting in complete wiring maps of neurites in a large volume of brain tissues and even entire nervous systems in a growing number of species. However, structural approaches frequently suffer from inherent limitations in which elements in images are identified solely by morphological criteria. Recently, an increasing number of tools and technologies have been developed to characterize cells and cellular components in the context of molecules and gene expression. These advancements include newly developed probes for visualization in electron microscopic images as well as correlative integration methods for the same elements across multiple microscopic modalities. Such approaches advance our understanding of interactions between specific neurons and circuits and may help to elucidate novel aspects of the basal ganglia network involving dopamine neurons. These advancements are expected to reveal mechanisms for processing adaptive changes in specific neural circuits that modulate brain functions.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Japan.
| | - Fuyuki Karube
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Fumino Fujiyama
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| |
Collapse
|
6
|
Franzkoch R, Wilkening S, Liss V, Holtmannspötter M, Kurre R, Psathaki OE, Hensel M. Rapid in-EPON CLEM: Combining fast and efficient labeling of self-labeling enzyme tags with EM-resistant Janelia Fluor dyes and StayGold. Heliyon 2024; 10:e28055. [PMID: 38560224 PMCID: PMC10981041 DOI: 10.1016/j.heliyon.2024.e28055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Correlative light and electron microscopy (CLEM) combines light microscopy (LM) of fluorescent samples to ultrastructural analyses by electron microscopy (EM). Pre-embedding CLEM often suffers from inaccurate correlation between LM and EM modalities. Post-embedding CLEM enables precise registration of structures directly on EM sections, but requires fluorescent markers withstanding EM sample preparation, especially osmium tetroxide fixation, dehydration and EPON embedding. Most fluorescent proteins (FPs) lose their fluorescence during such conventional embedding (CE), but synthetic dyes represent promising alternatives as their stability exceeds those of FP. We analyzed various Janelia Fluor dyes and TMR conjugated to ligands for self-labeling enzymes, such as HaloTag, for fluorescence preservation after CE. We show that TMR, JF525, JF549, JFX549 and JFX554 retain fluorescence, with JFX549 and JFX554 yielding best results overall, also allowing integration of high-pressure freezing and freeze substitution. Furthermore, we found the recently published FP StayGold to resist CE, facilitating dual-fluorescence in-resin CLEM.
Collapse
Affiliation(s)
- Rico Franzkoch
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- IBiOs – Integrated Bioimaging Facility Osnabrück, Germany
| | | | - Viktoria Liss
- IBiOs – Integrated Bioimaging Facility Osnabrück, Germany
| | - Michael Holtmannspötter
- IBiOs – Integrated Bioimaging Facility Osnabrück, Germany
- CellNanOs – Center for Cellular Nanoanalytics Osnabrück, Germany
| | - Rainer Kurre
- IBiOs – Integrated Bioimaging Facility Osnabrück, Germany
- CellNanOs – Center for Cellular Nanoanalytics Osnabrück, Germany
| | - Olympia E. Psathaki
- IBiOs – Integrated Bioimaging Facility Osnabrück, Germany
- CellNanOs – Center for Cellular Nanoanalytics Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs – Center for Cellular Nanoanalytics Osnabrück, Germany
| |
Collapse
|
7
|
Czymmek KJ, Belevich I, Bischof J, Mathur A, Collinson L, Jokitalo E. Accelerating data sharing and reuse in volume electron microscopy. Nat Cell Biol 2024; 26:498-503. [PMID: 38609529 DOI: 10.1038/s41556-024-01381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Affiliation(s)
- Kirk James Czymmek
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO, USA
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Johanna Bischof
- Euro-BioImaging ERIC Bio-Hub, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany
| | - Aastha Mathur
- Euro-BioImaging ERIC Bio-Hub, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London, UK
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Sharma N, Jung M, Mishra PK, Mun JY, Rhee HW. FLEX: genetically encodable enzymatic fluorescence signal amplification using engineered peroxidase. Cell Chem Biol 2024; 31:S2451-9456(24)00081-3. [PMID: 38513646 DOI: 10.1016/j.chembiol.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Fluorescent tagging of biomolecules enables their sensitive detection during separation and determining their subcellular location. In this context, peroxidase-based reactions are actively utilized for signal amplification. To harness this potential, we developed a genetically encodable enzymatic fluorescence signal amplification method using APEX (FLEX). We synthesized a fluorescent probe, Jenfluor triazole (JFT1), which effectively amplifies and restricts fluorescence signals under fixed conditions, enabling fluorescence-based detection of subcellularly localized electron-rich metabolites. Moreover, JFT1 exhibited stable fluorescence signals even under osmium-treated and polymer-embedded conditions, which supported findings from correlative light and electron microscopy (CLEM) using APEX. Using various APEX-conjugated proteins of interest (POIs) targeted to different organelles, we successfully visualized their localization through FLEX imaging while effectively preserving organelle ultrastructures. FLEX provides insights into dynamic lysosome-mitochondria interactions upon exposure to chemical stressors. Overall, FLEX holds significant promise as a sensitive and versatile system for fluorescently detecting APEX2-POIs in multiscale biological samples.
Collapse
Affiliation(s)
- Nirmali Sharma
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Minkyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | | | - Ji Young Mun
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
9
|
Maity A, Wulffelé J, Ayala I, Favier A, Adam V, Bourgeois D, Brutscher B. Structural Heterogeneity in a Phototransformable Fluorescent Protein Impacts its Photochemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306272. [PMID: 38146132 PMCID: PMC10933604 DOI: 10.1002/advs.202306272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Photoconvertible fluorescent proteins (PCFP) are important cellular markers in advanced imaging modalities such as photoactivatable localization microscopy (PALM). However, their complex photophysical and photochemical behavior hampers applications such as quantitative and single-particle-tracking PALM. This work employs multidimensional NMR combined with ensemble fluorescence measurements to show that the popular mEos4b in its Green state populates two conformations (A and B), differing in side-chain protonation of the conserved residues E212 and H62, altering the hydrogen-bond network in the chromophore pocket. The interconversion (protonation/deprotonation) between these two states, which occurs on the minutes time scale in the dark, becomes strongly accelerated in the presence of UV light, leading to a population shift. This work shows that the reversible photoswitching and Green-to-Red photoconversion properties differ between the A and B states. The chromophore in the A-state photoswitches more efficiently and is proposed to be more prone to photoconversion, while the B-state shows a higher level of photobleaching. Altogether, this data highlights the central role of conformational heterogeneity in fluorescent protein photochemistry.
Collapse
Affiliation(s)
- Arijit Maity
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Jip Wulffelé
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Isabel Ayala
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Adrien Favier
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Virgile Adam
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Dominique Bourgeois
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Bernhard Brutscher
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| |
Collapse
|
10
|
Tanida I, Yamaguchi J, Suzuki C, Kakuta S, Uchiyama Y. Recent advances in in-resin correlative light and electron microscopy of Epon-embedded cells. Microscopy (Oxf) 2023; 72:383-387. [PMID: 37217182 DOI: 10.1093/jmicro/dfad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Correlative fluorescent and electron microscopic images of the same section of epoxy (or other polymer)-embedded samples, hereafter referred to as 'in-resin CLEM', have been developed to improve the positional accuracy and Z-axis resolution limitations of conventional correlative light and electron microscopy (CLEM). High-pressure freezing and quick-freezing substitution result in in-resin CLEM of acrylic-based resin-embedded cells expressing green fluorescent protein, yellow fluorescent protein, mVenus and mCherry, which are sensitive to osmium tetroxide. The identification of osmium-resistant fluorescent proteins leads to the development of in-resin CLEM of Epon-embedded cells. Using subtraction-based fluorescence microscopy with a photoconvertible fluorescent protein, mEosEM-E, its green fluorescence can be observed in thin sections of Epon-embedded cells, and two-color in-resin CLEM using mEosEM-E and mScarlet-H can be performed. Green fluorescent proteins, CoGFP variant 0 and mWasabi, and far-red fluorescent proteins, mCherry2 and mKate2, are available for in-resin CLEM of Epon-embedded cells using the standard procedure for Epon-embedding with additional incubation. Proximity labeling is applied to in-resin CLEM to overcome the limitations of fluorescent proteins in epoxy resin. These approaches will contribute significantly to the future of CLEM analysis.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
- Center for Diversity and Inclusion, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| |
Collapse
|
11
|
Beatty KE, López CS. Characteristics of genetic tags for correlative light and electron microscopy. Curr Opin Chem Biol 2023; 76:102369. [PMID: 37453163 DOI: 10.1016/j.cbpa.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Fluorescence microscopy is indispensable in live cell studies of fluorescently-labeled proteins, but has limited resolution and context. Electron microscopy offers high-resolution imaging of cellular ultrastructure, including membranes, organelles, and other nanoscale features. However, identifying proteins by EM remains a substantial challenge. There is potential to combine the strengths of both FM and EM through correlative light and EM (CLEM), and bridging the two modalities enables new discoveries and biological insights. CLEM enables cellular proteins to be observed dynamically, across size scales, and in relationship to sub-cellular structures. A central limitation to using CLEM is the scarcity of methods for labeling proteins with CLEM reporters. This review will describe the characteristics of genetic tags for CLEM that are available today, including fixation-resistant fluorescent proteins, 3,3'-diaminobenzidine (DAB)-based tags, metal-chelating tags, DNA origami tags, and VIP tags.
Collapse
Affiliation(s)
- Kimberly E Beatty
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Claudia S López
- Department of Biomedical Engineering Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Andrian T, Muela Y, Delgado L, Albertazzi L, Pujals S. A super-resolution and transmission electron microscopy correlative approach to study intracellular trafficking of nanoparticles. NANOSCALE 2023; 15:14615-14627. [PMID: 37614108 DOI: 10.1039/d3nr02838k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Nanoparticles (NPs) are used to encapsulate therapeutic cargos and deliver them specifically to the target site. The intracellular trafficking of NPs dictates the NP-cargo distribution within different cellular compartments, and thus governs their efficacy and safety. Knowledge in this field is crucial to understand their biological fate and improve their rational design. However, there is a lack of methods that allow precise localization and quantification of individual NPs within distinct cellular compartments simultaneously. Here, we address this issue by proposing a correlative light and electron microscopy (CLEM) method combining direct stochastic optical reconstruction microscopy (dSTORM) and transmission electron microscopy (TEM). We aim at combining the advantages of both techniques to precisely address NP localization in the context of the cell ultrastructure. Individual fluorescently-labelled poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs were directly visualized by dSTORM and assigned to cellular compartments by TEM. We first tracked NPs along the endo-lysosomal pathway at different time points, then demonstrated the effect of chloroquine on their intracellular distribution (i.e. endosomal escape). The proposed protocol can be applied to fluorescently labelled NPs and/or cargo, including those not detectable by TEM alone. Our studies are of great relevance to obtain important information on NP trafficking, and crucial for the design of more complex nanomaterials aimed at cytoplasmic/nucleic drug delivery.
Collapse
Affiliation(s)
- Teodora Andrian
- Institute for Bioengineering of Catalonia (IBEC), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.
| | - Yolanda Muela
- Electron Cryomicroscopy Unit, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Carrer Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Lidia Delgado
- Electron Cryomicroscopy Unit, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Carrer Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Carrer Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
13
|
Tanida I, Yamaguchi J, Suzuki C, Kakuta S, Uchiyama Y. Application of immuno- and affinity labeling with fluorescent dyes to in-resin CLEM of Epon-embedded cells. Heliyon 2023; 9:e17394. [PMID: 37389060 PMCID: PMC10300206 DOI: 10.1016/j.heliyon.2023.e17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
In-resin CLEM (Correlative Light and Electron Microscopy) of Epon-embedded cells involves correlating fluorescence microscopy with electron microscopy in the same Epon-embedded ultrathin section. This method offers the advantage of high positional accuracy compared to standard CLEM. However, it requires the expression of recombinant proteins. In order to detect the localization of endogenous target(s) and their localized ultrastructures of Epon-embedded samples using in-resin CLEM, we investigated whether immunological and affinity-labeling using fluorescent dyes applied to in-resin CLEM of Epon-embedded cells. The orange fluorescent (λem ∼550 nm) and far-red (λem ∼650 nm) fluorescent dyes examined maintained a sufficient level of fluorescent intensity after staining with osmium tetroxide and subsequent dehydration treatment with ethanol. Immunological in-resin CLEM of mitochondria and the Golgi apparatus was achieved using anti-TOM20, anti-GM130 antibodies, and fluorescent dyes. Two-color in-resin CLEM revealed that wheat germ agglutinin-puncta showed the ultrastructures of multivesicular body-like structures. Finally, taking the advantage of high positional accuracy, volume in-resin CLEM of mitochondria in the semi-thin section (2 μm thick) of Epon-embedded cells was performed by focused ion beam scanning electron microscopy. These results suggested that the application of immunological reaction and affinity-labeling with fluorescent dyes to in-resin CLEM of Epon-embedded cells is suitable for analyzing the localization of endogenous targets and their ultrastructures by scanning and transmission electron microscopy.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
- Center for Diversity and Inclusion, Juntendo University School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Wang T, Shi P, Luo D, Guo J, Liu H, Yuan J, Jin H, Wu X, Zhang Y, Xiong Z, Zhu J, Zhou R, Zhang R. A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping. Brain Sci 2023; 13:711. [PMID: 37239183 PMCID: PMC10216590 DOI: 10.3390/brainsci13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.
Collapse
Affiliation(s)
- Tianyi Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peiyao Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Dingsan Luo
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jun Guo
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Hui Liu
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jinyun Yuan
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Haiqun Jin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Xiaolong Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Yueyi Zhang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Zhiwei Xiong
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Jinlong Zhu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ruobing Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
15
|
Tanida I, Yamaguchi J, Kakuta S, Uchiyama Y. Osmium-Resistant Fluorescent Proteins and In-Resin Correlative Light-Electron Microscopy of Epon-Embedded Mammalian Cultured Cells. Methods Mol Biol 2023; 2564:287-297. [PMID: 36107349 DOI: 10.1007/978-1-0716-2667-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Postfixation with osmium tetroxide and Epon embedding are essential for the preservation and visualization of subcellular ultrastructures via electron microscopy. These chemical treatments diminish the fluorescent intensity of most fluorescent proteins in cells, creating a problem for the in-resin correlative light-electron microscopy (CLEM) of Epon-embedded mammalian cultured cells. We found that two green and two far-red fluorescent proteins retain their fluorescence after chemical fixation with glutaraldehyde, osmium tetroxide-staining, dehydration, and polymerization of Epon resins. Consequently, we could observe the fluorescence of fluorescent proteins in ultrathin sections of Epon-embedded cells via fluorescence microscopy, investigate ultrastructures of the cells in the same sections via electron microscopy, and correlate the fluorescent image with the electron microscopic image without chemical or physical distortion of the cells. In other words, referred as "in-resin CLEM" of Epon-embedded samples. This technique also improves the Z-axis resolution of fluorescent images. In this chapter, we introduce the detailed protocol for in-resin CLEM of Epon-embedded mammalian cultured cells using these fluorescent proteins.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Iwasaki H, Ichinose S, Tajika Y, Murakami T. Recent technological advances in correlative light and electron microscopy for the comprehensive analysis of neural circuits. Front Neuroanat 2022; 16:1061078. [PMID: 36530521 PMCID: PMC9748091 DOI: 10.3389/fnana.2022.1061078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/16/2022] [Indexed: 11/04/2023] Open
Abstract
Light microscopy (LM) covers a relatively wide area and is suitable for observing the entire neuronal network. However, resolution of LM is insufficient to identify synapses and determine whether neighboring neurons are connected via synapses. In contrast, the resolution of electron microscopy (EM) is sufficiently high to detect synapses and is useful for identifying neuronal connectivity; however, serial images cannot easily show the entire morphology of neurons, as EM covers a relatively narrow region. Thus, covering a large area requires a large dataset. Furthermore, the three-dimensional (3D) reconstruction of neurons by EM requires considerable time and effort, and the segmentation of neurons is laborious. Correlative light and electron microscopy (CLEM) is an approach for correlating images obtained via LM and EM. Because LM and EM are complementary in terms of compensating for their shortcomings, CLEM is a powerful technique for the comprehensive analysis of neural circuits. This review provides an overview of recent advances in CLEM tools and methods, particularly the fluorescent probes available for CLEM and near-infrared branding technique to match LM and EM images. We also discuss the challenges and limitations associated with contemporary CLEM technologies.
Collapse
Affiliation(s)
- Hirohide Iwasaki
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | |
Collapse
|
17
|
Jin Y, Bae J, Kim TY, Hwang H, Kim T, Yu M, Oh H, Hashiya K, Bando T, Sugiyama H, Jo K. Twelve Colors of Streptavidin–Fluorescent Proteins (SA-FPs): A Versatile Tool to Visualize Genetic Information in Single-Molecule DNA. Anal Chem 2022; 94:16927-16935. [DOI: 10.1021/acs.analchem.2c04344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yu Jin
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Jaeyoung Bae
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Tehee Yurie Kim
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Hyeseung Hwang
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Taesoo Kim
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Myungheon Yu
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Hyesoo Oh
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kyubong Jo
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
18
|
Zhou S, Fu Z, Zhang Z, Jia X, Xu G, Sun L, Sun F, Gao P, Xu P, Deng H. Liquid-liquid phase separation mediates the formation of herpesvirus assembly compartments. J Biophys Biochem Cytol 2022; 222:213550. [PMID: 36250941 PMCID: PMC9579985 DOI: 10.1083/jcb.202201088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/19/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Virus assembly, which takes place during the late stage of viral replication, is essential for virus propagation. However, the underlying mechanisms remain poorly understood, especially for viruses with complicated structures. Here, we use correlative light and electron microscopy to examine the formation of cytoplasmic virion assembly compartments (cVACs) during infection by a γ-herpesvirus. These cVACs are membraneless organelles with liquid-like properties. Formation of cVACs during virus infection is mediated by ORF52, an abundant tegument protein. ORF52 undergoes liquid-liquid phase separation (LLPS), which is promoted by both DNA and RNA. Disrupting ORF52 phase separation blocks cVACs formation and virion production. These results demonstrate that phase separation of ORF52 is critical for cVACs formation. Our work defines herpesvirus cVACs as membraneless compartments that are generated through a process of LLPS mediated by a tegument protein and adds to the cellular processes that are facilitated by phase separation.
Collapse
Affiliation(s)
- Sheng Zhou
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Zhifei Fu
- University of Chinese Academy of Sciences, Beijing, China,Public Technology Service Center, Fujian Medical University, Fujian, China,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ziwei Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xing Jia
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangjun Xu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Long Sun
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingyong Xu
- University of Chinese Academy of Sciences, Beijing, China,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,Correspondence to Hongyu Deng:
| |
Collapse
|
19
|
Fages-Lartaud M, Tietze L, Elie F, Lale R, Hohmann-Marriott MF. mCherry contains a fluorescent protein isoform that interferes with its reporter function. Front Bioeng Biotechnol 2022; 10:892138. [PMID: 36017355 PMCID: PMC9395592 DOI: 10.3389/fbioe.2022.892138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Fluorescent proteins are essential reporters in cell and molecular biology. Here, we found that red-fluorescent proteins possess an alternative translation initiation site that produces a short functional protein isoform in both prokaryotes and eukaryotes. The short isoform creates significant background fluorescence that biases the outcome of expression studies. In this study, we identified the short protein isoform, traced its origin, and determined the extent of the issue within the family of red fluorescent protein. Our analysis showed that the short isoform defect of the red fluorescent protein family may affect the interpretation of many published studies. We provided a re-engineered mCherry variant that lacks background expression as an improved tool for imaging and protein expression studies.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lisa Tietze
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Florence Elie
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rahmi Lale
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
- United Scientists CORE (Limited), Dunedin, New Zealand
| |
Collapse
|
20
|
Sanada T, Yamaguchi J, Furuta Y, Kakuta S, Tanida I, Uchiyama Y. In-resin CLEM of Epon-embedded cells using proximity labeling. Sci Rep 2022; 12:11130. [PMID: 35778550 PMCID: PMC9249884 DOI: 10.1038/s41598-022-15438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Biotin ligases have been developed as proximity biotinylation enzymes for analyses of the interactome. However, there has been no report on the application of proximity labeling for in-resin correlative light-electron microscopy of Epon-embedded cells. In this study, we established a proximity-labeled in-resin CLEM of Epon-embedded cells using miniTurbo, a biotin ligase. Biotinylation by miniTurbo was observed in cells within 10 min following the addition of biotin to the medium. Using fluorophore-conjugated streptavidin, intracellular biotinylated proteins were labeled after fixation of cells with a mixture of paraformaldehyde and glutaraldehyde. Fluorescence of these proteins was resistant to osmium tetroxide staining and was detected in 100-nm ultrathin sections of Epon-embedded cells. Ultrastructures of organelles were preserved well in the same sections. Fluorescence in sections was about 14-fold brighter than that in the sections of Epon-embedded cells expressing mCherry2 and was detectable for 14 days. When mitochondria-localized miniTurbo was expressed in the cells, mitochondria-like fluorescent signals were detected in the sections, and ultrastructures of mitochondria were observed as fluorescence-positive structures in the same sections by scanning electron microscopy. Proximity labeling using miniTurbo led to more stable and brighter fluorescent signals in the ultrathin sections of Epon-embedded cells, resulting in better performance of in-resin CLEM.
Collapse
Affiliation(s)
- Takahito Sanada
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Furuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
21
|
Xie Y, Xie F, Zhou X, Zhang L, Yang B, Huang J, Wang F, Yan H, Zeng L, Zhang L, Zhou F. Microbiota in Tumors: From Understanding to Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200470. [PMID: 35603968 PMCID: PMC9313476 DOI: 10.1002/advs.202200470] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/30/2022] [Indexed: 05/09/2023]
Abstract
Microbes with complex functions have been found to be a potential component in tumor microenvironments. Due to their low biomass and other obstacles, intratumor microbiota is poorly understood. Mucosal sites and normal adjacent tissues are important sources of intratumor microbiota, while hematogenous spread also leads to the invasion of microbes. Intratumor microbiota affects the progression of tumors through several mechanisms, such as DNA damage, activation of oncogenic pathways, induction of immunosuppression, and metabolization of drugs. Notably, in different types of tumors, the composition and abundance of intratumor microbiota are highly heterogeneous and may play different roles in the progression of tumors. Because of the concern in this field, several techniques such as omics and immunological methods have been used to study intratumor microbiota. Here, recent progress in this field is reviewed, including the potential sources of intratumor microbiota, their functions and related mechanisms, and their heterogeneity. Techniques that can be used to study intratumor microbiota are also discussed. Moreover, research is summarized into the development of strategies that can be used in antitumor treatment and prospects for possible future research in this field.
Collapse
Affiliation(s)
- Yifan Xie
- School of MedicineZhejiang University City CollegeSuzhou215123P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Lei Zhang
- Department of Orthopaedic Surgery WenzhouThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou32500P. R. China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jun Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Haiyan Yan
- School of MedicineZhejiang University City CollegeSuzhou215123P. R. China
| | - Linghui Zeng
- School of MedicineZhejiang University City CollegeSuzhou215123P. R. China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
22
|
Heiligenstein X, Lucas MS. One for All, All for One: A Close Look at In-Resin Fluorescence Protocols for CLEM. Front Cell Dev Biol 2022; 10:866472. [PMID: 35846358 PMCID: PMC9280628 DOI: 10.3389/fcell.2022.866472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Sample preparation is the novel bottleneck for high throughput correlative light and electron microscopy (CLEM). Protocols suitable for both imaging methods must therefore balance the requirements of each technique. For fluorescence light microscopy, a structure of interest can be targeted using: 1) staining, which is often structure or tissue specific rather than protein specific, 2) dye-coupled proteins or antibodies, or 3) genetically encoded fluorescent proteins. Each of these three methods has its own advantages. For ultrastructural investigation by electron microscopy (EM) resin embedding remains a significant sample preparation approach, as it stabilizes the sample such that it withstands the vacuum conditions of the EM, and enables long-term storage. Traditionally, samples are treated with heavy metal salts prior to resin embedding, in order to increase imaging contrast for EM. This is particularly important for volume EM (vEM) techniques. Yet, commonly used contrasting agents (e.g., osmium tetroxide, uranyl acetate) tend to impair fluorescence. The discovery that fluorescence can be preserved in resin-embedded specimens after mild heavy metal staining was a game changer for CLEM. These so-called in-resin fluorescence protocols present a significant leap forward for CLEM approaches towards high precision localization of a fluorescent signal in (volume) EM data. Integrated microscopy approaches, combining LM and EM detection into a single instrument certainly require such an “all in one” sample preparation. Preserving, or adding, dedicated fluorescence prior to resin embedding requires a compromise, which often comes at the expense of EM imaging contrast and membrane visibility. Especially vEM can be strongly hampered by a lack of heavy metal contrasting. This review critically reflects upon the fundamental aspects of resin embedding with regard to 1) specimen fixation and the physics and chemistry underlying the preservation of protein structure with respect to fluorescence and antigenicity, 2) optimization of EM contrast for transmission or scanning EM, and 3) the choice of embedding resin. On this basis, various existing workflows employing in-resin fluorescence are described, highlighting their common features, discussing advantages and disadvantages of the respective approach, and finally concluding with promising future developments for in-resin CLEM.
Collapse
Affiliation(s)
| | - Miriam S. Lucas
- Scientific Center for Light and Electron Microscopy (ScopeM), ETH Zurich, Zurich, Switzerland
- *Correspondence: Miriam S. Lucas,
| |
Collapse
|
23
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
24
|
A Validated Set of Ascorbate Peroxidase-Based Organelle Markers for Electron Microscopy of Saccharomyces cerevisiae. mSphere 2022; 7:e0010722. [PMID: 35727034 PMCID: PMC9429943 DOI: 10.1128/msphere.00107-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genetically encoded tags, such as engineered ascorbate peroxidase APEX2, offer unique advantages for the specific labeling of subcellular structures in electron microscopy (EM). However, the use of APEX2 in EM investigation of yeast has been limited. Here we describe the development of APEX2-based organelle markers for Saccharomyces cerevisiae. We found that with regard to APEX2 -catalyzed formation of diaminobenzidine precipitation, cell wall removal was not essential during sample preparation, yet the presence of fluorescent proteins in APEX2 chimeras had a negative impact. We showed that major organelles including endoplasmic reticulum, early Golgi, late Golgi/early endosomes, late endosomes, mitochondria, peroxisomes, and lipid droplets could be labeled by appropriate APEX2 chimeras. The subcellular localization of our APEX2 chimeras was verified by EM visualization and supplemented with immunofluorescence colocalization analysis when necessary, validating their feasibility as organelle markers. IMPORTANCE Yeast is an excellent single cellular model system for studying basic cellular processes. However, yeast cells are much smaller than most animal and plant cells, making the observation and recognition of yeast subcellular structures challenging. Here we developed a set of yeast organelle markers for use in electron microscopy and documented our technical approach for using this method.
Collapse
|
25
|
van den Dries K, Fransen J, Cambi A. Fluorescence CLEM in biology: historic developments and current super-resolution applications. FEBS Lett 2022; 596:2486-2496. [PMID: 35674424 DOI: 10.1002/1873-3468.14421] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Correlative light and electron microscopy (CLEM) is a powerful imaging approach that allows the direct correlation of information obtained on a light and an electron microscope. There is a growing interest in the application of CLEM in biology, mainly attributable to technical advances in field of fluorescence microscopy in the past two decades. In this review, we summarize the important developments in CLEM for biological applications, focusing on the combination of fluorescence microscopy and electron microscopy. We first provide a brief overview of the early days of fluorescence CLEM usage starting with the initial rise in the late 1970s and the subsequent optimization of CLEM workflows during the following two decades. Next, we describe how the engineering of fluorescent proteins and the development of super-resolution fluorescence microscopy have significantly renewed the interest in CLEM resulting in the present application of fluorescence CLEM in many different areas of cellular and molecular biology. Lastly, we present the promises and challenges for the future of fluorescence CLEM discussing novel workflows, probe development and quantification possibilities.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Jack Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Zhang Y, Lu Y, El Sayyed H, Bian J, Lin J, Li X. Transcription factor dynamics in plants: Insights and technologies for in vivo imaging. PLANT PHYSIOLOGY 2022; 189:23-36. [PMID: 35134239 PMCID: PMC9070795 DOI: 10.1093/plphys/kiac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biochemical and genetic approaches have been extensively used to study transcription factor (TF) functions, but their dynamic behaviors and the complex ways in which they regulate transcription in plant cells remain unexplored, particularly behaviors such as translocation and binding to DNA. Recent developments in labeling and imaging techniques provide the necessary sensitivity and resolution to study these behaviors in living cells. In this review, we present an up-to-date portrait of the dynamics and regulation of TFs under physiologically relevant conditions and then summarize recent advances in fluorescent labeling strategies and imaging techniques. We then discuss future prospects and challenges associated with the application of these techniques to examine TFs' intricate dance in living plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hafez El Sayyed
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
27
|
Loginov SV, Fermie J, Fokkema J, Agronskaia AV, De Heus C, Blab GA, Klumperman J, Gerritsen HC, Liv N. Correlative Organelle Microscopy: Fluorescence Guided Volume Electron Microscopy of Intracellular Processes. Front Cell Dev Biol 2022; 10:829545. [PMID: 35478966 PMCID: PMC9035751 DOI: 10.3389/fcell.2022.829545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/04/2022] [Indexed: 01/19/2023] Open
Abstract
Intracellular processes depend on a strict spatial and temporal organization of proteins and organelles. Therefore, directly linking molecular to nanoscale ultrastructural information is crucial in understanding cellular physiology. Volume or three-dimensional (3D) correlative light and electron microscopy (volume-CLEM) holds unique potential to explore cellular physiology at high-resolution ultrastructural detail across cell volumes. However, the application of volume-CLEM is hampered by limitations in throughput and 3D correlation efficiency. In order to address these limitations, we describe a novel pipeline for volume-CLEM that provides high-precision (<100 nm) registration between 3D fluorescence microscopy (FM) and 3D electron microscopy (EM) datasets with significantly increased throughput. Using multi-modal fiducial nanoparticles that remain fluorescent in epoxy resins and a 3D confocal fluorescence microscope integrated into a Focused Ion Beam Scanning Electron Microscope (FIB.SEM), our approach uses FM to target extremely small volumes of even single organelles for imaging in volume EM and obviates the need for post-correlation of big 3D datasets. We extend our targeted volume-CLEM approach to include live-cell imaging, adding information on the motility of intracellular membranes selected for volume-CLEM. We demonstrate the power of our approach by targeted imaging of rare and transient contact sites between the endoplasmic reticulum (ER) and lysosomes within hours rather than days. Our data suggest that extensive ER-lysosome and mitochondria-lysosome interactions restrict lysosome motility, highlighting the unique capabilities of our integrated CLEM pipeline for linking molecular dynamic data to high-resolution ultrastructural detail in 3D.
Collapse
Affiliation(s)
- Sergey V. Loginov
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Job Fermie
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jantina Fokkema
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Alexandra V. Agronskaia
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Cilia De Heus
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Gerhard A. Blab
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Judith Klumperman
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hans C. Gerritsen
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Nalan Liv
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Nalan Liv,
| |
Collapse
|
28
|
Ikeda T, Inamori K, Kawanishi T, Takeda H. Reemployment of Kupffer's vesicle cells into axial and paraxial mesoderm via transdifferentiation. Dev Growth Differ 2022; 64:163-177. [PMID: 35129208 DOI: 10.1111/dgd.12774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
Kupffer's vesicle (KV) in the teleost embryo is a fluid-filled vesicle surrounded by a layer of epithelial cells with rotating primary cilia. KV transiently acts as the left-right organizer and degenerates after the establishment of left-right asymmetric gene expression. Previous labelling experiments in zebrafish embryos indicated that descendants of KV-epithelial cells are incorporated into mesodermal tissues after the collapse of KV. However, the overall picture of their differentiation potency had been unclear due to the lack of suitable genetic tools and molecular analyses. In the present study, we established a novel zebrafish transgenic line with a promoter of dand5, in which all KV-epithelial cells and their descendants are specifically labelled until the larval stage. We found that KV-epithelial cells undergo epithelial-mesenchymal transition upon KV collapse and infiltrate into adjacent mesodermal progenitors, the presomitic mesoderm and chordoneural hinge. Once incorporated, the descendants of KV-epithelial cells expressed distinct mesodermal differentiation markers and contributed to the mature populations such as the axial muscles and notochordal sheath through normal developmental process. These results indicate that differentiated KV-epithelial cells possess unique plasticity in that they are reemployed into mesodermal lineages through transdifferentiation after they complete their initial role in KV.
Collapse
Affiliation(s)
- Takafumi Ikeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kiichi Inamori
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toru Kawanishi
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Improved Fluorescent Proteins for Dual-Colour Post-Embedding CLEM. Cells 2022; 11:cells11071077. [PMID: 35406640 PMCID: PMC8997867 DOI: 10.3390/cells11071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Post-embedding correlative light and electron microscopy (CLEM) has the advantage of high-precision registration and enables light and electron microscopy imaging of the same slice. However, its broad application has been hampered by the limited available fluorescent proteins (FPs) and a low signal-to-background ratio (SBR). Here, we developed a green photoswitchable FP, mEosEM-E with substantially high on/off contrast in EM samples embedded in Epon resin, which maximally preserves cellular structures but quenches the fluorescence of FPs. Taking advantage of the photoswitching property of mEosEM-E, the autofluorescence background from the resin was significantly reduced by a subtraction-based CLEM (sCLEM) method. Meanwhile, we identified a red fluorescent protein (RFP) mScarlet-H that exhibited higher brightness and SBR in resin than previously reported RFPs. With mEosEM-E and mScarlet-H, dual-colour post-Epon-embedding CLEM images with high SBR and no cross-talk signal were successfully performed to reveal the organization of nucleolar proteins. Moreover, a dissection of the influences of different EM sample preparation steps on the fluorescence preservation for several RFPs provides useful guidance for further probe development.
Collapse
|
30
|
Yang H, Wu Y, Ruan H, Guo F, Liang Y, Qin G, Liu X, Zhang Z, Yuan J, Fang X. Surface-Engineered Gold Nanoclusters for Stimulated Emission Depletion and Correlated Light and Electron Microscopy Imaging. Anal Chem 2022; 94:3056-3064. [PMID: 35142221 DOI: 10.1021/acs.analchem.1c03935] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimulated emission depletion (STED) nanoscopy is an emerging super-resolution imaging platform for the study of the cellular structure. Developing suitable fluorescent probes of small size, good photostability, and easy functionalization is still in demand. Herein, we introduce a new type of surface-engineered gold nanoclusters (Au NCs) that are ultrasmall (1.7 nm) and ultrabright (QY = 60%) for STED bioimaging. A rigid shell formed by l-arginine (l-Arg) and 6-aza-2-thiothymine (ATT) on the Au NC surface enables not only its strong fluorescence in aqueous solution but also its easy chemical modification for specific biomolecule labeling. Au NCs show remarkable performance as STED nanoprobes, including high depletion efficiency, good photobleaching resistance, and low saturation intensity. Super-resolution imaging has been achieved with these Au NCs, and targeted nanoscopic imaging of cellular tubulin has been demonstrated. Moreover, the circular structure of lysosomes in live cells has been revealed. As a Au NC is also an ideal probe for electron microscopy, dual imaging of Aβ42 aggregates with the single labeling probe of Au NCs has been realized in correlative light and electron microscopy (CLEM). This work reports, for the first time, the application of Au NCs as a novel probe in STED and CLEM imaging. With their excellent properties, Au NCs show promising potential for nanoscale bioimaging.
Collapse
Affiliation(s)
- Hongwei Yang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hefei Ruan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Guo
- Analysis and Testing Center, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
31
|
Jeong D, Kim D. Recent Developments in Correlative Super-Resolution Fluorescence Microscopy and Electron Microscopy. Mol Cells 2022; 45:41-50. [PMID: 35114646 PMCID: PMC8819494 DOI: 10.14348/molcells.2021.5011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 11/27/2022] Open
Abstract
The recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques. We discuss the limitations of the integration of these two microscopy techniques and how these challenges can be addressed to improve the quality of correlative images. Finally, we address possible future improvements and advances in the continued development and wide application of sCLEM approaches.
Collapse
Affiliation(s)
- Dokyung Jeong
- Department of Chemistry, Hanyang University, Seoul 04763, Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
32
|
Lane R, Wolters AHG, Giepmans BNG, Hoogenboom JP. Integrated Array Tomography for 3D Correlative Light and Electron Microscopy. Front Mol Biosci 2022; 8:822232. [PMID: 35127826 PMCID: PMC8809480 DOI: 10.3389/fmolb.2021.822232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Volume electron microscopy (EM) of biological systems has grown exponentially in recent years due to innovative large-scale imaging approaches. As a standalone imaging method, however, large-scale EM typically has two major limitations: slow rates of acquisition and the difficulty to provide targeted biological information. We developed a 3D image acquisition and reconstruction pipeline that overcomes both of these limitations by using a widefield fluorescence microscope integrated inside of a scanning electron microscope. The workflow consists of acquiring large field of view fluorescence microscopy (FM) images, which guide to regions of interest for successive EM (integrated correlative light and electron microscopy). High precision EM-FM overlay is achieved using cathodoluminescent markers. We conduct a proof-of-concept of our integrated workflow on immunolabelled serial sections of tissues. Acquisitions are limited to regions containing biological targets, expediting total acquisition times and reducing the burden of excess data by tens or hundreds of GBs.
Collapse
Affiliation(s)
- Ryan Lane
- Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - Anouk H. G. Wolters
- Department of Biomedical Sciences of Cells and Systems, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
33
|
Chemically stable fluorescent proteins for advanced microscopy. Nat Methods 2022; 19:1612-1621. [PMID: 36344833 PMCID: PMC9718679 DOI: 10.1038/s41592-022-01660-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
We report the rational engineering of a remarkably stable yellow fluorescent protein (YFP), 'hyperfolder YFP' (hfYFP), that withstands chaotropic conditions that denature most biological structures within seconds, including superfolder green fluorescent protein (GFP). hfYFP contains no cysteines, is chloride insensitive and tolerates aldehyde and osmium tetroxide fixation better than common fluorescent proteins, enabling its use in expansion and electron microscopies. We solved crystal structures of hfYFP (to 1.7-Å resolution), a monomeric variant, monomeric hyperfolder YFP (1.6 Å) and an mGreenLantern mutant (1.2 Å), and then rationally engineered highly stable 405-nm-excitable GFPs, large Stokes shift (LSS) monomeric GFP (LSSmGFP) and LSSA12 from these structures. Lastly, we directly exploited the chemical stability of hfYFP and LSSmGFP by devising a fluorescence-assisted protein purification strategy enabling all steps of denaturing affinity chromatography to be visualized using ultraviolet or blue light. hfYFP and LSSmGFP represent a new generation of robustly stable fluorescent proteins developed for advanced biotechnological applications.
Collapse
|
34
|
Furuta T, Yamauchi K, Okamoto S, Takahashi M, Kakuta S, Ishida Y, Takenaka A, Yoshida A, Uchiyama Y, Koike M, Isa K, Isa T, Hioki H. Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. iScience 2022; 25:103601. [PMID: 35106459 PMCID: PMC8786651 DOI: 10.1016/j.isci.2021.103601] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
The mammalian brain is organized over sizes that span several orders of magnitude, from synapses to the entire brain. Thus, a technique to visualize neural circuits across multiple spatial scales (multi-scale neuronal imaging) is vital for deciphering brain-wide connectivity. Here, we developed this technique by coupling successive light microscopy/electron microscopy (LM/EM) imaging with a glutaraldehyde-resistant tissue clearing method, ScaleSF. Our multi-scale neuronal imaging incorporates (1) brain-wide macroscopic observation, (2) mesoscopic circuit mapping, (3) microscopic subcellular imaging, and (4) EM imaging of nanoscopic structures, allowing seamless integration of structural information from the brain to synapses. We applied this technique to three neural circuits of two different species, mouse striatofugal, mouse callosal, and marmoset corticostriatal projection systems, and succeeded in simultaneous interrogation of their circuit structure and synaptic connectivity in a targeted way. Our multi-scale neuronal imaging will significantly advance the understanding of brain-wide connectivity by expanding the scales of objects. Successive light microscopy/electron microscopy in optically cleared tissues Multi-scale neuronal imaging from the entire brain to individual synapses Simultaneous interrogation of neural circuit structure and synaptic connectivity Zooming-in to scarce synaptic contacts with the successive imaging
Collapse
Affiliation(s)
- Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenta Yamauchi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Shinichiro Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Megumu Takahashi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yoko Ishida
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Aya Takenaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Corresponding author
| |
Collapse
|
35
|
Tian B, Xu X, Xue Y, Ji W, Xu T. Cryogenic superresolution correlative light and electron microscopy on the frontier of subcellular imaging. Biophys Rev 2021; 13:1163-1171. [DOI: 10.1007/s12551-021-00851-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022] Open
|
36
|
Li S. Cryo-electron tomography of enveloped viruses. Trends Biochem Sci 2021; 47:173-186. [PMID: 34511334 DOI: 10.1016/j.tibs.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Viruses are macromolecular machineries that hijack cellular metabolism for replication. Enveloped viruses comprise a large variety of RNA and DNA viruses, many of which are notorious human or animal pathogens. Despite their importance, the presence of lipid bilayers in their assembly has made most enveloped viruses too pleomorphic to be reconstructed as a whole by traditional structural biology methods. Furthermore, structural biology of the viral lifecycle was hindered by the sample thickness. Here, I review the recent advances in the applications of cryo-electron tomography (cryo-ET) on enveloped viral structures and intracellular viral activities.
Collapse
Affiliation(s)
- Sai Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Smylla TK, Wagner K, Huber A. Application of Fluorescent Proteins for Functional Dissection of the Drosophila Visual System. Int J Mol Sci 2021; 22:8930. [PMID: 34445636 PMCID: PMC8396179 DOI: 10.3390/ijms22168930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.
Collapse
Affiliation(s)
- Thomas K. Smylla
- Department of Biochemistry, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany; (K.W.); (A.H.)
| | | | | |
Collapse
|
38
|
Nienhaus K, Nienhaus GU. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chem Biol 2021; 2:796-814. [PMID: 34458811 PMCID: PMC8341165 DOI: 10.1039/d1cb00014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Optical fluorescence microscopy has taken center stage in the exploration of biological structure and dynamics, especially on live specimens, and super-resolution imaging methods continue to deliver exciting new insights into the molecular foundations of life. Progress in the field, however, crucially hinges on advances in fluorescent marker technology. Among these, fluorescent proteins (FPs) of the GFP family are advantageous because they are genetically encodable, so that live cells, tissues or organisms can produce these markers all by themselves. A subclass of them, photoactivatable FPs, allow for control of their fluorescence emission by light irradiation, enabling pulse-chase imaging and super-resolution microscopy. In this review, we discuss FP variants of the EosFP clade that have been optimized by amino acid sequence modification to serve as markers for various imaging techniques. In general, two different modes of photoactivation are found, reversible photoswitching between a fluorescent and a nonfluorescent state and irreversible green-to red photoconversion. First, we describe their basic structural and optical properties. We then summarize recent research aimed at elucidating the photochemical processes underlying photoactivation. Finally, we briefly introduce various advanced imaging methods facilitated by specific EosFP variants, and show some exciting sample applications.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Department of Physics, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
39
|
Single-Molecule Imaging in Living Plant Cells: A Methodological Review. Int J Mol Sci 2021; 22:ijms22105071. [PMID: 34064786 PMCID: PMC8151321 DOI: 10.3390/ijms22105071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/23/2022] Open
Abstract
Single-molecule imaging is emerging as a revolutionary approach to studying fundamental questions in plants. However, compared with its use in animals, the application of single-molecule imaging in plants is still underexplored. Here, we review the applications, advantages, and challenges of single-molecule fluorescence imaging in plant systems from the perspective of methodology. Firstly, we provide a general overview of single-molecule imaging methods and their principles. Next, we summarize the unprecedented quantitative details that can be obtained using single-molecule techniques compared to bulk assays. Finally, we discuss the main problems encountered at this stage and provide possible solutions.
Collapse
|
40
|
Zhang X, Man Y, Zhuang X, Shen J, Zhang Y, Cui Y, Yu M, Xing J, Wang G, Lian N, Hu Z, Ma L, Shen W, Yang S, Xu H, Bian J, Jing Y, Li X, Li R, Mao T, Jiao Y, Sodmergen, Ren H, Lin J. Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1392-1422. [PMID: 33974222 DOI: 10.1007/s11427-020-1910-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
In multicellular and even single-celled organisms, individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation. Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes. Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project. In plant science, network analysis has similarly been applied to study the connectivity of plant components at the molecular, subcellular, cellular, organic, and organism levels. Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype. In this review, we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities. We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants. Finally, we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457004, China
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zijian Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lingyu Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Weiwei Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shunyao Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiahui Bian
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, 100101, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
41
|
Tanida I, Furuta Y, Yamaguchi J, Kakuta S, Oliva Trejo JA, Uchiyama Y. Two-color in-resin CLEM of Epon-embedded cells using osmium resistant green and red fluorescent proteins. Sci Rep 2020; 10:21871. [PMID: 33318540 PMCID: PMC7736269 DOI: 10.1038/s41598-020-78879-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/01/2020] [Indexed: 11/09/2022] Open
Abstract
In-resin CLEM of Epon embedded samples can greatly simplify the correlation of fluorescent images with electron micrographs. The usefulness of this technique is limited at present by the low number of fluorescent proteins that resist CLEM processing. Additionally, no study has reported the possibility of two-color in-resin CLEM of Epon embedded cells. In this study, we screened for monomeric green and red fluorescent proteins that resist CLEM processing. We identified mWasabi, CoGFP variant 0, and mCherry2; two green and one red fluorescent proteins as alternatives for in-resin CLEM. We expressed mitochondria-localized mCherry2 and histone H2B tagged with CoGFP variant 0 in cells. Green and red fluorescence was detected in 100 nm-thin sections of the Epon-embedded cells. In the same thin sections, we correlated the fluorescent signals to mitochondria and the nucleus using a scanning electron microscope. Similar results were obtained when endoplasmic reticulum-localized mCherry2 and histone H2B tagged with CoGFP variant 0 were expressed in the cells. Two-color in-resin CLEM of two cytoplasmic organelles, mitochondria and endoplasmic reticulum, was also achieved using mitochondria-localized mCherry2 and endoplasmic reticulum-localized mWasabi. In summary, we report three new fluorescent protein-alternatives suitable for in-resin CLEM of Epon-embedded samples, and achieved Epon-based two-color in-resin CLEM.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Yoko Furuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
42
|
Keevend K, Coenen T, Herrmann IK. Correlative cathodoluminescence electron microscopy bioimaging: towards single protein labelling with ultrastructural context. NANOSCALE 2020; 12:15588-15603. [PMID: 32677648 DOI: 10.1039/d0nr02563a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The understanding of living systems and their building blocks relies heavily on the assessment of structure-function relationships at the nanoscale. Ever since the development of the first optical microscope, the reliance of scientists across disciplines on microscopy has increased. The development of the first electron microscope and with it the access to information at the nanoscale has prompted numerous disruptive discoveries. While fluorescence imaging allows identification of specific entities based on the labelling with fluorophores, the unlabelled constituents of the samples remain invisible. In electron microscopy on the other hand, structures can be comprehensively visualized based on their distinct electron density and geometry. Although electron microscopy is a powerful tool, it does not implicitly provide information on the location and activity of specific organic molecules. While correlative light and electron microscopy techniques have attempted to unify the two modalities, the resolution mismatch between the two data sets poses major challenges. Recent developments in optical super resolution microscopy enable high resolution correlative light and electron microscopy, however, with considerable constraints due to sample preparation requirements. Labelling of specific structures directly for electron microscopy using small gold nanoparticles (i.e. immunogold) has been used extensively. However, identification of specific entities solely based on electron contrast, and the differentiation from endogenous dense granules, remains challenging. Recently, the use of correlative cathodoluminescence electron microscopy (CCLEM) imaging based on luminescent inorganic nanocrystals has been proposed. While nanometric resolution can be reached for both the electron and the optical signal, high energy electron beams are potentially damaging to the sample. In this review, we discuss the opportunities of (volumetric) multi-color single protein labelling based on correlative cathodoluminescence electron microscopy, and its prospective impact on biomedical research in general. We elaborate on the potential challenges of correlative cathodoluminescence electron microscopy-based bioimaging and benchmark CCLEM against alternative high-resolution correlative imaging techniques.
Collapse
Affiliation(s)
- Kerda Keevend
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland.
| | | | | |
Collapse
|
43
|
Tanida I, Kakuta S, Oliva Trejo JA, Uchiyama Y. Visualization of cytoplasmic organelles via in-resin CLEM using an osmium-resistant far-red protein. Sci Rep 2020; 10:11314. [PMID: 32647231 PMCID: PMC7347593 DOI: 10.1038/s41598-020-68191-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Post-fixation with osmium tetroxide staining and the embedding of Epon are robust and essential treatments that are used to preserve and visualize intracellular membranous structures during electron microscopic analyses. These treatments, however, can significantly diminish the fluorescent intensity of most fluorescent proteins in cells, which creates an obstacle for the in-resin correlative light-electron microscopy (CLEM) of Epon-embedded cells. In this study, we used a far-red fluorescent protein that retains fluorescence after osmium staining and Epon embedding to perform an in-resin CLEM of Epon-embedded samples. The fluorescence of this protein was detected in 100 nm thin sections of the cells in Epon-embedded samples after fixation with 2.5% glutaraldehyde and post-fixation with 1% osmium tetroxide. We performed in-resin CLEM of the mitochondria in Epon-embedded cells using a mitochondria-localized fluorescent protein. Using this protein, we achieved in-resin CLEM of the Golgi apparatus and the endoplasmic reticulum in thin sections of the cells in Epon-embedded samples. To our knowledge, this is the first reported use of a far-red fluorescent protein retains its fluorescence after osmium staining and Epon-embedding, and it represents the first achievement of in-resin CLEM of both the Golgi apparatus and the endoplasmic reticulum in Epon-embedded samples.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
44
|
De Zitter E, Ridard J, Thédié D, Adam V, Lévy B, Byrdin M, Gotthard G, Van Meervelt L, Dedecker P, Demachy I, Bourgeois D. Mechanistic Investigations of Green mEos4b Reveal a Dynamic Long-Lived Dark State. J Am Chem Soc 2020; 142:10978-10988. [PMID: 32463688 DOI: 10.1021/jacs.0c01880] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) are key players in advanced microscopy schemes such as photoactivated localization microscopy (PALM). Whereas photoconversion and red-state blinking in PCFPs have been studied intensively, their green-state photophysical behavior has received less attention. Yet dark states in green PCFPs can become strongly populated in PALM schemes and exert an indirect but considerable influence on the quality of data recorded in the red channel. Furthermore, green-state photoswitching in PCFPs can be used directly for PALM and has been engineered to design highly efficient reversibly switchable fluorescent proteins (RSFPs) amenable to various nanoscopy schemes. Here, we demonstrate that green mEos4b efficiently switches to a long-lived dark state through cis-trans isomerization of its chromophore, as do most RSFPs. However, by combining kinetic crystallography, molecular dynamics simulations, and Raman spectroscopy, we find that the dark state in green mEos4b is much more dynamic than that seen in switched-off green IrisFP, a biphotochromic PCFP engineered from the common EosFP parent. Our data suggest that H-bonding patterns maintained by the chromophore in green PCFPs and RSFPs in both their on- and off-states collectively control photoswitching quantum yields. The reduced number of H-bonds maintained by the dynamic dark chromophore in green mEos4b thus largely accounts for the observed lower switching contrast as compared to that of IrisFP. We also compare the long-lived dark states reached from green and red mEos4b, on the basis of their X-ray structures and Raman signatures. Altogether, these data provide a unifying picture of the complex photophysics of PCFPs and RSFPs.
Collapse
Affiliation(s)
- Elke De Zitter
- Department of Chemistry, KU Leuven, Heverlee 3001, Belgium
| | - Jacqueline Ridard
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Daniel Thédié
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Virgile Adam
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Bernard Lévy
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Martin Byrdin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Guillaume Gotthard
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble 38000, France
| | | | - Peter Dedecker
- Department of Chemistry, KU Leuven, Heverlee 3001, Belgium
| | - Isabelle Demachy
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| |
Collapse
|
45
|
|