1
|
Zhou L, Shi H, Xiao M, Liu W, Wang L, Zhou S, Chen S, Wang Y, Liu C. Remimazolam attenuates lipopolysaccharide-induced neuroinflammation and cognitive dysfunction. Behav Brain Res 2025; 476:115268. [PMID: 39322063 DOI: 10.1016/j.bbr.2024.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Remimazolam, a novel benzodiazepine, is widely used as an anesthetic in endoscopic procedures; however, its effects on cognitive function remain unclear, limiting its broader application in general anaesthesia. Neuroinflammation is a well-established key factor in the etiology and progression of cognitive dysfunction, including conditions such as Alzheimer's disease, Parkinson's disease, postoperative delirium, and postoperative cognitive dysfunction. Preclinical studies have demonstrated that remimazolam exerts anti-inflammatory and neuroprotective effects, and clinical reports indicate a reduced incidence of postoperative delirium in patients treated with remimazolam. Nevertheless, whether remimazolam improves cognitive function through its anti-inflammatory properties remains uncertain. This study aimed to investigate the neuroprotective effects of remimazolam and its underlying mechanism in a lipopolysaccharide (LPS)-induced model of neuroinflammation, neuronal injury, and cognitive dysfunction METHODS: C57BL/6 J male mice were administered LPS intraperitoneally to establish a model of neuroinflammation-induced cognitive impairment. A subset of mice received remimazolam via intraperitoneal injection 30 minutes prior to LPS administration. Cognitive performance was evaluated using behavioural tests, including the Morris Water Maze (MWM), Novel Object Recognition (NOR) test, and Open Field Test (OFT). Hippocampal tissues were analyzed by haematoxylin-eosin (HE) staining to assess structural changes. Inflammatory markers, including Interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR. Immunofluorescence was used to detect translocator protein (TSPO) and markers of microglia activation (IBA-1, CD16/32, and CD206). RESULTS (1) Remimazolam reversed LPS-induced cognitive deficits, as evidenced by shorter spatial exploration latency and increased platform crossings in the MWM, and an elevated recognition index in the NOR test. (2) Remimazolam improved hippocampal morphology, reducing LPS-induced neuronal damage. (3) Remimazolam significantly decreased levels of hippocampal inflammatory cytokines, inhibited microglial activation, promoted M2-type microglia polarization, and increased TSPO expression. CONCLUSION Remimazolam demonstrated neuroprotective and anti-neuroinflammatory effects in a mouse model of LPS-induced cognitive impairment. These effects are likely mediated through the regulation of TSPO, which inhibits microglial activation and promotes the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype.
Collapse
Affiliation(s)
- Leguang Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China; University of South China Hengyang Medical School Clinical Anatomy & Reproductive Medicine Application Institute, China
| | - Hongzhao Shi
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Mengzhe Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Lijuan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Shangtao Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Shenghua Chen
- University of South China Hengyang Medical School Clinical Anatomy & Reproductive Medicine Application Institute, China
| | - Yan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China.
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
2
|
Wang X, Hu J, Xie S, Li W, Zhang H, Huang L, Qian Z, Zhao C, Zhang L. Hidden role of microglia during neurodegenerative disorders and neurocritical care: A mitochondrial perspective. Int Immunopharmacol 2024; 142:113024. [PMID: 39217875 DOI: 10.1016/j.intimp.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The incidence of aging-related neurodegenerative disorders and neurocritical care diseases is increasing worldwide. Microglia, the main inflammatory cells in the brain, could be potential viable therapeutic targets for treating neurological diseases. Interestingly, mitochondrial functions, including energy metabolism, mitophagy and transfer, fission and fusion, and mitochondrial DNA expression, also change in activated microglia. Notably, mitochondria play an active and important role in the pathophysiology of neurodegenerative disorders and neurocritical care diseases. This review briefly summarizes the current knowledge on mitochondrial dysfunction in microglia in neurodegenerative disorders and neurocritical care diseases and comprehensively discusses the prospects of the application of neurological injury prevention and treatment targets by mitochondria.
Collapse
Affiliation(s)
- Xinrun Wang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Wenchao Li
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Haisong Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Li Huang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
3
|
Cao M, Zou J, Shi M, Zhao D, Liu C, Liu Y, Li L, Jiang H. A promising therapeutic: Exosome-mediated mitochondrial transplantation. Int Immunopharmacol 2024; 142:113104. [PMID: 39270344 DOI: 10.1016/j.intimp.2024.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Mitochondrial dysfunction has been identified as a trigger for cellular autophagy dysfunction and programmed cell death. Emerging studies have revealed that, in pathological contexts, intercellular transfer of mitochondria takes place, facilitating the restoration of mitochondrial function, energy metabolism, and immune homeostasis. Extracellular vesicles, membranous structures released by cells, exhibit reduced immunogenicity and enhanced stability during the transfer of mitochondria. Thus, this review provides a concise overview of mitochondrial dysfunction related diseases and the mechanism of mitochondrial dysfunction in diseases progression, and the composition and functions of the extracellular vesicles, along with elucidating the principal mechanisms underlying intercellular mitochondrial transfer. In this article, we will focus on the advancements in both animal models and clinical trials concerning the therapeutic efficacy of extracellular vesicle-mediated mitochondrial transplantation across various systemic diseases in neurodegenerative diseases and cardiovascular diseases. Additionally, the review delves into the multifaceted roles of extracellular vesicle-transplanted mitochondria, encompassing anti-inflammatory actions, promotion of tissue repair, enhancement of cellular function, and modulation of metabolic and immune homeostasis within diverse pathological contexts, aiming to provide novel perspectives for extracellular vesicle transplantation of mitochondria in the treatment of various diseases.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chang Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshan Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
4
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
5
|
Chang CP, Wu CW, Chern Y. Metabolic dysregulation in Huntington's disease: Neuronal and glial perspectives. Neurobiol Dis 2024; 201:106672. [PMID: 39306013 DOI: 10.1016/j.nbd.2024.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutant huntingtin protein with an abnormal CAG/polyQ expansion in the N-terminus of HTT exon 1. HD is characterized by progressive neurodegeneration and metabolic abnormalities, particularly in the brain, which accounts for approximately 20 % of the body's resting metabolic rate. Dysregulation of energy homeostasis in HD includes impaired glucose transporters, abnormal functions of glycolytic enzymes, changes in tricarboxylic acid (TCA) cycle activity and enzyme expression in the basal ganglia and cortical regions of both HD mouse models and HD patients. However, current understanding of brain cell behavior during energy dysregulation and its impact on neuron-glia crosstalk in HD remains limited. This review provides a comprehensive summary of the current understanding of the differences in glucose metabolism between neurons and glial cells in HD and how these differences contribute to disease development compared with normal conditions. We also discuss the potential impact of metabolic shifts on neuron-glia communication in HD. A deeper understanding of these metabolic alterations may reveal potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Zhao M, Wang J, Zhu S, Wang M, Chen C, Wang L, Liu J. Mitochondrion-based organellar therapies for central nervous system diseases. Cell Commun Signal 2024; 22:487. [PMID: 39390521 PMCID: PMC11468137 DOI: 10.1186/s12964-024-01843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
As most traditional drugs used to treat central nervous system (CNS) diseases have a single therapeutic target, many of them cannot treat complex diseases or diseases whose mechanism is unknown and cannot effectively reverse the root changes underlying CNS diseases. This raises the question of whether multiple functional components are involved in the complex pathological processes of CNS diseases. Organelles are the core functional units of cells, and the replacement of damaged organelles with healthy organelles allows the multitargeted and integrated modulation of cellular functions. The development of therapies that target independent functional units in the cell, specifically, organelle-based therapies, is rapidly progressing. This article comprehensively discusses the pathogenesis of mitochondrial homeostasis disorders, which involve mitochondria, one of the most important organelles in CNS diseases, and the machanisms of mitochondrion-based therapies, as well as current preclinical and clinical studies on the efficacy of therapies targeting mitochondrial to treat CNS diseases, to provide evidence for use of organelle-based treatment strategies in the future.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Chong Chen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| |
Collapse
|
7
|
Su X, Li Q, Yang M, Zhang W, Liu X, Ba Y, Deng Q, Zhang Y, Han L, Huang H. Resveratrol protects against a high-fat diet-induced neuroinflammation by suppressing mitochondrial fission via targeting SIRT1/PGC-1α. Exp Neurol 2024; 380:114899. [PMID: 39059737 DOI: 10.1016/j.expneurol.2024.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Various health issues have emerged due to consuming high-fat diets (HFD), particularly the detrimental impact they have on mitochondrial dynamics and subsequet cognition functions. Specially, mitochondrial fission can serve as an upstream signal in the regulation of cortical inflammation and neural pyroptosis. Our study was designed to verify the existence of neuroinflammation in the pathogenesis of HFD-induced cognitive dysfunction and demonstrated that resveratrol (RSV) attenuated neural deficits via regulation of cortical mitochondrial fission. A total of 50 male Sprague Dawley rats were randomly divided into five groups: control (Cont, 26 weeks on normal rodent diet); high-fat diet (HFD); dietary adjustments (HFD + ND); resveratrol intervention (HFD + R); joint intervention (HFD + ND + R) for 26 weeks. The spatial learning and memory function, spine density, NLRP3 inflammasome associated protein, mRNA and protein expression involved in mitochondrial dynamics and SIRT1/PGC-1α signaling pathway in brain were measured. Furthermore, reactive oxygen species (ROS) accumulation and resultant mitochondrial membrane potential (MMP) alteration in PC12 cells exposed to palmitic acid (PA) or Drp1 inhibitor (Mdivi-1) were detected to reflect mitochondrial function. The findings suggested that prolonged treatment of RSV improved cognitive deficits and neuronal damage induced by HFD, potentially attributed to activation of the SIRT1/PGC-1α axis. We further indicated that the activation of the NLRP3 inflammasome in PA (200 μM) treated PC12 cells could be inhibited by Mdivi-1. More importantly, Mdivi-1 (10 μM) reduced intracellular ROS levels and enhanced MMP by reversing Drp1-mediated aberrant mitochondrial fission. To summarize, those results clearly indicated that a HFD inhibited the SIRT1/PGC-1α pathway, which contributed to an imbalance in mitochondrial dynamics and the onset of NLRP3-mediated pyroptosis. This effect was mitigated by the RSV possibly through triggering the SIRT1/PGC-1α axis, prevented aberrant mitochondrial fission and thus inhibited the activation of the NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Wenhui Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Xiaoxue Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yu Zhang
- State Key Laboratory of Microbial Technology, Qingdao, Shandong 266000, China; Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266000, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250100, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266000, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250100, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China.
| |
Collapse
|
8
|
Zhang H, Zhang Y, Zhang J, Jia D. Exercise Alleviates Cardiovascular Diseases by Improving Mitochondrial Homeostasis. J Am Heart Assoc 2024; 13:e036555. [PMID: 39291488 DOI: 10.1161/jaha.124.036555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Engaging in regular exercise and physical activity contributes to delaying the onset of cardiovascular diseases (CVDs). However, the physiological mechanisms underlying the benefits of regular exercise or physical activity in CVDs remain unclear. The disruption of mitochondrial homeostasis is implicated in the pathological process of CVDs. Exercise training effectively delays the onset and progression of CVDs by significantly ameliorating the disruption of mitochondrial homeostasis. This includes improving mitochondrial biogenesis, increasing mitochondrial fusion, decreasing mitochondrial fission, promoting mitophagy, and mitigating mitochondrial morphology and function. This review provides a comprehensive overview of the benefits of physical exercise in the context of CVDs, establishing a connection between the disruption of mitochondrial homeostasis and the onset of these conditions. Through a detailed examination of the underlying molecular mechanisms within mitochondria, the study illuminates how exercise can provide innovative perspectives for future therapies for CVDs.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Yuxuan Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Jiaqiao Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Dandan Jia
- School of Exercise and health Shanghai University of Sport Shanghai China
| |
Collapse
|
9
|
Gao ML, Wang TY, Lin X, Tang C, Li M, Bai ZP, Liu ZC, Chen LJ, Kong QR, Pan SH, Zeng SS, Guo Y, Cai JQ, Huang XF, Zhang J. Retinal Organoid Microenvironment Enhanced Bioactivities of Microglia-Like Cells Derived From HiPSCs. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 39392440 PMCID: PMC11472886 DOI: 10.1167/iovs.65.12.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose Microglia-like cells derived from stem cells (iMG) provide a plentiful cell source for studying the functions of microglia in both normal and pathological conditions. Our goal is to establish a simplified and effective method for generating iMG in a precisely defined system. Additionally, we aim to achieve functional maturation of iMG through coculture with retinal organoids. Methods In this study, iMG were produced under precisely defined conditions. They were subjected to LPS and poly IC stimulation. Additionally, we examined distinct phenotypic and functional variances between iMG and HMC3, a commonly used human microglia cell line. To investigate how the retinal cell interaction enhances microglial properties, iMG were cocultured with retinal organoids, producing CC-iMG. We performed RNA sequencing, electrophysiological analysis, and transmission electron microscope (TEM) to examine the maturation of CC-iMG compared to iMG. Results Our results demonstrated that iMG performed immune-responsive profiles closely resembling those of primary human microglia. Compared to HMC3, iMG expressed a higher level of typical microglial markers and exhibited enhanced phagocytic activity. The transcriptomic analysis uncovered notable alterations in the ion channel profile of CC-iMG compared to iMG. Electrophysiological examination demonstrated a heightened intensity of inward- and outward-rectifying K+ currents in CC-iMG. Furthermore, CC-iMG displayed elevated numbers of lysosomes and mitochondria, coupled with increased phagocytic activity. Conclusions These findings contribute to advancing our understanding of human microglial biology, specifically in characterizing and elucidating the functions of CC-iMG, thereby offering an in vitro microglial model for future scientific research and potential clinical applications in cell therapy.
Collapse
Affiliation(s)
- Mei-Ling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Tong-Yu Wang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xin Lin
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Chun Tang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Mengyao Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Zhan-Pei Bai
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Cong Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Li-Jun Chen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing-Ran Kong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shao-Hui Pan
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
| | - Shan-Shan Zeng
- China National Institute of Standardization, Beijing, China
| | - Ya Guo
- China National Institute of Standardization, Beijing, China
| | - Jian-Qi Cai
- China National Institute of Standardization, Beijing, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Zhang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Tian Y, Jing G, Ma M, Yin R, Zhang M. Microglial activation and polarization in type 2 diabetes-related cognitive impairment: A focused review of pathogenesis. Neurosci Biobehav Rev 2024; 165:105848. [PMID: 39142542 DOI: 10.1016/j.neubiorev.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Microglia, as immune cells in the central nervous system, are closely related to cognitive impairment associated with type 2 diabetes (T2D). Preliminary explorations have investigated the relationship between T2D-related cognitive impairment and the activation and polarization of microglia. This review summarizes the potential mechanisms of microglial activation and polarization in the context of T2D. It discusses central inflammatory responses, neuronal apoptosis, amyloid-β deposition, and abnormal phosphorylation of Tau protein mediated by microglial activation and polarization, exploring the connections between microglial activation and polarization and T2D-related cognitive impairment from multiple perspectives. Additionally, this review provides references for future treatment targeting microglia in T2D-related cognitive impairment and for clinical translation.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Ma
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruiying Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
11
|
Tang Z, Chen Z, Guo M, Peng Y, Xiao Y, Guan Z, Ni R, Qi X. NRF2 Deficiency Promotes Ferroptosis of Astrocytes Mediated by Oxidative Stress in Alzheimer's Disease. Mol Neurobiol 2024; 61:7517-7533. [PMID: 38401046 DOI: 10.1007/s12035-024-04023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Oxidative stress is involved in the pathogenesis of Alzheimer's disease (AD), which is linked to reactive oxygen species (ROS), lipid peroxidation, and neurotoxicity. Emerging evidence suggests a role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a major source of antioxidant response elements in AD. The molecular mechanism of oxidative stress and ferroptosis in astrocytes in AD is not yet fully understood. Here, we aimed to investigate the mechanism by which Nrf2 regulates the ferroptosis of astrocytes in AD. We found decreased expression of Nrf2 and upregulated expression of the ROS marker NADPH oxidase 4 (NOX4) in the frontal cortex from patients with AD and in the cortex of 3×Tg mice compared to wildtype mice. We demonstrated that Nrf2 deficiency led to ferroptosis-dependent oxidative stress-induced ROS with downregulated heme oxygenase-1 and glutathione peroxidase 4 and upregulated cystine glutamate expression. Moreover, Nrf2 deficiency increased lipid peroxidation, DNA oxidation, and mitochondrial fragmentation in mouse astrocytes (mAS, M1800-57). In conclusion, these results suggest that Nrf2 deficiency promotes ferroptosis of astrocytes involving oxidative stress in AD.
Collapse
Affiliation(s)
- Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Zhuyi Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Min Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou, 550004, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
12
|
Ge TQ, Guan PP, Wang P. Complement 3a induces the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms during the development and progression of Alzheimer's disease. Neurosci Biobehav Rev 2024; 165:105868. [PMID: 39218048 DOI: 10.1016/j.neubiorev.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
As a central molecule in complement system (CS), complement (C) 3 is upregulated in the patients and animal models of Alzheimer's disease (AD). C3 will metabolize to iC3b and C3a. iC3b is responsible for clearing β-amyloid protein (Aβ). In this scenario, C3 exerts neuroprotective effects against the disease via iC3b. However, C3a will inhibit microglia to clear the Aβ, leading to the deposition of Aβ and impair the functions of synapses. To their effects on AD, activation of C3a and C3a receptor (C3aR) will impair the mitochondria, leading to the release of reactive oxygen species (ROS), which activates the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasomes. The overloading of NLRP3 inflammasomes activate microglia, leading to the formation of inflammatory environment. The inflammatory environment will facilitate the deposition of Aβ and abnormal synapse pruning, which results in the progression of AD. Therefore, the current review will decipher the mechanisms of C3a inducing the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms, which facilitates the understanding the AD.
Collapse
Affiliation(s)
- Tong-Qi Ge
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China; College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China.
| |
Collapse
|
13
|
Meng F, Song J, Huang X, Zhang M, Sun X, Jing Q, Cao S, Xie Z, Liu Q, Zhang H, Li C. Inhibiting endoplasmic reticulum stress alleviates perioperative neurocognitive disorders by reducing neuroinflammation mediated by NLRP3 inflammasome activation. CNS Neurosci Ther 2024; 30:e70049. [PMID: 39432407 PMCID: PMC11493103 DOI: 10.1111/cns.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
AIM The aim of this study is to explore the key mechanisms of perioperative neurocognitive dysfunction (PND) after anesthesia/surgery (A/S) by screening hub genes. METHODS Transcriptome sequencing was conducted on hippocampal samples obtained from 18-month-old C57BL/6 mice assigned to control (Ctrl) and A/S groups. The functionality of differentially expressed genes (DEGs) was investigated using Metascape. Hub genes associated with changes between the two groups were screened by combining weighted gene coexpression network analysis within CytoHubba. Reverse transcription PCR and western blotting were used to validate changes in mRNA and protein expression, respectively. NLRP3 inflammasome activation was detected by western blotting and ELISA. Tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum (ER) stress, was administrated preoperatively to explore its effects on the occurrence of PND. Immunofluorescence analysis was performed to evaluate the activation of astrocytes and microglia in the hippocampus, and hippocampus-dependent learning and memory were assessed using behavioral experiments. RESULTS In total, 521 DEGs were detected between the control and A/S groups. These DEGs were significantly enriched in biological processes related to metabolic processes and their regulation. Four hub genes (Hspa5, Igf1r, Sfpq, and Xbp1) were identified. Animal experiments have shown that mice in the A/S group exhibited cognitive impairments accompanied by increased Hspa5 and Xbp1 expression, ER stress, and activation of NLRP3 inflammasome. CONCLUSIONS Inhibiting ER stress alleviated cognitive impairment in A/S mice; particularly, ER stress induced by A/S results in NLRP3 inflammasome activation and neuroinflammation. Moreover, the preoperative administration of TUDCA inhibited ER stress, NLRP3 inflammasome activation, and neuroinflammation.
Collapse
Affiliation(s)
- Fanbing Meng
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Jian Song
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Xinwei Huang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Meixian Zhang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Xiaoxiao Sun
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qi Jing
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Silu Cao
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Zheng Xie
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qiong Liu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Cheng Li
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
14
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
15
|
Sridharan PS, Koh Y, Miller E, Hu D, Chakraborty S, Tripathi SJ, Kee TR, Chaubey K, Vázquez-Rosa E, Barker S, Liu H, León-Alvarado RA, Franke K, Cintrón-Pérez CJ, Dhar M, Shin MK, Flanagan ME, Castellani RJ, Gefen T, Bykova M, Dou L, Cheng F, Wilson BM, Fujioka H, Kang DE, Woo JAA, Paul BD, Qi X, Pieper AA. Acutely blocking excessive mitochondrial fission prevents chronic neurodegeneration after traumatic brain injury. Cell Rep Med 2024; 5:101715. [PMID: 39241772 PMCID: PMC11525032 DOI: 10.1016/j.xcrm.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Progression of acute traumatic brain injury (TBI) into chronic neurodegeneration is a major health problem with no protective treatments. Here, we report that acutely elevated mitochondrial fission after TBI in mice triggers chronic neurodegeneration persisting 17 months later, equivalent to many human decades. We show that increased mitochondrial fission after mouse TBI is related to increased brain levels of mitochondrial fission 1 protein (Fis1) and that brain Fis1 is also elevated in human TBI. Pharmacologically preventing Fis1 from binding its mitochondrial partner, dynamin-related protein 1 (Drp1), for 2 weeks after TBI normalizes the balance of mitochondrial fission/fusion and prevents chronically impaired mitochondrial bioenergetics, oxidative damage, microglial activation and lipid droplet formation, blood-brain barrier deterioration, neurodegeneration, and cognitive impairment. Delaying treatment until 8 months after TBI offers no protection. Thus, time-sensitive inhibition of acutely elevated mitochondrial fission may represent a strategy to protect human TBI patients from chronic neurodegeneration.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yeojung Koh
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emiko Miller
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Teresa R Kee
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Kalyani Chaubey
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sarah Barker
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hui Liu
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rose A León-Alvarado
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Earlham College Neuroscience Program, Richmond, IN, USA
| | - Kathryn Franke
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Coral J Cintrón-Pérez
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matasha Dhar
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Min-Kyoo Shin
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08226, Republic of Korea
| | - Margaret E Flanagan
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Glenn Bigg's Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marina Bykova
- Department of Regulatory Biology, Cleveland State University, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lijun Dou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brigid M Wilson
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David E Kang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA; Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Jung-A A Woo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
16
|
Liao Z, Tong B, Ke W, Yang C, Wu X, Lei M. Extracellular vesicles as carriers for mitochondria: Biological functions and clinical applications. Mitochondrion 2024; 78:101935. [PMID: 39002687 DOI: 10.1016/j.mito.2024.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
In recent years, research has increasingly focused on the biogenesis of extracellular vesicles (EVs) and the sorting mechanisms for their contents. Mitochondria can be selectively loaded into EVs, serving as a way to maintain cellular mitochondrial homeostasis. EV-mediated mitochondrial transfer has also been shown to greatly impact the function of target cells. Based on the mechanism of EV-mediated mitochondrial transfer, therapies can be developed to treat human diseases. This review summarizes the recent advances in the biogenesis and molecular composition of EVs. It also highlights the sorting and trafficking mechanisms of mitochondrial components into EVs. Furthermore, it explores the current role of EV-mediated mitochondrial transfer in the development of human diseases, as well as its diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ming Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Pan Z, Yu X, Wang W, Shen K, Chen J, Zhang Y, Huang R. Sestrin2 remedies neuroinflammatory response by inhibiting A1 astrocyte conversion via autophagy. J Neurochem 2024; 168:2640-2653. [PMID: 38761015 DOI: 10.1111/jnc.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.
Collapse
Affiliation(s)
- Zhenguo Pan
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurology, People's Hospital of Xiangshui County, Yancheng, China
| | - Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Weiwei Wang
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Kai Shen
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jianwei Chen
- Interventional Medicine Center, Xi'an People's Hospital, Xi'an, China
| | - Yunfeng Zhang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Rongrong Huang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
18
|
Javadpour P, Abbaszadeh F, Ahmadiani A, Rezaei M, Ghasemi R. Mitochondrial Transportation, Transplantation, and Subsequent Immune Response in Alzheimer's Disease: An Update. Mol Neurobiol 2024; 61:7151-7167. [PMID: 38368286 DOI: 10.1007/s12035-024-04009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by memory impairment and a progressive decline in cognitive function. Mitochondrial dysfunction has been identified as an important contributor to the development of AD, leading to oxidative stress and energy deficits within the brain. While current treatments for AD aim to alleviate symptoms, there is an urgent need to target the underlying mechanisms. The emerging field of mitotherapy, which involves the transplantation of healthy mitochondria into damaged cells, has gained substantial attention and has shown promising results. However, research in the context of AD remains limited, necessitating further investigations. In this review, we summarize the mitochondrial pathways that contribute to the progression of AD. Additionally, we discuss mitochondrial transfer among brain cells and mitotherapy, with a focus on different administration routes, various sources of mitochondria, and potential modifications to enhance transplantation efficacy. Finally, we review the limited available evidence regarding the immune system's response to mitochondrial transplantation in damaged brain regions.
Collapse
Affiliation(s)
- Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Liu Y, Jia N, Tang C, Long H, Wang J. Microglia in Microbiota-Gut-Brain Axis: A Hub in Epilepsy. Mol Neurobiol 2024; 61:7109-7126. [PMID: 38366306 DOI: 10.1007/s12035-024-04022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
There is growing concern about the role of the microbiota-gut-brain axis in neurological illnesses, and it makes sense to consider microglia as a critical component of this axis in the context of epilepsy. Microglia, which reside in the central nervous system, are dynamic guardians that monitor brain homeostasis. Microglia receive information from the gut microbiota and function as hubs that may be involved in triggering epileptic seizures. Vagus nerve bridges the communication in the axis. Essential axis signaling molecules, such as gamma-aminobutyric acid, 5-hydroxytryptamin, and short-chain fatty acids, are currently under investigation for their participation in drug-resistant epilepsy (DRE). In this review, we explain how vagus nerve connects the gut microbiota to microglia in the brain and discuss the emerging concepts derived from this interaction. Understanding microbiota-gut-brain axis in epilepsy brings hope for DRE therapies. Future treatments can focus on the modulatory effect of the axis and target microglia in solving DRE.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Ningkang Jia
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- The Second Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Chuqi Tang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Greenberg EF, Voorbach MJ, Smith A, Reuter DR, Zhuang Y, Wang JQ, Wooten DW, Asque E, Hu M, Hoft C, Duggan R, Townsend M, Orsi K, Dalecki K, Amberg W, Duggan L, Knight H, Spina JS, He Y, Marsh K, Zhao V, Ybarra S, Mollon J, Fang Y, Vasanthakumar A, Westmoreland S, Droescher M, Finnema SJ, Florian H. Navitoclax safety, tolerability, and effect on biomarkers of senescence and neurodegeneration in aged nonhuman primates. Heliyon 2024; 10:e36483. [PMID: 39253182 PMCID: PMC11382177 DOI: 10.1016/j.heliyon.2024.e36483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most common global dementia and is universally fatal. Most late-stage AD disease-modifying therapies are intravenous and target amyloid beta (Aβ), with only modest effects on disease progression: there remains a high unmet need for convenient, safe, and effective therapeutics. Senescent cells (SC) and the senescence-associated secretory phenotype (SASP) drive AD pathology and increase with AD severity. Preclinical senolytic studies have shown improvements in neuroinflammation, tau, Aβ, and CNS damage; most were conducted in transgenic rodent models with uncertain human translational relevance. In this study, aged cynomolgus monkeys had significant elevation of biomarkers of senescence, SASP, and neurological damage. Intermittent treatment with the senolytic navitoclax induced modest reversible thrombocytopenia; no serious drug-related toxicity was noted. Navitoclax reduced several senescence and SASP biomarkers, with CSF concentrations sufficient for senolysis. Finally, navitoclax reduced TSPO-PET frontal cortex binding and showed trends of improvement in CSF biomarkers of neuroinflammation, neuronal damage, and synaptic dysfunction. Overall, navitoclax administration was safe and well tolerated in aged monkeys, inducing trends of biomarker changes relevant to human neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- AbbVie Inc., North Chicago, IL, United States
| | - Carolin Hoft
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Ryan Duggan
- AbbVie Inc., North Chicago, IL, United States
| | - Matthew Townsend
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, United States
| | - Karin Orsi
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | | | - Willi Amberg
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Lori Duggan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Heather Knight
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Joseph S Spina
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Yupeng He
- AbbVie Inc., North Chicago, IL, United States
| | | | - Vivian Zhao
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Suzanne Ybarra
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Jennifer Mollon
- AbbVie Deutschland GmbH & Co. KG, Statistical Sciences and Analytics, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Yuni Fang
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | | | - Susan Westmoreland
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Mathias Droescher
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | | | | |
Collapse
|
21
|
Kaur S, K M, Sharma A, Giridharan VV, Dandekar MP. Brain resident microglia in Alzheimer's disease: foe or friends. Inflammopharmacology 2024:10.1007/s10787-024-01550-8. [PMID: 39167311 DOI: 10.1007/s10787-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
The neurobiology of Alzheimer's disease (AD) is unclear due to its multifactorial nature. Although a wide range of studies revealed several pathomechanisms of AD, dementia is yet unmanageable with current pharmacotherapies. The recent growing literature illustrates the role of microglia-mediated neuroinflammation in the pathogenesis of AD. Indeed, microglia serve as predominant sentinels of the brain, which diligently monitor the neuroimmune axis by phagocytosis and releasing soluble factors. In the case of AD, microglial cells are involved in synaptic pruning and remodeling by producing inflammatory mediators. The conditional inter-transformation of classical activation (proinflammatory) or alternative activation (anti-inflammatory) microglia is responsible for most brain disorders. In this review, we discussed the role of microglia in neuroinflammatory processes in AD following the accumulation of amyloid-β and tau proteins. We also described the prominent phenotypes of microglia, such as disease-associated microglia (DAM), dark microglia, interferon-responsive microglia (IRMs), human AD microglia (HAMs), and microglial neurodegenerative phenotype (MGnD), which are closely associated with AD incidence. Considering the key role of microglia in AD progression, microglial-based therapeutics may hold promise in mitigating cognitive deficits by addressing the neuroinflammatory responses.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India
| | - Malleshwari K
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India
| | - Anamika Sharma
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioural Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
22
|
Calì C, Cantando I, Veloz Castillo MF, Gonzalez L, Bezzi P. Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:8922. [PMID: 39201607 PMCID: PMC11354244 DOI: 10.3390/ijms25168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood-brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer's and Huntington's disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
| | - Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Maria Fernanda Veloz Castillo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
23
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
24
|
Kim Y, D'Acunzo P, Levy E. Biogenesis and secretion of mitovesicles, small extracellular vesicles of mitochondrial origin at the crossroads between brain health and disease. CURRENT OPINION IN PHYSIOLOGY 2024; 40:100765. [PMID: 39219665 PMCID: PMC11364255 DOI: 10.1016/j.cophys.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In the brain, mitochondrial components are released into the extracellular space via several mechanisms, including a recently identified type of extracellular vesicles called mitovesicles. While vesiculation of neuronal mitochondria yields various intracellular types of vesicles, with either a single or a double membrane, mitovesicles secreted into the extracellular space are a unique subtype of these mitochondria-derived vesicles, with a double membrane and a specific set of mitochondrial DNA, RNA, proteins, and lipids. Based on the most relevant literature describing mitochondrial vesiculation and mitochondrial exocytosis, we propose a model for their secretion when the amphisome, a hybrid endosome-autophagosome organelle, fuses with the plasma membrane, releasing mitovesicles and exosomes into the extracellular space. In aging and neurodegenerative disorders, mitochondrial dysfunction, in association with endolysosomal abnormalities, alter mitovesicle number and content, with downstream effect on brain health.
Collapse
Affiliation(s)
- Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
25
|
Wang C, Gu L, Zhang Y, Gao Y, Jian Z, Xiong X. Bibliometric insights into the inflammation and mitochondrial stress in ischemic stroke. Exp Neurol 2024; 378:114845. [PMID: 38838802 DOI: 10.1016/j.expneurol.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking. OBJECTIVE To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke. METHODS We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved. CONCLUSION Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Vijayan V, Yan H, Lohmeyer JK, Prentiss KA, Patil RV, Barbarito G, Lopez I, Elezaby A, Peterson K, Baker J, Ostberg NP, Bertaina A, Negrin RS, Mochly-Rosen D, Weinberg K, Haileselassie B. Extracellular release of damaged mitochondria induced by prehematopoietic stem cell transplant conditioning exacerbates GVHD. Blood Adv 2024; 8:3691-3704. [PMID: 38701354 DOI: 10.1182/bloodadvances.2023012328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Despite therapeutic advancements, graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HSCT). In current models of GVHD, tissue injury induced by cytotoxic conditioning regimens, along with translocation of microbes expressing pathogen-associated molecular patterns, result in activation of host antigen-presenting cells (APCs) to stimulate alloreactive donor T lymphocytes. Recent studies have demonstrated that in many pathologic states, tissue injury results in the release of mitochondria from the cytoplasm to the extracellular space. We hypothesized that extracellular mitochondria, which are related to archaebacteria, could also trigger GVHD by stimulation of host APCs. We found that clinically relevant doses of radiation or busulfan induced extracellular release of mitochondria by various cell types, including cultured intestinal epithelial cells. Conditioning-mediated mitochondrial release was associated with mitochondrial damage and impaired quality control but did not affect the viability of the cells. Extracellular mitochondria directly stimulated host APCs to express higher levels of major histocompatibility complex II (MHC-II), costimulatory CD86, and proinflammatory cytokines, resulting in increased donor T-cell activation, and proliferation in mixed lymphocyte reactions. Analyses of plasma from both experimental mice and a cohort of children undergoing HSCT demonstrated that conditioning induced extracellular mitochondrial release in vivo. In mice undergoing MHC-mismatched HSCT, administration of purified syngeneic extracellular mitochondria increased host APC activation and exacerbated GVHD. Our data suggest that pre-HSCT conditioning results in extracellular release of damaged mitochondria, which increase alloreactivity and exacerbate GVHD. Therefore, decreasing the extracellular release of damaged mitochondria after conditioning could serve as a novel strategy for GVHD prevention.
Collapse
Affiliation(s)
- Vijith Vijayan
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Hao Yan
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Kaylin A Prentiss
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Rachna V Patil
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Giulia Barbarito
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Ivan Lopez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Aly Elezaby
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Kolten Peterson
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Nicolai P Ostberg
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Bereketeab Haileselassie
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
27
|
Falzoni S, Vultaggio-Poma V, Chiozzi P, Tarantini M, Adinolfi E, Boldrini P, Giuliani AL, Morciano G, Tang Y, Gorecki DC, Di Virgilio F. The P2X7 Receptor is a Master Regulator of Microparticle and Mitochondria Exchange in Mouse Microglia. FUNCTION 2024; 5:zqae019. [PMID: 38984997 PMCID: PMC11237899 DOI: 10.1093/function/zqae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 07/11/2024] Open
Abstract
Microparticles (MPs) are secreted by all cells, where they play a key role in intercellular communication, differentiation, inflammation, and cell energy transfer. P2X7 receptor (P2X7R) activation by extracellular ATP (eATP) causes a large MP release and affects their contents in a cell-specific fashion. We investigated MP release and functional impact in microglial cells from P2X7R-WT or P2X7R-KO mice, as well as mouse microglial cell lines characterized for high (N13-P2X7RHigh) or low (N13-P2X7RLow) P2X7R expression. P2X7R stimulation promoted release of a mixed MP population enriched with naked mitochondria. Released mitochondria were taken up and incorporated into the mitochondrial network of the recipient cells in a P2X7R-dependent fashion. NLRP3 and the P2X7R itself were also delivered to the recipient cells. Microparticle transfer increased the energy level of the recipient cells and conferred a pro-inflammatory phenotype. These data show that the P2X7R is a master regulator of intercellular organelle and MP trafficking in immune cells.
Collapse
Affiliation(s)
- Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | | | - Paola Chiozzi
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Paola Boldrini
- Center for Electron Microscopy, University of Ferrara, 44100 Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling & Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Dariusz C Gorecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, P01 2DT Portsmouth, UK
| | | |
Collapse
|
28
|
Zhu R, Liu L, Mao T, Wang X, Li Y, Li T, Lv S, Zeng S, Fu N, Li N, Wang Y, Sun M, Zhang J. Mfn2 regulates mitochondria and mitochondria-associated endoplasmic reticulum membrane function in neurodegeneration induced by repeated sevoflurane exposure. Exp Neurol 2024; 377:114807. [PMID: 38704082 DOI: 10.1016/j.expneurol.2024.114807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Repeated sevoflurane exposure in neonatal mice can leads to neuronal apoptosis and mitochondrial dysfunction. The mitochondria are responsible for energy production to maintain homeostasis in the central nervous system. The mitochondria-associated endoplasmic reticulum membrane (MAM) is located between the mitochondria and endoplasmic reticulum (ER), and it is critical for mitochondrial function and cell survival. MAM malfunction contributes to neurodegeneration, however, whether it is involved in sevoflurane-induced neurotoxicity remains unknown. Our study demonstrated that repeated sevoflurane exposure induced mitochondrial dysfunction and dampened the MAM structure. The upregulated ER-mitochondria tethering enhanced Ca2+ transition from the cytosol to the mitochondria. Overload of mitochondrial Ca2+ contributed to opening of the mitochondrial permeability transition pore (mPTP), which caused neuronal apoptosis. Mitofusin 2(Mfn2), a key regulator of ER-mitochondria contacts, was found to be suppressed after repeated sevoflurane exposure, while restoration of Mfn2 expression alleviated cognitive dysfunction due to repeated sevoflurane exposure in the adult mice. These evidences suggest that sevoflurane-induced MAM malfunction is vulnerable to Mfn2 suppression, and the enhanced ER-mitochondria contacts promotes mitochondrial Ca2+ overload, contributing to mPTP opening and neuronal apoptosis. This paper sheds light on a novel mechanism of sevoflurane-induced neurotoxicity. Furthermore, targeting Mfn2-mediated regulation of the MAM structure and mitochondrial function may provide a therapeutic advantage in sevoflurane-induced neurodegeneration.
Collapse
Affiliation(s)
- Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Lu Liu
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, PR China 450001
| | - Tian Mao
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; School of Clinical Medicine, Henan University, Kaifeng, Henan, PR China, 475004
| | - Xiaoling Wang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, PR China 450001
| | - Yubao Li
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Department of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China, 453003
| | - Ting Li
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Department of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China, 453003
| | - Shuang Lv
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Ningning Li
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003.
| |
Collapse
|
29
|
Guo R, Chen Y, Zhang J, Zhou Z, Feng B, Du X, Liu X, Ma J, Cui H. Neural Differentiation and spinal cord organoid generation from induced pluripotent stem cells (iPSCs) for ALS modelling and inflammatory screening. Mol Neurobiol 2024; 61:4732-4749. [PMID: 38127186 DOI: 10.1007/s12035-023-03836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
C9orf72 genetic mutation is the most common genetic cause of ALS/FTD accompanied by abnormal protein insufficiency. Induced pluripotent stem cell (iPSC)-derived two-dimensional (2D) and three-dimensional (3D) cultures are providing new approaches. Therefore, this study established neuronal cell types and generated spinal cord organoids (SCOs) derived from C9orf72 knockdown human iPSCs to model ALS disease and screen the unrevealed phenotype. Wild-type (WT) iPSC lines from three healthy donor fibroblasts were established, and pluripotency and differentiation ability were identified by RT-PCR, immunofluorescence and flow cytometry. After infection by the lentivirus with C9orf72-targeting shRNA, stable C9-knockdown iPSC colonies were selected and differentiated into astrocytes, motor neurons and SCOs. Finally, we analyzed the extracted RNA-seq data of human C9 mutant/knockout iPSC-derived motor neurons and astrocytes from the GEO database and the inflammatory regulation-related genes in function and pathways. The expression of inflammatory factors was measured by qRT-PCR. The results showed that both WT-iPSCs and edited C9-iPSCs maintained a similar ability to differentiate into the three germ layers, astrocytes and motor neurons, forming SCOs in a 3D culture system. The constructed C9-SCOs have features of spinal cord development and multiple neuronal cell types, including sensory neurons, motor neurons, and other neurons. Based on the bioinformatics analysis, proinflammatory factors were confirmed to be upregulated in C9-iPSC-derived 2D cells and 3D cultured SCOs. The above differentiated models exhibited low C9orf72 expression and the pathological characteristics of ALS, especially neuroinflammation.
Collapse
Affiliation(s)
- Ruiyun Guo
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Yimeng Chen
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Huixian Cui
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
30
|
Lv S, Zhang G, Lu Y, Zhong X, Huang Y, Ma Y, Yan W, Teng J, Wei S. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155669. [PMID: 38696923 DOI: 10.1016/j.phymed.2024.155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Depression is a mental illness characterized by persistent sadness and a reduced capacity for pleasure. In clinical practice, SSRIs and other medications are commonly used for therapy, despite their various side effects. Natural products present distinct advantages, including synergistic interactions among multiple components and targeting multiple pathways, suggesting their tremendous potential in depression treatment. Imbalance in mitochondrial quality control (MQC) plays a significant role in the pathology of depression, emphasizing the importance of regulating MQC as a potential intervention strategy in addressing the onset and progression of depression. However, the role and mechanism through which natural products regulate MQC in depression treatments still need to be comprehensively elucidated, particularly in clinical and preclinical settings. PURPOSE This review was aimed to summarize the findings of recent studies and outline the pharmacological mechanisms by which natural products modulate MQC to exert antidepressant effects. Additionally, it evaluated current research limitations and proposed new strategies for future preclinical and clinical applications in the depression domain. METHODS To study the main pharmacological mechanisms underlying the regulation of MQC by natural products in the treatment of depression, we conducted a thorough search across databases such as PubMed, Web of Science, and ScienceDirect databases to classify and summarize the relationship between MQC and depression, as well as the regulatory mechanisms of natural products. RESULTS Numerous studies have shown that irregularities in the MQC system play an important role in the pathology of depression, and the regulation of the MQC system is involved in antidepressant treatments. Natural products mainly regulate the MQC system to induce antidepressant effects by alleviating oxidative stress, balancing ATP levels, promoting mitophagy, maintaining calcium homeostasis, optimizing mitochondrial dynamics, regulating mitochondrial membrane potential, and enhancing mitochondrial biogenesis. CONCLUSIONS We comprehensively summarized the regulation of natural products on the MQC system in antidepressants, providing a unique perspective for the application of natural products within antidepressant therapy. However, extensive efforts are imperative in clinical and preclinical investigations to delve deeper into the mechanisms underlying how antidepressant medications impact MQC, which is crucial for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355,China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
31
|
Chausse B, Malorny N, Lewen A, Poschet G, Berndt N, Kann O. Metabolic flexibility ensures proper neuronal network function in moderate neuroinflammation. Sci Rep 2024; 14:14405. [PMID: 38909138 PMCID: PMC11193723 DOI: 10.1038/s41598-024-64872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Microglia, brain-resident macrophages, can acquire distinct functional phenotypes, which are supported by differential reprogramming of cell metabolism. These adaptations include remodeling in glycolytic and mitochondrial metabolic fluxes, potentially altering energy substrate availability at the tissue level. This phenomenon may be highly relevant in the brain, where metabolism must be precisely regulated to maintain appropriate neuronal excitability and synaptic transmission. Direct evidence that microglia can impact on neuronal energy metabolism has been widely lacking, however. Combining molecular profiling, electrophysiology, oxygen microsensor recordings and mathematical modeling, we investigated microglia-mediated disturbances in brain energetics during neuroinflammation. Our results suggest that proinflammatory microglia showing enhanced nitric oxide release and decreased CX3CR1 expression transiently increase the tissue lactate/glucose ratio that depends on transcriptional reprogramming in microglia, not in neurons. In this condition, neuronal network activity such as gamma oscillations (30-70 Hz) can be fueled by increased ATP production in mitochondria, which is reflected by elevated oxygen consumption. During dysregulated inflammation, high energy demand and low glucose availability can be boundary conditions for neuronal metabolic fitness as revealed by kinetic modeling of single neuron energetics. Collectively, these findings indicate that metabolic flexibility protects neuronal network function against alterations in local substrate availability during moderate neuroinflammation.
Collapse
Affiliation(s)
- Bruno Chausse
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
- MEDISS Doctoral Program, INF 110, Heidelberg University, 69120, Heidelberg, Germany.
| | - Nikolai Malorny
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
- Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Yin X, Zhou H, Cao T, Yang X, Meng F, Dai X, Wang Y, Li S, Zhai W, Yang Z, Chen N, Zhou R. Rational Design of Dual-Functionalized Gd@C 82 Nanoparticles to Relieve Neuronal Cytotoxicity in Alzheimer's Disease via Inhibition of Aβ Aggregation. ACS NANO 2024; 18:15416-15431. [PMID: 38840269 DOI: 10.1021/acsnano.3c08823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The accumulation of amyloid-β (Aβ) peptides is a major hallmark of Alzheimer's disease (AD) and plays a crucial role in its pathogenesis. Particularly, the structured oligomeric species rich in β-sheet formations were implicated in neuronal organelle damage. Addressing this formidable challenge requires identifying candidates capable of inhibiting peptide aggregation or disaggregating preformed oligomers for effective antiaggregation-based AD therapy. Here, we present a dual-functional nanoinhibitor meticulously designed to target the aggregation driving force and amyloid fibril spatial structure. Leveraging the exceptional structural stability and facile tailoring capability of endohedral metallofullerene Gd@C82, we introduce desired hydrogen-binding sites and charged groups, which are abundant on its surface for specific designs. Impressively, these designs endow the resultant functionalized-Gd@C82 nanoparticles (f-Gd@C82 NPs) with high capability of redirecting peptide self-assembly toward disordered, off-pathway species, obstructing the early growth of protofibrils, and disaggregating the preformed well-ordered protofibrils or even mature Aβ fibrils. This results in considerable alleviation of Aβ peptide-induced neuronal cytotoxicity, rescuing neuronal death and synaptic loss in primary neuron models. Notably, these modifications significantly improved the dispersibility of f-Gd@C82 NPs, thus substantially enhancing its bioavailability. Moreover, f-Gd@C82 NPs demonstrate excellent cytocompatibility with various cell lines and possess the ability to penetrate the blood-brain barrier in mice. Large-scale molecular dynamics simulations illuminate the inhibition and disaggregation mechanisms. Our design successfully overcomes the limitations of other nanocandidates, which often overly rely on hydrophobic interactions or photothermal conversion properties, and offers a viable direction for developing anti-AD agents through the inhibition and even reversal of Aβ aggregation.
Collapse
Affiliation(s)
- Xiuhua Yin
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Hong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Tiantian Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Suzhou Institute of Trade and Commerce, Suzhou 215009, China
| | - Xiner Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Fei Meng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Yifan Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Sijie Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Wangsong Zhai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
33
|
Taya T, Kami D, Teruyama F, Matoba S, Gojo S. Peptide-encoding gene transfer to modulate intracellular protein-protein interactions. Mol Ther Methods Clin Dev 2024; 32:101226. [PMID: 38516692 PMCID: PMC10952081 DOI: 10.1016/j.omtm.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
Peptide drug discovery has great potential, but the cell membrane is a major obstacle when the target is an intracellular protein-protein interaction (PPI). It is difficult to target PPIs with small molecules; indeed, there are no intervention tools that can target any intracellular PPI. In this study, we developed a platform that enables the introduction of peptides into cells via mRNA-based gene delivery. Peptide-length nucleic acids do not enable stable ribosome binding and exhibit little to no translation into protein. In this study, a construct was created in which the sequence encoding dihydrofolate reductase (DHFR) was placed in front of the sequence encoding the target peptide, together with a translation skipping sequence, as a sequence that meets the requirements of promoting ribosome binding and rapid decay of the translated protein. This enabled efficient translation from the mRNA encoding the target protein while preventing unnecessary protein residues. Using this construct, we showed that it can inhibit Drp1/Fis1 binding, one of the intracellular PPIs, which governs mitochondrial fission, an important aspect of mitochondrial dynamics. In addition, it was shown to inhibit pathological hyperfission, normalize mitochondrial dynamics and metabolism, and inhibit apoptosis of the mitochondrial pathway.
Collapse
Affiliation(s)
- Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Pharmacology Research Department, Tokyo New Drug Research Laboratories, Kowa Company, Ltd, Tokyo, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Zhang H, Zheng Q, Guo T, Zhang S, Zheng S, Wang R, Deng Q, Yang G, Zhang S, Tang L, Qi Q, Zhu L, Zhang XF, Luo H, Zhang X, Sun H, Gao Y, Zhang H, Zhou Y, Han A, Zhang CS, Xu H, Wang X. Metabolic reprogramming in astrocytes results in neuronal dysfunction in intellectual disability. Mol Psychiatry 2024; 29:1569-1582. [PMID: 35338313 DOI: 10.1038/s41380-022-01521-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Astrocyte aerobic glycolysis provides vital trophic support for central nervous system neurons. However, whether and how astrocytic metabolic dysregulation contributes to neuronal dysfunction in intellectual disability (ID) remain unclear. Here, we demonstrate a causal role for an ID-associated SNX27 mutation (R198W) in cognitive deficits involving reshaping astrocytic metabolism. We generated SNX27R196W (equivalent to human R198W) knock-in mice and found that they displayed deficits in synaptic function and learning behaviors. SNX27R196W resulted in attenuated astrocytic glucose uptake via GLUT1, leading to reduced lactate production and a switch from homeostatic to reactive astrocytes. Importantly, lactate supplementation or a ketogenic diet restored neuronal oxidative phosphorylation and reversed cognitive deficits in SNX27R196W mice. In summary, we illustrate a key role for astrocytic SNX27 in maintaining glucose supply and glycolysis and reveal that altered astrocytic metabolism disrupts the astrocyte-neuron interaction, which contributes to ID. Our work also suggests a feasible strategy for treating ID by restoring astrocytic metabolic function.
Collapse
Affiliation(s)
- Haibin Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Tiantian Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shijun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ruimin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingfang Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Guowei Yang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Linxin Tang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qiuping Qi
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lin Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiu-Fang Zhang
- Department of Pediatrics, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Zhou
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China.
| |
Collapse
|
35
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
36
|
Lillo A, Serrano-Marín J, Lillo J, Raïch I, Navarro G, Franco R. Gene regulation in activated microglia by adenosine A 3 receptor agonists: a transcriptomics study. Purinergic Signal 2024; 20:237-245. [PMID: 36703008 PMCID: PMC11189369 DOI: 10.1007/s11302-022-09916-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023] Open
Abstract
Most neurodegenerative disorders, including the two most common, Alzheimer's disease (AD) and Parkinson's disease (AD), course with activation of microglia, the resident innate immune cells of the central nervous system. A3 adenosine receptor (A3R) agonists have been proposed to be neuroprotective by regulating the phenotype of activated microglia. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with 2-Cl-IB-MECA, a selective A3R agonist. The results showed that the number of negatively regulated genes in the presence of 2-Cl-IB-MECA was greater than the number of positively regulated genes. Gene ontology enrichment analysis showed regulation of genes participating in several cell processes, including those involved in immune-related events. Analysis of known and predicted protein-protein interactions showed that Smad3 and Sp1 are transcription factors whose genes are regulated by A3R activation. Under the conditions of cell activation and agonist treatment regimen, 2-Cl-IB-MECA did not lead to any tendency to favor the expression of genes related to neuroprotective microglia (M2).
Collapse
Affiliation(s)
- Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain.
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain.
- Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain.
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
37
|
Li S, Wang D, Liu D, Meng X, Wang Z, Guo X, Liu Q, Liu P, Li S, Wang S, Yang R, Xu Y, Wang L, Kang J. Neurotransmitter accumulation and Parkinson's disease-like phenotype caused by anion channelrhodopsin opto-controlled astrocytic mitochondrial depolarization in substantia nigra pars compacta. MedComm (Beijing) 2024; 5:e568. [PMID: 38756440 PMCID: PMC11094672 DOI: 10.1002/mco2.568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a mitochondria-related neurodegenerative disease characterized by locomotor deficits and loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Majority of PD research primarily focused on neuronal dysfunction, while the roles of astrocytes and their mitochondria remain largely unexplored. To bridge the gap and investigate the roles of astrocytic mitochondria in PD progression, we constructed a specialized optogenetic tool, mitochondrial-targeted anion channelrhodopsin, to manipulate mitochondrial membrane potential in astrocytes. Utilizing this tool, the depolarization of astrocytic mitochondria within the SNc in vivo led to the accumulation of γ-aminobutyric acid (GABA) and glutamate in SNc, subsequently resulting in excitatory/inhibitory imbalance and locomotor deficits. Consequently, in vivo calcium imaging and interventions of neurotransmitter antagonists demonstrated that GABA accumulation mediated movement deficits of mice. Furthermore, 1 h/day intermittent astrocytic mitochondrial depolarization for 2 weeks triggered spontaneous locomotor dysfunction, α-synuclein aggregation, and the loss of DA neurons, suggesting that astrocytic mitochondrial depolarization was sufficient to induce a PD-like phenotype. In summary, our findings suggest the maintenance of proper astrocytic mitochondrial function and the reinstatement of a balanced neurotransmitter profile may provide a new angle for mitigating neuronal dysfunction during the initial phases of PD.
Collapse
Affiliation(s)
- Sen‐Miao Li
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- The Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Dian‐Dian Wang
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- The Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Dan‐Hua Liu
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- The Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Xiao‐Yan Meng
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- The Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Zhizhong Wang
- College of Electrical and Information EngineeringZhengzhou UniversityZhengzhouChina
| | - Xitong Guo
- Zhengzhou University of TechnologyZhengzhouChina
| | - Qian Liu
- North China University of Water Resources and Electric PowerZhengzhouChina
| | - Pei‐Pei Liu
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shu‐Ang Li
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Songwei Wang
- College of Electrical and Information EngineeringZhengzhou UniversityZhengzhouChina
| | - Run‐Zhou Yang
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuming Xu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular DiseaseZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesZhengzhou UniversityZhengzhouChina
| | - Longde Wang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular DiseaseZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesZhengzhou UniversityZhengzhouChina
| | - Jian‐Sheng Kang
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
38
|
Raghav D, Shukla S, Jadiya P. Mitochondrial calcium signaling in non-neuronal cells: Implications for Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167169. [PMID: 38631408 PMCID: PMC11111334 DOI: 10.1016/j.bbadis.2024.167169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysregulation is pivotal in Alzheimer's disease (AD) pathogenesis. Calcium governs vital mitochondrial processes impacting energy conversion, oxidative stress, and cell death signaling. Disruptions in mitochondrial calcium (mCa2+) handling induce calcium overload and trigger the opening of mitochondrial permeability transition pore, ensuing energy deprivation and resulting in AD-related neuronal cell death. However, the role of mCa2+ in non-neuronal cells (microglia, astrocytes, oligodendrocytes, endothelial cells, and pericytes) remains elusive. This review provides a comprehensive exploration of mitochondrial heterogeneity and calcium signaling, offering insights into specific differences among various brain cell types in AD.
Collapse
Affiliation(s)
- Darpan Raghav
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Shatakshi Shukla
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
39
|
Dashtmian AR, Darvishi FB, Arnold WD. Chronological and Biological Aging in Amyotrophic Lateral Sclerosis and the Potential of Senolytic Therapies. Cells 2024; 13:928. [PMID: 38891059 PMCID: PMC11171952 DOI: 10.3390/cells13110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a group of sporadic and genetic neurodegenerative disorders that result in losses of upper and lower motor neurons. Treatment of ALS is limited, and survival is 2-5 years after disease onset. While ALS can occur in younger individuals, the risk significantly increases with advancing age. Notably, both sporadic and genetic forms of ALS share pathophysiological features overlapping hallmarks of aging including genome instability/DNA damage, mitochondrial dysfunction, inflammation, proteostasis, and cellular senescence. This review explores chronological and biological aging in the context of ALS onset and progression. Age-related muscle weakness and motor unit loss mirror aspects of ALS pathology and coincide with peak ALS incidence, suggesting a potential link between aging and disease development. Hallmarks of biological aging, including DNA damage, mitochondrial dysfunction, and cellular senescence, are implicated in both aging and ALS, offering insights into shared mechanisms underlying disease pathogenesis. Furthermore, senescence-associated secretory phenotype and senolytic treatments emerge as promising avenues for ALS intervention, with the potential to mitigate neuroinflammation and modify disease progression.
Collapse
Affiliation(s)
- Anna Roshani Dashtmian
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| | - Fereshteh B. Darvishi
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| | - William David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
40
|
Qian D, Dong Y, Liu X, Yu H, Song Z, Jia C, Zhang Z, Cao S, Hu F, Zhang X. Salidroside promotes the repair of spinal cord injury by inhibiting astrocyte polarization, promoting neural stem cell proliferation and neuronal differentiation. Cell Death Discov 2024; 10:224. [PMID: 38724500 PMCID: PMC11082153 DOI: 10.1038/s41420-024-01989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Spinal cord injury (SCI) remains a formidable challenge, lacking effective treatments. Following SCI, neural stem cells (NSCs) migrate to SCI sites, offering a potential avenue for nerve regeneration, but the effectiveness of this intrinsic repair mechanism remains suboptimal. Salidroside has demonstrated pro-repair attributes in various pathological conditions, including arthritis and cerebral ischemia, and the ability to curtail early-stage inflammation following SCI. However, the specific role of salidroside in the late-stage repair processes of SCI remains less defined. In this investigation, we observed that continuous salidroside treatment in SCI mice improved motor function recovery. Immunofluorescence-staining corroborated salidroside's capacity to stimulate nerve regeneration and remyelination, suppress glial scar hyperplasia, reduce the activation of neurotoxic A1 astrocytes, and facilitate NSCs migration towards the injured region. Mechanistically, in vitro experiments elucidated salidroside's significant role in restraining astrocyte proliferation and A1 polarization. It was further established that A1 astrocytes hinder NSCs proliferation while inducing their differentiation into astrocytes. Salidroside effectively ameliorated this inhibition of NSCs proliferation through diminishing c-Jun N-terminal kinase (JNK) pathway phosphorylation and restored their differentiation into neurons by suppressing the signal transducer and activator of transcription 3 (STAT3) pathway. In summary, our findings suggest that salidroside holds promise as a therapeutic agent for traumatic SCI treatment.
Collapse
Affiliation(s)
- Dingfei Qian
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuan Dong
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiaole Liu
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Haichao Yu
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zelong Song
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Chengqi Jia
- Department of Orthopedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Zhen Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shiqi Cao
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Fanqi Hu
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Xuesong Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
41
|
Xu H, Wang B, Li A, Wen J, Su H, Qin D. Mesenchymal Stem Cells-based Cell-free Therapy Targeting Neuroinflammation. Aging Dis 2024; 15:965-976. [PMID: 38722791 PMCID: PMC11081161 DOI: 10.14336/ad.2023.0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 05/13/2024] Open
Abstract
Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.
Collapse
Affiliation(s)
- Hongjie Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Bin Wang
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences; Hong Kong SAR, China
| |
Collapse
|
42
|
Qin P, Sun Y, Li L. Mitochondrial dysfunction in chronic neuroinflammatory diseases (Review). Int J Mol Med 2024; 53:47. [PMID: 38577947 PMCID: PMC10999227 DOI: 10.3892/ijmm.2024.5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic neuroinflammation serves a key role in the onset and progression of neurodegenerative disorders. Mitochondria serve as central regulators of neuroinflammation. In addition to providing energy to cells, mitochondria also participate in the immunoinflammatory response of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis and epilepsy, by regulating processes such as cell death and inflammasome activation. Under inflammatory conditions, mitochondrial oxidative stress, epigenetics, mitochondrial dynamics and calcium homeostasis imbalance may serve as underlying regulatory mechanisms for these diseases. Therefore, investigating mechanisms related to mitochondrial dysfunction may result in therapeutic strategies against chronic neuroinflammation and neurodegeneration. The present review summarizes the mechanisms of mitochondria in chronic neuroinflammatory diseases and the current treatment approaches that target mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Pei Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
43
|
Miquel E, Villarino R, Martínez-Palma L, Cassina A, Cassina P. Pyruvate dehydrogenase kinase 2 knockdown restores the ability of amyotrophic lateral sclerosis-linked SOD1G93A rat astrocytes to support motor neuron survival by increasing mitochondrial respiration. Glia 2024; 72:999-1011. [PMID: 38372421 DOI: 10.1002/glia.24516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration. Various studies using cellular and animal models of ALS indicate that there is a complex interplay between MN and neighboring non-neuronal cells, such as astrocytes, resulting in noncell autonomous neurodegeneration. Astrocytes in ALS exhibit a lower ability to support MN survival than nondisease-associated ones, which is strongly correlated with low-mitochondrial respiratory activity. Indeed, pharmacological inhibition of pyruvate dehydrogenase kinase (PDK) led to an increase in the mitochondrial oxidative phosphorylation pathway as the primary source of cell energy in SOD1G93A astrocytes and restored the survival of MN. Among the four PDK isoforms, PDK2 is ubiquitously expressed in astrocytes and presents low expression levels in neurons. Herein, we hypothesize whether selective knockdown of PDK2 in astrocytes may increase mitochondrial activity and, in turn, reduce SOD1G93A-associated toxicity. To assess this, cultured neonatal SOD1G93A rat astrocytes were incubated with specific PDK2 siRNA. This treatment resulted in a reduction of the enzyme expression with a concomitant decrease in the phosphorylation rate of the pyruvate dehydrogenase complex. In addition, PDK2-silenced SOD1G93A astrocytes exhibited restored mitochondrial bioenergetics parameters, adopting a more complex mitochondrial network. This treatment also decreased lipid droplet content in SOD1G93A astrocytes, suggesting a switch in energetic metabolism. Significantly, PDK2 knockdown increased the ability of SOD1G93A astrocytes to support MN survival, further supporting the major role of astrocyte mitochondrial respiratory activity in astrocyte-MN interactions. These results suggest that PDK2 silencing could be a cell-specific therapeutic tool to slow the progression of ALS.
Collapse
Affiliation(s)
- Ernesto Miquel
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rosalía Villarino
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica, Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
44
|
Sternberg Z. Neurodegenerative Etiology of Aromatic L-Amino Acid Decarboxylase Deficiency: a Novel Concept for Expanding Treatment Strategies. Mol Neurobiol 2024; 61:2996-3018. [PMID: 37953352 DOI: 10.1007/s12035-023-03684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
Aromatic l-amino acid decarboxylase deficiency (AADC-DY) is caused by one or more mutations in the DDC gene, resulting in the deficit in catecholamines and serotonin neurotransmitters. The disease has limited therapeutic options with relatively poor clinical outcomes. Accumulated evidence suggests the involvement of neurodegenerative mechanisms in the etiology of AADC-DY. In the absence of neurotransmitters' neuroprotective effects, the accumulation and the chronic presence of several neurotoxic metabolites including 4-dihydroxy-L-phenylalanine, 3-methyldopa, and homocysteine, in the brain of subjects with AADC-DY, promote oxidative stress and reduce the cellular antioxidant and methylation capacities, leading to glial activation and mitochondrial dysfunction, culminating to neuronal injury and death. These pathophysiological processes have the potential to hinder the clinical efficacy of treatments aimed at increasing neurotransmitters' synthesis and or function. This review describes in detail the mechanisms involved in AADC-DY neurodegenerative etiology, highlighting the close similarities with those involved in other neurodegenerative diseases. We then offer novel strategies for the treatment of the disease with the objective to either reduce the level of the metabolites or counteract their prooxidant and neurotoxic effects. These treatment modalities used singly or in combination, early in the course of the disease, will minimize neuronal injury, preserving the functional integrity of neurons, hence improving the clinical outcomes of both conventional and unconventional interventions in AADC-DY. These modalities may not be limited to AADC-DY but also to other metabolic disorders where a specific mutation leads to the accumulation of prooxidant and neurotoxic metabolites.
Collapse
Affiliation(s)
- Zohi Sternberg
- Jacobs School of Medicine and Biomedical Sciences, Buffalo Medical Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
45
|
Wang X, Zhou J, Wang Y, Li X, Hu Q, Luo L, Liu X, Liu W, Ye J. Effect of astrocyte GPER on the optic nerve inflammatory response following optic nerve injury in mice. Heliyon 2024; 10:e29428. [PMID: 38638966 PMCID: PMC11024623 DOI: 10.1016/j.heliyon.2024.e29428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Activated astrocytes are a primary source of inflammatory factors following traumatic optic neuropathy (TON). Accumulation of inflammatory factors in this context leads to increased axonal damage and loss of retinal ganglion cells (RGCs). Therefore, in the present study, we explored the role of the astrocyte G protein-coupled estrogen receptor (GPER) in regulating inflammatory factors following optic nerve crush (ONC), and analyzed its potential regulatory mechanisms. Overall, our results showed that GPER was abundantly expressed in the optic nerve, and co-localized with glial fibrillary acidic proteins (GFAP). Exogenous administration of G-1 led to a significant reduction in astrocyte activation and expression of inflammation-related factors (including IL-1β, TNF-α, NFκB, and p-NFκB). Additionally, it dramatically increased the survival of RGCs. In contrast, astrocytes were activated to a greater extent by exogenous G15 administration; however, RGCs survival was significantly reduced. In vitro, GPER activation significantly reduced astrocyte activation and the release of inflammation-related factors. In conclusion, activation of astrocyte GPER significantly reduced ONC inflammation levels, and should be explored as a potential target pathway for protecting the optic nerve and RGCs after TON.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yuwen Wang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Shapingba District, Chongqing, 400032, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Wei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
46
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
47
|
Wang R, Sun H, Cao Y, Zhang Z, Chen Y, Wang X, Liu L, Wu J, Xu H, Wu D, Mu C, Hao Z, Qin S, Ren H, Han J, Fang M, Wang G. Glucosylceramide accumulation in microglia triggers STING-dependent neuroinflammation and neurodegeneration in mice. Sci Signal 2024; 17:eadk8249. [PMID: 38530880 DOI: 10.1126/scisignal.adk8249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson's disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.
Collapse
Affiliation(s)
- Rui Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Cao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhixiong Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yajing Chen
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiying Wang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200000, China
| | - Lele Liu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hao Xu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Institute of Trauma Medicine, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ming Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Guanghui Wang
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, China
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
48
|
Bondy SC. Mitochondrial Dysfunction as the Major Basis of Brain Aging. Biomolecules 2024; 14:402. [PMID: 38672420 PMCID: PMC11048299 DOI: 10.3390/biom14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The changes in the properties of three biological events that occur with cerebral aging are discussed. These adverse changes already begin to develop early in mid-life and gradually become more pronounced with senescence. Essentially, they are reflections of the progressive decline in effectiveness of key processes, resulting in the deviation of essential biochemical trajectories to ineffective and ultimately harmful variants of these programs. The emphasis of this review is the major role played by the mitochondria in the transition of these three important processes toward more deleterious variants as brain aging proceeds. The immune system: the shift away from an efficient immune response to a more unfocused, continuing inflammatory condition. Such a state is both ineffective and harmful. Reactive oxygen species are important intracellular signaling systems. Additionally, microglial phagocytic activity utilizing short lived reactive oxygen species contribute to the removal of aberrant or dead cells and bacteria. These processes are transformed into an excessive, untargeted, and persistent generation of pro-oxidant free radicals (oxidative stress). The normal efficient neural transmission is modified to a state of undirected, chronic low-level excitatory activity. Each of these changes is characterized by the occurrence of continuous activity that is inefficient and diffused. The signal/noise ratio of several critical biological events is thus reduced as beneficial responses are gradually replaced by their impaired and deleterious variants.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Department of Environmental & Occupational Health, University of California, Irvine, CA 92697, USA;
- Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
49
|
Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood M, Boldrini M, Thiebaut de Schotten M, Picard M. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. RESEARCH SQUARE 2024:rs.3.rs-4047706. [PMID: 38562777 PMCID: PMC10984021 DOI: 10.21203/rs.3.rs-4047706/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Eugene V. Mosharov
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ayelet M Rosenberg
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey A. Osto
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Gorazd B. Rosoklija
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J. Dwork
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Snehal Bindra
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline B Mariani
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mihran Bakalian
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Neurology and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - J. John Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark Underwood
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, France
| | - Martin Picard
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
50
|
Maurya S, Lin M, Karnam S, Singh T, Kumar M, Ward E, Flanagan JG, Gronert K. Regulation of Diseases-Associated Microglia in the Optic Nerve by Lipoxin B 4 and Ocular Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585452. [PMID: 38562864 PMCID: PMC10983965 DOI: 10.1101/2024.03.18.585452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The resident astrocyte-retinal ganglion cell (RGC) lipoxin circuit is impaired during retinal stress, which includes ocular hypertension-induced neuropathy. Lipoxin B4 produced by homeostatic astrocytes directly acts on RGCs to increase survival and function in ocular hypertension-induced neuropathy. RGC death in the retina and axonal degeneration in the optic nerve are driven by the complex interactions between microglia and macroglia. Whether LXB4 neuroprotective actions include regulation of other cell types in the retina and/or optic nerve is an important knowledge gap. Methods Cellular targets and signaling of LXB4 in the retina were defined by single-cell RNA sequencing. Retinal neurodegeneration was induced by injecting silicone oil into the anterior chamber of the mouse eyes, which induced sustained and stable ocular hypertension. Morphological characterization of microglia populations in the retina and optic nerve was established by MorphOMICs and pseudotime trajectory analyses. The pathways and mechanisms of action of LXB4 in the optic nerve were investigated using bulk RNA sequencing. Transcriptomics data was validated by qPCR and immunohistochemistry. Differences between experimental groups was assessed by Student's t-test and one-way ANOVA. Results Single-cell transcriptomics identified microglia as a primary target for LXB4 in the healthy retina. LXB4 downregulated genes that drive microglia environmental sensing and reactivity responses. Analysis of microglial function revealed that ocular hypertension induced distinct, temporally defined, and dynamic phenotypes in the retina and, unexpectedly, in the distal myelinated optic nerve. Microglial expression of CD74, a marker of disease-associated microglia in the brain, was only induced in a unique population of optic nerve microglia, but not in the retina. Genetic deletion of lipoxin formation correlated with the presence of a CD74 optic nerve microglia population in normotensive eyes, while LXB4 treatment during ocular hypertension shifted optic nerve microglia toward a homeostatic morphology and non-reactive state and downregulated the expression of CD74. Furthermore, we identified a correlation between CD74 and phospho-phosphoinositide 3-kinases (p-PI3K) expression levels in the optic nerve, which was reduced by LXB4 treatment. Conclusion We identified early and dynamic changes in the microglia functional phenotype, reactivity, and induction of a unique CD74 microglia population in the distal optic nerve as key features of ocular hypertension-induced neurodegeneration. Our findings establish microglia regulation as a novel LXB4 target in the retina and optic nerve. LXB4 maintenance of a homeostatic optic nerve microglia phenotype and inhibition of a disease-associated phenotype are potential neuroprotective mechanisms for the resident LXB4 pathway.
Collapse
Affiliation(s)
- Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Maggie Lin
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Shruthi Karnam
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Tanirika Singh
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Matangi Kumar
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Emily Ward
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
- Infectious Disease and Immunity Program, University of California Berkeley, CA, United States
| |
Collapse
|