1
|
Bao L, Cao J, Gangadharan L, Huang D, Lin C. Effects of lockdowns in shaping socioeconomic behaviors. Proc Natl Acad Sci U S A 2024; 121:e2405934121. [PMID: 39413132 PMCID: PMC11513919 DOI: 10.1073/pnas.2405934121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024] Open
Abstract
Lockdowns were implemented to reduce the transmission of the COVID-19 virus. However, it is unclear how severely curtailed physical interaction shapes individual behaviors that are considered vital for socioeconomic development. In this exploratory study, we investigate the behavior of college students who experienced a strict campus-wide lockdown and those who did not. Employing a combination of experimental and survey methodologies, we elicit students' behavioral variables, which are then integrated with administrative records from the university. We find that those exposed to the lockdown were more likely to trust others and be honest; however, their creativity was lower. Exposure to the lockdown was not found to significantly affect students' trustworthiness, risk preferences, or competitiveness. A follow-up study reveals that the lower creativity among students may be attributed to reduced communication frequency with friends during the lockdown, mediating the lockdown's impact. Conversely, the effects of the lockdown on trust and honesty may operate through a direct pathway, independent of changes in daily activities during the lockdown. Further analysis reveals a gender-dependent trend, with lockdowns exerting a more pronounced influence on male students than their female counterparts. These results underscore the consequences of lockdowns and advocate for enhanced support networks, emphasizing the importance of communicating with friends in similar circumstances.
Collapse
Affiliation(s)
- Leo Bao
- Department of Banking and Finance, Monash University, Melbourne, VIC3145, Australia
| | - Jingcun Cao
- Faculty of Business and Economics, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lata Gangadharan
- Department of Economics, Monash University, Melbourne, VIC3800, Australia
| | - Difang Huang
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing100190, China
| | - Chen Lin
- Faculty of Business and Economics, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Meng X, Zhang S, Zhou S, Ma Y, Yu X, Guan L. Putative Risk Biomarkers of Bipolar Disorder in At-risk Youth. Neurosci Bull 2024; 40:1557-1572. [PMID: 38710851 PMCID: PMC11422403 DOI: 10.1007/s12264-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 05/08/2024] Open
Abstract
Bipolar disorder is a highly heritable and functionally impairing disease. The recognition and intervention of BD especially that characterized by early onset remains challenging. Risk biomarkers for predicting BD transition among at-risk youth may improve disease prognosis. We reviewed the more recent clinical studies to find possible pre-diagnostic biomarkers in youth at familial or (and) clinical risk of BD. Here we found that putative biomarkers for predicting conversion to BD include findings from multiple sample sources based on different hypotheses. Putative risk biomarkers shown by perspective studies are higher bipolar polygenetic risk scores, epigenetic alterations, elevated immune parameters, front-limbic system deficits, and brain circuit dysfunction associated with emotion and reward processing. Future studies need to enhance machine learning integration, make clinical detection methods more objective, and improve the quality of cohort studies.
Collapse
Affiliation(s)
- Xinyu Meng
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shengmin Zhang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shuzhe Zhou
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yantao Ma
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xin Yu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lili Guan
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
3
|
Vaidya N, Marquand AF, Nees F, Siehl S, Schumann G. The impact of psychosocial adversity on brain and behaviour: an overview of existing knowledge and directions for future research. Mol Psychiatry 2024; 29:3245-3267. [PMID: 38658773 PMCID: PMC11449794 DOI: 10.1038/s41380-024-02556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Environmental experiences play a critical role in shaping the structure and function of the brain. Its plasticity in response to different external stimuli has been the focus of research efforts for decades. In this review, we explore the effects of adversity on brain's structure and function and its implications for brain development, adaptation, and the emergence of mental health disorders. We are focusing on adverse events that emerge from the immediate surroundings of an individual, i.e., microenvironment. They include childhood maltreatment, peer victimisation, social isolation, affective loss, domestic conflict, and poverty. We also take into consideration exposure to environmental toxins. Converging evidence suggests that different types of adversity may share common underlying mechanisms while also exhibiting unique pathways. However, they are often studied in isolation, limiting our understanding of their combined effects and the interconnected nature of their impact. The integration of large, deep-phenotyping datasets and collaborative efforts can provide sufficient power to analyse high dimensional environmental profiles and advance the systematic mapping of neuronal mechanisms. This review provides a background for future research, highlighting the importance of understanding the cumulative impact of various adversities, through data-driven approaches and integrative multimodal analysis techniques.
Collapse
Affiliation(s)
- Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Sebastian Siehl
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| |
Collapse
|
4
|
Sinha R. Stress and substance use disorders: risk, relapse, and treatment outcomes. J Clin Invest 2024; 134:e172883. [PMID: 39145454 PMCID: PMC11324296 DOI: 10.1172/jci172883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Stress has long been associated with substance misuse and substance use disorders (SUDs). The past two decades have seen a surge in research aimed at understanding the underlying mechanisms driving this association. This Review introduces a multilevel "adaptive stress response" framework, encompassing a stress baseline, acute reaction, and recovery with return-to-homeostasis phase that occurs at varying response times and across domains of analysis. It also discusses evidence showing the disruption of this adaptive stress response in the context of chronic and repeated stressors, trauma, adverse social and drug-related environments, as well as with acute and chronic drug misuse and with drug withdrawal and abstinence sequelae. Subjective, cognitive, peripheral, and neurobiological disruptions in the adaptive stress response phases and their link to inflexible, maladaptive coping; increased craving; relapse risk; and maintenance of drug intake are also presented. Finally, the prevention and treatment implications of targeting this "stress pathophysiology of addiction" are discussed, along with specific aspects that may be targeted in intervention development to rescue stress-related alterations in drug motivation and to improve SUD treatment outcomes.
Collapse
|
5
|
Beck D, Whitmore L, MacSweeney N, Brieant A, Karl V, de Lange AMG, Westlye LT, Mills KL, Tamnes CK. Dimensions of Early-Life Adversity Are Differentially Associated With Patterns of Delayed and Accelerated Brain Maturation. Biol Psychiatry 2024:S0006-3223(24)01486-0. [PMID: 39084501 DOI: 10.1016/j.biopsych.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Different types of early-life adversity (ELA) have been associated with children's brain structure and function. However, understanding the disparate influence of distinct adversity exposures on the developing brain remains a major challenge. METHODS This study investigates the neural correlates of 10 robust dimensions of ELA identified through exploratory factor analysis in a large community sample of youth from the Adolescent Brain Cognitive Development Study. Brain age models were trained, validated, and tested separately on T1-weighted (n = 9524), diffusion tensor (n = 8834), and resting-state functional (n = 8233) magnetic resonance imaging data from two time points (mean age = 10.7 years, SD = 1.2, age range = 8.9-13.8 years). RESULTS Bayesian multilevel modeling supported distinct associations between different types of ELA exposures and younger- and older-looking brains. Dimensions generally related to emotional neglect, such as lack of primary and secondary caregiver support and lack of caregiver supervision, were associated with lower brain age gaps, i.e., younger-looking brains. In contrast, dimensions generally related to caregiver psychopathology, trauma exposure, family aggression, substance use and separation from biological parent, and socioeconomic disadvantage and neighborhood safety were associated with higher brain age gaps, i.e., older-looking brains. CONCLUSIONS The findings suggest that dimensions of ELA are differentially associated with distinct neurodevelopmental patterns, indicative of dimension-specific delayed and accelerated brain maturation.
Collapse
Affiliation(s)
- Dani Beck
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway.
| | - Lucy Whitmore
- Department of Psychology, University of Oregon, Eugene, Oregon
| | - Niamh MacSweeney
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Alexis Brieant
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Valerie Karl
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, Eugene, Oregon
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
6
|
Hettwer MD, Dorfschmidt L, Puhlmann LMC, Jacob LM, Paquola C, Bethlehem RAI, Bullmore ET, Eickhoff SB, Valk SL. Longitudinal variation in resilient psychosocial functioning is associated with ongoing cortical myelination and functional reorganization during adolescence. Nat Commun 2024; 15:6283. [PMID: 39075054 PMCID: PMC11286871 DOI: 10.1038/s41467-024-50292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Adolescence is a period of dynamic brain remodeling and susceptibility to psychiatric risk factors, mediated by the protracted consolidation of association cortices. Here, we investigated whether longitudinal variation in adolescents' resilience to psychosocial stressors during this vulnerable period is associated with ongoing myeloarchitectural maturation and consolidation of functional networks. We used repeated myelin-sensitive Magnetic Transfer (MT) and resting-state functional neuroimaging (n = 141), and captured adversity exposure by adverse life events, dysfunctional family settings, and socio-economic status at two timepoints, one to two years apart. Development toward more resilient psychosocial functioning was associated with increasing myelination in the anterolateral prefrontal cortex, which showed stabilized functional connectivity. Studying depth-specific intracortical MT profiles and the cortex-wide synchronization of myeloarchitectural maturation, we further observed wide-spread myeloarchitectural reconfiguration of association cortices paralleled by attenuated functional reorganization with increasingly resilient outcomes. Together, resilient/susceptible psychosocial functioning showed considerable intra-individual change associated with multi-modal cortical refinement processes at the local and system-level.
Collapse
Affiliation(s)
- Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lena Dorfschmidt
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lara M C Puhlmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Linda M Jacob
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| | | | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
7
|
Savage HS, Mulders PCR, van Eijndhoven PFP, van Oort J, Tendolkar I, Vrijsen JN, Beckmann CF, Marquand AF. Dissecting task-based fMRI activity using normative modelling: an application to the Emotional Face Matching Task. Commun Biol 2024; 7:888. [PMID: 39033247 PMCID: PMC11271583 DOI: 10.1038/s42003-024-06573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Functional neuroimaging has contributed substantially to understanding brain function but is dominated by group analyses that index only a fraction of the variation in these data. It is increasingly clear that parsing the underlying heterogeneity is crucial to understand individual differences and the impact of different task manipulations. We estimate large-scale (N = 7728) normative models of task-evoked activation during the Emotional Face Matching Task, which enables us to bind heterogeneous datasets to a common reference and dissect heterogeneity underlying group-level analyses. We apply this model to a heterogenous patient cohort, to map individual differences between patients with one or more mental health diagnoses relative to the reference cohort and determine multivariate associations with transdiagnostic symptom domains. For the face>shapes contrast, patients have a higher frequency of extreme deviations which are spatially heterogeneous. In contrast, normative models for faces>baseline have greater predictive value for individuals' transdiagnostic functioning. Taken together, we demonstrate that normative modelling of fMRI task-activation can be used to illustrate the influence of different task choices and map replicable individual differences, and we encourage its application to other neuroimaging tasks in future studies.
Collapse
Affiliation(s)
- Hannah S Savage
- Donders Institute of Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Peter C R Mulders
- Donders Institute of Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Philip F P van Eijndhoven
- Donders Institute of Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jasper van Oort
- Donders Institute of Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Indira Tendolkar
- Donders Institute of Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Janna N Vrijsen
- Donders Institute of Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Depression Expertise Centre, Pro Persona Mental Health Care, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute of Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Andre F Marquand
- Donders Institute of Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
9
|
Kashyap R, Holla B, Bhattacharjee S, Sharma E, Mehta UM, Vaidya N, Bharath RD, Murthy P, Basu D, Nanjayya SB, Singh RL, Lourembam R, Chakrabarti A, Kartik K, Kalyanram K, Kumaran K, Krishnaveni G, Krishna M, Kuriyan R, Kurpad SS, Desrivieres S, Purushottam M, Barker G, Orfanos DP, Hickman M, Heron J, Toledano M, Schumann G, Benegal V. Childhood adversities characterize the heterogeneity in the brain pattern of individuals during neurodevelopment. Psychol Med 2024; 54:2599-2611. [PMID: 38509831 DOI: 10.1017/s0033291724000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. METHODS Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). RESULTS Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. CONCLUSION Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.
Collapse
Affiliation(s)
- Rajan Kashyap
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sagarika Bhattacharjee
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Eesha Sharma
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nilakshi Vaidya
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- Department of Psychiatry, Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pratima Murthy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Debashish Basu
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Roshan Lourembam
- Department of Psychiatry, Regional Institute of Medical Sciences, Imphal, India
| | - Amit Chakrabarti
- Division of Mental Health, ICMR-Centre for Ageing and Mental Health, Kolkata, India
| | - Kamakshi Kartik
- Rishi Valley Rural Health Centre, Madanapalle, Chittoor, India
| | | | - Kalyanaraman Kumaran
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Ghattu Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
| | - Murali Krishna
- Health Equity Cluster, Institute of Public Health, Bangalore, India
| | - Rebecca Kuriyan
- Division of Nutrition, St John's Research Institute, Bengaluru, India
| | - Sunita Simon Kurpad
- Department of Psychiatry & Department of Medical Ethics, St John's Research Institute, Bengaluru, India
| | - Sylvane Desrivieres
- SGDP Centre, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Meera Purushottam
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gareth Barker
- Department of Neuroimaging, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | | | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jon Heron
- Center for Public Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mireille Toledano
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Gunter Schumann
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- PONS Centre, Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Vivek Benegal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
10
|
Van den Bergh BRH, Antonelli MC, Stein DJ. Current perspectives on perinatal mental health and neurobehavioral development: focus on regulation, coregulation and self-regulation. Curr Opin Psychiatry 2024; 37:237-250. [PMID: 38415742 DOI: 10.1097/yco.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW Perinatal mental health research provides an important perspective on neurobehavioral development. Here, we aim to review the association of maternal perinatal health with offspring neurodevelopment, providing an update on (self-)regulation problems, hypothesized mechanistic pathways, progress and challenges, and implications for mental health. RECENT FINDINGS (1) Meta-analyses confirm that maternal perinatal mental distress is associated with (self-)regulation problems which constitute cognitive, behavioral, and affective social-emotional problems, while exposure to positive parental mental health has a positive impact. However, effect sizes are small. (2) Hypothesized mechanistic pathways underlying this association are complex. Interactive and compensatory mechanisms across developmental time are neglected topics. (3) Progress has been made in multiexposure studies. However, challenges remain and these are shared by clinical, translational and public health sciences. (4) From a mental healthcare perspective, a multidisciplinary and system level approach employing developmentally-sensitive measures and timely treatment of (self-)regulation and coregulation problems in a dyadic caregiver-child and family level approach seems needed. The existing evidence-base is sparse. SUMMARY During the perinatal period, addressing vulnerable contexts and building resilient systems may promote neurobehavioral development. A pluralistic approach to research, taking a multidisciplinary approach to theoretical models and empirical investigation needs to be fostered.
Collapse
Affiliation(s)
| | - Marta C Antonelli
- Laboratorio de Programación Perinatal del Neurodesarrollo, Instituto de Biología Celular y Neurociencias "Prof.E. De Robertis", Facultad de Medicina. Universidad de Buenos Aires, Buenos Aires, Argentina
- Frauenklinik und Poliklinik, Klinikum rechts der Isar, Munich, Germany
| | - Dan J Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Stams GJ, van der Helm P. It takes a safe village to raise a child-a commentary on Dana McCoy et al. (2023). J Child Psychol Psychiatry 2024; 65:723-725. [PMID: 38102894 DOI: 10.1111/jcpp.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
This commentary on the study by McCoy et al. (2023) examining the negative effects of neighborhood violence on the development of toddlers growing up in the city of São Paulo (Brazil) interprets these outcomes from the perspective of ecological system theory, modern brain research, and the prospect of resilience. We argue that societies should give children the opportunity to grow up in a safe and sufficiently affluent social environment in order to give them a chance to achieve their full developmental potential. Governments and the health care system should, therefore, first and foremost invest in safe and stimulating child-rearing environments, informed by scientific research.
Collapse
|
12
|
Sacu S, Dubois M, Hezemans FH, Aggensteiner PM, Monninger M, Brandeis D, Banaschewski T, Hauser TU, Holz NE. Early-Life Adversities Are Associated With Lower Expected Value Signaling in the Adult Brain. Biol Psychiatry 2024:S0006-3223(24)01249-6. [PMID: 38636886 DOI: 10.1016/j.biopsych.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Early adverse experiences are assumed to affect fundamental processes of reward learning and decision making. However, computational neuroimaging studies investigating these circuits in the context of adversity are sparse and limited to studies conducted in adolescent samples, leaving the long-term effects unexplored. METHODS Using data from a longitudinal birth cohort study (n = 156; 87 female), we investigated associations between adversities and computational markers of reward learning (i.e., expected value, prediction errors). At age 33 years, all participants completed a functional magnetic resonance imaging-based passive avoidance task. Psychopathology measures were collected at the time of functional magnetic resonance imaging investigation and during the COVID-19 pandemic. We applied a principal component analysis to capture common variations across 7 adversity measures. The resulting adversity factors (factor 1: postnatal psychosocial adversities and prenatal maternal smoking; factor 2: prenatal maternal stress and obstetric adversity; factor 3: lower maternal stimulation) were linked with psychopathology and neural responses in the core reward network using multiple regression analysis. RESULTS We found that the adversity dimension primarily informed by lower maternal stimulation was linked to lower expected value representation in the right putamen, right nucleus accumbens, and anterior cingulate cortex. Expected value encoding in the right nucleus accumbens further mediated the relationship between this adversity dimension and psychopathology and predicted higher withdrawn symptoms during the COVID-19 pandemic. CONCLUSIONS Our results suggested that early adverse experiences in caregiver context might have a long-term disruptive effect on reward learning in reward-related brain regions, which can be associated with suboptimal decision making and thereby may increase the vulnerability of developing psychopathology.
Collapse
Affiliation(s)
- Seda Sacu
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; German Center for Mental Health, Mannheim, Heidelberg, and Ulm, Germany
| | - Magda Dubois
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Frank H Hezemans
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; German Center for Mental Health, Tübingen, Germany
| | - Pascal-M Aggensteiner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; German Center for Mental Health, Mannheim, Heidelberg, and Ulm, Germany
| | - Maximilian Monninger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; German Center for Mental Health, Mannheim, Heidelberg, and Ulm, Germany
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Mental Health, Tübingen, Germany; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; German Center for Mental Health, Mannheim, Heidelberg, and Ulm, Germany; Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Stevens L, Bregulla M, Scheele D. Out of touch? How trauma shapes the experience of social touch - Neural and endocrine pathways. Neurosci Biobehav Rev 2024; 159:105595. [PMID: 38373642 DOI: 10.1016/j.neubiorev.2024.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Trauma can shape the way an individual experiences the world and interacts with other people. Touch is a key component of social interactions, but surprisingly little is known about how trauma exposure influences the processing of social touch. In this review, we examine possible neurobiological pathways through which trauma can influence touch processing and lead to touch aversion and avoidance in trauma-exposed individuals. Emerging evidence indicates that trauma may affect sensory touch thresholds by modulating activity in the primary sensory cortex and posterior insula. Disturbances in multisensory integration and oxytocin reactivity combined with diminished reward-related and anxiolytic responses may induce a bias towards negative appraisal of touch contexts. Furthermore, hippocampus deactivation during social touch may reflect a dissociative state. These changes depend not only on the type and severity of the trauma but also on the features of the touch. We hypothesise that disrupted touch processing may impair social interactions and confer elevated risk for future stress-related disorders.
Collapse
Affiliation(s)
- Laura Stevens
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Madeleine Bregulla
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Dirk Scheele
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany.
| |
Collapse
|
14
|
Sacu S, Aggensteiner PM, Monninger M, Kaiser A, Brandeis D, Banaschewski T, Holz NE. Lifespan adversities affect neural correlates of behavioral inhibition in adults. Front Psychiatry 2024; 15:1298695. [PMID: 38317765 PMCID: PMC10840329 DOI: 10.3389/fpsyt.2024.1298695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Growing evidence suggests that adverse experiences have long-term effects on executive functioning and underlying neural circuits. Previous work has identified functional abnormalities during inhibitory control in frontal brain regions in individuals exposed to adversities. However, these findings were mostly limited to specific adversity types such as maltreatment and prenatal substance abuse. Methods We used data from a longitudinal birth cohort study (n = 121, 70 females) to investigate the association between adversities and brain responses during inhibitory control. At the age of 33 years, all participants completed a stop-signal task during fMRI and an Adult Self-Report scale. We collected seven prenatal and postnatal adversity measures across development and performed a principal component analysis to capture common variations across those adversities, which resulted in a three-factor solution. Multiple regression analysis was performed to identify links between adversities and brain responses during inhibitory control using the identified adversity factors to show the common effect and single adversity measures to show the specific contribution of each adversity. To find neural correlates of current psychopathology during inhibitory control, we performed additional regression analyses using Adult Self-Report subscales. Results The first adversity factor reflecting prenatal maternal smoking and postnatal psychosocial adversities was related to higher activation during inhibitory control in bilateral inferior frontal gyri, insula, anterior cingulate cortex, and middle temporal gyri. Similar results were found for the specific contribution of the adversities linked to the first adversity factor. In contrast, we did not identify any significant association between brain responses during inhibitory control and the second adversity factor reflecting prenatal maternal stress and obstetric risk or the third adversity factor reflecting lower maternal sensitivity. Higher current depressive symptoms were associated with higher activation in the bilateral insula and anterior cingulate cortex during inhibitory control. Conclusion Our findings extended previous work and showed that early adverse experiences have a long-term effect on the neural circuitry of inhibitory control in adulthood. Furthermore, the overlap between neural correlates of adversity and depressive symptomatology suggests that adverse experiences might increase vulnerability via neural alterations, which needs to be investigated by future longitudinal research.
Collapse
Affiliation(s)
- Seda Sacu
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Pascal-M. Aggensteiner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Monninger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anna Kaiser
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nathalie E. Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
15
|
Scher MS. Interdisciplinary fetal-neonatal neurology training applies neural exposome perspectives to neurology principles and practice. Front Neurol 2024; 14:1321674. [PMID: 38288328 PMCID: PMC10824035 DOI: 10.3389/fneur.2023.1321674] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
An interdisciplinary fetal-neonatal neurology (FNN) program over the first 1,000 days teaches perspectives of the neural exposome that are applicable across the life span. This curriculum strengthens neonatal neurocritical care, pediatric, and adult neurology training objectives. Teaching at maternal-pediatric hospital centers optimally merges reproductive, pregnancy, and pediatric approaches to healthcare. Phenotype-genotype expressions of health or disease pathways represent a dynamic neural exposome over developmental time. The science of uncertainty applied to FNN training re-enforces the importance of shared clinical decisions that minimize bias and reduce cognitive errors. Trainees select mentoring committee participants that will maximize their learning experiences. Standardized questions and oral presentations monitor educational progress. Master or doctoral defense preparation and competitive research funding can be goals for specific individuals. FNN principles applied to practice offer an understanding of gene-environment interactions that recognizes the effects of reproductive health on the maternal-placental-fetal triad, neonate, child, and adult. Pre-conception and prenatal adversities potentially diminish life-course brain health. Endogenous and exogenous toxic stressor interplay (TSI) alters the neural exposome through maladaptive developmental neuroplasticity. Developmental disorders and epilepsy are primarily expressed during the first 1,000 days. Communicable and noncommunicable illnesses continue to interact with the neural exposome to express diverse neurologic disorders across the lifespan, particularly during the critical/sensitive time periods of adolescence and reproductive senescence. Anomalous or destructive fetal neuropathologic lesions change clinical expressions across this developmental-aging continuum. An integrated understanding of reproductive, pregnancy, placental, neonatal, childhood, and adult exposome effects offers a life-course perspective of the neural exposome. Exosome research promises improved disease monitoring and drug delivery starting during pregnancy. Developmental origins of health and disease principles applied to FNN practice anticipate neurologic diagnoses with interventions that can benefit successive generations. Addressing health care disparities in the Global South and high-income country medical deserts require constructive dialogue among stakeholders to achieve medical equity. Population health policies require a brain capital strategy that reduces the global burden of neurologic diseases by applying FNN principles and practice. This integrative neurologic care approach will prolong survival with an improved quality of life for persons across the lifespan confronted with neurological disorders.
Collapse
Affiliation(s)
- Mark S. Scher
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
16
|
Gee DG, Brieant A. Meta-Analytic Evidence for Association of Adversity With Brain Function. JAMA Netw Open 2023; 6:e2339966. [PMID: 37910108 DOI: 10.1001/jamanetworkopen.2023.39966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Alexis Brieant
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| |
Collapse
|
17
|
Uselman TW, Jacobs RE, Bearer EL. Reconfiguration of brain-wide neural activity after early life adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557058. [PMID: 38328213 PMCID: PMC10849645 DOI: 10.1101/2023.09.10.557058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Early life adversity (ELA) predisposes individuals to both physical and mental disorders lifelong. How ELA affects brain function leading to this vulnerability is under intense investigation. Research has begun to shed light on ELA effects on localized brain regions within defined circuits. However, investigations into brain-wide neural activity that includes multiple localized regions, determines relationships of activity between regions and identifies shifts of activity in response to experiential conditions is necessary. Here, we performed longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to image the brain in normally reared or ELA-exposed adults. Images were captured in the freely moving home cage condition, and short- and long-term after naturalistic threat. Images were analyzed with new computational methods, including automated segmentation and fractional activation or difference volumes. We found that neural activity was increased after ELA compared to normal rearing in multiple brain regions, some of which are involved in defensive and/or reward circuitry. Widely distributed patterns of neural activity, "brain states", and their dynamics after threat were altered with ELA. Upon acute threat, ELA-mice retained heightened neural activity within many of these regions, and new hyperactive responses emerged in monoaminergic centers of the mid- and hindbrain. Nine days after acute threat, heightened neural activity remained within locus coeruleus and increased within posterior amygdala, ventral hippocampus, and dorso- and ventromedial hypothalamus, while reduced activity emerged within medial prefrontal cortical regions (prelimbic, infralimbic, anterior cingulate). These results reveal that functional imbalances arise between multiple brain-systems which are dependent upon context and cumulative experiences after ELA.
Collapse
Affiliation(s)
- Taylor W Uselman
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
- California Institute of Technology, Pasadena, CA 91125
| | - Elaine L Bearer
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
18
|
Merritt K, Luque Laguna P, Sethi A, Drakesmith M, Ashley SA, Bloomfield M, Fonville L, Perry G, Lancaster T, Dimitriadis SI, Zammit S, Evans CJ, Lewis G, Kempton MJ, Linden DEJ, Reichenberg A, Jones DK, David AS. The impact of cumulative obstetric complications and childhood trauma on brain volume in young people with psychotic experiences. Mol Psychiatry 2023; 28:3688-3697. [PMID: 37903876 PMCID: PMC10730393 DOI: 10.1038/s41380-023-02295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
Psychotic experiences (PEs) occur in 5-10% of the general population and are associated with exposure to childhood trauma and obstetric complications. However, the neurobiological mechanisms underlying these associations are unclear. Using the Avon Longitudinal Study of Parents and Children (ALSPAC), we studied 138 young people aged 20 with PEs (n = 49 suspected, n = 53 definite, n = 36 psychotic disorder) and 275 controls. Voxel-based morphometry assessed whether MRI measures of grey matter volume were associated with (i) PEs, (ii) cumulative childhood psychological trauma (weighted summary score of 6 trauma types), (iii) cumulative pre/peri-natal risk factors for psychosis (weighted summary score of 16 risk factors), and (iv) the interaction between PEs and cumulative trauma or pre/peri-natal risk. PEs were associated with smaller left posterior cingulate (pFWE < 0.001, Z = 4.19) and thalamus volumes (pFWE = 0.006, Z = 3.91). Cumulative pre/perinatal risk was associated with smaller left subgenual cingulate volume (pFWE < 0.001, Z = 4.54). A significant interaction between PEs and cumulative pre/perinatal risk found larger striatum (pFWE = 0.04, Z = 3.89) and smaller right insula volume extending into the supramarginal gyrus and superior temporal gyrus (pFWE = 0.002, Z = 4.79), specifically in those with definite PEs and psychotic disorder. Cumulative childhood trauma was associated with larger left dorsal striatum (pFWE = 0.002, Z = 3.65), right prefrontal cortex (pFWE < 0.001, Z = 4.63) and smaller left insula volume in all participants (pFWE = 0.03, Z = 3.60), and there was no interaction with PEs group. In summary, pre/peri-natal risk factors and childhood psychological trauma impact similar brain pathways, namely smaller insula and larger striatum volumes. The effect of pre/perinatal risk was greatest in those with more severe PEs, whereas effects of trauma were seen in all participants. In conclusion, environmental risk factors affect brain networks implicated in schizophrenia, which may increase an individual's propensity to develop later psychotic disorders.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK.
| | - Pedro Luque Laguna
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Arjun Sethi
- Department of Forensic & Neurodevelopmental Sciences, IOPPN, King's College London, London, UK
| | - Mark Drakesmith
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Sarah A Ashley
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Michael Bloomfield
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | | | - Gavin Perry
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Tom Lancaster
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Department of Psychology, Bath University, Bath, UK
| | - Stavros I Dimitriadis
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain
| | - Stanley Zammit
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Bristol Medical School (PHS), University of Bristol, Bristol, UK
| | - C John Evans
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Glyn Lewis
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Matthew J Kempton
- Psychosis Studies Department, IOPPN, King's College London, London, UK
| | - David E J Linden
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Derek K Jones
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Anthony S David
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| |
Collapse
|