1
|
Farrier CE, Wanat M, Harnden A, Paterson A, Roberts N, Saatci D, Hirst J. Predictive factors for the diagnosis of coeliac disease in children and young people in primary care: A systematic review and meta-analysis. PLoS One 2024; 19:e0306844. [PMID: 39705224 DOI: 10.1371/journal.pone.0306844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/23/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND Coeliac Disease (CD) often has its onset in childhood and affects 1% of the population. This review aimed to identify important predictive factors for coeliac disease in children and young people which could help GPs decide when to offer testing. METHODS We searched MEDLINE, Embase and Cochrane Library to April 2024. Included studies were observational or randomized trials reporting the risk of CD when exposed to predictive factor(s) in people ≤25 years of age. Genetic factors were excluded. Risk of Bias was assessed using the Newcastle-Ottawa Scale. Random effects meta-analysis was performed for factors reported in ≥5 studies to calculate pooled odds ratios (OR) or standardized mean differences (SMD). RESULTS Of 11,623 unique abstracts, 183 were included reporting on 140+ potentially associated factors. Meta-analyses of 28 factors found 14 significant associations with CD diagnosis: having type 1 diabetes (OR 8.70), having a first degree relative with coeliac disease (OR 5.19), being of white ethnicity (OR 2.56), having thyroid disease (OR 2.16), being female (OR 1.53), more frequent gastroenteritis in early childhood (OR 1.48), having frequent respiratory infections in early childhood (OR 1.47), more gluten ingestion in early life (OR 1.25), having more infections in early life (OR 1.22), antibiotic use in early childhood (OR 1.21), being born in the summer (OR 1.09), breastfeeding (OR 0.79) older age at diagnosis of type 1 diabetes (OR 0.64), and heavier weight (SMD -0.21). The final three were associated with lower risk of CD diagnosis. DISCUSSION This is the first systematic review and meta-analysis of predictive factors for CD in children. Amongst the 14 factors we identified that were significant, three were potentially modifiable: breast feeding, antibiotic use and amount of gluten ingestion in early childhood. This work could inform the development of clinical support tools to facilitate the early diagnosis of CD.
Collapse
Affiliation(s)
- Christian E Farrier
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marta Wanat
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Anthony Harnden
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Amy Paterson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nia Roberts
- Bodleian Healthcare Libraries, Knowledge Centre, University of Oxford, Oxford, United Kingdom
| | - Defne Saatci
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Jennifer Hirst
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Petersen J, Llerena C, Golzarroshan B, Faoro C, Triebel F, Rossjohn J. Crystal structure of the human LAG-3-HLA-DR1-peptide complex. Sci Immunol 2024; 9:eads5122. [PMID: 39671469 DOI: 10.1126/sciimmunol.ads5122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
T cell activity is governed by T cell receptor (TCR) signaling and constrained by immune checkpoint molecules, including programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and lymphocyte activation gene 3 (LAG-3). The basis for how LAG-3 binds to human leukocyte antigen class II molecules (HLA-II) remains unknown. Here, we present the 3.4-angstrom crystal structure of a LAG-3-peptide-HLA-II complex and probe the energetics of the complex interface. Coincident with the HLA-II binding site of the ancestrally related, monomeric CD4 receptor, the LAG-3 homodimer laterally engages two HLA-II molecules via distal D1 domain surfaces, imposing a 38° angular offset. The LAG-3-HLA-II interface is discontinuous and lacks involvement of the D1 extra loop, a binding site for anti-LAG-3 therapeutic monoclonal antibodies. Upon HLA-II binding, intrinsically mobile loops of the LAG-3 molecule become ordered, with contact residues highly conserved across HLA-DR, DQ, and DP allomorphs. Our data provide a structural foundation for development of immunomodulatory approaches targeting LAG-3.
Collapse
Affiliation(s)
- Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Victoria, Australia
| | - Carmen Llerena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Victoria, Australia
| | - Bagher Golzarroshan
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Victoria, Australia
| | - Camilla Faoro
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Victoria, Australia
| | | | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Victoria, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| |
Collapse
|
3
|
He Y, Mohapatra G, Asokan S, Nobs SP, Elinav E. Microbiome modulation of antigen presentation in tolerance and inflammation. Curr Opin Immunol 2024; 91:102471. [PMID: 39277909 DOI: 10.1016/j.coi.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The microbiome regulates mammalian immune responses from early life to adulthood. Antigen presentation, orchestrating these responses, integrates commensal and pathogenic signals. However, the temporal and spatial specificity of microbiome impacts on antigen presentation and downstream tolerance versus inflammation remain incompletely understood. Herein, we review the influences of antigen presentation of microbiome-related epitopes on immunity; impacts of microbiome-based modulation of antigen presentation on innate and adaptive immune responses; and their ramifications on homeostasis and immune-related disease, ranging from auto-inflammation to tumorigenesis. We highlight mechanisms driving these influences, such as 'molecular mimicry', in which microbiome auto-antigen presentation aberrantly triggers an immune response driving autoimmunity or influences conferred by microbiome-derived metabolites on antigen-presenting cells in inflammatory bowel disease. We discuss unknowns, controversies, and challenges associated with the study of microbiome regulation of antigen presentation while demonstrating how increasing knowledge may contribute to the development of microbiome-based therapeutics modulating immune responses in a variety of clinical contexts.
Collapse
Affiliation(s)
- Yiming He
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gayatree Mohapatra
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sahana Asokan
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samuel Philip Nobs
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Gardell JL, Maurer ME, Childs MM, Pham MN, Meengs B, Julien SH, Tan C, Boster DR, Quach P, Therriault JH, Hermansky G, Patton DT, Bowser J, Chen A, Morgan NN, Gilbertson EA, Bogatzki L, Encarnacion K, McMahan CJ, Crane CA, Swiderek KM. Preclinical characterization of MTX-101: a novel bispecific CD8 Treg modulator that restores CD8 Treg functions to suppress pathogenic T cells in autoimmune diseases. Front Immunol 2024; 15:1452537. [PMID: 39559361 PMCID: PMC11570885 DOI: 10.3389/fimmu.2024.1452537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Regulatory CD8 T cells (CD8 Treg) are responsible for the selective killing of self-reactive and pathogenic CD4 T cells. In autoimmune disease, CD8 Treg may accumulate in the peripheral blood but fail to control the expansion of pathogenic CD4 T cells that subsequently cause tissue destruction. This CD8 Treg dysfunction is due in part to the expression of inhibitory killer immunoglobulin-like receptors (KIR; KIR2DL isoforms [KIR2DL1, KIR2DL2, and KIR2DL3]); these molecules serve as autoimmune checkpoints and limit CD8 Treg activation. Methods Here we describe the pre-clinical characterization of MTX-101, a bispecific antibody targeting inhibitory KIR and CD8. Using human peripheral blood mononuculear cells (PBMC) derived from healthy donors and autoimmune patients, humanized mouse models, and human derived tissue organoids, we evaluated the molecular mechanisms and functional effects of MTX-101. Results By binding to KIR, MTX-101 inhibited KIR signaling that can restore CD8 Treg ability to eliminate pathogenic CD4 T cells. MTX-101 bound and activated CD8 Treg in human peripheral blood mononuclear cells (PBMC), resulting in increased CD8 Treg cytolytic capacity, activation, and prevalence. Enhancing CD8 Treg function with MTX-101 reduced pathogenic CD4 T cell expansion and inflammation, without increasing pro-inflammatory cytokines or activating immune cells that express either target alone. MTX-101 reduced antigen induced epithelial cell death in disease affected tissues, including in tissue biopsies from individuals with autoimmune disease (i.e., celiac disease, Crohn's disease). The effects of MTX-101 were specific to autoreactive CD4 T cells and did not suppress responses to viral and bacterial antigens. In a human PBMC engrafted Graft versus Host Disease (GvHD) mouse model of acute inflammation, MTX-101 bound CD8 Treg and delayed onset of disease. MTX-101 induced dose dependent binding, increased prevalence and cytolytic capacity of CD8 Treg, as well as increased CD4 T cell death. MTX-101 selectively bound CD8 Treg without unwanted immune cell activation or increase of pro-inflammatory serum cytokines and exhibited an antibody-like half-life in pharmacokinetic and exploratory tolerability studies performed using IL-15 transgenic humanized mice with engrafted human lymphocytes, including CD8 Treg at physiologic ratios. Conclusion Collectively, these data support the development of MTX-101 for the treatment of autoimmune diseases.
Collapse
|
5
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Tran MT, Lim JJ, Loh TJ, Mannering SI, Rossjohn J, Reid HH. A structural basis of T cell cross-reactivity to native and spliced self-antigens presented by HLA-DQ8. J Biol Chem 2024; 300:107612. [PMID: 39074636 PMCID: PMC11388500 DOI: 10.1016/j.jbc.2024.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that has a strong HLA association, where a number of self-epitopes have been implicated in disease pathogenesis. Human pancreatic islet-infiltrating CD4+ T cell clones not only respond to proinsulin C-peptide (PI40-54; GQVELGGGPGAGSLQ) but also cross-react with a hybrid insulin peptide (HIP; PI40-47-IAPP74-80; GQVELGGG-NAVEVLK) presented by HLA-DQ8. How T cell receptors recognize self-peptide and cross-react to HIPs is unclear. We investigated the cross-reactivity of the CD4+ T cell clones reactive to native PI40-54 epitope and multiple HIPs fused at the same N-terminus (PI40-54) to the degradation products of two highly expressed pancreatic islet proteins, neuropeptide Y (NPY68-74) and amyloid polypeptide (IAPP23-29 and IAPP74-80). We observed that five out of the seven selected SKW3 T cell lines expressing TCRs isolated from CD4+ T cells of people with T1D responded to multiple HIPs. Despite shared TRAV26-1-TRBV5-1 gene usage in some T cells, these clones cross-reacted to varying degrees with the PI40-54 and HIP epitopes. Crystal structures of two TRAV26-1+-TRBV5-1+ T cell receptors (TCRs) in complex with PI40-54 and HIPs bound to HLA-DQ8 revealed that the two TCRs had distinct mechanisms responsible for their differential recognition of the PI40-54 and HIP epitopes. Alanine scanning mutagenesis of the PI40-54 and HIPs determined that the P2, P7, and P8 residues in these epitopes were key determinants of TCR specificity. Accordingly, we provide a molecular basis for cross-reactivity towards native insulin and HIP epitopes presented by HLA-DQ8.
Collapse
Affiliation(s)
- Mai T Tran
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jia Jia Lim
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tiing Jen Loh
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| | - Hugh H Reid
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
7
|
Galipeau HJ, Hinterleitner R, Leonard MM, Caminero A. Non-Host Factors Influencing Onset and Severity of Celiac Disease. Gastroenterology 2024; 167:34-50. [PMID: 38286392 PMCID: PMC11653303 DOI: 10.1053/j.gastro.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts; Center for Celiac Research and Treatment, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Henneken LM, Loh TJ, Ciacchi L, Ciacchi L, Lim JJ, Reid HH, Tye-Din JA. Bridging science and accessibility: a tactile journey from gluten through to coeliac disease. Immunol Cell Biol 2024; 102:331-335. [PMID: 38111272 DOI: 10.1111/imcb.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
As part of the Monash Sensory Science Exhibition, our team guided participants through a multisensory journey unraveling coeliac disease development and pathology. Through tactile and sensory exhibits, we showed how benign dietary gluten can be transformed into a harmful entity for the 1 in 70 Australians with this illness. In contrast to the common misconception of coeliac disease as a food allergy, our exhibits revealed its closer association with autoimmune diseases such as type 1 diabetes, involving genetic susceptibility linked to specific human leukocyte antigens, crucial antigen-specific T- and B-cell responses and autoantibody production. Tactile models underscored the severe consequences of the proinflammatory immune response to gluten on patient health and quality of life. This educational event affirmed to us the value and importance of fostering inclusivity in science education.
Collapse
Affiliation(s)
- Lee M Henneken
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Tiing Jen Loh
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Laura Ciacchi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lisa Ciacchi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jia-Jia Lim
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hugh H Reid
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jason A Tye-Din
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| |
Collapse
|
9
|
Afshari A, Rezaee R, Shakeri G. Foodborne pathogens and their association with well-known enteric infections and emerging non-communicable disorders. CABI REVIEWS 2024. [DOI: 10.1079/cabireviews.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Annually, numerous new cases of communicable and non-communicable diseases are diagnosed, and consumption of food/water contaminated with different levels of microbial and chemical agents is responsible for a considerable portion of this burden. Generally, acute foodborne diseases are readily identified, while chronic deleterious effects are often neglected and rarely blamed for health consequences. The present work narrates a journey from consuming foods containing bacteria/bacterial toxins to developing chronic diseases, making humans more susceptible to emerging diseases. We aim to shed light on the chronic effects of foodborne diseases, particularly gastrointestinal disorders (GIDs) and inflammatory bowel diseases (IBDs), which are common chronic symptoms of most foodborne diseases.
Collapse
Affiliation(s)
- Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golshan Shakeri
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- The German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277 Berlin, Germany
| |
Collapse
|
10
|
Cetin M, Pinamonti V, Schmid T, Boschert T, Mellado Fuentes A, Kromer K, Lerner T, Zhang J, Herzig Y, Ehlert C, Hernandez-Hernandez M, Samaras G, Torres CM, Fisch L, Dragan V, Kouwenhoven A, Van Schoubroeck B, Wils H, Van Hove C, Platten M, Green EW, Stevenaert F, Felix NJ, Lindner JM. T-FINDER: A highly sensitive, pan-HLA platform for functional T cell receptor and ligand discovery. SCIENCE ADVANCES 2024; 10:eadk3060. [PMID: 38306432 PMCID: PMC10836725 DOI: 10.1126/sciadv.adk3060] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Effective, unbiased, high-throughput methods to functionally identify both class II and class I HLA-presented T cell epitopes and their cognate T cell receptors (TCRs) are essential for and prerequisite to diagnostic and therapeutic applications, yet remain underdeveloped. Here, we present T-FINDER [T cell Functional Identification and (Neo)-antigen Discovery of Epitopes and Receptors], a system to rapidly deconvolute CD4 and CD8 TCRs and targets physiologically processed and presented by an individual's unmanipulated, complete human leukocyte antigen (HLA) haplotype. Combining a highly sensitive TCR signaling reporter with an antigen processing system to overcome previously undescribed limitations to target expression, T-FINDER both robustly identifies unknown peptide:HLA ligands from antigen libraries and rapidly screens and functionally validates the specificity of large TCR libraries against known or predicted targets. To demonstrate its capabilities, we apply the platform to multiple TCR-based applications, including diffuse midline glioma, celiac disease, and rheumatoid arthritis, providing unique biological insights and showcasing T-FINDER's potency and versatility.
Collapse
Affiliation(s)
- Miray Cetin
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Veronica Pinamonti
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Theresa Schmid
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Tamara Boschert
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmoltz Institute for Translational Oncology (HI-TRON), Heidelberg, Germany
| | | | - Kristina Kromer
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Taga Lerner
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Jing Zhang
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Yonatan Herzig
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), 69118 Heidelberg, Germany
| | | | - Georgios Samaras
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | | | - Laura Fisch
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Valeriia Dragan
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | - Hans Wils
- Janssen Research and Development, Beerse, Belgium
| | | | - Michael Platten
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmoltz Institute for Translational Oncology (HI-TRON), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | - Edward W. Green
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | | | | | - John M. Lindner
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Okura Y, Ikawa-Teranishi Y, Mizoroki A, Takahashi N, Tsushima T, Irie M, Harfuddin Z, Miura-Okuda M, Ito S, Nakamura G, Takesue H, Ozono Y, Nishihara M, Yamada K, Gan SW, Hayasaka A, Ishii S, Wakabayashi T, Muraoka M, Nagaya N, Hino H, Nemoto T, Kuramochi T, Torizawa T, Shimada H, Kitazawa T, Okazaki M, Nezu J, Sollid LM, Igawa T. Characterizations of a neutralizing antibody broadly reactive to multiple gluten peptide:HLA-DQ2.5 complexes in the context of celiac disease. Nat Commun 2023; 14:8502. [PMID: 38135691 PMCID: PMC10746718 DOI: 10.1038/s41467-023-44083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.
Collapse
Affiliation(s)
- Yuu Okura
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Akihiko Mizoroki
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | | | - Machiko Irie
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | | | - Shunsuke Ito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Genki Nakamura
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hiroaki Takesue
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Yui Ozono
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | - Kenta Yamada
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Siok Wan Gan
- Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Akira Hayasaka
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Shinya Ishii
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | - Masaru Muraoka
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Nishiki Nagaya
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hiroshi Hino
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Takayuki Nemoto
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Taichi Kuramochi
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Takuya Torizawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | | | - Makoto Okazaki
- Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Junichi Nezu
- R&D Portfolio Management Department, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Ludvig M Sollid
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan.
| |
Collapse
|
12
|
Crepaldi M, Palo M, Maniero D, Bertin L, Savarino EV, Anderson RP, Zingone F. Emerging Pharmaceutical Therapies to Address the Inadequacy of a Gluten-Free Diet for Celiac Disease. Pharmaceuticals (Basel) 2023; 17:4. [PMID: 38275990 PMCID: PMC10821495 DOI: 10.3390/ph17010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Celiac disease (CeD) is a chronic autoimmune disorder triggered by the ingestion of gluten, affecting around 1% of the global population. It is a multifactorial disease involving both genetics and environmental factors. Nowadays, the only available treatment for CeD is a life-long gluten-free diet (GFD), which can cause a significant burden for patients, since symptoms and mucosal injury can persist despite apparent compliance with a GFD. This could also lead to psychological consequences and affect the quality of life of these patients. Thankfully, recent advances in understanding the pathogenesis of CeD and the availability of various targets have made it feasible to explore pharmaceutical treatments specific to CeD. Recently, the FDA has highlighted the unmet needs of adult patients on a GFD who experience ongoing symptoms attributed to CeD and also show persistent duodenal villous atrophy. This review will outline the limitations of a GFD, describe the targets of potential novel treatment of CeD and provide an overview of the primary clinical trials involving oral and injectable agents for a non-dietary treatment of CeD.
Collapse
Affiliation(s)
- Martina Crepaldi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Michela Palo
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Robert P. Anderson
- Gastroenterology Department, Mackay Base Hospital, Mackay, QLD 4740, Australia
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| |
Collapse
|
13
|
Besser HA, Khosla C. Celiac disease: mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44:949-962. [PMID: 37839914 PMCID: PMC10843302 DOI: 10.1016/j.tips.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Celiac disease (CeD) is a widespread, gluten-induced, autoimmune disorder that lacks any medicinal therapy. Towards the goal of developing non-dietary treatments for CeD, research has focused on elucidating its molecular and cellular etiology. A model of pathogenesis has emerged centered on interactions between three molecular families: specific class II MHC proteins on antigen-presenting cells (APCs), deamidated gluten-derived peptides, and T cell receptors (TCRs) on inflammatory CD4+ T cells. Growing evidence suggests that this pathogenic axis can be pharmacologically targeted to protect patients from some of the adverse effects of dietary gluten. Further studies have revealed the existence of additional host and environmental contributors to disease initiation and tissue damage. This review summarizes our current understanding of CeD pathogenesis and how it is being harnessed for therapeutic design and development.
Collapse
Affiliation(s)
- Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H (Chemistry, Engineering and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Zolnikova O, Dzhakhaya N, Bueverova E, Sedova A, Kurbatova A, Kryuchkova K, Butkova T, Izotov A, Kulikova L, Yurku K, Chekulaev P, Zaborova V. The Contribution of the Intestinal Microbiota to the Celiac Disease Pathogenesis along with the Effectiveness of Probiotic Therapy. Microorganisms 2023; 11:2848. [PMID: 38137992 PMCID: PMC10745538 DOI: 10.3390/microorganisms11122848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The development of many human disorders, including celiac disease (CD), is thought to be influenced by the microbiota of the gastrointestinal tract and its metabolites, according to current research. This study's goal was to provide a concise summary of the information on the contribution of the intestinal microbiota to the CD pathogenesis, which was actively addressed while examining the reported pathogenesis of celiac disease (CD). We assumed that a change in gluten tolerance is formed under the influence of a number of different factors, including genetic predisposition and environmental factors. In related investigations, researchers have paid increasing attention to the study of disturbances in the composition of the intestinal microbiota and its functional activity in CD. A key finding of our review is that the intestinal microbiota has gluten-degrading properties, which, in turn, may have a protective effect on the development of CD. The intestinal microbiota contributes to maintaining the integrity of the intestinal barrier, preventing the formation of a "leaky" intestine. On the contrary, a change in the composition of the microbiota can act as a significant link in the pathogenesis of gluten intolerance and exacerbate the course of the disease. The possibility of modulating the composition of the microbiota by prescribing probiotic preparations is being considered. The effectiveness of the use of probiotics containing Lactobacillus and Bifidobacterium bacteria in experimental and clinical studies as a preventive and therapeutic agent has been documented.
Collapse
Affiliation(s)
- Oxana Zolnikova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Natiya Dzhakhaya
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Elena Bueverova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Alla Sedova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Anastasia Kurbatova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Kira Kryuchkova
- Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Tatyana Butkova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Alexander Izotov
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Ludmila Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kseniya Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia;
| | - Pavel Chekulaev
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Victoria Zaborova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| |
Collapse
|
15
|
Seitz V, Gennermann K, Elezkurtaj S, Groth D, Schaper S, Dröge A, Lachmann N, Berg E, Lenze D, Kühl AA, Husemann C, Kleo K, Horst D, Lennerz V, Hennig S, Hummel M, Schumann M. Specific T-cell receptor beta-rearrangements of gluten-triggered CD8 + T-cells are enriched in celiac disease patients' duodenal mucosa. Clin Immunol 2023; 256:109795. [PMID: 37769786 DOI: 10.1016/j.clim.2023.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder affecting the small intestine with gluten as disease trigger. Infections including Influenza A, increase the CeD risk. While gluten-specific CD4+ T-cells, recognizing HLA-DQ2/DQ8 presented gluten-peptides, initiate and sustain the celiac immune response, CD8+ α/β intraepithelial T-cells elicit mucosal damage. Here, we subjected TCRs from a cohort of 56 CeD patients and 22 controls to an analysis employing 749 published CeD-related TCRβ-rearrangements derived from gluten-specific CD4+ T-cells and gluten-triggered peripheral blood CD8+ T-cells. We show, that in addition to TCRs from gluten-specific CD4+ T-cells, TCRs of gluten-triggered CD8+ T-cells are significantly enriched in CeD duodenal tissue samples. TCRβ-rearrangements of gluten-triggered CD8+ T-cells were even more expanded in patients than TCRs from gluten-specific CD4+ T-cells (p < 0.0002) and highest in refractory CeD. Sequence alignments with TCR-antigen databases suggest that a subgroup of these most likely indirectly gluten-triggered TCRs recognize microbial, viral, and autoantigens.
Collapse
Affiliation(s)
- V Seitz
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; HS Diagnomics GmbH, Berlin, Germany
| | | | - S Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Groth
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - A Dröge
- HS Diagnomics GmbH, Berlin, Germany
| | - N Lachmann
- Centre for Tumor Medicine, Histocompatibility & Immunogenetics Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - E Berg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Lenze
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A A Kühl
- iPATH.Berlin - Core Unit of the Charité Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - C Husemann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Kleo
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - S Hennig
- HS Diagnomics GmbH, Berlin, Germany
| | - M Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schumann
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Boughter CT, Meier-Schellersheim M. Conserved biophysical compatibility among the highly variable germline-encoded regions shapes TCR-MHC interactions. eLife 2023; 12:e90681. [PMID: 37861280 PMCID: PMC10631762 DOI: 10.7554/elife.90681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
T cells are critically important components of the adaptive immune system primarily responsible for identifying and responding to pathogenic challenges. This recognition of pathogens is driven by the interaction between membrane-bound T cell receptors (TCRs) and antigenic peptides presented on major histocompatibility complex (MHC) molecules. The formation of the TCR-peptide-MHC complex (TCR-pMHC) involves interactions among germline-encoded and hypervariable amino acids. Germline-encoded and hypervariable regions can form contacts critical for complex formation, but only interactions between germline-encoded contacts are likely to be shared across many of all the possible productive TCR-pMHC complexes. Despite this, experimental investigation of these interactions have focused on only a small fraction of the possible interaction space. To address this, we analyzed every possible germline-encoded TCR-MHC contact in humans, thereby generating the first comprehensive characterization of these largely antigen-independent interactions. Our computational analysis suggests that germline-encoded TCR-MHC interactions that are conserved at the sequence level are rare due to the high amino acid diversity of the TCR CDR1 and CDR2 loops, and that such conservation is unlikely to dominate the dynamic protein-protein binding interface. Instead, we propose that binding properties such as the docking orientation are defined by regions of biophysical compatibility between these loops and the MHC surface.
Collapse
Affiliation(s)
- Christopher T Boughter
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Martin Meier-Schellersheim
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
17
|
Belei O, Jugănaru I, Basaca DG, Munteanu AI, Mărginean O. The Role of Intestinal Microbiota in Celiac Disease and Further Therapeutic Perspectives. Life (Basel) 2023; 13:2039. [PMID: 37895421 PMCID: PMC10608277 DOI: 10.3390/life13102039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy caused by exposure to gluten and related prolamins in genetically susceptible individuals. It is a complex genetic disorder with multiple contributing genes. Linkage studies have identified several genomic regions that probably contain CD susceptibility genes. The most important genetic factors are HLA-DQ2 and DQ8. Several known environmental triggers promote the onset of CD at any age after gluten introduction in individuals with a genetic background, such as viral infections and intestinal dysbiosis. Recent publications have described the interference of the intestinal microbiome in gluten metabolism, modulation of local immune reactions, and in maintaining normal gut permeability. These results have promoted further lines of research on the benefit of probiotic administration to prevent disease onset or alleviate clinical symptoms along with a gluten-free diet (GFD). The relationship between gut microbiome changes and the onset of CD is incompletely understood, still being the subject of current research. This narrative review analyzes the interplay between environmental factors, intestinal microbiome alterations, and the course of CD. Furthermore, this review sets out to discuss if modulation of intestinal microflora with pre- and probiotics along with a GFD could represent a reliable therapeutic target for celiac patients.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Iulius Jugănaru
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Diana-Georgiana Basaca
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Andrei Ioan Munteanu
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Otilia Mărginean
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
18
|
Gouttefangeas C, Klein R, Maia A. The good and the bad of T cell cross-reactivity: challenges and opportunities for novel therapeutics in autoimmunity and cancer. Front Immunol 2023; 14:1212546. [PMID: 37409132 PMCID: PMC10319254 DOI: 10.3389/fimmu.2023.1212546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
T cells are main actors of the immune system with an essential role in protection against pathogens and cancer. The molecular key event involved in this absolutely central task is the interaction of membrane-bound specific T cell receptors with peptide-MHC complexes which initiates T cell priming, activation and recall, and thus controls a range of downstream functions. While textbooks teach us that the repertoire of mature T cells is highly diverse, it is clear that this diversity cannot possibly cover all potential foreign peptides that might be encountered during life. TCR cross-reactivity, i.e. the ability of a single TCR to recognise different peptides, offers the best solution to this biological challenge. Reports have shown that indeed, TCR cross-reactivity is surprisingly high. Hence, the T cell dilemma is the following: be as specific as possible to target foreign danger and spare self, while being able to react to a large spectrum of body-threatening situations. This has major consequences for both autoimmune diseases and cancer, and significant implications for the development of T cell-based therapies. In this review, we will present essential experimental evidence of T cell cross-reactivity, implications for two opposite immune conditions, i.e. autoimmunity vs cancer, and how this can be differently exploited for immunotherapy approaches. Finally, we will discuss the tools available for predicting cross-reactivity and how improvements in this field might boost translational approaches.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ana Maia
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Lucchese A, Di Stasio D, De Stefano S, Nardone M, Carinci F. Beyond the Gut: A Systematic Review of Oral Manifestations in Celiac Disease. J Clin Med 2023; 12:3874. [PMID: 37373569 DOI: 10.3390/jcm12123874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is a chronic immune-mediated gluten-sensitive enteropathy, affecting about 1% of the population. The most common symptoms include diarrhea, abdominal pain, weight loss, and malabsorption. Extra-intestinal symptoms include oral manifestations. This systematic review aims to catalog and characterize oral manifestations in patients with CD. METHODS a systematic literature review among different search engines using PICOS criteria has been performed. The studies included used the following criteria: tissues and anatomical structures of the oral cavity in humans, published in English and available in full text. Review articles and papers published before 1990 were excluded. RESULTS 209 articles were identified in the initial search. In the end, 33 articles met the selection criteria. The information extracted from the articles was classified based on the type of oral manifestation. Recurrent aphthous stomatitis (34.6%), atrophic glossitis and geographic tongue (15.26%), enamel defects (42.47%), delayed dental eruption (47.34%), xerostomia (38.05%), glossodynia (14.38%), and other manifestations including cheilitis, fissured tongue, periodontal diseases, and oral lichen planus were found in the celiac subjects of the studies analyzed. The quality of articles on the topic should be improved; however, oral manifestations in CD patients are widely described in the literature and could help diagnose celiac disease.
Collapse
Affiliation(s)
- Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Dario Di Stasio
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | - Michele Nardone
- Asst Melegnano Martesana, Regione Lombardia, Adda District, 20077 Vizzolo Predabissi, Italy
| | - Francesco Carinci
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
20
|
Mayassi T, Xavier RJ. Untangling the CD4 T cell response to the microbiota. Proc Natl Acad Sci U S A 2023; 120:e2303351120. [PMID: 37036966 PMCID: PMC10120056 DOI: 10.1073/pnas.2303351120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
|
21
|
Rossi RE, Dispinzieri G, Elvevi A, Massironi S. Interaction between Gut Microbiota and Celiac Disease: From Pathogenesis to Treatment. Cells 2023; 12:cells12060823. [PMID: 36980164 PMCID: PMC10047417 DOI: 10.3390/cells12060823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 03/09/2023] Open
Abstract
Celiac disease (CD) is a common systemic disorder that results from an abnormal response of human immunity to gluten intake, affecting the small intestine. In individuals who carry a genetic susceptibility, CD is triggered by environmental factors, including viral infections and dysbiosis of the gut microbiota. The gut microbiome is essential in controlling the immune system, and recent findings indicate that changes in the gut microbiome may contribute to various chronic immune disorders, such as CD through mechanisms that still require further exploration. Some bacteria exhibit epitopes that mimic gliadin and may enhance an immune response in the host. Other bacteria, including Pseudomonas aeruginosa, may work in conjunction with gluten to trigger and escalate intestinal inflammation. The microbiota may also directly influence antigen development through the production of immunogenic or tolerogenic gluten peptides or directly influence intestinal permeability through the release of zonulin. Finally, the gut microbiome can impact intestinal inflammation by generating proinflammatory or anti-inflammatory cytokines and metabolites. It is crucial to consider the impact of genetic factors (specifically, HLA-DQ haplotypes), perinatal elements such as birth mode, type of infant feeding, and antibiotic and infection exposure on the composition of the early intestinal microbiome. According to the available studies, the gut microbiome alterations associated with CD tend to exhibit a decreased presence of beneficial bacteria, including some anti-inflammatory Bifidobacterium species. However, some controversy remains as some reports have found no significant differences between the gut microbiomes of individuals with and without CD. A better understanding of the gut microbiome’s role in the development of CD would greatly benefit both prevention and treatment efforts, especially in complicated or treatment-resistant cases. Here, we have attempted to summarize the available evidence on the relationship between the gut microbiota and CD, with a particular focus on potential therapeutic targets.
Collapse
Affiliation(s)
- Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Giulia Dispinzieri
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Sara Massironi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-039-2332317; Fax: +39-039-2300129
| |
Collapse
|
22
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
23
|
Pereira MS, Kriegel MA. Evolving concepts of host-pathobiont interactions in autoimmunity. Curr Opin Immunol 2023; 80:102265. [PMID: 36444784 DOI: 10.1016/j.coi.2022.102265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
Autoimmune diseases are complex, multifactorial diseases with a polygenic trait and diverse environmental factors that contribute to triggering and exacerbating each disorder. The human microbiome is increasingly implicated in the multistep pathogenesis of autoimmune diseases. We summarize here the latest developments in the field of how the microbiota interacts with the host on a cellular and molecular level. We review how pathobionts evolve within the gut of autoimmune-prone hosts to translocate to secondary lymphoid tissues. On mucosal sites and in non-gut tissues, pathobionts trigger autoimmune pathways through various mechanisms, including cross-reactivity with autoantigens and secretion of metabolites that alter immune functions. A better understanding of these mechanisms will hasten the development of unconventional therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Márcia S Pereira
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Martin A Kriegel
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany; Section of Rheumatology and Clinical Immunology, Department of Internal Medicine D, University Hospital Münster, 48149 Münster, Germany; Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Fenneman AC, Weidner M, Chen LA, Nieuwdorp M, Blaser MJ. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2023; 20:81-100. [PMID: 36258032 PMCID: PMC9898198 DOI: 10.1038/s41575-022-00685-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Antibiotic use is increasing worldwide. However, the use of antibiotics is clearly associated with changes in gut microbiome composition and function, and perturbations have been identified as potential environmental risk factors for chronic inflammatory disorders of the gastrointestinal tract. In this Review, we examine the association between the use of antibiotics and the onset and development of both type 1 and type 2 diabetes, inflammatory bowel disease, including ulcerative colitis and Crohn's disease, as well as coeliac disease and eosinophilic oesophagitis. We discuss the key findings of epidemiological studies, provide mechanistic insights into the pathways by which the gut microbiota might contribute to these diseases, and assess clinical trials investigating the effects of antibiotics. Such studies indicate that antibiotic exposures, varying in type, timing and dosage, could explain differences in disease risk. There seems to be a critical window in early life in which perturbation of the microbiome has a substantial effect on disease development. Identifying the antibiotic-perturbed gut microbiota as a factor that contributes to the pathophysiology of these inflammatory disorders might stimulate new approaches to prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Aline C Fenneman
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa Weidner
- Department of Paediatrics, Rutgers University, New Brunswick, NJ, USA
| | - Lea Ann Chen
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Max Nieuwdorp
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Martin J Blaser
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA.
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
25
|
Abstract
Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Rasmus Iversen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
26
|
Skoracka K, Hryhorowicz S, Rychter AM, Ratajczak AE, Szymczak-Tomczak A, Zawada A, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Why are western diet and western lifestyle pro-inflammatory risk factors of celiac disease? Front Nutr 2023; 9:1054089. [PMID: 36742009 PMCID: PMC9895111 DOI: 10.3389/fnut.2022.1054089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
The prevalence of celiac disease increased in recent years. In addition to the genetic and immunological factors, it appears that environmental determinants are also involved in the pathophysiology of celiac disease. Gastrointestinal infections impact the development of celiac disease. Current research does not directly confirm the protective effect of natural childbirth and breastfeeding on celiac disease. However, it seems that in genetically predisposed children, the amount of gluten introduced into the diet may have an impact on celiac disease development. Also western lifestyle, including western dietary patterns high in fat, sugar, and gliadin, potentially may increase the risk of celiac disease due to changes in intestinal microbiota, intestinal permeability, or mucosal inflammation. Further research is needed to expand the knowledge of the relationship between environmental factors and the development of celiac disease to define evidence-based preventive interventions against the development of celiac disease. The manuscript summarizes current knowledge on factors predisposing to the development of celiac disease including factors associated with the western lifestyle.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland,*Correspondence: Kinga Skoracka ✉
| | | | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
27
|
Zhang M, Zhang J, Wang C, Yan JK, Yi J, Ning J, Huo XK, Yu ZL, Zhang BJ, Sun CP, Ma XC. Biotransformation of 18β-Glycyrrhetinic Acid by Human Intestinal Fungus Aspergillus niger RG13B1 and the Potential Anti-Inflammatory Mechanism of Its Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15104-15115. [PMID: 36414003 DOI: 10.1021/acs.jafc.2c05455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
18β-Glycyrrhetinic acid (GA) is a triterpenoid possessing an anti-inflammatory activity in vivo, while the low bioavailability limits its application due to its intestinal accumulation. In order to investigate the metabolism of GA in intestinal microbes, it was incubated with human intestinal fungus Aspergillus niger RG13B1, finally leading to the isolation and identification of three new metabolites (1-3) and three known metabolites (4-6) based on 1D and 2D NMR and high-resolution electrospray ionization mass spectroscopy spectra. Metabolite 6 could target myeloid differentiation protein 2 (MD2) to suppress the activation of nuclear factor-kappa B (NF-κB) signaling pathway via inhibiting the nuclear translocation of p65 to downregulate its target proteins and genes in lipopolysaccharide (LPS)-mediated RAW264.7 cells. Molecular dynamics suggested that metabolite 6 interacted with MD2 through the hydrogen bond of amino acid residue Arg90. These findings demonstrated that metabolite 6 could serve as a potential candidate to develop the new inhibitors of MD2.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Juan Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chao Wang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jian-Kun Yan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jing Yi
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Ning
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Zhen-Long Yu
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Bao-Jing Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Cheng-Peng Sun
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiao-Chi Ma
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
28
|
Yang X, Garner LI, Zvyagin IV, Paley MA, Komech EA, Jude KM, Zhao X, Fernandes RA, Hassman LM, Paley GL, Savvides CS, Brackenridge S, Quastel MN, Chudakov DM, Bowness P, Yokoyama WM, McMichael AJ, Gillespie GM, Garcia KC. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature 2022; 612:771-777. [PMID: 36477533 PMCID: PMC10511244 DOI: 10.1038/s41586-022-05501-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Human leucocyte antigen B*27 (HLA-B*27) is strongly associated with inflammatory diseases of the spine and pelvis (for example, ankylosing spondylitis (AS)) and the eye (that is, acute anterior uveitis (AAU))1. How HLA-B*27 facilitates disease remains unknown, but one possible mechanism could involve presentation of pathogenic peptides to CD8+ T cells. Here we isolated orphan T cell receptors (TCRs) expressing a disease-associated public β-chain variable region-complementary-determining region 3β (BV9-CDR3β) motif2-4 from blood and synovial fluid T cells from individuals with AS and from the eye in individuals with AAU. These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. We used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide-MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9-CDR3β TCRs. These findings support the hypothesis that microbial antigens and self-antigens could play a pathogenic role in HLA-B*27-associated disease.
Collapse
Affiliation(s)
- Xinbo Yang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lee I Garner
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ivan V Zvyagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Michael A Paley
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Ekaterina A Komech
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiang Zhao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynn M Hassman
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Grace L Paley
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Christina S Savvides
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Max N Quastel
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dmitriy M Chudakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Muscuoskeletal Science (NDORMS), Botnar Research Center, University of Oxford, Oxford, UK
| | - Wayne M Yokoyama
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| | - Andrew J McMichael
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Geraldine M Gillespie
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
A Comprehensive Review of the Neurological Manifestations of Celiac Disease and Its Treatment. Diseases 2022; 10:diseases10040111. [PMID: 36412605 PMCID: PMC9680226 DOI: 10.3390/diseases10040111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Celiac disease (CD) is a common chronic inflammatory disorder occurring in genetically predisposed individuals secondary to gluten ingestion. CD usually presents with gastrointestinal symptoms such as pain, bloating, flatulence, and constipation or diarrhea. However, individuals can present in a nonclassical manner with only extraintestinal symptoms. The neurological manifestations of CD include ataxia, cognitive impairment, epilepsy, headache, and neuropathy. A lifelong gluten-free diet is the current recommended treatment for CD. This review discusses the relevant neurological manifestations associated with CD and the novel therapeutics. Further research is required to get a better understanding of the underlying pathophysiology of the neurological manifestations associated with CD. Clinicians should keep CD in the differential diagnosis in individuals presenting with neurological dysfunction of unknown cause.
Collapse
|
30
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022; 23:ijms231911748. [PMID: 36233048 PMCID: PMC9569549 DOI: 10.3390/ijms231911748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients’ quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of “biotics” strategies, from probiotics to the less explored “viromebiotics” as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K. Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V. Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I. Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| |
Collapse
|
31
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022. [PMID: 36233048 DOI: 10.3390/ijms231911748.pmid:36233048;pmcid:pmc9569549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients' quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of "biotics" strategies, from probiotics to the less explored "viromebiotics" as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
32
|
Levescot A, Malamut G, Cerf-Bensussan N. Immunopathogenesis and environmental triggers in coeliac disease. Gut 2022; 71:gutjnl-2021-326257. [PMID: 35879049 PMCID: PMC9554150 DOI: 10.1136/gutjnl-2021-326257] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022]
Abstract
Coeliac disease (CD) is a frequent immune enteropathy induced by gluten in genetically predisposed individuals. Its pathogenesis has been extensively studied and CD has emerged as a model disease to decipher how the interplay between environmental and genetic factors can predispose to autoimmunity and promote lymphomagenesis. The keystone event is the activation of a gluten-specific immune response that is driven by molecular interactions between gluten, the indispensable environmental factor, HLA-DQ2/8, the main predisposing genetic factor and transglutaminase 2, the CD-specific autoantigen. The antigluten response is however not sufficient to induce epithelial damage which requires the activation of cytotoxic CD8+ intraepithelial lymphocytes (IEL). In a plausible scenario, cooperation between cytokines released by gluten-specific CD4+ T cells and interleukin-15 produced in excess in the coeliac gut, licenses the autoimmune-like attack of the gut epithelium, likely via sustained activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway in IEL. Demonstration that lymphomas complicating CD arise from IEL that have acquired gain-of-function JAK1 or STAT3 mutations stresses the key role of this pathway and explains how gluten-driven chronic inflammation may promote this rare but most severe complication. If our understanding of CD pathogenesis has considerably progressed, several questions and challenges remain. One unsolved question concerns the considerable variability in disease penetrance, severity and presentation, pointing to the role of additional genetic and environmental factors that remain however uneasy to untangle and hierarchize. A current challenge is to transfer the considerable mechanistic insight gained into CD pathogenesis into benefits for the patients, notably to alleviate the gluten-free diet, a burden for many patients.
Collapse
Affiliation(s)
- Anais Levescot
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| | - Georgia Malamut
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
- Université Paris Cité, APHP Centre, Gastroenterology Department, Hôpital Cochin, Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| |
Collapse
|
33
|
Song Y, Lee S, Bell D, Goudey B, Zhou R. Binding Affinity Calculations of Gluten Peptides to HLA Risk Modifiers: DQ2.5 versus DQ7.5. J Phys Chem B 2022; 126:5151-5160. [PMID: 35796490 DOI: 10.1021/acs.jpcb.2c00962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Free energy perturbation (FEP) calculations can predict relative binding affinities of an antigen and its point mutants to the same human leukocyte antigen (HLA) with high accuracy (e.g., within 1.0 kcal/mol to experiment); however, a more challenging task is to compare binding affinities of wholly different antigens binding to completely different HLAs using FEP. Researchers have used a variety of different FEP schemes to compute and compare absolute binding affinities, with varied success. Here, we propose and assess a unifying scheme to compute the relative binding affinities of different antigens binding to completely different HLAs using absolute binding affinity FEP calculations. We apply our affinity calculation technique to HLA-antigen-T-cell receptor (TCR) systems relevant to celiac disease (CeD) by investigating binding affinity differences between HLA-DQ2.5 (enhanced CeD risk) and HLA-DQ7.5 (CeD protective) in the binary (HLA-gliadin) and ternary (HLA-gliadin-TCR) binding complexes for three gliadin derived epitopes: glia-α1, glia-α2, and glia-ω1. Based on FEP calculations with our carefully designed thermodynamic cycles, we demonstrate that HLA-DQ2.5 has higher binding affinity than HLA-DQ7.5 for gliadin and enhanced binding affinity with a common TCR, agreeing with known results that the HLA-DQ2.5 serotype exhibits increased risk for CeD. Our findings reveal that our proposed absolute binding affinity FEP method is appropriate for predicting HLA binding for disparate antigens with different genotypes. We also discuss atomic-level details of HLA genotypes interacting with gluten peptides and TCRs in regard to the pathogenesis of CeD.
Collapse
Affiliation(s)
- Yi Song
- College of Life Sciences, Department of Physics, and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| | - Sangyun Lee
- Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States
| | - David Bell
- Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Benjamin Goudey
- School of Computing and Information Systems, The University of Melbourne, Melbourne 3010, Australia
| | - Ruhong Zhou
- College of Life Sciences, Department of Physics, and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China.,Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States.,Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
34
|
Paolella G, Sposito S, Romanelli AM, Caputo I. Type 2 Transglutaminase in Coeliac Disease: A Key Player in Pathogenesis, Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23147513. [PMID: 35886862 PMCID: PMC9318967 DOI: 10.3390/ijms23147513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 transglutaminase (TG2) is the main autoantigen in coeliac disease (CD), a widespread inflammatory enteropathy caused by the ingestion of gluten-containing cereals in genetically predisposed individuals. As a consequence, serum antibodies to TG2 represent a very useful marker in CD diagnosis. However, TG2 is also an important player in CD pathogenesis, for its ability to deamidate some Gln residues of gluten peptides, which become more immunogenic in CD intestinal mucosa. Given the importance of TG2 enzymatic activities in CD, several studies have sought to discover specific and potent inhibitors that could be employed in new therapeutical approaches for CD, as alternatives to a lifelong gluten-free diet. In this review, we summarise all the aspects regarding TG2 involvement in CD, including its enzymatic reactions in pathogenesis, the role of anti-TG2 antibodies in disease management, and the exploration of recent strategies to reduce deamidation or to use transamidation to detoxify gluten.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- Correspondence: (G.P.); (I.C.)
| | - Silvia Sposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
| | | | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano, SA, Italy
- Correspondence: (G.P.); (I.C.)
| |
Collapse
|
35
|
Chang D, O’Shea D, Therrien A, Silvester JA. Review article: Becoming and being coeliac-special considerations for childhood, adolescence and beyond. Aliment Pharmacol Ther 2022; 56 Suppl 1:S73-S85. [PMID: 35815825 PMCID: PMC9441244 DOI: 10.1111/apt.16851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/09/2022]
Abstract
Classically considered a disease of early childhood characterised by malabsorption and failure to thrive, coeliac disease is now recognised to arise in genetically susceptible individuals at any age. Although permissive HLA genotypes are the strongest predictor of coeliac disease, they are not sufficient. Several prospective cohort studies enrolling genetically at-risk infants have investigated the role of potential triggers of coeliac disease autoimmunity, such as timing of gluten introduction, viral infections and dietary patterns. Much less is known about triggers of coeliac disease in adulthood. Better understanding of factors leading to coeliac disease may be helpful in the management of those with potential coeliac disease (elevated serum celiac antibodies without villous atrophy in the small intestine), many of whom initiate a gluten-free diet without demonstration of villous atrophy. There are a range of clinical presentations of celiac disease in childhood and patterns of coeliac serology, including fluctuation and spontaneous reversion on a gluten-containing diet, vary. There is a current debate over best strategies to manage adults and children with potential coeliac disease to avoid over-treatment and under-treatment. Childhood and adolescence carry unique issues pertaining to the diagnosis and management of coeliac disease, and include nutrition and growth, rescreening, repeat biopsy, dietary adherence concerns and transition to adult care. In conclusion, while coeliac disease has similar pathogenesis and general clinical manifestations in paediatric and adult populations, diagnostic and management approaches need to adapt to the developmental stages.
Collapse
Affiliation(s)
- Denis Chang
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Delia O’Shea
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Amelie Therrien
- 2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| | - Jocelyn A Silvester
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
36
|
Catassi C, Verdu EF, Bai JC, Lionetti E. Coeliac disease. Lancet 2022; 399:2413-2426. [PMID: 35691302 DOI: 10.1016/s0140-6736(22)00794-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Coeliac disease is an autoimmune disorder that primarily affects the small intestine, and is caused by the ingestion of gluten in genetically susceptible individuals. Prevalence in the general population ranges from 0·5% to 2%, with an average of about 1%. The development of the coeliac enteropathy depends on a complex immune response to gluten proteins, including both adaptive and innate mechanisms. Clinical presentation of coeliac disease is highly variable and includes classical and non-classical gastrointestinal symptoms, extraintestinal manifestations, and subclinical cases. The disease is associated with a risk of complications, such as osteoporosis and intestinal lymphoma. Diagnosis of coeliac disease requires a positive serology (IgA anti-transglutaminase 2 and anti-endomysial antibodies) and villous atrophy on small-intestinal biopsy. Treatment involves a gluten-free diet; however, owing to the high psychosocial burden of such a diet, research into alternative pharmacological treatments is currently very active.
Collapse
Affiliation(s)
- Carlo Catassi
- Department of Specialized Clinical Sciences and Odontostomatology, Polytechnic University of Marche, Ancona, Italy; Celiac Center and Mucosal Immunology and Biology Research, MassGeneral Hospital for Children-Harvard Medical School, Boston, MA, USA.
| | - Elena F Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Julio Cesar Bai
- Department of Medicine, Dr C Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina; Research Institutes, Universidad del Salvador, Buenos Aires, Argentina
| | - Elena Lionetti
- Department of Specialized Clinical Sciences and Odontostomatology, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
37
|
Mohammed AD, Hall N, Chatzistamou I, Jolly A, Kubinak JL. Gluten-free diet exposure prohibits pathobiont expansion and gluten sensitive enteropathy in B cell deficient JH-/- mice. PLoS One 2022; 17:e0264977. [PMID: 35324937 PMCID: PMC8946719 DOI: 10.1371/journal.pone.0264977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
In humans, celiac disease (CeD) is a T-cell-driven gluten-sensitive enteropathy (GSE) localized to the small bowel (duodenum). The presence of antibodies specific for gluten- and self-antigens are commonly used diagnostic biomarkers of CeD and are considered to play a role in GSE pathogenesis. Previously, we have described an apparent T-cell-mediated GSE in CD19-/- mice, which develop weak and abnormal B cell responses. Here, we expand on this observation and use a mouse model of complete B cell deficiency (JH-/- mice), to show that absence of a humoral immune response also promotes development of a GSE. Furthermore, 16S analysis of microbial communities in the small intestine demonstrates that a gluten-free diet suppresses the expansion of anaerobic bacteria in the small intestine and colonization of the small intestine by a specific pathobiont. Finally, we also observe that SI enteropathy in mice fed a gluten-rich diet is positively correlated with the abundance of several microbial peptidase genes, which supports that bacterial metabolism of gluten may be an important driver of GSE in our model. Collectively, results from our experiments indicate that JH-/- mice will be a useful resource to investigators seeking to empirically delineate the contribution of humoral immunity on GSE pathogenesis, and support the hypothesis that humoral immunity promotes tolerance to gluten.
Collapse
Affiliation(s)
- Ahmed Dawood Mohammed
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Nia Hall
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Amy Jolly
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Jason Lee Kubinak
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| |
Collapse
|
38
|
Ciacchi L, Reid HH, Rossjohn J. Structural bases of T cell antigen receptor recognition in celiac disease. Curr Opin Struct Biol 2022; 74:102349. [PMID: 35272251 DOI: 10.1016/j.sbi.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Celiac disease (CeD) is a human leukocyte antigen (HLA)-linked autoimmune-like disorder that is triggered by the ingestion of gluten or related storage proteins. The majority of CeD patients are HLA-DQ2.5+, with the remainder being either HLA-DQ8+ or HLA-DQ2.2+. Structural studies have shown how deamidation of gluten epitopes engenders binding to HLA-DQ2.5/8, which then triggers an aberrant CD4+ T cell response. HLA tetramer studies, combined with structural investigations, have demonstrated that repeated patterns of TCR usage underpins the immune response to some HLADQ2.5/8 restricted gluten epitopes, with distinct TCR motifs representing common landing pads atop the HLA-gluten complexes. Structural studies have provided insight into TCR specificity and cross-reactivity towards gluten epitopes, as well as cross-reactivity to bacterial homologues of gluten epitopes, suggesting that environmental factors may directly play a role in CeD pathogenesis. Collectively, structural immunology-based studies in the CeD axis may lead to new therapeutics/diagnostics to treat CeD, and also serve as an exemplar for other T cell mediated autoimmune diseases.
Collapse
Affiliation(s)
- Laura Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom.
| |
Collapse
|
39
|
Treppiccione L, Luongo D, Maurano F, Rossi M. Next generation strategies to recover immunological tolerance in celiac disease. Int Rev Immunol 2022; 42:237-245. [PMID: 35225129 DOI: 10.1080/08830185.2022.2044807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Celiac disease (CD) is an autoimmune disease that occurs in genetically predisposed individuals following the ingestion of gluten. Its prevalence is rising worldwide. A gluten-free (GF) diet is mandatory for the management of CD. However, several issues persist regarding the nutritional quality of GF products. Importantly, deep knowledge about the pathogenic mechanisms in CD highlights the central role of CD4+ T cell-mediated immunity in CD. Furthermore, intestinal T regulatory cells are functional in CD, but cytokines such as IL-15, produced under inflammatory conditions, hamper their activity. This paves the way for the development of immunomodulatory strategies to the GF diet. From this perspective, microbiological approaches were considered able to modulate the gluten-specific immune response. Interestingly, gliadin peptide-based immunotherapy to abolish the inflammatory CD4+T cell-mediated response has been explored in CD patients. Furthermore, different biotechnological approaches based on the use of chemically/enzymatically modified gluten molecules have been proved effective in different models of CD. However, the choice of the right age in infants to introduce the antigen and thus induce tolerance still remains an important issue to solve. Addressing all these points should help to design an effective intervention strategy for preventing CD.
Collapse
Affiliation(s)
| | | | | | - Mauro Rossi
- Institute of Food Sciences, CNR, Avellino, Italy
| |
Collapse
|
40
|
The double-edged sword of gut bacteria in celiac disease and implications for therapeutic potential. Mucosal Immunol 2022; 15:235-243. [PMID: 35031683 DOI: 10.1038/s41385-021-00479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023]
Abstract
Celiac disease (CeD) is an immune-mediated disease, triggered by gluten ingestion, in genetically susceptible individuals. The gluten-free diet (GFD) is the only current treatment for CeD, but is difficult to follow, has high non-adherence rates, and does not always lead to symptomatic or mucosal remission. Microbially-mediated mechanisms have been proposed to contribute to disease pathogenesis, and clinical studies support an association, but mechanistic insight has been difficult to obtain. Recent advances using translational approaches have provided clues to the mechanisms through which bacteria could contribute to CeD pathogenesis. In this review we discuss these bacterially mediated mechanisms, which include the modulation of pathogenic or protective pathways. Targeting these pathways through microbial therapeutics could provide adjuvant therapies to the GFD.
Collapse
|
41
|
Patel S, Ramnoruth N, Wehr P, Rossjohn J, Reid HH, Campbell K, Nel HJ, Thomas R. Evaluation of a fit-for-purpose assay to monitor antigen-specific functional CD4+ T-cell subpopulations in rheumatoid arthritis using flow cytometry-based peptide-MHC class-II tetramer staining. Clin Exp Immunol 2022; 207:72-83. [PMID: 35020859 PMCID: PMC8802177 DOI: 10.1093/cei/uxab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Antigen-specific T cells can serve as a response biomarker in non-clinical or clinical immunotherapy studies in autoimmune disease. There are protocols with optimized multimer staining methods to detect peptide (p)MHCII+ CD4+ T cells, and some qualified and validated protocols for pMHCI+ CD8+ T cells. However, no protocol is fully or partially qualified to enumerate and characterize antigen-specific pMHCII+ CD4+ T cells from patient samples. Implementing such an assay requires a desired level of specificity and precision, in terms of assay repeatability and reproducibility. In transgenic type II collagen (CII)-immunized HLA-DR1/DR4 humanized mouse models of collagen-induced arthritis (CIA), CII259-273-specific T cells dominantly expand. Therefore antigen-specific T cells recognizing this epitope presented by rheumatoid arthritis (RA)-associated risk HLA-DR allomorphs are of interest to understand disease progression and responses to immunotherapy in RA patients. Using HLA-DRB1∗04:01 or ∗01:01-collagen type II (CII)259-273 tetramers, we evaluated parameters influencing precision and reproducibility of an optimized flow cytometry-based method for antigen-specific CD4+ T cells and eight specific subpopulations with and without tetramer positivity. We evaluated specificity, precision, and reproducibility for research environments and non-regulated laboratories. The assay has excellent overall precision with %CV<25% for intra-assay repeatability, inter-analyst precision, and inter-assay reproducibility. The precision of the assay correlated negatively with the cell viability after thawing, indicating that post-thaw viability is a critical parameter for reproducibility. This assay is suitable for longitudinal analysis of treatment response and disease activity outcome in RA patients, and adaptable for translational or immunotherapy clinical trial settings.
Collapse
Affiliation(s)
- Swati Patel
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nishta Ramnoruth
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pascale Wehr
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Hugh H Reid
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Kim Campbell
- Janssen Research & Development, LLC, Spring House, PA, USA
- Janssen Research & Development, LLC, La Jolla, CA, USA
| | - Hendrik J Nel
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Ciacchi L, Farenc C, Dahal-Koirala S, Petersen J, Sollid LM, Reid HH, Rossjohn J. Structural basis of T cell receptor specificity and cross-reactivity of two HLA-DQ2.5-restricted gluten epitopes in celiac disease. J Biol Chem 2022; 298:101619. [PMID: 35065967 PMCID: PMC8857473 DOI: 10.1016/j.jbc.2022.101619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Celiac disease is a T cell-mediated chronic inflammatory condition often characterized by human leukocyte antigen (HLA)-DQ2.5 molecules presenting gluten epitopes derived from wheat, barley, and rye. Although some T cells exhibit cross-reactivity toward distinct gluten epitopes, the structural basis underpinning such cross-reactivity is unclear. Here, we investigated the T-cell receptor specificity and cross-reactivity of two immunodominant wheat gluten epitopes, DQ2.5-glia-α1a (PFPQPELPY) and DQ2.5-glia-ω1 (PFPQPEQPF). We show by surface plasmon resonance that a T-cell receptor alpha variable (TRAV) 4+-T-cell receptor beta variable (TRBV) 29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1 with similar affinity, whereas a TRAV4- (TRAV9-2+) TCR recognized HLA-DQ2.5-glia-ω1 only. We further determined the crystal structures of the TRAV4+-TRBV29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1, as well as the structure of an epitope-specific TRAV9-2+-TRBV7-3+ TCR-HLA-DQ2.5-glia-ω1 complex. We found that position 7 (p7) of the DQ2.5-glia-α1a and DQ2.5-glia-ω1 epitopes made very limited contacts with the TRAV4+ TCR, thereby explaining the TCR cross-reactivity across these two epitopes. In contrast, within the TRAV9-2+ TCR-HLA-DQ2.5-glia-ω1 ternary complex, the p7-Gln was situated in an electrostatic pocket formed by the hypervariable CDR3β loop of the TCR and Arg70β from HLA-DQ2.5, a polar network which would not be supported by the p7-Leu residue of DQ2.5-glia-α1a. In conclusion, we provide additional insights into the molecular determinants of TCR specificity and cross-reactivity to two closely-related epitopes in celiac disease.
Collapse
Affiliation(s)
- Laura Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shiva Dahal-Koirala
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway; K. G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ludvig M Sollid
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway; K. G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
43
|
Singh A, Kaur H, Midha V, Sood A. Microorganisms in the Pathogenesis and Management of Celiac Disease (CeD). ROLE OF MICROORGANISMS IN PATHOGENESIS AND MANAGEMENT OF AUTOIMMUNE DISEASES 2022:287-307. [DOI: 10.1007/978-981-19-4800-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Yoosuf S, Therrien A, Leffler DA. Non-dietary therapies for celiac disease. COELIAC DISEASE AND GLUTEN-RELATED DISORDERS 2022:111-160. [DOI: 10.1016/b978-0-12-821571-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Anderson RP. Emergence of an adaptive immune paradigm to explain celiac disease: a perspective on new evidence and implications for future interventions and diagnosis. Expert Rev Clin Immunol 2021; 18:75-91. [PMID: 34767744 DOI: 10.1080/1744666x.2021.2006636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Recent patient studies have shown that gluten-free diet is less effective in treating celiac disease than previously believed, and additionally patients remain vulnerable to gluten-induced acute symptoms and systemic cytokine release. Safe and effective pharmacological adjuncts to gluten-free diet are in preclinical and clinical development. Clear understanding of the pathogenesis of celiac disease is critical for drug target identification, establishing efficacy endpoints and to develop non-invasive biomarkers suitable to monitor and potentially diagnose celiac disease. AREAS COVERED The role and clinical effects of CD4+ T cells directed against deamidated gluten in the context of an "adaptive immune paradigm" are reviewed. Alternative hypotheses of gluten toxicity are discussed and contrasted. In the context of recent patient studies, implications of the adaptive immune paradigm for future strategies to prevent, diagnose, and treat celiac disease are outlined. EXPERT OPINION Effective therapeutics for celiac disease are likely to be approved and necessitate a variety of new clinical instruments and tests to stratify patient need, monitor remission, and confirm diagnosis in uncertain cases. Sensitive assessments of CD4+ T cells specific for deamidated gluten are likely to play a central role in clinical management, and to facilitate research and pharmaceutical development.
Collapse
|
46
|
Olivares M, Flor-Duro A, Sanz Y. Manipulation of the gut microbiome in gluten-intolerance. Curr Opin Clin Nutr Metab Care 2021; 24:536-542. [PMID: 34622826 DOI: 10.1097/mco.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Gluten is a complex mixture of highly immunogenic glutamine- and proline-rich proteins found in some cereals. In celiac disease (CeD), gluten triggers an autoimmune response due to its interaction with the human leukocyte antigen heterodimers that confer the genetic risk. The involvement of gluten in other disorders has also been investigated, but its role beyond CeD is still unclear. Here, we review the most recent evidence of the involvement of gluten in diseases and the opportunities of manipulating the gut microbiota to treat or prevent gluten-related conditions. RECENT FINDINGS Most of the new studies have been conducted in the context of CeD, where important evidence has been gained on associations between the gut microbiota, genotype, and environmental factors such as breastfeeding and antibiotics. The role of the microbiota has been investigated in several prospective, observational and interventional studies with probiotics, which together showed that the gut microbiota could be targeted to ameliorate and aid in the prevention of CeD development. SUMMARY Several studies have evidenced how genetic and environmental factors influence the gut microbiome with consequences in CeD. These findings could inspire the development of microbiota modulation strategies to support the prevention or treatment of CeD.
Collapse
Affiliation(s)
- Marta Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | | |
Collapse
|
47
|
Verdu EF, Schuppan D. Co-factors, Microbes, and Immunogenetics in Celiac Disease to Guide Novel Approaches for Diagnosis and Treatment. Gastroenterology 2021; 161:1395-1411.e4. [PMID: 34416277 DOI: 10.1053/j.gastro.2021.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Celiac disease (CeD) is a frequent immune-mediated disease that affects not only the small intestine but also many extraintestinal sites. The role of gluten proteins as dietary triggers, HLA-DQ2 or -DQ8 as major necessary genetic predisposition, and tissue transglutaminase (TG2) as mechanistically involved autoantigen, are unique features of CeD. Recent research implicates many cofactors working in synergism with these key triggers, including the intestinal microbiota and their metabolites, nongluten dietary triggers, intestinal barrier defects, novel immune cell phenotypes, and mediators and cytokines. In addition, apart from HLA-DQ2 and -DQ8, multiple and complex predisposing genetic factors and interactions have been defined, most of which overlap with predispositions in other, usually autoimmune, diseases that are linked to CeD. The resultant better understanding of CeD pathogenesis, and its manifold manifestations has already paved the way for novel therapeutic approaches beyond the lifelong strict gluten-free diet, which poses a burden to patients and often does not lead to complete mucosal healing. Thus, supported by improved mouse models for CeD and in vitro organoid cultures, several targeted therapies are in phase 2-3 clinical studies, such as highly effective gluten-degrading oral enzymes, inhibition of TG2, cytokine therapies, induction of tolerance to gluten ingestion, along with adjunctive and preventive approaches using beneficial probiotics and micronutrients. These developments are supported by novel noninvasive markers of CeD severity and activity that may be used as companion diagnostics, allow easy-to perform and reliable monitoring of patients, and finally support personalized therapy for CeD.
Collapse
Affiliation(s)
- Elena F Verdu
- Division of Gastroenterology, Department of Internal Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Detlef Schuppan
- Institute of Translational Immunology,Research Center for Immune Therapy and Celiac Center, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
48
|
Ranking of immunodominant epitopes in celiac disease: Identification of reliable parameters for the safety assessment of innovative food proteins. Food Chem Toxicol 2021; 157:112584. [PMID: 34582965 DOI: 10.1016/j.fct.2021.112584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
A ranking of gluten T-cell epitopes triggering celiac disease (CD) for its potential application in the safety assessment of innovative food proteins is developed. This ranking takes into account clinical relevance and information derived from key steps involved in the CD pathogenic pathway: enzymatic digestion, epitope binding to HLA-DQ receptors of the antigen-presenting cells and activation of pro-inflammatory CD4 T-cells, which recognizes the HLA-DQ-epitope complex and initiates the inflammatory response. In silico chymotrypsin digestion was the most discriminatory tool for the ranking of gluten T-cell epitopes among all digestive enzymes studied, classifying 81% and 60% of epitopes binding HLA-DQ2.5 and HLA-DQ8 molecules, respectively, with a high risk. A positive relationship between the number of prolines and the risk of gluten T-cell epitopes was identified. HLA-binding data analysis revealed the additional role played by the flanking regions of the 9-mer epitopes whereas the integration of T-cell activation data into the ranking strategy was incomplete because it was difficult to combine results from different studies. The overall ranking proposed in decreasing order of immunological relevance was: α-gliadins > ω-gliadins > hordeins > γ-gliadins ∼ avenins ∼ secalins > glutenins. This novel approach can be considered as a first step to reshape the risk assessment strategy of innovative proteins and their potential to trigger CD.
Collapse
|
49
|
Milighetti M, Shawe-Taylor J, Chain B. Predicting T Cell Receptor Antigen Specificity From Structural Features Derived From Homology Models of Receptor-Peptide-Major Histocompatibility Complexes. Front Physiol 2021; 12:730908. [PMID: 34566692 PMCID: PMC8456106 DOI: 10.3389/fphys.2021.730908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The physical interaction between the T cell receptor (TCR) and its cognate antigen causes T cells to activate and participate in the immune response. Understanding this physical interaction is important in predicting TCR binding to a target epitope, as well as potential cross-reactivity. Here, we propose a way of collecting informative features of the binding interface from homology models of T cell receptor-peptide-major histocompatibility complex (TCR-pMHC) complexes. The information collected from these structures is sufficient to discriminate binding from non-binding TCR-pMHC pairs in multiple independent datasets. The classifier is limited by the number of crystal structures available for the homology modelling and by the size of the training set. However, the classifier shows comparable performance to sequence-based classifiers requiring much larger training sets.
Collapse
Affiliation(s)
- Martina Milighetti
- Division of Infection and Immunity, University College London, London, United Kingdom
- Cancer Institute, University College London, London, United Kingdom
| | - John Shawe-Taylor
- Department of Computer Science, University College London, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
50
|
Vazquez DS, Schilbert HM, Dodero VI. Molecular and Structural Parallels between Gluten Pathogenic Peptides and Bacterial-Derived Proteins by Bioinformatics Analysis. Int J Mol Sci 2021; 22:9278. [PMID: 34502187 PMCID: PMC8430993 DOI: 10.3390/ijms22179278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Gluten-related disorders (GRDs) are a group of diseases that involve the activation of the immune system triggered by the ingestion of gluten, with a worldwide prevalence of 5%. Among them, Celiac disease (CeD) is a T-cell-mediated autoimmune disease causing a plethora of symptoms from diarrhea and malabsorption to lymphoma. Even though GRDs have been intensively studied, the environmental triggers promoting the diverse reactions to gluten proteins in susceptible individuals remain elusive. It has been proposed that pathogens could act as disease-causing environmental triggers of CeD by molecular mimicry mechanisms. Additionally, it could also be possible that unrecognized molecular, structural, and physical parallels between gluten and pathogens have a relevant role. Herein, we report sequence, structural and physical similarities of the two most relevant gluten peptides, the 33-mer and p31-43 gliadin peptides, with bacterial pathogens using bioinformatics going beyond the molecular mimicry hypothesis. First, a stringent BLASTp search using the two gliadin peptides identified high sequence similarity regions within pathogen-derived proteins, e.g., extracellular proteins from Streptococcus pneumoniae and Granulicatella sp. Second, molecular dynamics calculations of an updated α-2-gliadin model revealed close spatial localization and solvent-exposure of the 33-mer and p31-43 peptide, which was compared with the pathogen-related proteins by homology models and localization predictors. We found putative functions of the identified pathogen-derived sequence by identifying T-cell epitopes and SH3/WW-binding domains. Finally, shape and size parallels between the pathogens and the superstructures of gliadin peptides gave rise to novel hypotheses about activation of innate immunity and dysbiosis. Based on our structural findings and the similarities with the bacterial pathogens, evidence emerges that these pathologically relevant gluten-derived peptides could behave as non-replicating pathogens opening new research questions in the interface of innate immunity, microbiome, and food research.
Collapse
Affiliation(s)
- Diego S. Vazquez
- Grupo de Biología Estructural y Biotecnología (GBEyB-IMBICE), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma C1033AAJ, Buenos Aires, Argentina
| | - Hanna M. Schilbert
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany;
| | - Veronica I. Dodero
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany;
| |
Collapse
|