1
|
Yao K, Zhuang Q, Zhang Q, Zhou J, Yiu CK, Zhang J, Ye D, Yang Y, Wong KW, Chow L, Huang T, Qiu Y, Jia S, Li Z, Zhao G, Zhang H, Zhu J, Huang X, Li J, Gao Y, Wang H, Li J, Huang Y, Li D, Zhang B, Wang J, Chen Z, Guo G, Zheng Z, Yu X. A fully integrated breathable haptic textile. SCIENCE ADVANCES 2024; 10:eadq9575. [PMID: 39423259 PMCID: PMC11488569 DOI: 10.1126/sciadv.adq9575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Wearable haptics serve as an enhanced media to connect humans and VR/robots. The inevitable sweating issue in all wearables creates a bottleneck for wearable haptics, as the sweat/moisture accumulated in the skin/device interface can substantially affect feedback accuracy, comfortability, and create hygienic problems. Nowadays, wearable haptics typically gain performance at the cost of sacrificing the breathability, comfort, and biocompatibility. Here, we developed a fully integrated breathable haptic textile (FIBHT) to solve these trade-off issues, where the FIBHT exhibits high-level integration of 128 pixels over the palm, great stretchability of 400%, and superior permeability of over 657 g/m2/day (moisture) and 40 mm/s (air). It is a stand-alone haptic system totally composed of stretchable, breathable, and bioadhesive materials, which empowers it with precise, sweating/movement-insensitive and dynamic feedback, and makes FIBHT powerful for virtual touching in broad scenarios.
Collapse
Affiliation(s)
- Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Qiuna Zhuang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Jianpeng Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Denglin Ye
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yawen Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Ki Wan Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Lung Chow
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Tao Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuze Qiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shengxin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Zhiyuan Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Guangyao Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hehua Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Huiming Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Jiachen Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Guihuan Guo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Zijan Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Smart Energy (RI-RISE), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Soft Electronics Research Centre, PolyU-Wenzhou Technology and Innovation Research Institute, Wenzhou, Zhejiang Province, China
- The Hong Kong Polytechnic University-Daya Bay Technology and Innovation Research Institute, Huizhou, Guangdong Province, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
- Institute of Digital Medicine, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Zimmermann J, Farooqi AR, van Rienen U. Electrical stimulation for cartilage tissue engineering - A critical review from an engineer's perspective. Heliyon 2024; 10:e38112. [PMID: 39416819 PMCID: PMC11481755 DOI: 10.1016/j.heliyon.2024.e38112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Cartilage has a limited intrinsic healing capacity. Hence, cartilage degradation and lesions pose a huge clinical challenge, particularly in an ageing society. Osteoarthritis impacts a significant number of the population and requires the development of repair and tissue engineering methods for hyaline articular cartilage. In this context, electrical stimulation has been investigated for more than 50 years already. Yet, no well-established clinical therapy to treat osteoarthritis by means of electrical stimulation exists. We argue that one reason is the lack of replicability of electrical stimulation devices from a technical perspective together with lacking hypotheses of the biophysical mechanism. Hence, first, the electrical stimulation studies reported in the context of cartilage tissue engineering with a special focus on technical details are summarized. Then, an experimental and numerical approach is discussed to make the electrical stimulation experiments replicable. Finally, biophysical hypotheses have been reviewed on the interaction of electric fields and cells that are relevant for cartilage tissue engineering. With that, the aim is to inspire future research to enable clinical electrical stimulation therapies to fight osteoarthritis.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
| | - Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Electronic Engineering, Faculty of Engineering, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, 18051 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
3
|
Ehlich J, Vašíček Č, Dobeš J, Ruggiero A, Vejvodová M, Głowacki ED. Shattering the Water Window: Comprehensive Mapping of Faradaic Reactions on Bioelectronics Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53567-53576. [PMID: 39351783 PMCID: PMC11472339 DOI: 10.1021/acsami.4c12268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces. We analyze archetypical platinum-iridium (PtIr), the most commonly used electrode material in biomedical implants. By providing a detailed guide to these reactions and the factors that influence them, we offer a valuable resource for researchers seeking to suppress or exploit faradaic reactions in various electrode materials. We employed a combination of electrochemical techniques and direct quantification methods, including amperometric, potentiometric, and spectrophotometric assays, to measure O2, H2, pH, H2O2, Cl2/OCl-, and soluble platinum and iridium ions. We compared phosphate-buffered saline (PBS) with an unbuffered electrolyte and complex cell culture media containing proteins. Our results reveal that the "water window"─the potential range without significant water electrolysis─varies depending on the electrolyte used. In the culture medium that is rich with redox-active species, a window of potentials where no faradaic process occurs essentially does not exist. Under cathodic polarizations, significant pH increases (alkalization) were observed, while anodic water splitting competes with other processes in media, preventing prevalent acidification. We quantified the oxygen reduction reaction and accumulation of H2O2 as a byproduct. PtIr efficiently deoxygenates the electrolyte under low cathodic polarizations, generating local hypoxia. Under anodic polarizations, chloride oxidation competes with oxygen evolution, producing relatively high and cytotoxic concentrations of hypochlorite (OCl-) under certain conditions. These oxidative processes occur alongside PtIr dissolution through the formation of soluble salts. Our findings indicate that the conventional understanding of the water window is an oversimplification. Important faradaic reactions, such as oxygen reduction and chloride oxidation, occur within or near the edges of the water window. Furthermore, the definition of the water window significantly depends on the electrolyte composition, with PBS yielding different results compared with culture media.
Collapse
Affiliation(s)
- Jiří Ehlich
- Bioelectronics
Materials and Devices Laboratory, Central European Institute of Technology
CEITEC, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Čeněk Vašíček
- Bioelectronics
Materials and Devices Laboratory, Central European Institute of Technology
CEITEC, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Jan Dobeš
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlářská 2, Brno 611 37, Czech Republic
| | - Amedeo Ruggiero
- Bioelectronics
Materials and Devices Laboratory, Central European Institute of Technology
CEITEC, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Markéta Vejvodová
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlářská 2, Brno 611 37, Czech Republic
| | - Eric Daniel Głowacki
- Bioelectronics
Materials and Devices Laboratory, Central European Institute of Technology
CEITEC, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| |
Collapse
|
4
|
Seufert L, Elmahmoudy M, Theunis C, Lienemann S, Li Y, Mohammadi M, Boda U, Carnicer-Lombarte A, Kroon R, Persson POÅ, Rahmanudin A, Donahue MJ, Farnebo S, Tybrandt K. Stretchable Tissue-Like Gold Nanowire Composites with Long-Term Stability for Neural Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402214. [PMID: 38944890 DOI: 10.1002/smll.202402214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Soft and stretchable nanocomposites can match the mechanical properties of neural tissue, thereby minimizing foreign body reactions to provide optimal stimulation and recording specificity. Soft materials for neural interfaces should simultaneously fulfill a wide range of requirements, including low Young's modulus (<<1 MPa), stretchability (≥30%), high conductivity (>> 1000 S cm-1), biocompatibility, and chronic stability (>> 1 year). Current nanocomposites do not fulfill the above requirements, in particular not the combination of softness and high conductivity. Here, this challenge is addressed by developing a scalable and robust synthesis route based on polymeric reducing agents for smooth, high-aspect ratio gold nanowires (AuNWs) of controllable dimensions with excellent biocompatibility. AuNW-silicone composites show outstanding performance with nerve-like softness (250 kPa), high conductivity (16 000 S cm-1), and reversible stretchability. Soft multielectrode cuffs based on the composite achieve selective functional stimulation, recordings of sensory stimuli in rat sciatic nerves, and show an accelerated lifetime stability of >3 years. The scalable synthesis method provides a chemically stable alternative to the widely used AgNWs, thereby enabling new applications within electronics, biomedical devices, and electrochemistry.
Collapse
Affiliation(s)
- Laura Seufert
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Mohammed Elmahmoudy
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Charlotte Theunis
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Samuel Lienemann
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Yuyang Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Ulrika Boda
- RISE Research Institutes of Sweden, Digital Systems, Smart Hardware, Printed, Bio- and Organic Electronics, Södra Grytsgatan 4, Norrköping, SE-602 33, Sweden
| | | | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Per O Å Persson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 581 83, Sweden
| | - Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Mary J Donahue
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Simon Farnebo
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, 581 85, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 581 85, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| |
Collapse
|
5
|
Zhang Y, Li L, He B. Influences of solvents and monomer concentrations on the electrochemical performance and structural properties of electrodeposited PEDOT films: a comparative study in water and acetonitrile. RSC Adv 2024; 14:30045-30054. [PMID: 39309656 PMCID: PMC11413736 DOI: 10.1039/d4ra03543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) has emerged as a promising coating for neural electrodes especially through convenient electrodeposition methods. To investigate the influences of solvents and EDOT monomer concentrations on the electrochemical performance and structural characteristics of PEDOT, both aqueous and acetonitrile solutions were employed with varying monomer concentrations during deposition. The prepared PEDOT films were examined for the surface morphology, electrochemical performance, and chemical structures. The results showed that an increase in EDOT concentration in either solvent led to PEDOT films with improved charge storage capacity and reduced impedance magnitude. At equivalent monomer concentrations, PEDOT films generated in acetonitrile exhibited a rougher surface texture and better electrochemical performance. Notably, the growth rate of charge storage capacity of PEDOT prepared in acetonitrile relative to the deposited charge density was 2.5 times that of PEDOT prepared in water. These findings could help to the optimization of PEDOT coating preparation to enhance electrode performance.
Collapse
Affiliation(s)
- Yang Zhang
- School of Mechanical Engineering and Automation, Fuzhou University Fuzhou 350108 China
| | - Linze Li
- School of Mechanical Engineering and Automation, Fuzhou University Fuzhou 350108 China
| | - Bingwei He
- School of Mechanical Engineering and Automation, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
6
|
Yang M, Wang L, Liu W, Li W, Huang Y, Jin Q, Zhang L, Jiang Y, Luo Z. Highly-stable, injectable, conductive hydrogel for chronic neuromodulation. Nat Commun 2024; 15:7993. [PMID: 39266583 PMCID: PMC11393409 DOI: 10.1038/s41467-024-52418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Electroceuticals, through the selective modulation of peripheral nerves near target organs, are promising for treating refractory diseases. However, the small sizes and the delicate nature of these nerves present challenges in simplifying the fixation and stabilizing the electrical-coupling interface for neural electrodes. Herein, we construct a robust neural interface for fine peripheral nerves using an injectable bio-adhesive hydrogel bioelectronics. By incorporating a multifunctional molecular regulator during network formation, we optimize the injectability and conductivity of the hydrogel through fine-tuning reaction kinetics and multi-scale interactions within the conductive network. Meanwhile, the mechanical and electrical stability of the hydrogel is achieved without compromising its injectability. Minimal tissue damage along with low and stable impedance of the injectable neural interface enables chronic vagus neuromodulation for myocardial infarction therapy in the male rat model. Our highly-stable, injectable, conductive hydrogel bioelectronics are readily available to target challenging anatomical locations, paving the way for future precision bioelectronic medicine.
Collapse
Affiliation(s)
- Ming Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenliang Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenlong Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yewei Huang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
7
|
Niederhoffer T, Vanhoestenberghe A, Lancashire HT. Extending the understanding of Shannon's safe stimulation limit for platinum electrodes: biphasic charge-balanced pulse trains in unbuffered saline at pH = 1 to pH = 12. J Neural Eng 2024; 21:056007. [PMID: 38579740 DOI: 10.1088/1741-2552/ad3b6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Objective.In neural electrical stimulation, safe stimulation guidelines are essential to deliver efficient treatment while avoiding neural damage and electrode degradation. The widely used Shannon's limit,k, gives conditions on the stimulation parameters to avoid neural damage, however, underlying damage mechanisms are not fully understood. Moreover, the translation from bench testing toin vivoexperiments still presents some challenges, including the increased polarisation observed, which may influence charge-injection mechanisms. In this work, we studied the influence on damage mechanisms of two electrolyte parameters that are differentin vivocompared to usual bench tests: solution pH and electrolyte gelation.Approach.The potential of a platinum macroelectrode was monitored in a three-electrode setup during current-controlled biphasic charge-balanced cathodic-first pulse trains. Maximum anodic and cathodic potential excursions during pulse trains were projected on cyclic voltammograms to infer possible electrochemical reactions.Main results.In unbuffered saline of pH ranging from 1 to 12, the maximum anodic potential was systematically located in the oxide formation region, while the cathodic potential was located the molecular oxygen and oxide reduction region whenkapproached Shannon's damage limit, independent of solution pH. The results support the hypothesis that Shannon's limit corresponds to the beginning of platinum dissolution following repeated cycles of platinum oxidation and reduction, for which the cathodic excursion is a key tipping point. Despite similar potential excursions between solution and gel electrolytes, we found a joint influence of pH and gelation on the cathodic potential alone, while we observed no effect on the anodic potential. We hypothesise that gelation creates a positive feedback loop exacerbating the effects of pH ; however, the extent of that influence needs to be examined further.Significance.This work supports the hypothesis of charge injection mechanisms associated with stimulation-induced damage at platinum electrodes. The validity of a major hypothesis explaining stimulation-induced damage was tested and supported on a range of electrolytes representing potential electrode environments, calling for further characterisation of platinum dissolution during electrical stimulation in various testing conditions.
Collapse
Affiliation(s)
- Thomas Niederhoffer
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anne Vanhoestenberghe
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Henry T Lancashire
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
8
|
Tang C, Han Z, Liu Z, Li W, Shen J, Zhang K, Mai S, Li J, Sun X, Chen X, Li H, Wang L, Liang J, Liao M, Feng J, Wang C, Wang J, Ye L, Yang Y, Xie S, Shi X, Zeng K, Zhang X, Cheng X, Zhang K, Guo Y, Yang H, Xu Y, Tong Q, Yu H, Chen P, Peng H, Sun X. A Soft-Fiber Bioelectronic Device with Axon-Like Architecture Enables Reliable Neural Recording In Vivo under Vigorous Activities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407874. [PMID: 39054698 DOI: 10.1002/adma.202407874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Implantable neural devices that record neurons in various states, including static states, light activities such as walking, and vigorous activities such as running, offer opportunities for understanding brain functions and dysfunctions. However, recording neurons under vigorous activities remains a long-standing challenge because it leads to intense brain deformation. Thus, three key requirements are needed simultaneously for neural devices, that is, low modulus, low specific interfacial impedance, and high electrical conductivity, to realize stable device/brain interfaces and high-quality transmission of neural signals. However, they always contradict each other in current material strategies. Here, a soft fiber neural device capable of stably tracking individual neurons in the deep brain of medium-sized animals under vigorous activity is reported. Inspired by the axon architecture, this fiber neural device is constructed with a conductive gel fiber possessing a network-in-liquid structure using conjugated polymers and liquid matrices and then insulated with soft fluorine rubber. This strategy reconciles the contradictions and simultaneously confers the fiber neural device with low modulus (300 kPa), low specific impedance (579 kΩ µm2), and high electrical conductivity (32 700 S m-1) - ≈1-3 times higher than hydrogels. Stable single-unit spike tracking in running cats, which promises new opportunities for neuroscience is demonstrated.
Collapse
Affiliation(s)
- Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Zhengqi Han
- Vision Research Laboratory, School of Life Sciences, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200438, China
| | - Ziwei Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Wenjun Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Jiahao Shen
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
| | - Kailin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Shuting Mai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Jinyan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xiao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xingfei Chen
- Vision Research Laboratory, School of Life Sciences, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200438, China
| | - Hongjian Li
- Vision Research Laboratory, School of Life Sciences, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200438, China
| | - Liyuan Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Jiaheng Liang
- Vision Research Laboratory, School of Life Sciences, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200438, China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Chuang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Jiajia Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Lei Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yiqing Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Songlin Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kaiwen Zeng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xuefeng Zhang
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xiangran Cheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Han Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Qi Tong
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
| | - Hongbo Yu
- Vision Research Laboratory, School of Life Sciences, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200438, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
9
|
Gryszel M, Jakešová M, Vu XT, Ingebrandt S, Głowacki ED. Elevating Platinum to Volumetric Capacitance: High Surface Area Electrodes through Reactive Pt Sputtering. Adv Healthc Mater 2024; 13:e2302400. [PMID: 38758352 DOI: 10.1002/adhm.202302400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Platinum is the most widespread electrode material used for implantable biomedical and neuroelectronic devices, motivating exploring ways to improve its performance and understand its fundamental properties. Using reactive magnetron sputtering, PtOx is prepared, which upon partial reduction yields a porous thin-film form of platinum with favorable properties, notably record-low impedance values outcompeting other reports for platinum-based electrodes. It is established that its high electrochemical capacitance scales with thickness, in the way of volumetric capacitor materials like IrOx and poly(3,4-ethylenedioxythiophene), PEDOT. Unlike these two well-known analogs, however, it is found that PtOx capacitance is not caused by reversible pseudofaradaic reactions but rather due to high surface area. In contrast to IrOx, PtOx is not a reversible valence-change oxide, but rather a porous form of platinum. The findings show that this oxygen-containing form of Pt can place Pt electrodes on a level competitive with IrOx and PEDOT. Due to its relatively low cost and ease of preparation, PtOx can be a good choice for microfabricated bioelectronic devices.
Collapse
Affiliation(s)
- Maciej Gryszel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, Norrköping, 60174, Sweden
| | - Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Xuan Thang Vu
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074, Aachen, Germany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074, Aachen, Germany
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| |
Collapse
|
10
|
Lewis CM, Boehler C, Liljemalm R, Fries P, Stieglitz T, Asplund M. Recording Quality Is Systematically Related to Electrode Impedance. Adv Healthc Mater 2024; 13:e2303401. [PMID: 38354063 DOI: 10.1002/adhm.202303401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Extracellular recordings with planar microelectrodes are the gold standard technique for recording the fast action potentials of neurons in the intact brain. The introduction of microfabrication techniques has revolutionized the in vivo recording of neuronal activity and introduced high-density, multi-electrode arrays that increase the spatial resolution of recordings and the number of neurons that can be simultaneously recorded. Despite these innovations, there is still debate about the ideal electrical transfer characteristics of extracellular electrodes. This uncertainty is partly due to the lack of systematic studies comparing electrodes with different characteristics, particularly for chronically implanted arrays over extended time periods. Here a high-density, flexible, and thin-film array is fabricated and tested, containing four distinct electrode types differing in surface material and surface topology and, thus, impedance. It is found that recording quality is strongly related to electrode impedance with signal amplitude and unit yield negatively correlated to impedance. Electrode impedances are stable for the duration of the experiment (up to 12 weeks) and recording quality does not deteriorate. The findings support the expectation from the theory that recording quality will increase as impedance decreases.
Collapse
Affiliation(s)
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Rickard Liljemalm
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528, Frankfurt, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN, Nijmegen, Netherland
| | - Thomas Stieglitz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, Gothenburg, 41258, Sweden
| |
Collapse
|
11
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
12
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Jiang Z, Zhu M, Chen X. Interfacing Neuron-Motor Pathways with Stretchable and Biocompatible Electrode Arrays. Acc Chem Res 2024; 57:2255-2266. [PMID: 39023124 DOI: 10.1021/acs.accounts.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ConspectusIn the field of neuroscience, understanding the complex interactions within the intricate neuron-motor system depends crucially on the use of high-density, physiological multiple electrode arrays (MEAs). In the neuron-motor system, the transmission of biological signals primarily occurs through electrical and chemical signaling. Taking neurons for instance, when a neuron receives external stimuli, it generates an electrical signal known as the action potential. This action potential propagates along the neuron's axon and is transmitted to other neurons via synapses. At the synapse, chemical signals (neurotransmitters) are released, allowing the electrical signal to traverse the synaptic gap and influence the next neuron. MEAs can provide unparalleled insights into neural signal patterns when interfacing with the nerve systems through their excellent spatiotemporal resolution. However, the inherent differences in mechanical and chemical properties between these artificial devices and biological tissues can lead to serious complications after chronic implantation, such as body rejection, infection, tissue damage, or device malfunction. A promising strategy to enhance MEAs' biocompatibility involves minimizing their thickness, which aligns their bending stiffness with that of surrounding tissues, thereby minimizing damage over time. However, this solution has its limits; the resulting ultrathin devices, typically based on plastic films, lack the necessary stretchability, restricting their use to organs that neither stretch nor grow.For practical deployments, devices must exhibit certain levels of stretchability (ranging from 20 to 70%), tailored to the specific requirements of the target organs. In this Account, we outline recent advancements in developing stretchable MEAs that balance stretchability with sufficient electrical conductivity for effective use in physiological research, acting as sensors and stimulators. By concentrating on the neuron-motor pathways, we summarize how the stretchable MEAs meet various application needs and examine their effectiveness. We distinguish between on-skin and implantable uses, given their vastly different requirements. Within each application scope, we highlight cutting-edge technologies, evaluating their strengths and shortcomings. Recognizing that most current devices rely on elastic films with a Young's modulus value between ∼0.5 and 5 MPa, we delve into the potential for softer MEAs, particularly those using multifunctional hydrogels for an optimizing tissue-device interface and address the challenges in adapting such hydrogel-based MEAs for chronic implants. Additionally, transitioning soft MEAs from lab to fab involves connecting them to a rigid adapter and external machinery, highlighting a critical challenge at the soft-rigid interface due to strain concentration, especially in chronic studies subject to unforeseen mechanical strains. We discuss innovative solutions to this integration challenge, being optimistic that the development of durable, biocompatible, stretchable MEAs will significantly advance neuroscience and related fields.
Collapse
Affiliation(s)
- Zhi Jiang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Integrated Circuits, Harbin Institute of Technology (Shen Zhen), Shenzhen 518055, China
| | - Ming Zhu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
14
|
Tang C, Zhang K, Yu S, Guan H, Cao M, Zhang K, Pan Y, Zhang S, Sun X, Peng H. All-Metal Flexible Fiber by Continuously Assembling Nanowires for High Electrical Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405000. [PMID: 39152934 DOI: 10.1002/smll.202405000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 08/19/2024]
Abstract
Fiber electronics booms as a new important field but is currently limited by the challenge of finding both highly flexible and conductive fiber electrodes. Here, all-metal fibers based on nanowires are discovered. Silver nanowires are continuously assembled into robust fibers by salt-induced aggregation and then firmly stabilized by plasmonic welding. The nanowire network structures provide them both high flexibility with moduli at the level of MPa and conductivities up to 106 S m-1. They also show excellent electrochemical properties such as low impedance and high electrochemically active surface area. Their stable chronic single-neuron recording is further demonstrated with good biocompatibility in vivo. These new fiber materials may provide more opportunities for the future development of fiber electronics.
Collapse
Affiliation(s)
- Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kailin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Sihui Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Hang Guan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Mingjie Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - You Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Songlin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
15
|
Zhang Y, Hu Y, Xie B, Yang G, Yin Z, Wu H. Hoffmeister Effect Optimized Hydrogel Electrodes with Enhanced Electrical and Mechanical Properties for Nerve Conduction Studies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0453. [PMID: 39145116 PMCID: PMC11322598 DOI: 10.34133/research.0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Flexible epidermal electrodes hold substantial promise in realizing human electrophysiological information collections. Conventional electrodes exhibit certain limitations, including the requirement of skin pretreatment, reliance on external object-assisted fixation, and a propensity of dehydration, which severely hinder their applications in medical diagnosis. To tackle those issues, we developed a hydrogel electrode with both transcutaneous stimulation and neural signal acquisition functions. The electrode consists of a composite conductive layer (CCL) and adhesive conductive hydrogel (ACH). The CCL is designed as a laminated structure with high conductivity and charge storage capacity (CSC). Based on the optimization of Hoffmeister effect, the ACH demonstrates excellent electrical (resistivity of 3.56 Ω·m), mechanical (tensile limit of 1,650%), and adhesion properties (peeling energy of 0.28 J). The utilization of ACH as electrode/skin interface can reduce skin contact impedance and noise interference and enhance the CSC and charge injection capacity of electrodes. As a proof of concept, peripheral nerve conduction studies were performed on human volunteers to evaluate the as-fabricated hydrogel electrodes. Compared with the commercial electrodes, our hydrogel electrodes achieved better signal continuity and lower distortion, higher signal-to-noise ratio (~35 dB), and lower stimulation voltages (up to 27% lower), which can improve the safety and comfort of nerve conduction studies.
Collapse
Affiliation(s)
| | | | | | | | - Zhouping Yin
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
16
|
Gou S, Yang S, Cheng Y, Yang S, Liu H, Li P, Du Z. Applications of 2D Nanomaterials in Neural Interface. Int J Mol Sci 2024; 25:8615. [PMID: 39201302 PMCID: PMC11354839 DOI: 10.3390/ijms25168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neural interfaces are crucial conduits between neural tissues and external devices, enabling the recording and modulation of neural activity. However, with increasing demand, simple neural interfaces are no longer adequate to meet the requirements for precision, functionality, and safety. There are three main challenges in fabricating advanced neural interfaces: sensitivity, heat management, and biocompatibility. The electrical, chemical, and optical properties of 2D nanomaterials enhance the sensitivity of various types of neural interfaces, while the newly developed interfaces do not exhibit adverse reactions in terms of heat management and biocompatibility. Additionally, 2D nanomaterials can further improve the functionality of these interfaces, including magnetic resonance imaging (MRI) compatibility, stretchability, and drug delivery. In this review, we examine the recent applications of 2D nanomaterials in neural interfaces, focusing on their contributions to enhancing performance and functionality. Finally, we summarize the advantages and disadvantages of these nanomaterials, analyze the importance of biocompatibility testing for 2D nanomaterials, and propose that improving and developing composite material structures to enhance interface performance will continue to lead the forefront of this field.
Collapse
Affiliation(s)
- Shuchun Gou
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Siyi Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yuhang Cheng
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shu Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Hongli Liu
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou 510642, China;
| | - Peixuan Li
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zhanhong Du
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
17
|
Hu R, Yao B, Geng Y, Zhou S, Li M, Zhong W, Sun F, Zhao H, Wang J, Ge J, Wei R, Liu T, Jin J, Xu J, Fu J. High-Fidelity Bioelectrodes with Bidirectional Ion-Electron Transduction Capability by Integrating Multiple Charge-Transfer Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403111. [PMID: 38934213 DOI: 10.1002/adma.202403111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multifunctionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics.
Collapse
Affiliation(s)
- Rongjian Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Bowen Yao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yuhao Geng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuyao Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haojie Zhao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jingyu Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Jiahao Ge
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Ran Wei
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Tong Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajie Jin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
18
|
Vara H, Hernández-Labrado GR, Alves-Sampaio A, Collazos-Castro JE. Stability of Conducting Polymer-Coated Carbon Microfibers for Long-Term Electrical Stimulation of Injured Neural Tissue. Polymers (Basel) 2024; 16:2093. [PMID: 39065410 PMCID: PMC11280860 DOI: 10.3390/polym16142093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Electroactive microfiber-based scaffolds aid neural tissue repair. Carbon microfibers (CMFs) coated with the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)] (PEDOT:PSS-co-MA) provide efficient support and guidance to regrowing axons across spinal cord lesions in rodents and pigs. We investigated the electrical and structural performance of PEDOT:PSS-co-MA-coated carbon MFs (PCMFs) for long-term, biphasic electrical stimulation (ES). Chronopotentiometry and electrochemical impedance spectroscopy (EIS) allowed the characterization of charge transfer in PCMFs during ES in vitro, and morphological changes were assessed by scanning electron microscopy (SEM). PCMFs that were 4 mm long withstood two-million-biphasic pulses without reaching cytotoxic voltages, with a 6 mm length producing optimal results. Although EIS and SEM unveiled some polymer deterioration in the 6 mm PCMFs, no significant changes in voltage excursions appeared. For the preliminary testing of the electrical performance of PCMFs in vivo, we used 12 mm long, 20-microfiber assemblies interconnected by metallic microwires. PCMFs-assemblies were implanted in two spinal cord-injured pigs and submitted to ES for 10 days. A cobalt-alloy interconnected assembly showed safe voltages for about 1.5 million-pulses and was electrically functional at 1-month post-implantation, suggesting its suitability for sub-chronic ES, as likely required for spinal cord repair. However, improving polymer adhesion to the carbon substrate is still needed to use PCMFs for prolonged ES.
Collapse
Affiliation(s)
- Hugo Vara
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda S-N, 45071 Toledo, Spain; (H.V.); (A.A.-S.)
| | - Gabriel Raúl Hernández-Labrado
- Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla-La Mancha, Avda. Carlos III, 45071 Toledo, Spain;
| | - Alexandra Alves-Sampaio
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda S-N, 45071 Toledo, Spain; (H.V.); (A.A.-S.)
| | - Jorge E. Collazos-Castro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda S-N, 45071 Toledo, Spain; (H.V.); (A.A.-S.)
| |
Collapse
|
19
|
Yu M, Tang X, Yang S, Li Z, Chen C, Xie S. Surface Functionalized Titanium Nitride Electrode for CMOS Compatible Bioelectronic Devices. ChemMedChem 2024; 19:e202400189. [PMID: 38632104 DOI: 10.1002/cmdc.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The development of bioelectronic devices is heading toward high throughput and high resolution. Yet, most electrode materials utilized in electrical biosensing are not compatible with the manufacturing techniques of semiconductor chips, which somehow hinders the integration and miniaturization of these devices. Titanium nitride (TiN) is a durable and economical material that is widely used in CMOS-based integrated circuits, bioelectronic systems, electrocatalytic systems, etc. Considering different application scenarios, new and efficient methods are required to functionalize TiN surface. In this study, a surface functionalization approach by covalent grafting of an organic thin film containing hydroxyl groups on TiN surface via electroreduction of diazonium salt 4-(2-hydroxyethyl)benzenediazonium was presented. Cyclic voltammetry (CV) procedures were carried out at the potential ranges of -0.8 V~0.5 V (vs Ag/AgCl) with varying numbers of potential cycles (i. e., 5, 25, and 50 cycles) in order to study the thickness of modification layer. Then, the electrochemical property, surface morphology, and chemical structures of the sample before and after modifications were investigated via multiple characterization techniques, such as CV, atomic force microscopy (AFM), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), etc., thereby confirming the successful grafting of hydroxyl groups onto the TiN surface. The experiments on DNA synthesis aimed to explore the potential of modified TiN electrode as a novel platform for DNA data storage applications and the corresponding proof-of-principle was accomplished by the process of coupling Cy3-phosphoramidite. Finally, the experiments were successfully reproduced on the randomly selected sites of the modified TiN microarray chips demonstrating the potential of technical protocol to extend applications in future bioelectronic devices, such as bio-sensing, high-throughput DNA synthesis, and molecular manipulation.
Collapse
Affiliation(s)
- Meng Yu
- School of Microelectronics, Shanghai University, Chengzhong Road 20, Shanghai, 201800, China
- Institute of Medical Chips, Ruijin Hospital, S, hanghai Jiao Tong University School of Medicine, Ruijin No.2 Road 197, Shanghai, 200025, China
- Shanghai Industrial μTechnology Research Institute, Chengbei 235, Shanghai, 201800, China
| | - Xiaohui Tang
- Institute of Medical Chips, Ruijin Hospital, S, hanghai Jiao Tong University School of Medicine, Ruijin No.2 Road 197, Shanghai, 200025, China
- Shanghai Industrial μTechnology Research Institute, Chengbei 235, Shanghai, 201800, China
| | - Shijia Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai, 200050, China
| | - Zhenhua Li
- Institute of Medical Chips, Ruijin Hospital, S, hanghai Jiao Tong University School of Medicine, Ruijin No.2 Road 197, Shanghai, 200025, China
- Shanghai Industrial μTechnology Research Institute, Chengbei 235, Shanghai, 201800, China
| | - Chang Chen
- School of Microelectronics, Shanghai University, Chengzhong Road 20, Shanghai, 201800, China
- Institute of Medical Chips, Ruijin Hospital, S, hanghai Jiao Tong University School of Medicine, Ruijin No.2 Road 197, Shanghai, 200025, China
- Shanghai Industrial μTechnology Research Institute, Chengbei 235, Shanghai, 201800, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai, 200050, China
| | - Sijia Xie
- School of Microelectronics, Shanghai University, Chengzhong Road 20, Shanghai, 201800, China
- Institute of Medical Chips, Ruijin Hospital, S, hanghai Jiao Tong University School of Medicine, Ruijin No.2 Road 197, Shanghai, 200025, China
- Shanghai Industrial μTechnology Research Institute, Chengbei 235, Shanghai, 201800, China
| |
Collapse
|
20
|
Ranke D, Lee I, Gershanok SA, Jo S, Trotto E, Wang Y, Balakrishnan G, Cohen-Karni T. Multifunctional Nanomaterials for Advancing Neural Interfaces: Recording, Stimulation, and Beyond. Acc Chem Res 2024; 57:1803-1814. [PMID: 38859612 PMCID: PMC11223263 DOI: 10.1021/acs.accounts.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
ConspectusNeurotechnology has seen dramatic improvements in the last three decades. The major focus in the field has been to design electrical communication platforms with high spatial resolution, stability, and translatability for understanding and affecting neural pathways. The deployment of nanomaterials in bioelectronics has enhanced the capabilities of conventional approaches employing microelectrode arrays (MEAs) for electrical interfaces, allowing the construction of miniaturized, high-performance neuroelectronics (Garg, R.; et al. ACS Appl. Nano Mater. 2023, 6, 8495). While these advancements in the electrical neuronal interface have revolutionized neurotechnology both in scale and breadth, an in-depth understanding of neurons' interactions is challenging due to the complexity of the environments where the cells and tissues are laid. The activity of large, three-dimensional neuronal systems has proven difficult to accurately monitor and modulate, and chemical cell-cell communication is often completely neglected. Recent breakthroughs in nanotechnology have provided opportunities to use new nonelectric modes of communication with neurons and to significantly enhance electrical signal interface capabilities. The enhanced electrochemical activity and optical activity of nanomaterials owing to their nonbulk electronic properties and surface nanostructuring have seen extensive utilization. Nanomaterials' enhanced optical activity enables remote neural state modulation, whereas the defect-rich surfaces provide an enormous number of available electrocatalytic sites for neurochemical detection and electrochemical modulation of cell microenvironments through Faradaic processes. Such unique properties can allow multimodal neural interrogation toward generating closed-loop interfaces with access to more complete neural state descriptors. In this Account, we will review recent advances and our efforts spearheaded toward utilizing nanostructured electrodes for enhanced bidirectional interfaces with neurons, the application of unique hybrid nanomaterials for remote nongenetic optical stimulation of neurons, tunable nanomaterials for highly sensitive and selective neurotransmitter detection, and the utilization of nanomaterials as electrocatalysts toward electrochemically modulating cellular activity. We highlight applications of these technologies across cell types through nanomaterial engineering with a focus on multifunctional graphene nanostructures applied though several modes of neural modulation but also an exploration of broad material classes for maximizing the potency of closed-loop bioelectronics.
Collapse
Affiliation(s)
- Daniel Ranke
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States of America
| | - Inkyu Lee
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States of America
| | - Samuel A. Gershanok
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States of America
| | - Seonghan Jo
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States of America
| | - Emily Trotto
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States of America
| | - Yingqiao Wang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States of America
| | - Gaurav Balakrishnan
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States of America
| | - Tzahi Cohen-Karni
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States of America
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States of America
| |
Collapse
|
21
|
Yi H, Kim H, Kim KR, Kim JH, Kim J, Lee H, Grewal SS, Freeman WD, Yeo WH. Flexible low-profile external ventricular drain catheter for real-time brain monitoring. Biosens Bioelectron 2024; 255:116267. [PMID: 38581838 DOI: 10.1016/j.bios.2024.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
External ventricular drainage is one of the most common neurosurgical procedures in the world for acute hydrocephalus, which must be performed carefully by a neurosurgeon. Although various neuromonitoring external ventricular drain (EVD) catheters have been utilized, they still suffer from rigidity and bulkiness to mitigate post-EVD placement trauma. Here, we introduce a flexible and low-profile smart EVD catheter using a class of technologies with sensitive electrical materials, seamless integration, and flexible mechanics, which serves as a highly soft and minimally invasive device to monitor electrical brain signals. This device reliably captures biopotentials in real time while exhibiting remarkable flexibility and reliability. The seamless integration of its sensory system promises a minimally invasive EVD placement on brain tissue. This work validates the device's distinct characteristics and performances through in vitro experiments and computational analysis. Collectively, this device's exceptional patient- and user-friendly attributes highlight its potential as one of the most practical EVD catheters.
Collapse
Affiliation(s)
- Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hodam Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ju Hyeon Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Department of Mechanical Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Juhee Kim
- Department of Mechanical System Engineering, Korea Military Academy, Seoul, 01805, Republic of Korea
| | - Hyunjae Lee
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - William D Freeman
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Neurology, Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA.
| |
Collapse
|
22
|
Matter L, Abdullaeva OS, Shaner S, Leal J, Asplund M. Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306244. [PMID: 38460180 PMCID: PMC11251568 DOI: 10.1002/advs.202306244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS). Poly(3,4-ethylenedioxythiophene) (PEDOT) based electrodes are emerging as suitable candidates for DCS to improve biocompatibility compared to metals. This work addresses whether PEDOT electrodes can be tailored to favor reversible biocompatible charge transfer. To this end, different PEDOT formulations and their respective back electrodes are studied using cyclic voltammetry, chronopotentiometry, and direct measurements of H2O2 and O2. This combination of electrochemical methods sheds light on the time dynamics of reversible and irreversible charge transfer and the relationship between capacitance and ROS generation. The results presented here show that although all electrode materials investigated generate ROS, the onset of ROS can be delayed by increasing the electrode's capacitance via PEDOT coating, which has implications for future bioelectronic devices that allow longer reversibly driven pulse durations during DCS.
Collapse
Affiliation(s)
- Lukas Matter
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
| | - Oliya S. Abdullaeva
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| | - Sebastian Shaner
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - José Leal
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - Maria Asplund
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| |
Collapse
|
23
|
Duan W, Robles UA, Poole‐Warren L, Esrafilzadeh D. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306275. [PMID: 38115740 PMCID: PMC11251570 DOI: 10.1002/advs.202306275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.
Collapse
Affiliation(s)
- Wenlu Duan
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
| | | | - Laura Poole‐Warren
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringUNSWSydneyNSW2052Australia
| | | |
Collapse
|
24
|
Tzaneva B, Mateev V, Stefanov B, Aleksandrova M, Iliev I. Electrochemical Investigation of PEDOT:PSS/Graphene Aging in Artificial Sweat. Polymers (Basel) 2024; 16:1706. [PMID: 38932055 PMCID: PMC11207453 DOI: 10.3390/polym16121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Herein, we investigate the potential application of a composite consisting of PEDOT:PSS/Graphene, deposited via spray coating on a flexible substrate, as an autonomous conducting film for applications in wearable biosensor devices. The stability of PEDOT:PSS/Graphene is assessed through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and linear polarization (LP) during exposure to an artificial sweat electrolyte, while scanning electron microscopy (SEM) was employed to investigate the morphological changes in the layer following these. The results indicate that the layers exhibit predominant capacitive behavior in the potential range of -0.3 to 0.7 V vs. Ag/AgCl, with a cut-off frequency of approximately 1 kHz and retain 90% capacity after 500 cycles. Aging under exposure to air for 6 months leads only to a minor increase in impedance, demonstrating potential for storage under non-demanding conditions. However, prolonged exposure (>48 h) to the artificial sweat causes significant degradation, resulting in an impedance increase of over 1 order of magnitude. The observed degradation raises important considerations for the long-term viability of these layers in wearable biosensor applications, prompting the need for additional protective measures during prolonged use. These findings contribute to ongoing efforts to enhance the stability and reliability of conducting materials for biosensors in health care and biotechnology applications.
Collapse
Affiliation(s)
- Boriana Tzaneva
- Department of Chemistry, Faculty of Electrical Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Valentin Mateev
- Department of Electrical Apparatus, Faculty of Electronic Engineering, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Bozhidar Stefanov
- Department of Chemistry, Faculty of Electrical Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Mariya Aleksandrova
- Department of Microelectronics, Faculty of Electronic Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Ivo Iliev
- Department of Electronics, Faculty of Electronic Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| |
Collapse
|
25
|
Zhang Y, Chen Y, Contera S, Compton RG. Double Electrode Experiments Reveal the Processes Occurring at PEDOT-Coated Neural Electrode Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29439-29452. [PMID: 38775098 PMCID: PMC11163409 DOI: 10.1021/acsami.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Neural electrodes have recently been developed with surface modifications of conductive polymers, in particular poly(3,4-ethylenedioxythiophene) (PEDOT), and extensively studied for their roles in recording and stimulation, aiming to improve their biocompatibility. In this work, the implications for the design of practical neural sensors are clarified, and systematic procedures for their preparation are reported. In particular, this study introduces the use of in vitro double electrode experiments to mimic the responses of neural electrodes with a focus on signal-recording electrodes modified with PEDOT. Specifically, potential steps on one unmodified electrode in an array are used to identify the responses for PEDOT doped with different anions and compared with that of a bare platinum (Pt) electrode. The response is shown to be related to the rearrangement of ions in solution near the detector electrode resulting from the potential step, with a current transient seen at the detector electrode. A rapid response for PEDOT doped with chloride (ca. 0.04 s) ions was observed and attributed to the fast movement of chloride ions in and out of the polymer film. In contrast, PEDOT doped with poly(styrenesulfonate) (PSS) responds much slower (ca. 2.2 s), and the essential immobility of polyanion constrains the direction of current flow.
Collapse
Affiliation(s)
- Yuanmin Zhang
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, Great Britain
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, Great Britain
| | - Yuqi Chen
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, Great Britain
| | - Sonia Contera
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, Great Britain
| | - Richard G. Compton
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, Great Britain
| |
Collapse
|
26
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
27
|
Orlemann C, Boehler C, Kooijmans RN, Li B, Asplund M, Roelfsema PR. Flexible Polymer Electrodes for Stable Prosthetic Visual Perception in Mice. Adv Healthc Mater 2024; 13:e2304169. [PMID: 38324245 PMCID: PMC11468866 DOI: 10.1002/adhm.202304169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Brain interfaces that can stimulate neurons, cause minimal damage, and work for a long time will be central for future neuroprosthetics. Here, the long-term performance of highly flexible, thin polyimide shanks with several small (<15 µm) electrodes during electrical microstimulation of the visual cortex, is reported. The electrodes exhibit a remarkable stability when several billions of electrical pulses are applied in vitro. When the devices are implanted in the primary visual cortex (area V1) of mice and the animals are trained to detect electrical microstimulation, it is found that the perceptual thresholds are 2-20 microamperes (µA), which is far below the maximal currents that the electrodes can withstand. The long-term functionality of the devices in vivo is excellent, with stable performance for up to more than a year and little damage to the brain tissue. These results demonstrate the potential of thin floating electrodes for the long-term restoration of lost sensory functions.
Collapse
Affiliation(s)
- Corinne Orlemann
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of Freiburg79110FreiburgGermany
| | - Roxana N. Kooijmans
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
- Institute for Neuroscience and Medicine (INM‐1)Forschungszentrum Jülich52428JülichGermany
| | - Bingshuo Li
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of Freiburg79110FreiburgGermany
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburg412 96Sweden
| | - Pieter R. Roelfsema
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
- Laboratory of Visual Brain TherapySorbonne UniversitéInstitut National de la Santé et de la Recherche MédicaleCentre National de la Recherche ScientifiqueInstitut de la VisionParisF‐75012France
- Department of Integrative NeurophysiologyCentre for Neurogenomics and Cognitive ResearchVU UniversityAmsterdam1081 HVThe Netherlands
- Department of NeurosurgeryAmsterdam University Medical CenterUniversity of AmsterdamAmsterdam1105 AZThe Netherlands
| |
Collapse
|
28
|
Cheng W, Zheng Z, Li X, Zhu Y, Zeng S, Zhao D, Yu H. A General Synthesis Method for Patterning PEDOT toward Wearable Electronics and Bioelectronics. RESEARCH (WASHINGTON, D.C.) 2024; 7:0383. [PMID: 38779489 PMCID: PMC11109514 DOI: 10.34133/research.0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
The conductive polymer poly-3,4-ethylenedioxythiophene (PEDOT), recognized for its superior electrical conductivity and biocompatibility, has become an attractive material for developing wearable technologies and bioelectronics. Nevertheless, the complexities associated with PEDOT's patterning synthesis on diverse substrates persist despite recent technological progress. In this study, we introduce a novel deep eutectic solvent (DES)-induced vapor phase polymerization technique, facilitating nonrestrictive patterning polymerization of PEDOT across diverse substrates. By controlling the quantity of DES adsorbed per unit area on the substrates, PEDOT can be effectively patternized on cellulose, wood, plastic, glass, and even hydrogels. The resultant patterned PEDOT exhibits numerous benefits, such as an impressive electronic conductivity of 282 S·m-1, a high specific surface area of 5.29 m2·g-1, and an extensive electrochemical stability range from -1.4 to 2.4 V in a phosphate-buffered saline. To underscore the practicality and diverse applications of this DES-induced approach, we present multiple examples emphasizing its integration into self-supporting flexible electrodes, neuroelectrode interfaces, and precision circuit repair methodologies.
Collapse
Affiliation(s)
- Wanke Cheng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Zihao Zheng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Xiaona Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Ying Zhu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Suqing Zeng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Dawei Zhao
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education,
Shenyang University of Chemical Technology, Shenyang, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| |
Collapse
|
29
|
Yu J, Wan R, Tian F, Cao J, Wang W, Liu Q, Yang H, Liu J, Liu X, Lin T, Xu J, Lu B. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308778. [PMID: 38063822 DOI: 10.1002/smll.202308778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Indexed: 05/12/2024]
Abstract
Electrical bioadhesive interface (EBI), especially conducting polymer hydrogel (CPH)-based EBI, exhibits promising potential applications in various fields, including biomedical devices, neural interfaces, and wearable devices. However, current fabrication techniques of CPH-based EBI mostly focus on conventional methods such as direct casting, injection, and molding, which remains a lingering challenge for further pushing them toward customized practical bioelectronic applications and commercialization. Herein, 3D printable high-performance CPH-based EBI precursor inks are developed through composite engineering of PEDOT:PSS and adhesive ionic macromolecular dopants within tough hydrogel matrices (PVA). Such inks allow the facile fabrication of high-resolution and programmable patterned EBI through 3D printing. Upon successive freeze-thawing, the as-printed PEDOT:PSS-based EBI simultaneously exhibits high conductivity of 1.2 S m-1, low interfacial impedance of 20 Ω, high stretchability of 349%, superior toughness of 109 kJ m-3, and satisfactory adhesion to various materials. Enabled by these advantageous properties and excellent printability, the facile and continuous manufacturing of EBI-based skin electrodes is further demonstrated via 3D printing, and the fabricated electrodes display excellent ECG and EMG signal recording capability superior to commercial products. This work may provide a new avenue for rational design and fabrication of next-generation EBI for soft bioelectronics, further advancing seamless human-machine integration.
Collapse
Affiliation(s)
- Jiawen Yu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Rongtai Wan
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Fajuan Tian
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jie Cao
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Wen Wang
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Qi Liu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Hanjun Yang
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jingcheng Liu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Ximei Liu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Tao Lin
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, P. R. China
| | - Jingkun Xu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Baoyang Lu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| |
Collapse
|
30
|
Fatkullin M, Menzelintsev V, Lipovka A, Dogadina E, Plotnikov E, Brazovskiy K, Li S, Ma L, Cheng C, Porokhova E, Khlusov I, Qiu L, Rodriguez RD, Sheremet E. Smart Graphene Textiles for Biopotential Monitoring: Laser-Tailored Electrochemical Property Enhancement. ACS Sens 2024; 9:1809-1819. [PMID: 38587867 DOI: 10.1021/acssensors.3c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
While most of the research in graphene-based materials seeks high electroactive surface area and ion intercalation, here, we show an alternative electrochemical behavior that leverages graphene's potential in biosensing. We report a novel approach to fabricate graphene/polymer nanocomposites with near-record conductivity levels of 45 Ω sq-1 and enhanced biocompatibility. This is realized by laser processing of graphene oxide in a sandwich structure with a thin (100 μm) polyethylene terephthalate film on a textile substrate. Such hybrid materials exhibit high conductivity, low polarization, and stability. In addition, the nanocomposites are highly biocompatible, as evidenced by their low cytotoxicity and good skin adhesion. These results demonstrate the potential of graphene/polymer nanocomposites for smart clothing applications.
Collapse
Affiliation(s)
- Maxim Fatkullin
- Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | | | - Anna Lipovka
- Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | | | | | | | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ekaterina Porokhova
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Moskovskii Trakt 2, Tomsk 634050, Russia
| | - Igor Khlusov
- Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Moskovskii Trakt 2, Tomsk 634050, Russia
| | - Li Qiu
- Sichuan University, Chengdu 610041, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | | |
Collapse
|
31
|
Conde SV, Sacramento JF, Zinno C, Mazzoni A, Micera S, Guarino MP. Bioelectronic modulation of carotid sinus nerve to treat type 2 diabetes: current knowledge and future perspectives. Front Neurosci 2024; 18:1378473. [PMID: 38646610 PMCID: PMC11026613 DOI: 10.3389/fnins.2024.1378473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectronic medicine are an emerging class of treatments aiming to modulate body nervous activity to correct pathological conditions and restore health. Recently, it was shown that the high frequency electrical neuromodulation of the carotid sinus nerve (CSN), a small branch of the glossopharyngeal nerve that connects the carotid body (CB) to the brain, restores metabolic function in type 2 diabetes (T2D) animal models highlighting its potential as a new therapeutic modality to treat metabolic diseases in humans. In this manuscript, we review the current knowledge supporting the use of neuromodulation of the CSN to treat T2D and discuss the future perspectives for its clinical application. Firstly, we review in a concise manner the role of CB chemoreceptors and of CSN in the pathogenesis of metabolic diseases. Secondly, we describe the findings supporting the potential therapeutic use of the neuromodulation of CSN to treat T2D, as well as the feasibility and reversibility of this approach. A third section is devoted to point up the advances in the neural decoding of CSN activity, in particular in metabolic disease states, that will allow the development of closed-loop approaches to deliver personalized and adjustable treatments with minimal side effects. And finally, we discuss the findings supporting the assessment of CB activity in metabolic disease patients to screen the individuals that will benefit therapeutically from this bioelectronic approach in the future.
Collapse
Affiliation(s)
- Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F. Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ciro Zinno
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Silvestro Micera
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Maria P. Guarino
- ciTechCare, School of Health Sciences Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
32
|
Viana D, Walston ST, Masvidal-Codina E, Illa X, Rodríguez-Meana B, Del Valle J, Hayward A, Dodd A, Loret T, Prats-Alfonso E, de la Oliva N, Palma M, Del Corro E, Del Pilar Bernicola M, Rodríguez-Lucas E, Gener T, de la Cruz JM, Torres-Miranda M, Duvan FT, Ria N, Sperling J, Martí-Sánchez S, Spadaro MC, Hébert C, Savage S, Arbiol J, Guimerà-Brunet A, Puig MV, Yvert B, Navarro X, Kostarelos K, Garrido JA. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. NATURE NANOTECHNOLOGY 2024; 19:514-523. [PMID: 38212522 PMCID: PMC11026161 DOI: 10.1038/s41565-023-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
One of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (∼25 kΩ) and high charge injection (3-5 mC cm-2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.
Collapse
Affiliation(s)
- Damià Viana
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Steven T Walston
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Eduard Masvidal-Codina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Bruno Rodríguez-Meana
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Del Valle
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
- Secció de Fisiologia, Department de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Andrew Hayward
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Abbie Dodd
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Thomas Loret
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Elisabet Prats-Alfonso
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Natàlia de la Oliva
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marie Palma
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - María Del Pilar Bernicola
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Elisa Rodríguez-Lucas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Thomas Gener
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Jose Manuel de la Cruz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Miguel Torres-Miranda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Fikret Taygun Duvan
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Nicola Ria
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Justin Sperling
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Sara Martí-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Maria Chiara Spadaro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Clément Hébert
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Sinead Savage
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Anton Guimerà-Brunet
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Spain
| | - M Victoria Puig
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Blaise Yvert
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kostas Kostarelos
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK.
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
33
|
Han M, Yildiz E, Bozuyuk U, Aydin A, Yu Y, Bhargava A, Karaz S, Sitti M. Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound. Nat Commun 2024; 15:2013. [PMID: 38443369 PMCID: PMC10915158 DOI: 10.1038/s41467-024-46245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Electrical stimulation is a fundamental tool in studying neural circuits, treating neurological diseases, and advancing regenerative medicine. Injectable, free-standing piezoelectric particle systems have emerged as non-genetic and wireless alternatives for electrode-based tethered stimulation systems. However, achieving cell-specific and high-frequency piezoelectric neural stimulation remains challenging due to high-intensity thresholds, non-specific diffusion, and internalization of particles. Here, we develop cell-sized 20 μm-diameter silica-based piezoelectric magnetic Janus microparticles (PEMPs), enabling clinically-relevant high-frequency neural stimulation of primary neurons under low-intensity focused ultrasound. Owing to its functionally anisotropic design, half of the PEMP acts as a piezoelectric electrode via conjugated barium titanate nanoparticles to induce electrical stimulation, while the nickel-gold nanofilm-coated magnetic half provides spatial and orientational control on neural stimulation via external uniform rotating magnetic fields. Furthermore, surface functionalization with targeting antibodies enables cell-specific binding/targeting and stimulation of dopaminergic neurons. Taking advantage of such functionalities, the PEMP design offers unique features towards wireless neural stimulation for minimally invasive treatment of neurological diseases.
Collapse
Affiliation(s)
- Mertcan Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Asli Aydin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yan Yu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Aarushi Bhargava
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Selcan Karaz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Türkiye.
| |
Collapse
|
34
|
Bakhshaee Babaroud N, Rice SJ, Camarena Perez M, Serdijn WA, Vollebregt S, Giagka V. Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing. NANOSCALE 2024; 16:3549-3559. [PMID: 38287770 DOI: 10.1039/d3nr05523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP printing is performed as a post-process step to enhance the electrochemical characteristics of graphene electrodes. The NP-printed electrode shows significant improvements in impedance, charge storage capacity (CSC), and charge injection capacity (CIC), versus the equivalent electrodes without NPs. Specifically, electrodes with 40% NP surface density demonstrate 4.5 times lower impedance, 15 times higher CSC, and 4 times better CIC. Electrochemical stability, assessed via continuous cyclic voltammetry (CV) and voltage transient (VT) tests, indicated minimal deviations from the initial performance, while mechanical stability, assessed via ultrasonic vibration, is also improved after the NP printing. Importantly, NP surface densities up to 40% maintain the electrode optical transparency required for compatibility with optical imaging and optogenetics. These results demonstrate selective NP deposition and local modification of electrochemical properties in graphene electrodes for the first time, enabling the cohabitation of graphene electrodes with different electrochemical and optical characteristics on the same substrate for neural interfacing.
Collapse
Affiliation(s)
- Nasim Bakhshaee Babaroud
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
| | - Samantha J Rice
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
| | - Maria Camarena Perez
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
| | - Wouter A Serdijn
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
- Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - Sten Vollebregt
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
| | - Vasiliki Giagka
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
- Technologies for Bioelectronics Group, Department of System Integration and Interconnection Technologies, Fraunhofer Institute for Reliability and Micro-integration IZM, Berlin, Germany.
| |
Collapse
|
35
|
Morales AW, Du J, Warren DJ, Fernández-Jover E, Martinez-Navarrete G, Bouteiller JMC, McCreery DC, Lazzi G. Machine learning enables non-Gaussian investigation of changes to peripheral nerves related to electrical stimulation. Sci Rep 2024; 14:2795. [PMID: 38307915 PMCID: PMC10837107 DOI: 10.1038/s41598-024-53284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Electrical stimulation of the peripheral nervous system (PNS) is becoming increasingly important for the therapeutic treatment of numerous disorders. Thus, as peripheral nerves are increasingly the target of electrical stimulation, it is critical to determine how, and when, electrical stimulation results in anatomical changes in neural tissue. We introduce here a convolutional neural network and support vector machines for cell segmentation and analysis of histological samples of the sciatic nerve of rats stimulated with varying current intensities. We describe the methodologies and present results that highlight the validity of the approach: machine learning enabled highly efficient nerve measurement collection, while multivariate analysis revealed notable changes to nerves' anatomy, even when subjected to levels of stimulation thought to be safe according to the Shannon current limits.
Collapse
Affiliation(s)
- Andres W Morales
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Jinze Du
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - David J Warren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | - Jean-Marie C Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Gianluca Lazzi
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
36
|
Uzieliene I, Popov A, Vaiciuleviciute R, Kirdaite G, Bernotiene E, Ramanaviciene A. Polypyrrole-based structures for activation of cellular functions under electrical stimulation. Bioelectrochemistry 2024; 155:108585. [PMID: 37847982 DOI: 10.1016/j.bioelechem.2023.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Polypyrrole (Ppy) is an electroconductive polymer used in various applications, including in vitro experiments with cell cultures under electrical stimulation (ES). Ppy can be applied in various forms and most importantly, it is biocompatible with cells. Ppy specifically directs ES to cells, which makes Ppy a potential polymer for the development of novel technologies for targeted tissue regeneration. The high potential of ES in combination with different Ppy-based systems, such as hydrogels, scaffolds, or Ppy-layers is advantageous to stimulate cellular differentiation towards neurogenic, cardiac, muscle, and osteogenic lineages. Different in-house devices and the principles of ES application used to stimulate cellular functions are reviewed and summarized. The focus of this review is to observe the most relevant studies and their in-house techniques regarding the application of Ppy-based materials for the use of bone, neural, cardiac, and muscle tissue regeneration under ES. Different types of Ppy materials, such as Ppy particles, layers/films, membranes, and 3D-shaped synthetic and natural scaffolds, as well as combining Ppy with different active molecules are reviewed.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; NanoTechnas - Center on Nanotechnology and Materials Sciences, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko g. 24, LT-03225 Vilnius, Lithuania
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Gailute Kirdaite
- Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, VilniusTech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; NanoTechnas - Center on Nanotechnology and Materials Sciences, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko g. 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
37
|
Lim J, Zoss PA, Powley TL, Lee H, Ward MP. A flexible, thin-film microchannel electrode array device for selective subdiaphragmatic vagus nerve recording. MICROSYSTEMS & NANOENGINEERING 2024; 10:16. [PMID: 38264708 PMCID: PMC10803373 DOI: 10.1038/s41378-023-00637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
The vagus nerve (VN) plays an important role in regulating physiological conditions in the gastrointestinal (GI) tract by communicating via the parasympathetic pathway to the enteric nervous system (ENS). However, the lack of knowledge in the neurophysiology of the VN and GI tract limits the development of advanced treatments for autonomic dysfunctions related to the VN. To better understand the complicated underlying mechanisms of the VN-GI tract neurophysiology, it is necessary to use an advanced device enabled by microfabrication technologies. Among several candidates including intraneural probe array and extraneural cuff electrodes, microchannel electrode array devices can be used to interface with smaller numbers of nerve fibers by securing them in the separate channel structures. Previous microchannel electrode array devices to interface teased nerve structures are relatively bulky with thickness around 200 µm. The thick design can potentially harm the delicate tissue structures, including the nerve itself. In this paper, we present a flexible thin film based microchannel electrode array device (thickness: 11.5 µm) that can interface with one of the subdiaphragmatic nerve branches of the VN in a rat. We demonstrated recording evoked compound action potentials (ECAP) from a transected nerve ending that has multiple nerve fibers. Moreover, our analysis confirmed that the signals are from C-fibers that are critical in regulating autonomic neurophysiology in the GI tract.
Collapse
Affiliation(s)
- Jongcheon Lim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN USA
| | - Peter A. Zoss
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Terry L. Powley
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Department of Psychological Sciences, Purdue University, West Lafayette, IN USA
- Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN USA
| | - Matthew P. Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
38
|
Mousavi H, Dauly G, Dieuset G, El Merhie A, Ismailova E, Wendling F, Al Harrach M. Tuning Microelectrodes' Impedance to Improve Fast Ripples Recording. Bioengineering (Basel) 2024; 11:102. [PMID: 38275582 PMCID: PMC11154299 DOI: 10.3390/bioengineering11010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from abnormal neuronal hyperexcitability. In the case of pharmacoresistant epilepsy requiring resection surgery, the identification of the Epileptogenic Zone (EZ) is critical. Fast Ripples (FRs; 200-600 Hz) are one of the promising biomarkers that can aid in EZ delineation. However, recording FRs requires physically small electrodes. These microelectrodes suffer from high impedance, which significantly impacts FRs' observability and detection. In this study, we investigated the potential of a conductive polymer coating to enhance FR observability. We employed biophysical modeling to compare two types of microelectrodes: Gold (Au) and Au coated with the conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (Au/PEDOT:PSS). These electrodes were then implanted into the CA1 hippocampal neural network of epileptic mice to record FRs during epileptogenesis. The results showed that the polymer-coated electrodes had a two-order lower impedance as well as a higher transfer function amplitude and cut-off frequency. Consequently, FRs recorded with the PEDOT:PSS-coated microelectrode yielded significantly higher signal energy compared to the uncoated one. The PEDOT:PSS coating improved the observability of the recorded FRs and thus their detection. This work paves the way for the development of signal-specific microelectrode designs that allow for better targeting of pathological biomarkers.
Collapse
Affiliation(s)
- Hajar Mousavi
- Bioelectronics Department, Ecoles des Mines de Saint Etienne, CMP-EMSE, MOC, 13541 Gardanne, France; (H.M.); (A.E.M.); (E.I.)
| | - Gautier Dauly
- INSERM, LTSI-U1099, University of Rennes, 35000 Rennes, France; (G.D.); (G.D.); (F.W.)
| | - Gabriel Dieuset
- INSERM, LTSI-U1099, University of Rennes, 35000 Rennes, France; (G.D.); (G.D.); (F.W.)
| | - Amira El Merhie
- Bioelectronics Department, Ecoles des Mines de Saint Etienne, CMP-EMSE, MOC, 13541 Gardanne, France; (H.M.); (A.E.M.); (E.I.)
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 Rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Esma Ismailova
- Bioelectronics Department, Ecoles des Mines de Saint Etienne, CMP-EMSE, MOC, 13541 Gardanne, France; (H.M.); (A.E.M.); (E.I.)
| | - Fabrice Wendling
- INSERM, LTSI-U1099, University of Rennes, 35000 Rennes, France; (G.D.); (G.D.); (F.W.)
| | - Mariam Al Harrach
- INSERM, LTSI-U1099, University of Rennes, 35000 Rennes, France; (G.D.); (G.D.); (F.W.)
| |
Collapse
|
39
|
Tzaneva B, Aleksandrova M, Mateev V, Stefanov B, Iliev I. Electrochemical Properties of PEDOT:PSS/Graphene Conductive Layers in Artificial Sweat. SENSORS (BASEL, SWITZERLAND) 2023; 24:39. [PMID: 38202900 PMCID: PMC10780959 DOI: 10.3390/s24010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Electrodes based on PEDOT:PSS are gaining increasing importance as conductive electrodes and functional layers in various sensors and biosensors due to their easy processing and biocompatibility. This study investigates PEDOT:PSS/graphene layers deposited via spray coating on flexible PET substrates. The layers are characterized in terms of their morphology, roughness (via AFM and SEM), and electrochemical properties in artificial sweat using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The layers exhibit dominant capacitive behavior at low frequencies, with cut-off frequencies determined for thicker layers at 1 kHz. The equivalent circuit used to fit the EIS data reveals a resistance of about three orders of magnitude higher inside the layer compared to the charge transfer resistance at the solid/liquid interface. The capacitance values determined from the CV curves range from 54.3 to 122.0 mF m-2. After 500 CV cycles in a potential window of 1 V (from -0.3 to 0.7 V), capacitance retention for most layers is around 94%, with minimal surface changes being observed in the layers. The results suggest practical applications for PEDOT:PSS/graphene layers, both for high-frequency impedance measurements related to the functioning of individual organs and systems, such as impedance electrocardiography, impedance plethysmography, and respiratory monitoring, and as capacitive electrodes in the low-frequency range, realized as layered PEDOT:PSS/graphene conductive structures for biosignal recording.
Collapse
Affiliation(s)
- Boriana Tzaneva
- Department of Chemistry, Faculty of Electrical Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Mariya Aleksandrova
- Department of Microelectronics, Faculty of Electronic Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Valentin Mateev
- Department of Electrical Apparatus, Faculty of Electronic Engineering, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Bozhidar Stefanov
- Department of Chemistry, Faculty of Electrical Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Ivo Iliev
- Department of Electronics, Faculty of Electronic Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria
| |
Collapse
|
40
|
Yi J, Zou G, Huang J, Ren X, Tian Q, Yu Q, Wang P, Yuan Y, Tang W, Wang C, Liang L, Cao Z, Li Y, Yu M, Jiang Y, Zhang F, Yang X, Li W, Wang X, Luo Y, Loh XJ, Li G, Hu B, Liu Z, Gao H, Chen X. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 2023; 624:295-302. [PMID: 38092907 DOI: 10.1038/s41586-023-06732-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/10/2023] [Indexed: 12/18/2023]
Abstract
Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.
Collapse
Affiliation(s)
- Junqi Yi
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, Singapore
| | - Guijin Zou
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jianping Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Xueyang Ren
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiong Tian
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Qianhengyuan Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Ping Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Wenjie Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Linlin Liang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhengshuai Cao
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Yuanheng Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Mei Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feilong Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xue Yang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wenlong Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiaoshi Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yifei Luo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China.
| | - Huajian Gao
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
41
|
Shaner S, Lu H, Lenz M, Garg S, Vlachos A, Asplund M. Brain stimulation-on-a-chip: a neuromodulation platform for brain slices. LAB ON A CHIP 2023; 23:4967-4985. [PMID: 37909911 PMCID: PMC10661668 DOI: 10.1039/d3lc00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Electrical stimulation of ex vivo brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable in situ rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.
Collapse
Affiliation(s)
- Sebastian Shaner
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
| | - Han Lu
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Shreyash Garg
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- MSc Neuroscience Program, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg im Breisgau, Germany
| | - Andreas Vlachos
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Maria Asplund
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 41258 Gothenburg, Sweden.
- Division of Nursing and Medical Technology, Luleå University of Technology, 79187 Luleå, Sweden
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
42
|
Boden K, Pongratanakul P, Vogel J, Willemsen N, Jülke EM, Balitzki J, Tinel H, Truebel H, Dinh W, Mondritzki T. Telemetric long-term assessment of autonomic function in experimental heart failure. J Pharmacol Toxicol Methods 2023; 124:107480. [PMID: 37979811 DOI: 10.1016/j.vascn.2023.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Despite medical advances in the treatment of heart failure (HF), mortality remains high. It has been shown that alterations of the autonomic-nervous-system (ANS) are associated with HF progression and increased mortality. Preclinical models are required to evaluate the effectiveness of novel treatments modulating the autonomic imbalance. However, there are neither standard models nor diagnostic methods established to measure sympathetic and parasympathetic outflow continuously. Digital technologies might be a reliable tool for continuous assessment of autonomic function within experimental HF models. Telemetry devices and pacemakers were implanted in beagle dogs (n = 6). HF was induced by ventricular pacing. Cardiac hemodynamics, plasma catecholamines and parameter describing the ANS ((heart rate variability (HRV), deceleration capacity (DC), and baroreflex sensitivity (BRS)) were continuously measured at baseline, during HF conditions and during recovery phase. The pacing regime led to the expected depression in cardiac hemodynamics. Telemetric assessment of the ANS function showed a significant decrease in Total power, DC, and Heart rate recovery, whereas BRS was not significantly affected. In contrast, plasma catecholamines, revealing sympathetic activity, showed only a significant increase in the recovery phase. A precise diagnostic of the ANS in the context of HF is becoming increasingly important in experimental models. Up to now, these models have shown many limitations. Here we present the continuous assessment of the autonomic function in the progression of HF. We could demonstrate the advantage of highly resolved ANS measurement by HR and BP derived parameters due to early detection of an autonomic imbalance in the progression of HF.
Collapse
Affiliation(s)
- Katharina Boden
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany
| | | | - Julia Vogel
- University of Witten/Herdecke, Witten, Germany; Clinic for Cardiology and Angiology, West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Nicola Willemsen
- Bayer AG, Wuppertal, Germany; University of Duisburg-, Essen, Germany
| | | | - Jakob Balitzki
- Bayer AG, Wuppertal, Germany; Hannover Medical School, Hannover, Germany
| | | | | | - Wilfried Dinh
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany; Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany
| | - Thomas Mondritzki
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany.
| |
Collapse
|
43
|
Khatib M, Zhao ET, Wei S, Abramson A, Bishop ES, Chen CH, Thomas AL, Xu C, Park J, Lee Y, Hamnett R, Yu W, Root SE, Yuan L, Chakhtoura D, Kim KK, Zhong D, Nishio Y, Zhao C, Wu C, Jiang Y, Zhang A, Li J, Wang W, Salimi-Jazi F, Rafeeqi TA, Hemed NM, Tok JBH, Chen X, Kaltschmidt JA, Dunn JC, Bao Z. Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560482. [PMID: 37873341 PMCID: PMC10592902 DOI: 10.1101/2023.10.02.560482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation″, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eric Tianjiao Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shiyuan Wei
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alex Abramson
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Estelle Spear Bishop
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Chih-Hsin Chen
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Anne-Laure Thomas
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Chengyi Xu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jaeho Park
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yeongjun Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ryan Hamnett
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Weilai Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Samuel E. Root
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lei Yuan
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Dorine Chakhtoura
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuya Nishio
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chuanzhen Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Can Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Anqi Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jinxing Li
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Weichen Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Talha A. Rafeeqi
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey B.-H. Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Julia A. Kaltschmidt
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - James C.Y. Dunn
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Shankar S, Murphy BB, Driscoll N, Shekhirev M, Valurouthu G, Shevchuk K, Anayee M, Cimino F, Gogotsi Y, Vitale F. Effect of the deposition process on the stability of Ti 3C 2T x MXene films for bioelectronics. 2D MATERIALS 2023; 10:044001. [PMID: 37521001 PMCID: PMC10373437 DOI: 10.1088/2053-1583/ace26c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Ti3C2Tx MXene is emerging as the enabling material in a broad range of wearable and implantable medical technologies, thanks to its outstanding electrical, electrochemical, and optoelectronic properties, and its compatibility with high-throughput solution-based processing. While the prevalence of Ti3C2Tx MXene in biomedical research, and in particular bioelectronics, has steadily increased, the long-term stability and degradation of Ti3C2Tx MXene films have not yet been thoroughly investigated, limiting its use for chronic applications. Here, we investigate the stability of Ti3C2Tx films and electrodes under environmental conditions that are relevant to medical and bioelectronic technologies: storage in ambient atmosphere (shelf-life), submersion in saline (akin to the in vivo environment), and storage in a desiccator (low-humidity). Furthermore, to evaluate the effect of the MXene deposition method and thickness on the film stability in the different conditions, we compare thin (25 nm), and thick (1.0 μm) films and electrodes fabricated via spray-coating and blade-coating. Our findings indicate that film processing method and thickness play a significant role in determining the long-term performance of Ti3C2Tx films and electrodes, with highly aligned, thick films from blade coating remarkably retaining their conductivity, electrochemical impedance, and morphological integrity even after 30 days in saline. Our extensive spectroscopic analysis reveals that the degradation of Ti3C2Tx films in high-humidity environments is primarily driven by moisture intercalation, ingress, and film delamination, with evidence of only minimal to moderate oxidation.
Collapse
Affiliation(s)
- Sneha Shankar
- Department of Bioengineering, 210 S. 33rd Street, 240 Skirkanich Hall
- Center for Neuroengineering & Therapeutics, 240 S. 33rd Street, 301 Hayden Hall
- Center for Neurotrauma, Neurodegeneration, and Restoration, 3900 Woodlawn Ave., Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States 19104
| | - Brendan B. Murphy
- Center for Neuroengineering & Therapeutics, 240 S. 33rd Street, 301 Hayden Hall
- Department of Neurology, 3400 Spruce Street, University of Pennsylvania, Philadelphia, PA, United States 19104
- Center for Neurotrauma, Neurodegeneration, and Restoration, 3900 Woodlawn Ave., Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States 19104
| | - Nicolette Driscoll
- Department of Bioengineering, 210 S. 33rd Street, 240 Skirkanich Hall
- Center for Neuroengineering & Therapeutics, 240 S. 33rd Street, 301 Hayden Hall
- Center for Neurotrauma, Neurodegeneration, and Restoration, 3900 Woodlawn Ave., Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States 19104
| | - Mikhail Shekhirev
- A. J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, 3141 Chestnut Street, Drexel University, Philadelphia, PA, United States 19104
| | - Geetha Valurouthu
- A. J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, 3141 Chestnut Street, Drexel University, Philadelphia, PA, United States 19104
| | - Kateryna Shevchuk
- A. J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, 3141 Chestnut Street, Drexel University, Philadelphia, PA, United States 19104
| | - Mark Anayee
- A. J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, 3141 Chestnut Street, Drexel University, Philadelphia, PA, United States 19104
| | - Francesca Cimino
- Department of Bioengineering, 210 S. 33rd Street, 240 Skirkanich Hall
- Center for Neuroengineering & Therapeutics, 240 S. 33rd Street, 301 Hayden Hall
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, 3141 Chestnut Street, Drexel University, Philadelphia, PA, United States 19104
| | - Flavia Vitale
- Center for Neuroengineering & Therapeutics, 240 S. 33rd Street, 301 Hayden Hall
- Department of Neurology, 3400 Spruce Street, University of Pennsylvania, Philadelphia, PA, United States 19104
- Department of Physical Medicine & Rehabilitation, 1800 Lombard Street, University of Pennsylvania, Philadelphia, PA, United States 19147
- Center for Neurotrauma, Neurodegeneration, and Restoration, 3900 Woodlawn Ave., Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States 19104
| |
Collapse
|
45
|
Muguet I, Maziz A, Mathieu F, Mazenq L, Larrieu G. Combining PEDOT:PSS Polymer Coating with Metallic 3D Nanowires Electrodes to Achieve High Electrochemical Performances for Neuronal Interfacing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302472. [PMID: 37385261 DOI: 10.1002/adma.202302472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023]
Abstract
This study presents a novel approach to improve the performance of microelectrode arrays (MEAs) used for electrophysiological studies of neuronal networks. The integration of 3D nanowires (NWs) with MEAs increases the surface-to-volume ratio, which enables subcellular interactions and high-resolution neuronal signal recording. However, these devices suffer from high initial interface impedance and limited charge transfer capacity due to their small effective area. To overcome these limitations, the integration of conductive polymer coatings, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is investigated as a mean of improving the charge transfer capacity and biocompatibility of MEAs. The study combines platinum silicide-based metallic 3D nanowires electrodes with electrodeposited PEDOT:PSS coatings to deposit ultra-thin (<50 nm) layers of conductive polymer onto metallic electrodes with very high selectivity. The polymer-coated electrodes were fully characterized electrochemically and morphologically to establish a direct relationship between synthesis conditions, morphology, and conductive features. Results show that PEDOT-coated electrodes exhibit thickness-dependent improved stimulation and recording performances, offering new perspectives for neuronal interfacing with optimal cell engulfment to enable the study of neuronal activity with acute spatial and signal resolution at the sub-cellular level.
Collapse
Affiliation(s)
- Ines Muguet
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| | - Ali Maziz
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| | - Fabrice Mathieu
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| | - Laurent Mazenq
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| | - Guilhem Larrieu
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| |
Collapse
|
46
|
Matter L, Harland B, Raos B, Svirskis D, Asplund M. Generation of direct current electrical fields as regenerative therapy for spinal cord injury: A review. APL Bioeng 2023; 7:031505. [PMID: 37736015 PMCID: PMC10511262 DOI: 10.1063/5.0152669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Electrical stimulation (ES) shows promise as a therapy to promote recovery and regeneration after spinal cord injury. ES therapy establishes beneficial electric fields (EFs) and has been investigated in numerous studies, which date back nearly a century. In this review, we discuss the various engineering approaches available to generate regenerative EFs through direct current electrical stimulation and very low frequency electrical stimulation. We highlight the electrode-tissue interface, which is important for the appropriate choice of electrode material and stimulator circuitry. We discuss how to best estimate and control the generated field, which is an important measure for comparability of studies. Finally, we assess the methods used in these studies to measure functional recovery after the injury and treatment. This work reviews studies in the field of ES therapy with the goal of supporting decisions regarding best stimulation strategy and recovery assessment for future work.
Collapse
Affiliation(s)
- Lukas Matter
- Author to whom correspondence should be addressed:
| | - Bruce Harland
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Brad Raos
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | | |
Collapse
|
47
|
Popa RC, Serban CA, Barborica A, Zagrean AM, Buiu O, Dumbravescu N, Paslaru AC, Obreja C, Pachiu C, Stoian M, Marculescu C, Radoi A, Vulpe S, Ion M. Functional Enhancement and Characterization of an Electrophysiological Mapping Electrode Probe with Carbonic, Directional Macrocontacts. SENSORS (BASEL, SWITZERLAND) 2023; 23:7497. [PMID: 37687953 PMCID: PMC10490806 DOI: 10.3390/s23177497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts that are operable both for neurophysiological sensing ("recording") of local field potentials (LFP) and for test stimulation. This paper illustrates in-depth the development that is based on the direct writing of functional materials. The unconventional fabrication processes were optimized on planar geometry and then transferred to the cylindrically thin probe body. We report and discuss the constructive concept and architecture of the probe, characteristics of the electrochemical interface deduced from voltammetry and chronopotentiometry, and the results of in vitro and in vivo recording and pulse stimulation tests. Two- and three-directional macrocontacts were added on probes having shanks of 550 and 770 μm diameters and 10-23 cm lengths. The graphitic material presents a ~2.7 V wide, almost symmetric water electrolysis window, and an ultra-capacitive charge transfer. When tested with clinically relevant 150 μs biphasic current pulses, the interfacial polarization stayed safely away from the water window for pulse amplitudes up to 9 mA (135 μC/cm2). The in vivo experiments on adult rat models confirmed the high-quality sensing of LFPs. Additionally, the in vivo-prevailing increase in the electrode impedance and overpotential are discussed and modeled by an ionic mobility-reducing spongiform structure; this restricted diffusion model gives new applicative insight into the in vivo-uprisen stimulation overpotential.
Collapse
Affiliation(s)
- Radu C. Popa
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| | - Cosmin-Andrei Serban
- Termobit Prod Srl, 020281 Bucharest, Romania; (C.-A.S.); (A.B.)
- Fhc, Inc., Bowdoin, ME 04287, USA
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| | - Andrei Barborica
- Termobit Prod Srl, 020281 Bucharest, Romania; (C.-A.S.); (A.B.)
- Fhc, Inc., Bowdoin, ME 04287, USA
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| | - Ana-Maria Zagrean
- Physiology and Neuroscience Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-M.Z.); (A.-C.P.)
| | - Octavian Buiu
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| | - Niculae Dumbravescu
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| | - Alexandru-Catalin Paslaru
- Physiology and Neuroscience Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-M.Z.); (A.-C.P.)
| | - Cosmin Obreja
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| | - Cristina Pachiu
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| | - Marius Stoian
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| | - Catalin Marculescu
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| | - Antonio Radoi
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| | - Silviu Vulpe
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| | - Marian Ion
- National Institute for R&D in Microtechnologies–IMT Bucharest, 077190 Bucharest, Romania; (O.B.); (N.D.); (C.O.); (C.P.); (M.S.); (C.M.); (A.R.); (S.V.); (M.I.)
| |
Collapse
|
48
|
Garg R, Driscoll N, Shankar S, Hullfish T, Anselmino E, Iberite F, Averbeck S, Rana M, Micera S, Baxter JR, Vitale F. Wearable High-Density MXene-Bioelectronics for Neuromuscular Diagnostics, Rehabilitation, and Assistive Technologies. SMALL METHODS 2023; 7:e2201318. [PMID: 36571435 PMCID: PMC10291010 DOI: 10.1002/smtd.202201318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
High-density surface electromyography (HDsEMG) allows noninvasive muscle monitoring and disease diagnosis. Clinical translation of current HDsEMG technologies is hampered by cost, limited scalability, low usability, and minimal spatial coverage. Here, this study presents, validates, and demonstrates the broad clinical applicability of dry wearable MXene HDsEMG arrays (MXtrodes) fabricated from safe and scalable liquid-phase processing of Ti3 C2 Tx . The fabrication scheme allows easy customization of array geometry to match subject anatomy, while the gel-free and minimal skin preparation enhance usability and comfort. The low impedance and high conductivity of the MXtrode arrays allow detection of the activity of large muscle groups at higher quality and spatial resolution than state-of-the-art wireless electromyography sensors, and in realistic clinical scenarios. To demonstrate the clinical applicability of MXtrodes in the context of neuromuscular diagnostics and rehabilitation, simultaneous HDsEMG and biomechanical mapping of muscle groups across the whole calf during various tasks, ranging from controlled contractions to walking is shown. Finally, the integration of HDsEMG acquired with MXtrodes with a machine learning pipeline and the accurate prediction of the phases of human gait are shown. The results underscore the advantages and translatability of MXene-based wearable bioelectronics for studying neuromuscular function and disease, as well as for precision rehabilitation.
Collapse
Affiliation(s)
- Raghav Garg
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center of Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Nicolette Driscoll
- Center of Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sneha Shankar
- Center of Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Todd Hullfish
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eugenio Anselmino
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56025, Pisa, Italy
| | - Francesco Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56025, Pisa, Italy
| | - Spencer Averbeck
- Center of Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Manini Rana
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Josh R Baxter
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Flavia Vitale
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center of Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
49
|
Oppelt VA, Pfeiffer F, Pfeifer R, Schuettler M, Stieglitz T. Assessment of the Factors Influencing the Recording Performance of Circumneural Electrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083602 DOI: 10.1109/embc40787.2023.10341201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The quality of recorded peripheral nerve signals is decisive for their application in therapies. The electroneurogram can be recorded via implantable circumeural electrodes that are wrapped around the peripheral nerve. The shape and amplitude of the signal recorded by the electrode are influenced by the design and contact configuration of the electrode. In this paper, the impact of the number of contacts, contact size and electrical insulation to the outside is investigated to predict the single fiber action potential based on the measured impedance data.
Collapse
|
50
|
Lim J, Eiber CD, Sun A, Maples A, Powley TL, Ward MP, Lee H. Fractal Microelectrodes for More Energy-Efficient Cervical Vagus Nerve Stimulation. Adv Healthc Mater 2023; 12:e2202619. [PMID: 36973998 PMCID: PMC10522801 DOI: 10.1002/adhm.202202619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Vagus nerve stimulation (VNS) has the potential to treat various peripheral dysfunctions, but the traditional cuff electrodes for VNS are susceptible to off-target effects. Microelectrodes may enable highly selective VNS that can mitigate off-target effects, but they suffer from the increased impedance. Recent studies on microelectrodes with non-Euclidean geometries have reported higher energy efficiency in neural stimulation applications. These previous studies use electrodes with mm/cm-scale dimensions, mostly targeted for myelinated fibers. This study evaluates fractal microelectrodes for VNS in a rodent model (N = 3). A thin-film device with fractal and circle microelectrodes is fabricated to compare their neural stimulation performance on the same radial coordinate of the nerve. The results show that fractal microelectrodes can activate C-fibers with up to 52% less energy (p = 0.012) compared to circle microelectrodes. To the best of the knowledge, this work is the first to demonstrate a geometric advantage of fractal microelectrodes for VNS in vivo.
Collapse
Affiliation(s)
- Jongcheon Lim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
| | - Calvin D. Eiber
- Synchron Inc.MelbourneVIC3004Australia
- Department of Medicine (RMH)Faculty of MedicineHealth and Dentistrythe University of MelbourneMelbourneVIC3050Australia
| | - Anina Sun
- Department of BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Amanda Maples
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Terry L. Powley
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Department of Psychological SciencesPurdue UniversityWest LafayetteIN47907USA
- Purdue Institute of Integrative NeurosciencePurdue UniversityWest LafayetteIN47907USA
| | - Matthew P. Ward
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Indiana University School of MedicineIndianapolisIN46202USA
| | - Hyowon Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|