1
|
Zhang YW, Shi YC, Huang W, Zhang SB. Insights into the Differences in Polysaccharide and Alkaloid Biosynthesis in the Medicinal Orchids Dendrobium nobile and D. officinale. PHYSIOLOGIA PLANTARUM 2024; 176:e14575. [PMID: 39394938 DOI: 10.1111/ppl.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
Both Dendrobium nobile and D. officinale are widely used medicinal plants in China and their major medicinal components are alkaloids and polysaccharides, respectively. It is still unclear why these two closely related orchids synthesize and accumulate different chemical components. Here, we investigated the molecular mechanisms underlying polysaccharide and alkaloid biosynthesis in D. nobile and D. officinale through transcriptome and metabolomic analysis at different growth stages. A total of 1267 metabolites were identified in the juvenile and mature stages of the two species. D. nobile accumulated a large number of alkaloids, benzenoids/phenylpropanoids, flavonoids, and terpenoids during the transition from juvenile to mature plants. In contrast, D. officinale accumulated a small number of those metabolites and an absence of flavonoids. The correlation analysis of polysaccharide contents with the differentially expressed genes suggested that the differential expression of GH1, GH3, and GH9 might be related to the difference in polysaccharide contents between the two Dendrobium species. Meanwhile, the difference in the biosynthesis of dendrobine, the main component of alkaloids in D. nobile, was involved in the differential expression of HMGCR, DXR, DXS, ISPH and eight CYP450s. These findings provided new insights into understanding the biosynthetic mechanisms of the main medicinal components in Dendrobium species.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Cen Shi
- Platform for Plant Multi-dimensional Imaging and Diversity Analysis, Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| |
Collapse
|
2
|
Qian X, Sarsaiya S, Dong Y, Yu T, Chen J. Recent Advances and New Insights in Genome Analysis and Transcriptomic Approaches to Reveal Enzymes Associated with the Biosynthesis of Dendrobine-Type Sesquiterpenoid Alkaloids (DTSAs) from the Last Decade. Molecules 2024; 29:3787. [PMID: 39202866 PMCID: PMC11356883 DOI: 10.3390/molecules29163787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Dendrobium species, which are perennial herbs widely distributed in tropical and subtropical regions, are notable for their therapeutic properties attributed to various bioactive compounds, including dendrobine-type sesquiterpenoid alkaloids (DTSAs). The objective of this review article is to provide a comprehensive overview of recent advances in the biosynthesis of DTSAs, including their extraction from Dendrobium species and endophytes, elucidation of associated genes through genomic and transcriptomic sequencing in both Dendrobium spp. and endophytes, exploration of the biosynthetic pathways of DTSAs, and drawing conclusions and outlining future perspectives in this field. Alkaloids, predominantly nitrogen-containing compounds found in medicinal orchids, include over 140 types discovered across more than 50 species. DTSAs, identified in 37 picrotoxane alkaloids, have a distinctive five-membered nitrogen heterocyclic ring. This review highlights endophytic fungi as alternative sources of DTSAs, emphasizing their potential in pharmaceutical applications when plant-derived compounds are scarce or complex. Genomic and transcriptomic sequencing of Dendrobium spp. and their endophytes has identified key genes involved in DTSAs biosynthesis, elucidating pathways such as the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways. Genes encoding enzymes, such as acetyl-CoA C-acetyltransferase and diphosphomevalonate decarboxylase, are positively associated with dendrobine production. Despite significant advancements, the complexity of terpenoid biosynthesis in different subcellular compartments remains a challenge. Future research should focus on leveraging high-quality genomic data and omics technologies to further understand and manipulate the biosynthetic pathways of DTSAs and enhance their medicinal use.
Collapse
Affiliation(s)
- Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Surendra Sarsaiya
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi 563000, China
| | - Yuanyuan Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Tuifan Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
3
|
Liu Y, Liu B, Luo K, Yu B, Li X, Zeng J, Chen J, Xia R, Xu J, Liu Y. Genomic identification and expression analysis of acid invertase (AINV) gene family in Dendrobium officinale Kimura et Migo. BMC PLANT BIOLOGY 2024; 24:396. [PMID: 38745125 PMCID: PMC11092110 DOI: 10.1186/s12870-024-05102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.
Collapse
Affiliation(s)
- Yujia Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Boting Liu
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Kefa Luo
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Baiyin Yu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China.
| | - Xiang Li
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jian Zeng
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanlong Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Li KL, Liang YM, Chen Z, Zheng PJ, Zhang GQ, Yan B, Elshikh MS, Rizwana H, Chen B, Xu Q. Genome-wide identification of the alkaloid synthesis gene family CYP450, gives new insights into alkaloid resource utilization in medicinal Dendrobium. Int J Biol Macromol 2024; 259:129229. [PMID: 38211913 DOI: 10.1016/j.ijbiomac.2024.129229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
The medicinal Dendrobium species of Orchidaceae possess significant pharmaceutical value, and modern pharmacological research has shown that Dendrobium contains many important active ingredients. Alkaloids, the crucial components of medicinal Dendrobium, demonstrate beneficial healing properties in cardiovascular, cataract, gastrointestinal, and respiratory diseases. Members of the cytochrome P450 monooxygenase (CYP) gene family play essential roles in alkaloid synthesis, participating in alkaloid terpene skeleton construction and subsequent modifications. Although studies of the CYP family have been conducted in some species, genome-wide characterization and systematic analysis of the CYP family in medicinal Dendrobium remain underexplored. In this study, we identified CYP gene family members in the genomes of four medicinal Dendrobium species recorded in the Pharmacopoeia: D. nobile, D. chrysotoxum, D. catenatum, and D. huoshanense. Further, we analyzed the motif composition, gene replication events, and selection pressure of this family. Syntenic analysis revealed that members of the clan 710 were present on chromosome 18 in three medicinal Dendrobium species, except for D. nobile, indicating a loss of clan 710 occurring in D. nobile. We also conducted an initial screening of the CYP genes involved in alkaloid synthesis through transcriptome sequencing. Quantitative real-time reverse transcription PCR showed that the expression of DnoNew43 and DnoNew50, homologs of secologanin synthase involved in the alkaloid synthesis pathway, was significantly higher in the stems than in the leaves. This result coincided with the distribution of dendrobine content in Dendrobium stems and leaves, indicating that these two genes might be involved in the dendrobine synthesis pathway. Our results give insights into the CYP gene family evolution analysis in four medicinal Dendrobium species for the first time and identify two related genes that may be involved in alkaloid synthesis, providing a valuable resource for further investigations into alkaloid synthesis pathway in Dendrobium and other medicinal plants.
Collapse
Affiliation(s)
- Kang-Li Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu-Min Liang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Pei-Ji Zheng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Guo-Qiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - BingJie Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 511436, China.
| | - Qing Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
5
|
Zhang P, Zhang X, Zhu X, Hua Y. Chemical Constituents, Bioactivities, and Pharmacological Mechanisms of Dendrobium officinale: A Review of the Past Decade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14870-14889. [PMID: 37800982 DOI: 10.1021/acs.jafc.3c04154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dendrobium officinale, a plant in the Orchidaceae family, has been used in traditional Chinese medicine for thousands of years. Sweet and slightly cold in nature, it can invigorate the stomach, promote fluid production, nourish Yin, and dissipate heat. Over the past decade, more than 60 compounds have been derived from D. officinale, including flavonoids, bibenzyl, and phenanthrene. Various studies have explored the underlying pharmacological mechanisms of these compounds, which have shown antitumor, hypoglycemic, hypertensive, gastrointestinal-regulatory, visceral organ protection, antiaging, and neurorestorative effects. This paper presents a systematic review of the structural classification, biological activity, and pharmacological mechanisms of different chemical components obtained from D. officinale over the past decade. This review aims to provide a reference for future study and establish a foundation for clinical applications. Furthermore, this review identifies potential shortcomings in current research as well as potential directions and methodologies in future plant research.
Collapse
Affiliation(s)
- Ping Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunfen Hua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
6
|
Lv M, Liang Q, He X, Du X, Liu Y, Liu Y, Fang C. Hypoglycemic effects of dendrobium officinale leaves. Front Pharmacol 2023; 14:1163028. [PMID: 37361228 PMCID: PMC10288155 DOI: 10.3389/fphar.2023.1163028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Numerous studies have demonstrated that the stems of D. officinale have the effect of lowering blood glucose, but the leaves of D. officinale have seldom been investigated. In this study, we mainly studied the hypoglycemic effect and mechanism of D. officinale leaves. Methods: Initially in vivo, male C57BL/6 mice were administered either standard feed (10 kcal% fat) or high-fat feed (60 kcal% fat) along with either normal drinking water or drinking water containing 5 g/L water extract of D. officinale leaves (EDL) for 16 weeks, and changes in body weight, food intake, blood glucose, etc., were monitored weekly. Next in vitro, C2C12 myofiber precursor cells which were induced to differentiate into myofibroblasts and cultured with EDL to detect the expression of insulin signaling pathway related proteins. HEPA cells were also cultured with EDL to detect the expression of hepatic gluconeogenesis or hepatic glycogen synthesis related proteins. Eventually after separating the components from EDL by ethanol and 3 kDa ultrafiltration centrifuge tube, we conducted animal experiments using the ethanol-soluble fraction of EDL (ESFE), ethanol-insoluble fraction of EDL (EIFE), ESFE with a molecular weight of >3 kDa (>3 kDa ESFE), and ESFE with a molecular weight of <3 kDa (<3 kDa ESFE) for intensive study. Results: The results in vivo revealed that the mice fed the high-fat diet exhibited significantly decreased blood glucose levels and significantly increased glucose tolerance after the EDL treatment, whereas the mice fed the low-fat diet did not. The results in vitro showed that EDL activated the expression of protein kinase B (AKT), the phosphorylation of AKT, and the expression of downstream GSK3β in the insulin signaling pathway. EDL treatment of HEPA cells confirmed that EDL did not affect hepatic gluconeogenesis or hepatic glycogen synthesis. In the experiment of studying the composition of EDL, we found that the >3 kDa ESFE displayed the effect of lowering blood glucose. In summary, the effect of EDL in lowering blood glucose may bethanole achieved by activating the insulin signaling pathway to increase insulin sensitivity, and the main functional substance was contained within the >3 kDa ESFE. Discussion: The findings of this study represent a reference point for further exploration of the hypoglycemic effects of D. officinale leaves and may assist in both the identification of new molecular mechanisms to improve insulin sensitivity and the isolation of monomeric substances that lower blood glucose. Furthermore, the obtained results may provide a theoretical basis for the development of hypoglycemic drugs with D. officinale leaves as the main component.
Collapse
Affiliation(s)
- Ming Lv
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Land and Resources Vocational College, Kunming, China
| | - Qingqing Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Vocational College of Mechanical and Electrical Technology, Kunming, China
| | - Xiaofang He
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Xiaocui Du
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
| | - Yuhan Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yan Liu
- International College, Yunnan Agricultural University, Kunming, China
| | - Chongye Fang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Zhang YW, Shi YC, Zhang SB. Metabolic and transcriptomic analyses elucidate a novel insight into the network for biosynthesis of carbohydrate and secondary metabolites in the stems of a medicinal orchid Dendrobium nobile. PLANT DIVERSITY 2023; 45:326-336. [PMID: 37397599 PMCID: PMC10311107 DOI: 10.1016/j.pld.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2022] [Accepted: 10/19/2022] [Indexed: 07/04/2023]
Abstract
Dendrobium nobile is an important medicinal and nutraceutical herb. Although the ingredients of D. nobile have been identified as polysaccharides, alkaloids, amino acids, flavonoids and bibenzyls, our understanding of the metabolic pathways that regulate the synthesis of these compounds is limited. Here, we used transcriptomic and metabolic analyses to elucidate the genes and metabolites involved in the biosynthesis of carbohydrate and several secondary metabolites in the stems of D. nobile. A total of 1005 metabolites and 31,745 genes were detected in the stems of D. nobile. The majority of these metabolites and genes were involved in the metabolism of carbohydrates (fructose, mannose, glucose, xylulose and starch), while some were involved in the metabolism of secondary metabolites (alkaloids, β-tyrosine, ferulic acid, 4-hydroxybenzoate and chrysin). Our predicted regulatory network indicated that five genes (AROG, PYK, DXS, ACEE and HMGCR) might play vital roles in the transition from carbohydrate to alkaloid synthesis. Correlation analysis identified that six genes (ALDO, PMM, BGLX, EGLC, XYLB and GLGA) were involved in carbohydrate metabolism, and two genes (ADT and CYP73A) were involved in secondary metabolite biosynthesis. Our analyses also indicated that phosphoenol-pyruvate (PEP) was a crucial bridge that connected carbohydrate to alkaloid biosynthesis. The regulatory network between carbohydrate and secondary metabolite biosynthesis established will provide important insights into the regulation of metabolites and biological systems in Dendrobium species.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Cen Shi
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China
| |
Collapse
|
8
|
Si C, Zeng D, Yu Z, Teixeira da Silva JA, Duan J, He C, Zhang J. Transcriptomic and metabolomic analyses reveal the main metabolites in Dendrobium officinale leaves during the harvesting period. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:24-34. [PMID: 36088784 DOI: 10.1016/j.plaphy.2022.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium officinale, which is a medicine food homology plant, contains many metabolites, especially polysaccharides and flavonoids. Unlike flowers and stems, which are the most frequently harvested organs for a variety of uses, leaves tend to be discarded. This study assessed main metabolites in leaves to identify the most appropriate timing of collection during harvest, which was divided into three stages (S1-S3: 8, 10, and 11 months after sprouting, respectively). Metabolomic and transcriptomic analyses of S1-S3 were performed. Water-soluble polysaccharides (WSPs), flavonoids and free amino acids (FAAs) were detected in leaves. WSPs decreased from S1 to S3 but flavonoids and some FAAs (e.g., phophoserine) increased from S1 to S2, then decreased from S2 to S3. In all three stages, mannose was the dominant monosaccharide among WSPs, followed by glucose. In S2, 35 flavonoids were identified, the most abundant being rutin, schaftoside and vitexin, while 34 FAAs were identified in all three stages, the most abundant being tyrosine, phosphoserine and alanine. A total of 2584, 3414 and 2032 differentially expressed genes (DEGs) were discovered in S1 vs S2, S1 vs S3 and S1 vs S3, respectively. Correlation analysis revealed that five DEGs (DoSUS, DoXYLA, DoFRK, DoGMP, and DoCSLA), two DEGs (DoDFR, and DoANS) and a single DEG (DoPGAM) were involved in the metabolism of WSPs, flavonoids and phosphoserine, respectively. The findings of this study lay a foundation for the commercial exploitation of metabolites in the harvested leaves of D. officinale, and the use of detected DEGs in applied genetic studies.
Collapse
Affiliation(s)
- Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Jianxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Meng X, Zhang T, Chen C, Li Q, Liu J. Regulatory network of ginsenoside biosynthesis under Ro stress in the hairy roots of Panax ginseng revealed by RNA sequencing. Front Bioeng Biotechnol 2022; 10:1006386. [PMID: 36394021 PMCID: PMC9659575 DOI: 10.3389/fbioe.2022.1006386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
P. ginseng C.A. Meyer is a valuable Chinese herbal medicine that belongs to the Araliaceae family. Major obstacles to the continuous cropping of ginseng have severely restricted the sustainable development of the ginseng industry. The allelopathic effects of triterpenoid saponins play an important role in disorders related to continuous cropping; however, the mechanisms underlying the allelopathic autotoxicity of triterpenoid ginsenosides remain unknown. In this study, we performed mRNA and miRNA sequencing analyses to identify candidate genes and miRNAs that respond differentially to ginsenoside Ro stress in ginseng and their targets. The growth of the ginseng hairy roots was significantly inhibited under Ro stress (0.5 mg/L, Ro-0.5). The inhibition of root growth and injury to root-tip cells promoted the accumulation of the endogenous hormones indole-3-acetic acid and salicylic acid and inhibited the accumulation of abscisic acid and jasmonate acid. The accumulation of ginsenosides, except Rg3, was significantly inhibited under Ro-0.5 stress. An mRNA analysis of the Ro-0.5 and control groups showed that differentially expressed genes were mostly concentrated in the hormone signal transduction pathway. ARF7 and EFM were upregulated, whereas XTH23 and ZOX1 were downregulated. These genes represent important potential candidates for hormone-responsive continuous cropping diseases. In total, 74 differentially expressed miRNAs were identified based on the miRNA sequencing analysis, of which 22 were upregulated and 52 were downregulated. The target genes of ptc-miR156k_L + 1, mtr-miR156b-5p, gma-miR156a_R + 1, and mtr-miR156e all belonged to TRINITY_DN14567_c0_g4, which is a gene in the plant hormone signal transduction pathway. These four miRNAs were all negatively correlated with mRNA, indicating their likely involvement in the response of ginseng to continuous cropping disorders and the regulation of ginsenoside synthesis. Our findings provide useful insights for removing the barriers to continuous ginseng cropping and have important implications in the genetic engineering of plant stress responses.
Collapse
Affiliation(s)
| | - Tao Zhang
- *Correspondence: Tao Zhang, ; Changbao Chen,
| | | | | | | |
Collapse
|
10
|
Wang Z, Zhao M, Zhang X, Deng X, Li J, Wang M. Genome-wide identification and characterization of active ingredients related β-Glucosidases in Dendrobium catenatum. BMC Genomics 2022; 23:612. [PMID: 35999493 PMCID: PMC9400273 DOI: 10.1186/s12864-022-08840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dendrobium catenatum/D. officinale (here after D. catenatum), a well-known economically important traditional medicinal herb, produces a variety of bioactive metabolites including polysaccharides, alkaloids, and flavonoids with excellent pharmacological and clinical values. Although many genes associated with the biosynthesis of medicinal components have been cloned and characterized, the biosynthetic pathway, especially the downstream and regulatory pathway of major medicinal components in the herb, is far from clear. β-glucosidases (BGLUs) comprise a diverse group of enzymes that widely exist in plants and play essential functions in cell wall modification, defense response, phytohormone signaling, secondary metabolism, herbivore resistance, and scent release by hydrolyzing β-D-glycosidic bond from a carbohydrate moiety. The recent release of the chromosome-level reference genome of D. catenatum enables the characterization of gene families. Although the genome-wide analysis of the BGLU gene family has been successfully conducted in various plants, no systematic analysis is available for the D. catenatum. We previously isolated DcBGLU2 in the BGLU family as a key regulator for polysaccharide biosynthesis in D. catenatum. Yet, the exact number of DcBGLUs in the D. catenatum genome and their possible roles in bioactive compound production deserve more attention. RESULTS To investigate the role of BGLUs in active metabolites production, 22 BGLUs (DcBGLU1-22) of the glycoside hydrolase family 1 (GH1) were identified from D. catenatum genome. Protein prediction showed that most of the DcBGLUs were acidic and phylogenetic analysis classified the family into four distinct clusters. The sequence alignments revealed several conserved motifs among the DcBGLU proteins and analyses of the putative signal peptides and N-glycosylation site revealed that the majority of DcBGLU members dually targeted to the vacuole and/or chloroplast. Organ-specific expression profiles and specific responses to MeJA and MF23 were also determined. Furthermore, four DcBGLUs were selected to test their involvement in metabolism regulation. Overexpression of DcBGLU2, 6, 8, and 13 significantly increased contents of flavonoid, reducing-polysaccharide, alkaloid and soluble-polysaccharide, respectively. CONCLUSION The genome-wide systematic analysis identified candidate DcBGLU genes with possible roles in medicinal metabolites production and laid a theoretical foundation for further functional characterization and molecular breeding of D. catenatum.
Collapse
Affiliation(s)
- Zhicai Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China. .,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| | - Meili Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.,South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojie Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.,Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xuming Deng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Jian Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Meina Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China. .,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| |
Collapse
|
11
|
Light and Potassium Improve the Quality of Dendrobium officinale through Optimizing Transcriptomic and Metabolomic Alteration. Molecules 2022; 27:molecules27154866. [PMID: 35956813 PMCID: PMC9369990 DOI: 10.3390/molecules27154866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background: Dendrobium officinale is a perennial epiphytic herb in Orchidaceae. Cultivated products are the main alternative for clinical application due to the shortage of wild resources. However, the phenotype and quality of D. officinale have changed post-artificial cultivation, and environmental cues such as light, temperature, water, and nutrition supply are the major influencing factors. This study aims to unveil the mechanisms beneath the cultivation-induced variation by analyzing the changes of the metabolome and transcriptome of D. officinale seedlings treated with red- blue LED light and potassium fertilizer. Results: After light- and K-treatment, the D. officinale pseudobulbs turned purple and the anthocyanin content increased significantly. Through wide-target metabolome analysis, compared with pseudobulbs in the control group (P), the proportion of flavonoids in differentially-accumulated metabolites (DAMs) was 22.4% and 33.5% post light- and K-treatment, respectively. The gene modules coupled to flavonoids were obtained through the coexpression analysis of the light- and K-treated D. officinale transcriptome by WGCNA. The KEGG enrichment results of the key modules showed that the DEGs of the D. officinale pseudobulb were enriched in phenylpropane biosynthesis, flavonoid biosynthesis, and jasmonic acid (JA) synthesis post-light- and K-treatment. In addition, anthocyanin accumulation was the main contribution to the purple color of pseudobulbs, and the plant hormone JA induced the accumulation of anthocyanins in D. officinale. Conclusions: These results suggested that light and potassium affected the accumulation of active compounds in D. officinale, and the gene-flavone network analysis emphasizes the key functional genes and regulatory factors for quality improvement in the cultivation of this medicinal plant.
Collapse
|
12
|
Jiao C, Wei M, Fan H, Song C, Wang Z, Cai Y, Jin Q. Transcriptomic analysis of genes related to alkaloid biosynthesis and the regulation mechanism under precursor and methyl jasmonate treatment in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:941231. [PMID: 35937364 PMCID: PMC9355482 DOI: 10.3389/fpls.2022.941231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium officinale is both a traditional herbal medicine and a plant of high ornamental and medicinal value. Alkaloids, especially terpenoid indole alkaloids (TIAs), with pharmacological activities are present in the tissues of D. officinale. A number of genes involved in alkaloid biosynthetic pathways have been identified. However, the regulatory mechanisms underlying the precursor and methyl jasmonate (MeJA)-induced accumulation of alkaloids in D. officinale are poorly understood. In this study, we collected D. officinale protocorm-like bodies (PLBs) and treated them with TIA precursors (tryptophan and secologanin) and MeJA for 0 (T0), 4 (T4) and 24 h (T24); we also established control samples (C4 and C24). Then, we measured the total alkaloid content of the PLBs and performed transcriptome sequencing using the Illumina HiSeq 2,500 system. The total alkaloid content increased significantly after 4 h of treatment. Go and KEGG analysis suggested that genes from the TIA, isoquinoline alkaloid, tropane alkaloid and jasmonate (JA) biosynthetic pathways were significantly enriched. Weighted gene coexpression network analysis (WGCNA) uncovered brown module related to alkaloid content. Six and seven genes related to alkaloid and JA bisosynthetic pathways, respectively, might encode the key enzymes involved in alkaloid biosynthesis of D. officinale. Moreover, 13 transcription factors (TFs), which mostly belong to AP2/ERF, WRKY, and MYB gene families, were predicted to regulate alkaloid biosynthesis. Our data provide insight for studying the regulatory mechanism underlying TIA precursor and MeJA-induced accumulation of three types of alkaloids in D. officinale.
Collapse
Affiliation(s)
- Chunyan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Mengke Wei
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Honghong Fan
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Jin
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
13
|
Ahmad S, Gao J, Wei Y, Lu C, Zhu G, Yang F. The Transcriptome Profiling of Flavonoids and Bibenzyls Reveals Medicinal Importance of Rare Orchid Arundina graminifolia. FRONTIERS IN PLANT SCIENCE 2022; 13:923000. [PMID: 35812923 PMCID: PMC9260279 DOI: 10.3389/fpls.2022.923000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Orchids are very important flowering plants that spend long juvenile phases before flowering. Along with aesthetic importance, they are rich sources of medicinal components. However, their long reproductive cycle is the major hurdle to study the medicinal efficacy. Arundina graminifolia is a rare orchid that grows fast, unlike other orchids, and this characteristic makes it an ideal plant to study the medicinal enrichment of orchids. Therefore, this study presents the identification of important medicinal components in various parts of A. graminifolia. Transcriptome analysis was performed for five stages (FD1-FD5) of flower development and four tissue types (mature flower, silique, root, and leaf) to ascertain genetic regulators of flavonoids and bibenzyls. Most of the genes showed the highest expression in roots as compared with other tissues. Weighted gene coexpression network analysis (WGCNA) was performed to identify the coexpression modules and the candidate genes involving biosynthesis pathways of these chemicals. MEyellow module contained the highly coexpressed genes. Moreover, the concentrations of phenylpropanoid, bibenzyls, and flavone were ascertained through high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Phenylpropanoid and bibenzyl were comparatively high in the leaf, while flavone showed a high concentration in the stem. The selected candidate genes [bibenzyl biosynthesis (BIBSY212), CYP84A1, CYP73A4, 4CLL7, UGT88B1, UGT73C3, anthocyanin synthase (ANS), phenylalanine ammonia-lyase (PAL), flavanone synthase FLS, and CHS8] were validated through quantitative real-time PCR (qRT-PCR). Most of these genes showed high expression in leaf and root as compared with other tissue. Therefore, the presence of bibenzyls and flavonoids in different parts of A. graminifolia and their molecular regulators can provide a quick source to decipher the medicinal efficacy of orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Song C, Ma J, Li G, Pan H, Zhu Y, Jin Q, Cai Y, Han B. Natural Composition and Biosynthetic Pathways of Alkaloids in Medicinal Dendrobium Species. FRONTIERS IN PLANT SCIENCE 2022; 13:850949. [PMID: 35599884 PMCID: PMC9121007 DOI: 10.3389/fpls.2022.850949] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium is the second biggest genus in the Orchidaceae family, some of which have both ornamental and therapeutic values. Alkaloids are a group of active chemicals found in Dendrobium plants. Dendrobine has emerged specific pharmacological and therapeutic properties. Although Dendrobium alkaloids have been isolated and identified since the 1930s, the composition of alkaloids and their biosynthesis pathways, including metabolic intermediates, alkaloid transporters, concrete genes involved in downstream pathways, and associated gene clusters, have remained unresolved scientific issues. This paper comprehensively reviews currently identified and tentative alkaloids from the aspect of biogenic pathways or metabolic genes uncovered based on the genome annotations. The biosynthesis pathways of each class of alkaloids are highlighted. Moreover, advances of the high-throughput sequencing technologies in the discovery of Dendrobium alkaloid pathways have been addressed. Applications of synthetic biology in large-scale production of alkaloids are also described. This would serve as the basis for further investigation into Dendrobium alkaloids.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yanfang Zhu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| |
Collapse
|
15
|
Ghai D, Kaur A, Kahlon PS, Pawar SV, Sembi JK. A Walk Through the Maze of Secondary Metabolism in Orchids: A Transcriptomic Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:837563. [PMID: 35574139 PMCID: PMC9100589 DOI: 10.3389/fpls.2022.837563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Orchids have a huge reservoir of secondary metabolites making these plants of immense therapeutic importance. Their potential as curatives has been realized since times immemorial and are extensively studied for their medicinal properties. Secondary metabolism is under stringent genetic control in plants and several molecular factors are involved in regulating the production of the metabolites. However, due to the complex molecular networks, a complete understanding of the specific molecular cues is lacking. High-throughput omics technologies have the potential to fill up this lacuna. The present study deals with comparative analysis of high-throughput transcript data involving gene identification, functional annotation, and differential expression in more than 30 orchid transcriptome data sets, with a focus to elucidate the role of various factors in alkaloid and flavonoid biosynthesis. Comprehensive analysis of the mevalonate (MVA) pathway, methyl-d-erythritol 4-phosphate (MEP) pathway, and phenylpropanoid pathway provide specific insights to the potential gene targets for drug discovery. It is envisaged that a positive stimulation of these pathways through regulation of pivotal genes and alteration of specific gene expression, could facilitate the production of secondary metabolites and enable efficient tapping of the therapeutic potential of orchids. This further would lay the foundation for developing strategies for genetic and epigenetic improvement of these plants for development of therapeutic products.
Collapse
Affiliation(s)
- Devina Ghai
- Department of Botany, Panjab University, Chandigarh, India
| | - Arshpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Parvinderdeep S. Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sandip V. Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
16
|
Zhan X, Chen Z, Chen R, Shen C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:877304. [PMID: 35463424 PMCID: PMC9024250 DOI: 10.3389/fpls.2022.877304] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh environments and function in plant defense responses. PSMs act as key components of defense-related signaling pathways and trigger the extensive expression of defense-related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of rapidly rising reactive oxygen species, and as chelators, participating in the chelation of toxins under stress conditions. PSMs include nitrogen-containing chemical compounds, terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a specific biosynthetic pathway, including precursors, intermediates, and end products. The basic biosynthetic pathways of representative PSMs are summarized, providing potential target enzymes of stress-mediated regulation and responses. Multiple metabolic pathways share the same origin, and the common enzymes are frequently to be the targets of metabolic regulation. Most biosynthetic pathways are controlled by different environmental and genetic factors. Here, we summarized the effects of environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in various plants. We also discuss the positive and negative transcription factors involved in various PSM biosynthetic pathways. The potential target genes of the stress-related transcription factors were also summarized. We further found that the downstream targets of these Transcription factors (TFs) are frequently enriched in the synthesis pathway of precursors, suggesting an effective role of precursors in enhancing of terminal products. The present review provides valuable insights regarding screening targets and regulators involved in PSM-mediated plant protection in non-model plants.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Jiang M, Li S, Zhao C, Zhao M, Xu S, Wen G. Identification and analysis of sucrose synthase gene family associated with polysaccharide biosynthesis in Dendrobium catenatum by transcriptomic analysis. PeerJ 2022; 10:e13222. [PMID: 35402092 PMCID: PMC8992646 DOI: 10.7717/peerj.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Dendrobium catenatum is a valuable traditional medicinal herb with high commercial value. D. catenatum stems contain abundant polysaccharides which are one of the main bioactive components. However, although some genes related to the synthesis of the polysaccharides have been reported, more key genes need to be further elucidated. Results In this study, the contents of polysaccharides and mannose in D. catenatum stems at four developmental stages were compared, and the stems' transcriptomes were analyzed to explore the synthesis mechanism of the polysaccharides. Many genes involved in starch and sucrose metabolisms were identified by KEGG pathway analysis. Further analysis found that sucrose synthase (SUS; EC 2.4.1.13) gene maybe participated in the polysaccharide synthesis. Hence, we further investigated the genomic characteristics and evolution relationships of the SUS family in plants. The result suggested that the SUS gene of D. catenatum (DcSUS) had undergone the expansion characterized by tandem duplication which might be related to the enrichment of the polysaccharides in D. catenatum stems. Moreover, expression analyses of the DcSUS displayed significant divergent patterns in different tissues and could be divided into two main groups in the stems with four developmental stages. Conclusion In general, our results revealed that DcSUS is likely involved in the metabolic process of the stem polysaccharides, providing crucial clues for exploiting the key genes associated with the polysaccharide synthesis.
Collapse
Affiliation(s)
- Min Jiang
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), School of Life Sciences, Fudan University, Shanghai, China
| | - Shangyun Li
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Changling Zhao
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Mingfu Zhao
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shaozhong Xu
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Guosong Wen
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
18
|
He B, Bai X, Tan Y, Xie W, Feng Y, Yang GY. Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products. Synth Syst Biotechnol 2022; 7:602-620. [PMID: 35261926 PMCID: PMC8883072 DOI: 10.1016/j.synbio.2022.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022] Open
Abstract
UDP-Glycosyltransferases (UGTs) catalyze the transfer of nucleotide-activated sugars to specific acceptors, among which the GT1 family enzymes are well-known for their function in biosynthesis of natural product glycosides. Elucidating GT function represents necessary step in metabolic engineering of aglycone glycosylation to produce drug leads, cosmetics, nutrients and sweeteners. In this review, we systematically summarize the phylogenetic distribution and catalytic diversity of plant GTs. We also discuss recent progress in the identification of novel GT candidates for synthesis of plant natural products (PNPs) using multi-omics technology and deep learning predicted models. We also highlight recent advances in rational design and directed evolution engineering strategies for new or improved GT functions. Finally, we cover recent breakthroughs in the application of GTs for microbial biosynthesis of some representative glycosylated PNPs, including flavonoid glycosides (fisetin 3-O-glycosides, astragalin, scutellarein 7-O-glucoside), terpenoid glycosides (rebaudioside A, ginsenosides) and polyketide glycosides (salidroside, polydatin).
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumeng Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Li H, Qiu Y, Sun G, Ye W. RNA sequencing-based exploration of the effects of blue laser irradiation on mRNAs involved in functional metabolites of D. officinales. PeerJ 2022; 9:e12684. [PMID: 35036158 PMCID: PMC8740519 DOI: 10.7717/peerj.12684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) has promising lung moisturizing, detoxifying, and immune boosting properties. Light is an important factor influencing functional metabolite synthesis in D. officinale. The mechanisms by which lasers affect plants are different from those of ordinary light sources; lasers can effectively address the shortcomings of ordinary light sources and have significant interactions with plants. Different light treatments (white, blue, blue laser) were applied, and the number of red leaves under blue laser was greater than that under blue and white light. RNA-seq technology was used to analyze differences in D. officinale under different light treatments. The results showed 465, 2,107 and 1,453 differentially expressed genes (DEGs) in LB-B, LB-W and W-B, respectively. GO, KEGG and other analyses of DEGs indicated that D. officinale has multiple blue laser response modes. Among them, the plasma membrane, cutin, suberine and wax biosynthesis, flavone and flavonol biosynthesis, heat shock proteins, etc. play central roles. Physiological and biochemical results verified that blue laser irradiation significantly increases POD, SOD, and PAL activities in D. officinale. The functional metabolite results showed that blue laser had the greatest promoting effect on total flavonoids, polysaccharides, and alkaloids. qPCR verification combined with other results suggested that CRY DASH, SPA1, HY5, and PIF4 in the blue laser signal transduction pathway affect functional metabolite accumulation in D. officinale through positively regulated expression patterns, while CO16 and MYC2 exhibit negatively regulated expression patterns. These findings provide new ideas for the efficient production of metabolites in D. officinale.
Collapse
Affiliation(s)
- Hansheng Li
- College of Architectural Engineering, Sanming University, Sanming, Chian
| | - Yuqiang Qiu
- Xiamen Institute of Technology, Xiamen, China
| | - Gang Sun
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Shaxian, China
| |
Collapse
|
20
|
Zhou T, Zhang T, Sun J, Zhu H, Zhang M, Wang X. Tissue-specific transcriptome for Rheum tanguticum reveals candidate genes related to the anthraquinones biosynthesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2487-2501. [PMID: 34924706 PMCID: PMC8639895 DOI: 10.1007/s12298-021-01099-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 05/09/2023]
Abstract
UNLABELLED Rheum tanguticum (Maxim. ex Regel) Maxim. ex Balf. is a herbaceous perennial plant indigenous to China, and its root and rhizomes were usually used as an important traditional Chinese medicine. However, the genomic resources are still scarce for R. tanguticum and even for Rheum genus. Transcriptome datasets from different tissues of R. tanguticum were obtained to screen the genes related to anthraquinones biosynthesis, and five free anthraquinones were also determined. Nine cDNA libraries of roots, stems and leaves were generated, and a total of 272 million high-quality reads were assembled into 257,942 unigenes. Based on the functional annotation, A total of 227 candidate enzyme genes involved in the MVA, MEP, shikimate and polyketide pathways were identified, and several differentially expressed genes found functionally associated with anthraquinones biosynthesis showed distinct tissue-specific expression patterns. Especially, we found that the expression levels of PKS III genes might result in the content differences of free anthraquinones in different tissues of R. tanguticum. Besides, 137,400 SSR loci were identified, and 64,081 SSR primer pairs were successfully designed based on these loci. Our results not only provide cues for the genetic mechanism of anthraquinone content differences in different tissues of R. tanguticum, but also lay genomic foundation for the subsequent genetic engineering and breeding for Rheum species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01099-8.
Collapse
Affiliation(s)
- Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Tianyi Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Jiangyan Sun
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Honghong Zhu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Miao Zhang
- Lixian Spring Pharmaceutical Co. Ltd., Longnan, 742200 China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| |
Collapse
|
21
|
Wang Z, Jiang W, Liu Y, Meng X, Su X, Cao M, Wu L, Yu N, Xing S, Peng D. Putative genes in alkaloid biosynthesis identified in Dendrobium officinale by correlating the contents of major bioactive metabolites with genes expression between Protocorm-like bodies and leaves. BMC Genomics 2021; 22:579. [PMID: 34325653 PMCID: PMC8323239 DOI: 10.1186/s12864-021-07887-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dendrobium officinale, an endangered Chinese herb, possesses extensive therapeutic effects and contains bioactive ingredients such as major polysaccharides, alkaloids, and minimal flavonoids. We first obtained the protocorm-like bodies (PLBs) of this plant through tissue culture in order to determine the distribution of the main secondary metabolites in each organelle and the PLBs. We then analyzed the correlation between gene expression level from comparative transcriptome sequencing and metabolite content in different organs to identify putative genes encoding enzymes involved in the biosynthesis of polysaccharides, alkaloids, and flavonoids. RESULTS We used seeds as explants for protocorm induction and PLB propagation of D. officinale. The optimal medium formula for PLB propagation was 1/2 MS + α-NAA 0.5 mg·L- 1 + 6-BA 1.0 mg·L- 1 + 2, 4-D 1.5-2.0 mg·L- 1 + potato juice 100 g·L- 1. Stems, PLBs and leaves of D. officinale had the highest content of polysaccharides, alkaloids and flavonoids, respectively. Naringenin was only produced in stem; however, PLBs with high alkaloid content can replace other organs producing alkaloids. The hot water extraction method outperformed the ultrasound-assisted extraction method for extracting polysaccharides from D. officinale. A comparative transcriptome analysis of PLBs and leaves of D. officinale revealed differential expression of genes encoding enzymes involved in polysaccharide, alkaloid and flavonoid biosynthetic pathways. Putative genes encoding enzymes involved in these biosynthetic pathways were identified. Notably, we identified genes encoding the alkaloid biosynthesis enzymes strictosidine β-D-Glucosidase, geissoschizine synthase and vinorine synthase in D. officinale. CONCLUSIONS The identification of candidate genes encoding enzymes involved in metabolite biosynthesis will help to explore and protect this endangered species and facilitate further analysis of the molecular mechanism of secondary metabolite biosynthesis in D. officinale.
Collapse
Affiliation(s)
- Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang Normal University, Hengyang, 421008, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Minneapolis, MN, 55108, USA
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengyang Cao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China.
| |
Collapse
|
22
|
Shan T, Yin M, Wu J, Yu H, Liu M, Xu R, Wang J, Peng H, Zha L, Gui S. Comparative transcriptome analysis of tubers, stems, and flowers of Gastrodia elata Blume reveals potential genes involved in the biosynthesis of phenolics. Fitoterapia 2021; 153:104988. [PMID: 34246745 DOI: 10.1016/j.fitote.2021.104988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Orchidaceae, well known for its fascinating flowers, is one of the largest and most diverse families of flowering plants. There are many kinds of plants in this family; these are distributed practically globally and have high ornamental and medicinal values. Gastrodia elata Blume, a traditional Chinese medicinal herb, is a rootless and leafless achlorophyllous orchid. Phenolic compounds are considered to be the major bioactive constituents in G. elata, with antioxidant, antiangiogenic, neuroprotective, antidepressant, anxiolytic, and sedative activities. In this study, we determined the contents of six main phenolic components in tubers, stems and flowers from G. elata. Meanwhile, the transcriptomes of the tuber, stem and flower tissues of G. elata were obtained using the BGISEQ-500 platform. A total of 58.29 Gb of data and 113,067 unigenes were obtained, of which 74,820 unigenes were functionally annotated against seven public databases. Differentially expressed genes between tuber, stem and flower tissues were identified. A total of 76 DEGs encoding eight key enzymes were identified as candidate genes involved in the biosynthesis of phenolics in G. elata. For further validation, the expression levels of unigenes were measured using quantitative real-time PCR. Our results greatly enrich the transcriptomic data of G. elata and provide valuable information for the identification of candidate genes involved in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Tingyu Shan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Minzhen Yin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Junxian Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Rui Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China; Institute of Traditional Chinese Medicine Resources, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
23
|
Lin W, Chen H, Wang J, Zheng Y, Lu Q, Zhu Z, Li N, Jin Z, Li J, Lu H. Transcriptome analysis associated with polysaccharide synthesis and their antioxidant activity in Cyclocarya paliurus leaves of different developmental stages. PeerJ 2021; 9:e11615. [PMID: 34178473 PMCID: PMC8210810 DOI: 10.7717/peerj.11615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cyclocarya paliurus (Batal.) Iljinskaja is a common endemic tree species and used as a Chinese medicine. The main active components in the leaves of this plant are polysaccharides. However, the temporal patterns of gene expression underlying the synthesis of polysaccharides in C. paliurus at different leaf developmental stages and its relationship with the polysaccharide content and antioxidant activities has not been reported to date. METHODS RNA-seq was used to investigate the biosynthesis pathway of polysaccharides at the four developmental stages of C. paliurus leaves. The content and the antioxidant activities of polysaccharides were measured with typical biochemical methods and the identified correlations were statistically evaluated. RESULTS Sixty-nine differentially expressed genes were found in the leaves during different developmental stages of C. paliurus. These are associated with glycosyltransferases and belong to 18 families. During different developmental stages of C. paliurus, the polysaccharide content first increased and then decreased, and the UDP-glucose 4-epimerase gene was found to be significantly positively correlated with the polysaccharide content. The clearance rates of DPPH radicals, superoxide anion radicals, hydroxyl radicals, and the reducing power of polysaccharides in the leaves of C. paliurus at different developmental stages showed a dose-dependent relationship with the concentration of polysaccharides. CONCLUSIONS The smallest fully expanded leaves are suitable for high-quality tea, and leaves with sizes below the largest fully expanded leaves are suitable for industrial production of polysaccharides.
Collapse
Affiliation(s)
- Weida Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, ZheJiang, China
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Huanwei Chen
- Forest Research Institute of Longquan City, Longquan, Zhejiang, China
| | - Jianmei Wang
- Zhejiang Yuanyang Agriculture Development Co. Ltd, Suichang, Zhejiang, China
| | - Yongli Zheng
- Zhejiang Provincial Agricultural Products Quality Safety Center, Hangzhou, Zhejiang, China
| | - Qiuwei Lu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, ZheJiang, China
| | - Ziping Zhu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, ZheJiang, China
| | - Na Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, ZheJiang, China
| | - Zexin Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, ZheJiang, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, ZheJiang, China
| | - Hongfei Lu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Zhang M, Yu Z, Zeng D, Si C, Zhao C, Wang H, Li C, He C, Duan J. Transcriptome and Metabolome Reveal Salt-Stress Responses of Leaf Tissues from Dendrobium officinale. Biomolecules 2021; 11:736. [PMID: 34063498 PMCID: PMC8156352 DOI: 10.3390/biom11050736] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Dendrobium officinale Kimura et Migo is a precious traditional Chinese medicine. Despite D. officinale displaying a good salt-tolerance level, the yield and growth of D. officinale were impaired drastically by the increasing soil secondary salinization. The molecular mechanisms of D. officinale plants' adaptation to salt stress are not well documented. Therefore, in the present study, D. officinale plants were treated with 250 mM NaCl. Transcriptome analysis showed that salt stress significantly altered various metabolic pathways, including phenylalanine metabolism, flavonoid biosynthesis, and α-linolenic acid metabolism, and significantly upregulated the mRNA expression levels of DoAOC, DoAOS, DoLOX2S, DoMFP, and DoOPR involved in the jasmonic acid (JA) biosynthesis pathway, as well as rutin synthesis genes involved in the flavonoid synthesis pathway. In addition, metabolomics analysis showed that salt stress induced the accumulation of some compounds in D. officinale leaves, especially flavonoids, sugars, and alkaloids, which may play an important role in salt-stress responses of leaf tissues from D. officinale. Moreover, salt stress could trigger JA biosynthesis, and JA may act as a signal molecule that promotes flavonoid biosynthesis in D. officinale leaves. To sum up, D. officinale plants adapted to salt stress by enhancing the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.Z.); (Z.Y.); (D.Z.); (C.S.); (C.Z.); (H.W.)
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.Z.); (Z.Y.); (D.Z.); (C.S.); (C.Z.); (H.W.)
| | - Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.Z.); (Z.Y.); (D.Z.); (C.S.); (C.Z.); (H.W.)
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.Z.); (Z.Y.); (D.Z.); (C.S.); (C.Z.); (H.W.)
| | - Conghui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.Z.); (Z.Y.); (D.Z.); (C.S.); (C.Z.); (H.W.)
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Haobin Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.Z.); (Z.Y.); (D.Z.); (C.S.); (C.Z.); (H.W.)
| | - Chuanmao Li
- Guangzhou Keneng Cosmetic Scientific Research Co., Ltd., Guangzhou 510800, China;
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.Z.); (Z.Y.); (D.Z.); (C.S.); (C.Z.); (H.W.)
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.Z.); (Z.Y.); (D.Z.); (C.S.); (C.Z.); (H.W.)
| |
Collapse
|
25
|
Mou Z, Zhao Y, Ye F, Shi Y, Kennelly EJ, Chen S, Zhao D. Identification, Biological Activities and Biosynthetic Pathway of Dendrobium Alkaloids. Front Pharmacol 2021; 12:605994. [PMID: 33959002 PMCID: PMC8096351 DOI: 10.3389/fphar.2021.605994] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Dendrobium is a genus of flowering plants belonging to the Orchidaceae family with more than 1,400 species. Many Dendrobium species have been used as medicinal plants in several Asian countries for thousands of years. Alkaloids were reported as the major biological markers due to their complex chemical compositions and various types. In this review, we summarized the structural types of alkaloids, their pharmacological activities, as well as the mechanisms of biological activities. More than sixty alkaloids were isolated and identified from the Dendrobium genus. Moreover, the pharmacological effects of Dendrobium alkaloids as hepatic lipid and gluconeogenesis regulation, as neuroprotection, and as anti-tumor, anti-inflammatory, anti-diabetes, and anti-virus factors were described. Besides, the total chemical synthesis of dendrobine is provided, while the biosynthetic pathway of dendrobine has been proposed based on the functions of associated genes. For applications of these invaluable herbs, more researches on the extraction of biological markers from compounds are needed. Further confirmation of the proposed biosynthetic pathways is anticipated as well.
Collapse
Affiliation(s)
- Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, NY, United States.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Fei Ye
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yana Shi
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.,Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, NY, United States.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
26
|
Guo K, Chen J, Niu Y, Lin X. Full-Length Transcriptome Sequencing Provides Insights into Flavonoid Biosynthesis in Fritillaria hupehensis. Life (Basel) 2021; 11:287. [PMID: 33800612 PMCID: PMC8066755 DOI: 10.3390/life11040287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
One of the most commonly utilized medicinal plants in China is Fritillaria hupehensis (Hsiao et K.C. Hsia). However, due to a lack of genomic resources, little is known about the biosynthesis of relevant compounds, particularly the flavonoid biosynthesis pathway. A PacBio RS II sequencing generated a total of 342,044 reads from the bulb, leaf, root, and stem, of which 316,438 were full-length (FL) non-redundant reads with an average length of 1365 bp and a N50 of 1888 bp. There were also 38,607 long non-coding RNAs and 7914 simple sequence repeats detected. To improve our understanding of processes implicated in regulating secondary metabolite biosynthesis in F. hupehensis tissues, we evaluated potential metabolic pathways. Overall, this study provides a repertoire of FL transcripts in F. hupehensis for the first time, and it will be a valuable resource for marker-assisted breeding and research into bioactive compounds for medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Kunyuan Guo
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China;
| | - Jie Chen
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China; (J.C.); (Y.N.)
| | - Yan Niu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China; (J.C.); (Y.N.)
| | - Xianming Lin
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China;
| |
Collapse
|
27
|
Transcriptomic Analyses Shed Light on Critical Genes Associated with Bibenzyl Biosynthesis in Dendrobium officinale. PLANTS 2021; 10:plants10040633. [PMID: 33810588 PMCID: PMC8065740 DOI: 10.3390/plants10040633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
The Dendrobium plants (members of the Orchidaceae family) are used as traditional Chinese medicinal herbs. Bibenzyl, one of the active compounds in Dendrobium officinale, occurs in low amounts among different tissues. However, market demands require a higher content of thes compounds to meet the threshold for drug production. There is, therefore, an immediate need to dissect the physiological and molecular mechanisms underlying how bibenzyl compounds are biosynthesized in D. officinale tissues. In this study, the accumulation of erianin and gigantol in tissues were studied as representative compounds of bibenzyl. Exogenous application of Methyl-Jasmonate (MeJA) promotes the biosynthesis of bibenzyl compounds; therefore, transcriptomic analyses were conducted between D. officinale-treated root tissues and a control. Our results show that the root tissues contained the highest content of bibenzyl (erianin and gigantol). We identified 1342 differentially expressed genes (DEGs) with 912 up-regulated and 430 down-regulated genes in our transcriptome dataset. Most of the identified DEGs are functionally involved in the JA signaling pathway and the biosynthesis of secondary metabolites. We also identified two candidate cytochrome P450 genes and nine other enzymatic genes functionally involved in bibenzyl biosynthesis. Our study provides insights on the identification of critical genes associated with bibenzyl biosynthesis and accumulation in Dendrobium plants, paving the way for future research on dissecting the physiological and molecular mechanisms of bibenzyl synthesis in plants as well as guide genetic engineering for the improvement of Dendrobium varieties through increasing bibenzyl content for drug production and industrialization.
Collapse
|
28
|
LI L, XUE Y, ZHANG H, LIU Y, YI F, DONG Y. A new polysaccharide isolated from Dendrobium offcinale, stimulates aquaporin-3 expression in human keratinocytes. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.31119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Li LI
- Beijing Technology and Business University, China
| | - Yan XUE
- Beijing Technology and Business University, China
| | - Huina ZHANG
- Beijing Technology and Business University, China
| | - Yuhong LIU
- Nutri-Woods Bio-tech (Beijing) Co., China
| | - Fan YI
- Beijing Technology and Business University, China
| | - Yinmao DONG
- Beijing Technology and Business University, China
| |
Collapse
|
29
|
Wang Y, Tong Y, Adejobi OI, Wang Y, Liu A. Research Advances in Multi-Omics on the Traditional Chinese Herb Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2021; 12:808228. [PMID: 35087561 PMCID: PMC8787213 DOI: 10.3389/fpls.2021.808228] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 05/04/2023]
Abstract
Dendrobium officinale Kimura et Migo is an important epiphytic plant, belonging to the Orchidaceae family. There are various bioactive components in D. officinale plants, mainly including polysaccharides, alkaloids, and phenolic compounds. These compounds have been demonstrated to possess multiple functions, such as anti-oxidation, immune regulation, and anti-cancer. Due to serious shortages of wild resources, deterioration of cultivated germplasm and the unstable quality of D. officinale, the study has been focused on the biosynthetic pathway and regulation mechanisms of bioactive compounds. In recent years, with rapid developments in detection technologies and analysis tools, omics research including genomics, transcriptomics, proteomics and metabolomics have all been widely applied in various medicinal plants, including D. officinale. Many important advances have been achieved in D. officinale research, such as chromosome-level reference genome assembly and the identification of key genes involved in the biosynthesis of active components. In this review, we summarize the latest research advances in D. officinale based on multiple omics studies. At the same time, we discuss limitations of the current research. Finally, we put forward prospective topics in need of further study on D. officinale.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan Tong
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Oluwaniyi Isaiah Adejobi
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yuhua Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- *Correspondence: Aizhong Liu,
| |
Collapse
|
30
|
Zhang M, Teixeira da Silva JA, Yu Z, Wang H, Si C, Zhao C, He C, Duan J. Identification of histone deacetylase genes in Dendrobium officinale and their expression profiles under phytohormone and abiotic stress treatments. PeerJ 2020; 8:e10482. [PMID: 33362966 PMCID: PMC7747690 DOI: 10.7717/peerj.10482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022] Open
Abstract
The deacetylation of core histones controlled by the action of histone deacetylases (HDACs) plays an important role in the epigenetic regulation of plant gene transcription. However, no systematic analysis of HDAC genes in Dendrobium officinale, a medicinal orchid, has been performed. In the current study, a total of 14 histone deacetylases in D. officinale were identified and characterized using bioinformatics-based methods. These genes were classified into RPD3/HDA1, SIR2, and HD2 subfamilies. Most DoHDAC genes in the same subfamily shared similar structures, and their encoded proteins contained similar motifs, suggesting that the HDAC family members are highly conserved and might have similar functions. Different cis-acting elements in promoters were related to abiotic stresses and exogenous plant hormones. A transient expression assay in onion epidermal cells by Agrobacterium-mediated transformation indicated that all of the detected histone deacetylases such as DoHDA7, DoHDA9, DoHDA10, DoHDT3, DoHDT4, DoSRT1 and DoSRT2, were localized in the nucleus. A tissue-specific analysis based on RNA-seq suggested that DoHDAC genes play a role in growth and development in D. officinale. The expression profiles of selected DoHDAC genes under abiotic stresses and plant hormone treatments were analyzed by qRT-PCR. DoHDA3, DoHDA8, DoHDA10 and DoHDT4 were modulated by multiple abiotic stresses and phytohormones, indicating that these genes were involved in abiotic stress response and phytohormone signaling pathways. These results provide valuable information for molecular studies to further elucidate the function of DoHDAC genes.
Collapse
Affiliation(s)
- Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Haobin Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Conghui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
31
|
Chen J, Wang L, Liang H, Jin X, Wan J, Liu F, Zhao K, Huang J, Tian M. Overexpression of DoUGP Enhanced Biomass and Stress Tolerance by Promoting Polysaccharide Accumulation in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2020; 11:533767. [PMID: 33312181 PMCID: PMC7703667 DOI: 10.3389/fpls.2020.533767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/07/2020] [Indexed: 05/28/2023]
Abstract
Uridine diphosphate glucose pyrophosphorylase (UDP-glucose pyrophosphorylase, UGPase), as one of the key enzymes in polysaccharide synthesis, plays important roles in the growth and development of plants. In this study, the DoUGP gene of Dendrobium officinale was overexpressed. The expression of DoUGP and genes playing roles in the same and other saccharide synthesis pathways was determined, and the total soluble polysaccharide was also tested in wild-type and transgenic seedlings. We also performed freezing and osmotic stress treatments to determine whether overexpression of DoUGP could influence stress resistance in transgenic seedlings. Results showed that mRNA expression levels of DoUGP and its metabolic upstream and downstream genes in the transgenic seedlings were increased compared to the expression of these genes in wild-type seedlings. Additionally, most CSLA genes involved in the biosynthesis of mannan polysaccharides were significantly upregulated. The total polysaccharide and mannose content of transgenic seedlings were increased compared to the content of wild type, and enhanced stress tolerance was found in the overexpressed seedlings compared to the wild type.
Collapse
Affiliation(s)
- Ji Chen
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Li Wang
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Huan Liang
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Xiaowan Jin
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Jian Wan
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Fan Liu
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Mengliang Tian
- Institute for New Rural Development, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
32
|
Zhan X, Qi J, Zhou B, Mao B. Metabolomic and transcriptomic analyses reveal the regulation of pigmentation in the purple variety of Dendrobium officinale. Sci Rep 2020; 10:17700. [PMID: 33077850 PMCID: PMC7573623 DOI: 10.1038/s41598-020-74789-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
We performed an integrated analysis of the transcriptome and metabolome from purple (Pr) and normal cultivated varieties (CK) of Dendrobium officinale to gain insights into the regulatory networks associated with phenylpropanoid metabolism and to identify the key regulatory genes of pigmentation. Metabolite and transcript profiling were conducted by ultra-performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) and RNA sequencing. Pr had more flavonoids in the stem than did CK. Metabolome analyses showed that 148 differential metabolites are involved in the biosynthesis of phenylpropanoids, amino acids, purines, and organic acids. Among them, the delphinidin and quercetin derivatives were significantly higher in Pr. A total of 4927 differentially expressed genes (DEGs) were significantly enriched (p ≤ 0.01) in 50 Gene Ontology (GO) terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significantly enriched phenylpropanoid biosynthesis and phytohormone signal transduction in Pr versus CK. The expression levels of flavanone 3-hydroxylase (F3H) and leucoanthocyanidin dioxygenase (LDOX) affected the flux of dihydroflavonol, which led to a color change in Pr. Moreover, DEG enrichment and metabolite analyses reflected flavonoid accumulation in Pr related to brassinosteroid (BR) and auxin metabolism. The results of this study elucidate phenylpropanoid biosynthesis in D. officinale.
Collapse
Affiliation(s)
- Xinqiao Zhan
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China.
| | - Jufeng Qi
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhou
- Zhejiang Baihua Landscape Group Co., Ltd., Taizhou, 318000, China
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Wang Y, Liu A. Genomic Characterization and Expression Analysis of Basic Helix-Loop-Helix (bHLH) Family Genes in Traditional Chinese Herb Dendrobium officinale. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9081044. [PMID: 32824436 PMCID: PMC7463459 DOI: 10.3390/plants9081044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
Dendrobium officinale Kimura et Migo is of great importance as a traditional Chinese herb due to its abundant metabolites. The family of basic helix-loop-helix (bHLH) transcription factors widely exists in plants and plays an essential role in plant growth and development, secondary metabolism as well as responses to environmental changes. However, there is limited information on bHLH genes in D. officinale. In the present study, a total of 98 putative DobHLH genes were identified at the genomic level, which could be classified into 18 clades. Gene structures and conserved motifs in DobHLH genes showed high conservation during their evolution. The conserved amino acids and DNA bindings of DobHLH proteins were predicted, both of which are pivotal for their function. Furthermore, gene expression from eight tissues showed that some DobHLH genes were ubiquitously expressed while other DobHLH genes were expressed in the specific tissues. Expressional changes of DobHLH genes under MeJA and ABA treatments were detected by qRT-PCR. The protein-protein interactions between DobHLHs were predicted and several interactions were confirmed by yeast two hybrid. Therefore, our results here contribute to the understanding of bHLH genes in D. officinale and lay a foundation for the further functional study of its biological processes.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China;
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 Yunnan, China
| |
Collapse
|
34
|
Chen Y, Shen Q, Lv P, Sun C. Comparative metabolomic analyses of Dendrobium officinale Kimura et Migo responding to UV-B radiation reveal variations in the metabolisms associated with its bioactive ingredients. PeerJ 2020; 8:e9107. [PMID: 32655986 PMCID: PMC7331624 DOI: 10.7717/peerj.9107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Background Dendrobium officinale Kimura et Migo, a member of the genus Dendrobium, is a traditional Chinese medicine with high commercial value. The positive roles of UV-B radiation on active ingredient metabolism in various medicinal plants have been studied. However, the metabolic responses of D. officinale stems to UV-B treatment is largely unknown. Methods An untargeted metabolomics method was used to investigate the metabolic variations in D. officinale stems between the control and UV-B treatments. Results In total, 3,655 annotated metabolites, including 640 up- and 783 down-regulated metabolites, were identified and grouped into various primary metabolic categories. Then, a number of metabolites involved in the polysaccharide, alkaloid and flavonoid biosynthesis pathways were identified. For polysaccharide biosynthesis, several intermediate products, such as pyruvate, secologanate, tryptophan and secologanin, were significantly up-regulated by the UV-B treatment. For polysaccharide biosynthesis, many key fundamental building blocks, from the glycolysis, starch and sucrose metabolism, and fructose and mannose metabolism pathways, were induced by the UV-B treatment. For flavonoid metabolism, accumulations of several intermediate products of chalcone synthase, chalcone isomerase and flavanone 3-hydroxylase were affected by the UV-B treatment, indicating an involvement of UV-B in flavonoid biosynthesis. The UV-B induced accumulation of polysaccharides, alkaloids and flavonoids was confirmed by HPLC analysis. Our study will help to understand the effects of UV-B on the accumulation of active ingredients in D. officinale.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, China.,Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, China
| | - Qi Shen
- Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, China
| | - Ping Lv
- Agro Technical Extension and Service Center, Hangzhou, China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Network Analysis of Transcriptome and LC-MS Reveals a Possible Biosynthesis Pathway of Anthocyanins in Dendrobium officinale. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6512895. [PMID: 32420359 PMCID: PMC7210514 DOI: 10.1155/2020/6512895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/16/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023]
Abstract
Anthocyanins, a group of flavonoids, are widely present in plants and determine the colors of the peels of stems, fruits, and flowers. In this study, we used UHPLC-ESI-MS to identify anthocyanins in the herbal plant Dendrobium officinale, which has been used for centuries in China. The results indicated that the total anthocyanin content in samples from Guangxi was the highest. Seven anthocyanins were identified, and the fragmentation pathways were proposed from D. officinale. Most of the identified anthocyanins were composed of cyanidin and sinapoyl groups. We also carried out that the sinapoyl group had active sites on breast cancer receptors by using Schrödinger. The relative levels of the 7 anthocyanins in the samples from the three locations were determined. Transcriptomic analysis was used to analyze the sinapoyl anthocyanin synthesis-related genes in plants, such as genes encoding UGTs and serine carboxypeptidase. We speculated that sinapoyl anthocyanin biosynthesis was associated with the activities of certain enzymes, including chalcone flavonone isomerase-like, hydroxycinnamoyltransferase 1, UGT-83A1, UGT-88B1 isoform X1, serine carboxypeptidase-like 18 isoform X3, and serine carboxypeptidase-like 18.
Collapse
|
36
|
Zhang P, Zhu Y, Zhou S. Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber ( Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection. PeerJ 2020; 8:e8250. [PMID: 32337096 PMCID: PMC7169966 DOI: 10.7717/peerj.8250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022] Open
Abstract
Background Cucumber (Cucumis sativus L.) is a widely cultivated vegetable crop, and its yield and quality are greatly affected by various pathogen infections. Sphaerotheca fuliginea is a pathogen that causes powdery mildew (PM) disease in cucumber. However, the genes involved in the resistance to PM in cucumber are largely unknown. Methods In our study, a cucumber PM resistant cultivated variety “BK2” and a susceptible cultivated variety “H136” were used to screen and identify differential expressed genes (DEGs) under the S. fuliginea infection. Results There were only 97 DEGs between BK2 and H136 under the control condition, suggesting a similarity in the basal gene expression between the resistant and susceptible cultivated varieties. A large number of hormone signaling-related DEGs (9.2% of all DEGs) between resistant and susceptible varieties were identified, suggesting an involvement of hormone signaling pathways in the resistance to PM. In our study, the defense-related DEGs belonging to Class I were only induced in susceptible cultivated variety and the defense-related DEGs belonging to Class II were only induced in resistant cultivated variety. The peroxidase, NBS, glucanase and chitinase genes that were grouped into Class I and II might contribute to production of the resistance to PM in resistant cultivated variety. Furthermore, several members of Pathogen Response-2 family, such as glucanases and chitinases, were identified as DEGs, suggesting that cucumber might enhance the resistance to PM by accelerating the degradation of the pathogen cell walls. Our data allowed us to identify and analyze more potential genes related to PM resistance.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|
37
|
Pang C, Zhang X, Huang M, Xie G, Liu S, Ye X, Zhang X. Dendrobium officinalis inhibited tumor growth in non-small cell lung cancer. Transl Cancer Res 2020; 9:2683-2691. [PMID: 35117627 PMCID: PMC8797906 DOI: 10.21037/tcr.2020.02.79] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/14/2020] [Indexed: 12/04/2022]
Abstract
Background Lung cancer is the most common and lethal tumor in the world, and the number of patients who die from lung cancer is growing steadily. Because of conventional chemotherapy drugs’ poor tumor selectivity, side effects are significant. Conducting relevant studies and developing highly efficient and low toxicity anti-cancer drugs are urgently needed. Dendrobium officinale, which belongs to Orchidaceae aerophyte, has the characteristic of slow growth and lower natural propagation rate. In China, Dendrobium officinale has a very high value and is often referred to as the “gold of herbs”. According to reports in the literature, the active ingredients of Dendrobium officinale have anticancer activity and inhibit neovascularization’s potential. This study aimed to investigate the inhibitory effect of Dendrobium officinale in A549 lung cancer cells and its potential involvement in slowing tumor growth. Methods We cultured A549 cells and established a cancer xenograft model in nude mice. Infused stomach with Dendrobium officinale was applied to the nude mouse model. Tumor volume and body weight were recorded. Results The results show that, compared with the negative control group, the gross tumor volume (GTV) of treatment groups decreased (all P<0.05), while the effect of the high concentration of the Dendrobium officinale was more significant than that found in the medium and low group. We believe that Dendrobium officinale exhibits a promising antitumor effect in the nude mouse tumor model. The best treatment concentrations for the nude mouse tumor model were achieved when treatment with the drug began about 7–15 days, and was more significant in high concentrations. Conclusions Dendrobium officinale has potent effects of inhibiting tumor on the nude mouse tumor model.
Collapse
Affiliation(s)
- Chen Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530023, China
| | - Xiuling Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530023, China
| | - Min Huang
- Department of Pharmacology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530023, China
| | - Guangyuan Xie
- Department of Pharmacology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530023, China
| | - Shanshan Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530023, China
| | - Xingjiang Ye
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530023, China
| | - Xiliu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530023, China
| |
Collapse
|
38
|
Yuan Y, Zhang J, Liu X, Meng M, Wang J, Lin J. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis. Genomics 2020; 112:1781-1794. [DOI: 10.1016/j.ygeno.2019.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/13/2019] [Indexed: 12/27/2022]
|
39
|
Jiang W, Wu Z, Wang T, Mantri N, Huang H, Li H, Tao Z, Guo Q. Physiological and transcriptomic analyses of cadmium stress response in Dendrobium officinale seedling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:152-165. [PMID: 31962204 DOI: 10.1016/j.plaphy.2020.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 05/21/2023]
Abstract
Dendrobium officinale is an economically important Chinese herb with ornamental and medicinal values. However, the mechanisms by which D. officinale adapts to cadmium (Cd) stress is unknown. Here, physiological changes in D. officinale roots and leaves exposed to increasing levels of Cd stress (CdSO4 concentration of 2, 5, 9, 14 mg L-1) were analyzed at 7, 15, 30, and 45 days after treatment. The Cd stress of 14 mg L-1 significantly increased the levels of antioxidants and induced malondialdehyde and proline accumulation (P < 0.05). Cd subcellular distribution showed that Cd sequestration into soluble fraction is the major detoxification mechanism in D. officinale roots. Subsequently, the transcriptome profile of D. officinale roots treated with 14 mg L-1 Cd for 15 and 30 days was analyzed. Compared to control, 2,469 differentially expressed genes (DEGs) were identified, comprising 1,486 up-regulated genes and 983 down-regulated genes. The DEGs associated with metabolic pathways for Cd uptake, transportation and detoxification were analyzed. Several processes such as metal transporter, sulfate glutathione metabolism, cell wall metabolism, phenylpropanoid metabolism were identified to be important for Cd stress adaptation. More genes were expressed at 15 days after treatment compared to 30 days. WRKY, Trihelix, NF-YC, MYB, bZIP and bHLH transcription factors were over-expressed at both time points. Furthermore, candidate genes from the glutathione metabolism pathway were identified, and qRT-PCR analysis of ten DEGs indicated a high coorelation with RNA-seq expression profiles. Our findings provide significant information for further research of Cd stress responsive genes functions in D. officinale, especially the genes from the glutathione metabolism pathway.
Collapse
Affiliation(s)
- Wu Jiang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China; Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zhigang Wu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Tao Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Huilian Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Haowen Li
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Zhengming Tao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
40
|
Zhou P, Pu T, Gui C, Zhang X, Gong L. Transcriptome Analysis Reveals Biosynthesis of Important Bioactive Constituents and Mechanism of Stem Formation of Dendrobium huoshanense. Sci Rep 2020; 10:2857. [PMID: 32071345 PMCID: PMC7028924 DOI: 10.1038/s41598-020-59737-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
The stem of Dendrobium huoshanense C.Z. Tang and S.J. Cheng was widely used as a medicinal herb in health care products due to its broad pharmacological activities. However, the molecular regulation mechanism of stem development and biosynthetic pathways of important bioactive substances are still unclear in D. huoshanense. In this study, the bioactive compounds in leaves, stems and roots, and the identification of candidate genes involved in stem formation and biosynthesis of active compounds via transcriptome sequence were analyzed. The accumulation of total polysaccharides and flavonoids were varied significantly in different tissues. A comparative transcriptomic analysis revealed several differentially expressed genes (DEGs) involved in polysaccharides biosynthesis (103 genes), including fructose and mannose related genes (29 genes) and glycosyltransferase genes (74 genes), and flavonoids biosynthesis (15 genes). Some candidate genes that participated in photoperiod regulation (27 genes), starch and sucrose metabolism (46 genes), and hormone-induced activation of signaling pathways (38 genes) may be involved in stem formation. In sum, this study provides a foundation for investigating the molecular processes in the biosynthesis of active compounds and stem development. The transcriptome data presented here provides an important resource for the future studies of the molecular genetics and functional genomics in D. huoshanense and optimized control of the active compounds produced by D. huoshanense.
Collapse
Affiliation(s)
- Peina Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Tianzhen Pu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Chun Gui
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Xiuqiao Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Ling Gong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| |
Collapse
|
41
|
The Effects of Ecological Factors on the Main Medicinal Components of Dendrobium officinale under Different Cultivation Modes. FORESTS 2020. [DOI: 10.3390/f11010094] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendrobium officinale is an important traditional Chinese medicinal plant and crop, which contains many kinds of medicinal components. The quality of medicinal plants is closely related to the ecological factors in a growing environment. The main components of D. officinale determined in this study were polysaccharides, total alkaloids and total flavonoids. In addition, this study dealt with the correlation of these components to 16 ecological factors under three different cultivation modes (Greenhouse, Bionic, Wild; Lu’an, Anhui Province, China). The relationship between ecological factors and quality factors was analyzed step by step using correlation analysis, principal component analysis and stepwise multiple linear regression. Eight ecological factors: maximum relative humidity, minimum relative humidity, maximum temperature, sunshine duration, soil pH, soil total nitrogen, soil total phosphorus and soil available phosphorus were considered as key factors that influenced the main medicinal qualities of cultivated D. officinale. This study provides an insight for exploring the complex relationship between ecological factors and D. officinale medicinal value in artificial cultivation.
Collapse
|
42
|
Zhang L, Jiao C, Cao Y, Cheng X, Wang J, Jin Q, Cai Y. Comparative Analysis and Expression Patterns of the PLP_deC Genes in Dendrobium officinale. Int J Mol Sci 2019; 21:E54. [PMID: 31861760 PMCID: PMC6981363 DOI: 10.3390/ijms21010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
Studies have shown that the type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) genes produce secondary metabolites and flavor volatiles in plants, and TDC (tryptophan decarboxylase), a member of the PLP_deC family, plays an important role in the biosynthesis of terpenoid indole alkaloids (TIAs). In this study, we identified eight PLP_deC genes in Dendrobium officinale (D. officinale) and six in Phalaenopsis equestris (P. equestris), and their structures, physicochemical properties, response elements, evolutionary relationships, and expression patterns were preliminarily predicted and analyzed. The results showed that PLP_deC genes play important roles in D. officinale and respond to different exogenous hormone treatments; additionally, the results support the selection of appropriate candidates for further functional characterization of PLP_deC genes in D. officinale.
Collapse
Affiliation(s)
- Lei Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (C.J.); (X.C.)
- Anhui Provincial Engineering Technology Reserach Center for Development & Utilization of Regional Characteristic Plants, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Chunyan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (C.J.); (X.C.)
- Anhui Provincial Engineering Technology Reserach Center for Development & Utilization of Regional Characteristic Plants, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xi Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (C.J.); (X.C.)
- Anhui Provincial Engineering Technology Reserach Center for Development & Utilization of Regional Characteristic Plants, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Jian Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (C.J.); (X.C.)
- Anhui Provincial Engineering Technology Reserach Center for Development & Utilization of Regional Characteristic Plants, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Qing Jin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (C.J.); (X.C.)
- Anhui Provincial Engineering Technology Reserach Center for Development & Utilization of Regional Characteristic Plants, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (C.J.); (X.C.)
- Anhui Provincial Engineering Technology Reserach Center for Development & Utilization of Regional Characteristic Plants, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| |
Collapse
|
43
|
Yuan Y, Zhang J, Kallman J, Liu X, Meng M, Lin J. Polysaccharide biosynthetic pathway profiling and putative gene mining of Dendrobium moniliforme using RNA-Seq in different tissues. BMC PLANT BIOLOGY 2019; 19:521. [PMID: 31775630 PMCID: PMC6882186 DOI: 10.1186/s12870-019-2138-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/14/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Dendrobium moniliforme (Linnaeus) Swartz is a well-known plant used in traditional Chinese medicine due to bioactive constituents. Polysaccharides are the main medicinal ingredients, yet no studies have been published on polysaccharide biosynthesis in D. moniliforme. To comprehensively investigate the polysaccharide at the transcription level, we performed de novo transcriptome sequencing for the first time to produce a comprehensive transcriptome of D. moniliforme. RESULTS In our study, a database of 562,580 unigenes (average length = 1115.67 bases) was generated by performing transcriptome sequencing. Based on the gene annotation of the transcriptome, we identified 1204 carbohydrate-active related unigenes against CAZy database, including 417 glycosyltransferase genes (GTs), 780 glycoside hydrolases (GHs), 19 carbohydrate esterases (CEs), 75 carbohydrate-binding modules (CBMs), and 44 polysaccharide lyases (PLs). In the cellulose synthase family, 21 differential expression genes (DEGs) related to polysaccharide were identified. Subsequently, the tissue-specific expression patterns of the genes involved in polysaccharide pathway were investigated, which provide understanding of the biosynthesis and regulation of DMP at the molecular level. The two key enzyme genes (Susy and SPS) involved in the polysaccharide pathway were identified, and their expression patterns in different tissues were further analyzed using quantitative real-time PCR. CONCLUSIONS We determined the content of polysaccharides from Dendrobium moniliforme under different tissues, and we obtained a large number of differential genes by transcriptome sequencing. This database provides a pool of candidate genes involved in biosynthesis of polysaccharides in D. moniliforme. Furthermore, the comprehensive analysis and characterization of the significant pathways are expected to give a better insight regarding the diversity of chemical composition, synthetic characteristics, and the regulatory mechanism which operate in this medical herb.
Collapse
Affiliation(s)
- Yingdan Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | | | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Miaojing Meng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Jie Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
44
|
Cao H, Ji Y, Li S, Lu L, Tian M, Yang W, Li H. Extensive Metabolic Profiles of Leaves and Stems from the Medicinal Plant Dendrobium officinale Kimura et Migo. Metabolites 2019; 9:metabo9100215. [PMID: 31590300 PMCID: PMC6835975 DOI: 10.3390/metabo9100215] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Dendrobium officinale Kimura et Migo is a commercially and pharmacologically highly prized species widely used in Western Asian countries. In contrast to the extensive genomic and transcriptomic resources generated in this medicinal species, detailed metabolomic data are still missing. Herein, using the widely targeted metabolomics approach, we detect 649 diverse metabolites in leaf and stem samples of D. officinale. The majority of these metabolites were organic acids, amino acids and their derivatives, nucleotides and their derivatives, and flavones. Though both organs contain similar metabolites, the metabolite profiles were quantitatively different. Stems, the organs preferentially exploited for herbal medicine, contained larger concentrations of many more metabolites than leaves. However, leaves contained higher levels of polyphenols and lipids. Overall, this study reports extensive metabolic data from leaves and stems of D. officinale, providing useful information that supports ongoing genomic research and discovery of bioactive compounds.
Collapse
Affiliation(s)
- Hua Cao
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Yulu Ji
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Kunming 650201, Yunnan, China.
| | - Shenchong Li
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Lin Lu
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Min Tian
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Wei Yang
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Han Li
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| |
Collapse
|
45
|
Chen Y, Shen Q, Lyu P, Lin R, Sun C. Identification and expression profiling of selected MADS-box family genes in Dendrobium officinale. Genetica 2019; 147:303-313. [PMID: 31292836 DOI: 10.1007/s10709-019-00071-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
Abstract
Dendrobium officinale, a herb with highly medicinal and ornamental value, is widely distributed in China. MADS-box genes encode transcription factors that regulate various growth and developmental processes in plants, particular in flowering. However, the MADS-box genes in D. officinale are largely unknown. In our study, expression profiling analyses of selected MADS-box genes in D. officinale were performed. In total, 16 DnMADS-box genes with full-length ORF were identified and named according to their phylogenetic relationships with model plants. The transient expression of eight selected MADS-box genes in the epidermal cells of tobacco leaves showed that these DnMADS-box proteins localized to the nucleus. Tissue-specific expression analysis pointed out eight flower-specific expressed MADS-box genes in D. officinale. Furthermore, expression patterns of DnMADS-box genes were investigated during the floral transition process. DnMADS3, DnMADS8 and DnMADS22 were significantly up-regulated in the reproductive phase compared with the vegetative phase, suggesting putative roles of these DnMADS-box genes in flowering. Our data showed that the expressions of MADS-box genes in D. officinale were controlled by diverse exogenous phytohormones. Together, these findings will facilitate further studies of MADS-box genes in Orchids and broaden our understanding of the genetics of flowering.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China.,Key laboratory of creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Qi Shen
- Plant Protection and Microbiology, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Lyu
- Lin'an Agricultural & Forestry Technology Extension Center, Hangzhou, Zhejiang, People's Republic of China
| | - Renan Lin
- Yueqing Forestry Varieties Tech Center, Yueqing, Zhejiang, People's Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China. .,Key laboratory of creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
46
|
Luo C, Wang ZQ, Liu X, Zhao L, Zhou X, Xie Y. Identification and Analysis of Potential Genes Regulated by an Alphasatellite (TYLCCNA) that Contribute to Host Resistance against Tomato Yellow Leaf Curl China Virus and Its Betasatellite (TYLCCNV/TYLCCNB) Infection in Nicotiana benthamiana. Viruses 2019; 11:E442. [PMID: 31096636 PMCID: PMC6563268 DOI: 10.3390/v11050442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/13/2023] Open
Abstract
Recently, begomovirus/betasatellite disease complexes were found to be associated with alphasatellites, and their presence modulated disease symptoms and/or viral DNA accumulation in infected plants. However, the biological functions of alphasatellites during begomovirus/betasatellite infections remain unclear. Tomato yellow leaf curl China virus (TYLCCNV) associated with a betasatellite (TYLCCNB) is a widespread monopartite begomovirus in China. In the Yunnan province of China, the TYLCCNV/TYLCCNB disease complex is found in association with an alphasatellite (TYLCCNA). In this study, in order to explain the mechanisms underlying TYLCCNV/TYLCCNB infection and reductions in viral DNA accumulation caused by TYLCCNA, we analyzed the transcriptome profiles of Nicotiana benthamiana seedlings challenged by TYLCCNV/TYLCCNB or TYLCCNV/TYLCCNB/TYLCCNA using RNA sequencing. In total, 2272 and 1207 differentially expressed genes (DEGs) were identified to respond to TYLCCNV/TYLCCNB and TYLCCNV/TYLCCNB/TYLCCNA infections, respectively. Compared with the DEGs in the TYLCCNV/TYLCCNB-infected N. benthamiana seedlings, the number of DEGs in plants co-infected with TYLCCNV/TYLCCNB + TYLCCNA was significantly reduced. Additionally, 36 DEGs were identified to be regulated by TYLCCNA, six of which were further analyzed using the virus-induced gene silencing (VIGS) approach. Silencing of these six TYLCCNA responsive DEGs caused more severe disease symptoms and higher viral DNA accumulation levels, suggesting that TYLCCNA responsive DEGs may attenuate TYLCCNV/TYLCCNB infection.
Collapse
Affiliation(s)
- Chaohu Luo
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Xianan Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Liling Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Chen J, Yuan Z, Zhang H, Li W, Shi M, Peng Z, Li M, Tian J, Deng X, Cheng Y, Deng CH, Xie Z, Zeng J, Yao JL, Xu J. Cit1,2RhaT and two novel CitdGlcTs participate in flavor-related flavonoid metabolism during citrus fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2759-2771. [PMID: 30840066 PMCID: PMC6506761 DOI: 10.1093/jxb/erz081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/14/2019] [Indexed: 05/19/2023]
Abstract
Neohesperidosides are disaccharides that are present in some flavonoids and impart a bitter taste, which can significantly affect the commercial value of citrus fruits. In this study, we identified three flavonoid-7-O-di-glucosyltransferase (dGlcT) genes closely related to 1,2-rhamnosyltransferase (1,2RhaT) in citrus genomes. However, only 1,2RhaT was directly linked to the accumulation of neohesperidoside, as demonstrated by association analysis of 50 accessions and co-segregation analysis of an F1 population derived from Citrus reticulata × Poncirus trifoliata. In transgenic tobacco BY2 cells, over-expression of CitdGlcTs resulted in flavonoid-7-O-glucosides being catalysed into bitterless flavonoid-7-O-di-glucosides, whereas over-expression of Cit1,2RhaT converted the same substrate into bitter-tasting flavonoid-7-O-neohesperidoside. Unlike 1,2RhaT, during citrus fruit development the dGlcTs showed an opposite expression pattern to CHS and CHI, two genes encoding rate-limiting enzymes of flavonoid biosynthesis. An uncoupled availability of dGlcTs and substrates might result in trace accumulation of flavonoid-7-O-di-glucosides in the fruit of C. maxima (pummelo). Past human selection of the deletion and functional mutation of 1,2RhaT has led step-by-step to the evolution of the flavor-related metabolic network in citrus. Our research provides the basis for potentially improving the taste in citrus fruit through manipulation of the network by knocking-out 1,2RhaT or by enhancing the expression of dGlcT using genetic transformation.
Collapse
Affiliation(s)
- Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Ziyu Yuan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Zhaoxin Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Mingyue Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Jing Tian
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Cecilia Hong Deng
- The New Zealand Institute for Plant & Food Research Limited, Private Bag, Auckland, New Zealand
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Jiwu Zeng
- Guangdong Fruit Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Private Bag, Auckland, New Zealand
- Correspondence: or
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
- Correspondence: or
| |
Collapse
|
48
|
Chen Y, Wang Y, Lyu P, Chen L, Shen C, Sun C. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. JOURNAL OF PLANT RESEARCH 2019. [PMID: 30903398 DOI: 10.1007/s10265-019-01099-6/1618-0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Dendrobium officinale is a traditional medicinal herb with a variety of bioactive components. Alkaloid is one of the major active ingredients of Dendrobium plants, and its immune regulatory effects have been well-studied. Although a number of genes involved in the biosynthetic pathway of alkaloids have been elucidated, the regulation mechanism underlying the methyl-jasmonate (MeJA)-induced accumulation of alkaloids in D. officinale is largely unknown. In our study, a total of 4,857 DEGs, including 2,943 up- and 1,932 down-regulated genes, were identified between the control and MeJA-treated groups. Kyoto Encyclopedia of Genes and Genomes annotation showed that a number of DEGs were associated with the putative alkaloid biosynthetic pathway in D. officinale. The main group of Dendrobium alkaloids are sesquiterpene alkaloids, which are the downstream products of mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathway. Several MVA and MEP pathway genes were significantly up-regulated by the MeJA treatment, suggesting an active precursor supply for the alkaloid biosynthesis under MeJA treatment. A number of MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the sesquiterpene alkaloid biosynthetic pathway of D. officinale. Furthermore, a large number of MeJA-induced transcript factor encoding genes were identified, suggesting a complex genetic network affecting the sesquiterpene alkaloid metabolism in D. officinale. Our data aids to reveal the regulation mechanism underlying the MeJA-induced accumulation of sesquiterpene alkaloids in D. officinale.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Ping Lyu
- Lin'an Agricultural and Forestry Technology Extension Center, Hangzhou, Zhejiang, People's Republic of China
| | - Liping Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
49
|
Chen Y, Wang Y, Lyu P, Chen L, Shen C, Sun C. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. JOURNAL OF PLANT RESEARCH 2019; 132:419-429. [PMID: 30903398 DOI: 10.1007/s10265-019-01099-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/25/2019] [Indexed: 05/12/2023]
Abstract
Dendrobium officinale is a traditional medicinal herb with a variety of bioactive components. Alkaloid is one of the major active ingredients of Dendrobium plants, and its immune regulatory effects have been well-studied. Although a number of genes involved in the biosynthetic pathway of alkaloids have been elucidated, the regulation mechanism underlying the methyl-jasmonate (MeJA)-induced accumulation of alkaloids in D. officinale is largely unknown. In our study, a total of 4,857 DEGs, including 2,943 up- and 1,932 down-regulated genes, were identified between the control and MeJA-treated groups. Kyoto Encyclopedia of Genes and Genomes annotation showed that a number of DEGs were associated with the putative alkaloid biosynthetic pathway in D. officinale. The main group of Dendrobium alkaloids are sesquiterpene alkaloids, which are the downstream products of mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathway. Several MVA and MEP pathway genes were significantly up-regulated by the MeJA treatment, suggesting an active precursor supply for the alkaloid biosynthesis under MeJA treatment. A number of MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the sesquiterpene alkaloid biosynthetic pathway of D. officinale. Furthermore, a large number of MeJA-induced transcript factor encoding genes were identified, suggesting a complex genetic network affecting the sesquiterpene alkaloid metabolism in D. officinale. Our data aids to reveal the regulation mechanism underlying the MeJA-induced accumulation of sesquiterpene alkaloids in D. officinale.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Ping Lyu
- Lin'an Agricultural and Forestry Technology Extension Center, Hangzhou, Zhejiang, People's Republic of China
| | - Liping Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
50
|
Yuan Y, Yu M, Jia Z, Song X, Liang Y, Zhang J. Analysis of Dendrobium huoshanense transcriptome unveils putative genes associated with active ingredients synthesis. BMC Genomics 2018. [PMID: 30594136 DOI: 10.1186/s12864-018-5305-6/1471-2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Dendrobium huoshanense C.Z. Tang et S.J. Cheng is a traditional Chinese herbal medicine with high medicinal value in China. Polysaccharides and alkaloids are its main active ingredients. To understand the difference of main active ingredients in different tissues, we determined the contents of polysaccharides and alkaloids in the roots, stems and leaves of D. huoshanense. In order to explore the reasons for the differences of active ingredients at the level of transcription, we selected roots, stems and leaves of D. huoshanenese for transcriptome sequencing and pathway mining. RESULTS The contents of polysaccharides and alkaloids of D. huoshanense were determined and it was found that there were significant differences in different tissues. A total of 716,634,006 clean reads were obtained and 478,361 unigenes were assembled by the Illumina platform sequencing. We identified 1407 carbohydrate-active related unigenes against CAZy database including 447 glycosyltransferase genes (GTs), 818 glycoside hydrolases (GHs), 60 carbohydrate esterases (CEs), 62 carbohydrate-binding modules (CBMs), and 20 polysaccharide lyases (PLs). In the glycosyltransferases (GTs) family, 315 differential expression genes (DEGs) were identified. In total, 124 and 58 DEGs were associated with the biosynthesis of alkaloids in Dh_L vs. Dh_S and Dh_R vs. Dh_L, respectively. A total of 62 DEGs associated with the terpenoid pathway were identified between Dh_R and Dh_S. Five key enzyme genes involved in the terpenoids pathway were identified, and their expression patterns in different tissues was validated using quantitative real-time PCR. CONCLUSIONS In summary, our study presents a transcriptome profile of D. huoshanense. These data contribute to our deeper relevant researches on active ingredients and provide useful insights into the molecular mechanisms regulating polysaccharides and alkaloids in Dendrobium.
Collapse
Affiliation(s)
- Yingdan Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037, China
| | - Maoyun Yu
- Anhui Tongjisheng Biotechnology Co., Ltd, Lu'an, 237000, China.
- Cultivation and Industrialization Center of Rare Medicinal Plants in Ta-pieh Mountains, West Anhui University, Lu'an, 23700, China.
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037, China
| | - Xue'er Song
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yingquan Liang
- Anhui Tongjisheng Biotechnology Co., Ltd, Lu'an, 237000, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|