1
|
Fatou M, Müller P. In the arm-in-cage test, topical repellents activate mosquitoes to disengage upon contact instead of repelling them at distance. Sci Rep 2024; 14:24745. [PMID: 39433539 PMCID: PMC11494009 DOI: 10.1038/s41598-024-74518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Topical repellents provide protection against mosquito bites and their efficacy is often assessed using the arm-in-cage test. The arm-in-cage test estimates the repellent's protection time by exposing a repellent-treated forearm to host-seeking mosquitoes inside a cage at regular intervals until the first confirmed mosquito bite. However, the test does not reveal the repellents' behavioural mode of action. To understand how mosquitoes interact with topical repellents in the arm-in-cage test, we used a 3D infrared video camera system to track individual Aedes aegypti and Anopheles stephensi females during exposure to either a repellent-treated or an untreated forearm. The repellents tested were 20% (m/m) ethanolic solutions of N, N-diethyl-meta-toluamide, p-menthane-3,8-diol, icaridin and ethyl butylacetylaminopropionate. All four repellents substantially reduced the number of bites compared to an untreated forearm, while the flight trajectories indicate that the repellents do not prevent skin contact as the mosquitoes made multiple brief contacts with the treated forearm. We conclude that, in the context of the arm-in-cage test, topical repellents activate mosquitoes to disengage from the forearm with undirected displacements upon contact rather than being repelled at distance by volatile odorants.
Collapse
Affiliation(s)
- Mathurin Fatou
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| |
Collapse
|
2
|
Kalmouni J, Will JB, Townsend J, Paaijmans KP. Temperature and time of host-seeking activity impact the efficacy of chemical control interventions targeting the West Nile virus vector, Culex tarsalis. PLoS Negl Trop Dis 2024; 18:e0012460. [PMID: 39213461 PMCID: PMC11392387 DOI: 10.1371/journal.pntd.0012460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
West Nile virus (WNV) is the leading mosquito-borne disease causing-pathogen in the United States. Concerningly, there are no prophylactics or drug treatments for WNV and public health programs rely heavily on vector control efforts to lessen disease incidence. Insecticides can be effective in reducing vector numbers if implemented strategically, but can diminish in efficacy and promote insecticide resistance otherwise. Vector control programs which employ mass-fogging applications of insecticides, often conduct these methods during the late-night hours, when diel temperatures are coldest, and without a-priori knowledge on daily mosquito activity patterns. This study's aims were to 1) quantify the effect of temperature on the toxicity of two conventional insecticides used in fogging applications (malathion and deltamethrin) to Culex tarsalis, an important WNV vector, and 2) quantify the time of host-seeking of Cx. tarsalis and other local mosquito species in Maricopa County, Arizona. The temperature-toxicity relationship of insecticides was assessed using the WHO tube bioassay, and adult Cx. tarsalis, collected as larvae, were exposed to three different insecticide doses at three temperature regimes (15, 25, and 35°C; 80% RH). Time of host-seeking was assessed using collection bottle rotators with encephalitis vector survey traps baited with dry ice, first at 3h intervals during a full day, followed by 1h intervals during the night-time. Malathion became less toxic at cooler temperatures at all doses, while deltamethrin was less toxic at cooler temperatures at the low dose. Regarding time of host-seeking, Cx. tarsalis, Aedes vexans, and Culex quinquefasciatus were the most abundant vectors captured. During the 3-hour interval surveillance over a full day, Cx. tarsalis were most-active during post-midnight biting (00:00-06:00), accounting for 69.0% of all Cx. tarsalis, while pre-midnight biting (18:00-24:00) accounted for 30.0% of Cx. tarsalis. During the 1-hour interval surveillance overnight, Cx. tarsalis were most-active during pre-midnight hours (18:00-24:00), accounting for 50.2% of Cx. tarsalis captures, while post-midnight biting (00:00-06:00) accounted for 49.8% of Cx. tarsalis. Our results suggest that programs employing large-scale applications of insecticidal fogging should consider temperature-toxicity relationships coupled with time of host-seeking data to maximize the efficacy of vector control interventions in reducing mosquito-borne disease burden.
Collapse
Affiliation(s)
- Joshua Kalmouni
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - James B Will
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Sanei-Dehkordi A, Heiran R, Montaseri Z, Elahi N, Abbasi Z, Osanloo M. Promising Larvicidal Effects of Nanoliposomes Containing Carvone and Mentha spicata and Tanacetum balsamita Essential Oils Against Anopheles stephensi. Acta Parasitol 2024; 69:216-226. [PMID: 37979013 DOI: 10.1007/s11686-023-00735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE The use of synthetic pesticides to control the spread of mosquito-borne diseases has caused environmental pollution and insecticide resistance in mosquitoes. Developments of new green insecticides have thus received more attention to overcome these problems. METHODS Nanoliposomes containing carvone and essential oils were first prepared. The nanoliposome physicochemical characteristics (particle size, morphology, and successful loading) were then evaluated by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), and the Attenuated Total Reflection-Fourier Transform InfraRed (ATR-FTIR) analyses. Larvicidal effects of carvone, Mentha spicata, and Tanacetum balsamita essential oils were investigated against the main malaria vector, Anopheles stephensi, in non-formulated and nanoformulated states. RESULTS The larvicidal effects of nanoformulated states were significantly more potent (7.2 folds, 3.5 folds, and 8 folds) than non-formulated states. Nanoliposomes containing M. spicata and T. balsamita essential oils with particle sizes of 175 ± 8 and 184 ± 5 nm showed the best efficacies (LC50 values = 9.74 and 9.36 μg/mL). CONCLUSION The prepared samples could be used as new green potent larvicides against An stephensi mosquito in further field trials. It is also recommended to investigate their efficacies against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Biology and Control of Disease Vectors, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Roghayeh Heiran
- Estahban Higher Education Center- Shiraz University, Estahban, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Elahi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Abbasi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
4
|
Kern C, Müller P, Chaccour C, Liechti ME, Hammann F, Duthaler U. Pharmacokinetics of ivermectin metabolites and their activity against Anopheles stephensi mosquitoes. Malar J 2023; 22:194. [PMID: 37355605 DOI: 10.1186/s12936-023-04624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Ivermectin (22,23-dihydroavermectin B1a: H2B1a) is an endectocide used to treat worm infections and ectoparasites including lice and scabies mites. Furthermore, survival of malaria transmitting Anopheles mosquitoes is strongly decreased after feeding on humans recently treated with ivermectin. Currently, mass drug administration of ivermectin is under investigation as a potential novel malaria vector control tool to reduce Plasmodium transmission by mosquitoes. A "post-ivermectin effect" has also been reported, in which the survival of mosquitoes remains reduced even after ivermectin is no longer detectable in blood meals. In the present study, existing material from human clinical trials was analysed to understand the pharmacokinetics of ivermectin metabolites and feeding experiments were performed in Anopheles stephensi mosquitoes to assess whether ivermectin metabolites contribute to the mosquitocidal action of ivermectin and whether they may be responsible for the post-ivermectin effect. METHODS Ivermectin was incubated in the presence of recombinant human cytochrome P450 3A4/5 (CYP 3A4/5) to produce ivermectin metabolites. In total, nine metabolites were purified by semi-preparative high-pressure liquid chromatography. The pharmacokinetics of the metabolites were assessed over three days in twelve healthy volunteers who received a single oral dose of 12 mg ivermectin. Blank whole blood was spiked with the isolated metabolites at levels matching the maximal blood concentration (Cmax) observed in pharmacokinetics study samples. These samples were fed to An. stephensi mosquitoes, and their survival and vitality was recorded daily over 3 days. RESULTS Human CYP3A4 metabolised ivermectin more rapidly than CYP3A5. Ivermectin metabolites M1-M8 were predominantly formed by CYP3A4, whereas metabolite M9 (hydroxy-H2B1a) was mainly produced by CYP3A5. Both desmethyl-H2B1a (M1) and hydroxy-H2B1a (M2) killed all mosquitoes within three days post-feeding, while administration of desmethyl, hydroxy-H2B1a (M4) reduced survival to 35% over an observation period of 3 days. Ivermectin metabolites that underwent deglycosylation or hydroxylation at spiroketal moiety were not active against An. stephensi at Cmax levels. Interestingly, half-lives of M1 (54.2 ± 4.7 h) and M4 (57.5 ± 13.2 h) were considerably longer than that of the parent compound ivermectin (38.9 ± 20.8 h). CONCLUSION In conclusion, the ivermectin metabolites M1 and M2 contribute to the activity of ivermectin against An. stephensi mosquitoes and could be responsible for the "post-ivermectin effect".
Collapse
Affiliation(s)
- Charlotte Kern
- Division of Clinical Pharmacology & Toxicology, Department of Internal Medicine, University Hospital Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Carlos Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
- Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | - Matthias E Liechti
- Division of Clinical Pharmacology & Toxicology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Division of Clinical Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Felix Hammann
- Division of Clinical Pharmacology & Toxicology, Department of Internal Medicine, University Hospital Bern, Bern, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland.
- Division of Clinical Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Seal M, Chatterjee S. Combined effect of physico-chemical and microbial quality of breeding habitat water on oviposition of malarial vector Anopheles subpictus. PLoS One 2023; 18:e0282825. [PMID: 36897874 PMCID: PMC10004544 DOI: 10.1371/journal.pone.0282825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Mosquitoes prefer diverse water bodies for egg laying and larval survival. Present study was performed with an objective to characterize physico-chemical properties and microbial profiling of breeding habitat water bodies of Anopheles subpictus mosquitoes. A field survey was accomplished to check the presence of An. subpictus larvae to record per dip larval density in various breeding habitats throughout the year. Physico-chemical and bacteriological properties in relation to mosquito oviposition were assessed. Dissolved oxygen content, pH and alkalinity were found to have major impacts and ponderosity on the prevalence of An. subpictus larvae. Larval density showed significant positive correlation with dissolved oxygen content of water and significant negative correlation with pH and alkalinity of habitat water. Comparatively higher population (cfu/mL) of Bacillus spp. competent with starch hydrolyzing and nitrate reducing properties were recorded all the breeding habitat water bodies of An. subpictus. Higher amplitude of anopheline larvae was portrayed during monsoon and post-monsoon season in clear water with an inclining trend to high dissolved oxygen content and neutral pH. B. cereus, B. megaterium, B. subtilis and B. tequilensis prevalent in all habitat water bodies were marked as oviposition attractants of gravid An. subpictus mosquitoes. Microbial population played key roles in the modulation of physico-chemical parameters of habitat water with a view to enhance its acceptability by gravid mosquitoes in relation to their oviposition. Better understanding of the interactions along with the control of oviposition attractant bacterial strains from mosquito breeding habitats might contribute to the vector management programme.
Collapse
Affiliation(s)
- Madhurima Seal
- Department of Zoology, Parasitology and Microbiology Research Laboratory, The University of Burdwan, Burdwan, West Bengal, India
| | - Soumendranath Chatterjee
- Department of Zoology, Parasitology and Microbiology Research Laboratory, The University of Burdwan, Burdwan, West Bengal, India
- * E-mail:
| |
Collapse
|
6
|
Portwood NM, Shayo MF, Tungu PK, Mbewe NJ, Mlay G, Small G, Snetselaar J, Kristan M, Levy P, Walker T, Kirby MJ, Kisinza W, Mosha FW, Rowland M, Messenger LA. Multi-centre discriminating concentration determination of broflanilide and potential for cross-resistance to other public health insecticides in Anopheles vector populations. Sci Rep 2022; 12:22359. [PMID: 36572746 PMCID: PMC9792579 DOI: 10.1038/s41598-022-26990-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Novel insecticides are urgently needed to control insecticide-resistant populations of Anopheles malaria vectors. Broflanilide acts as a non-competitive antagonist of the gamma-aminobutyric acid receptor and has shown prolonged effectiveness as an indoor residual spraying product (VECTRON T500) in experimental hut trials against pyrethroid-resistant vector populations. This multi-centre study expanded upon initial discriminating concentration testing of broflanilide, using six Anopheles insectary colonies (An. gambiae Kisumu KCMUCo, An. gambiae Kisumu NIMR, An. arabiensis KGB, An. arabiensis SENN, An. coluzzii N'Gousso and An. stephensi SK), representing major malaria vector species, to facilitate prospective susceptibility monitoring of this new insecticide; and investigated the potential for cross-resistance to broflanilide via the A296S mutation associated with dieldrin resistance (rdl). Across all vector species tested, the discriminating concentration for broflanilide ranged between LC99 × 2 = 1.126-54.00 μg/ml or LC95 × 3 = 0.7437-17.82 μg/ml. Lower concentrations of broflanilide were required to induce complete mortality of An. arabiensis SENN (dieldrin-resistant), compared to its susceptible counterpart, An. arabiensis KGB, and there was no association between the presence of the rdl mechanism of resistance and survival in broflanilide bioassays, demonstrating a lack of cross-resistance to broflanilide. Study findings provide a benchmark for broflanilide susceptibility monitoring as part of ongoing VECTRON T500 community trials in Tanzania and Benin.
Collapse
Affiliation(s)
- Natalie M Portwood
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Magreth F Shayo
- Kilimanjaro Christian Medical University College, Pan African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Patrick K Tungu
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Njelembo J Mbewe
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Kilimanjaro Christian Medical University College, Pan African Malaria Vector Research Consortium, Moshi, Tanzania
| | - George Mlay
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Graham Small
- Innovative Vector Control Consortium, Liverpool, UK
| | - Janneke Snetselaar
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Innovative Vector Control Consortium, Liverpool, UK
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Prisca Levy
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew J Kirby
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd., Rockville, MD, 20852, USA
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Franklin W Mosha
- Kilimanjaro Christian Medical University College, Pan African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
7
|
Paré PSL, Hien DFDS, Bayili K, Yerbanga RS, Cohuet A, Carrasco D, Guissou E, Gouagna LC, Yaméogo KB, Diabaté A, Ignell R, Dabiré RK, Lefèvre T, Gnankiné O. Natural plant diet impacts phenotypic expression of pyrethroid resistance in Anopheles mosquitoes. Sci Rep 2022; 12:21431. [PMID: 36509797 PMCID: PMC9744732 DOI: 10.1038/s41598-022-25681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Success in reducing malaria transmission through vector control is threatened by insecticide resistance in mosquitoes. Although the proximal molecular mechanisms and genetic determinants involved are well documented, little is known about the influence of the environment on mosquito resistance to insecticides. The aim of this study was to assess the effect of plant sugar feeding on the response of Anopheles gambiae sensu lato to insecticides. Adults were fed with one of four treatments, namely a 5% glucose control solution, nectariferous flowers of Barleria lupulina, of Cascabela thevetia and a combination of both B. lupulina + C. thevetia. WHO tube tests were performed with 0.05% and 0.5% deltamethrin, and knockdown rate (KD) and the 24 h mosquito mortality were measured. Plant diet significantly influenced mosquito KD rate at both concentrations of deltamethrin. Following exposure to 0.05% deltamethrin, the B. lupulina diet induced a 2.5 fold-increase in mosquito mortality compared to 5% glucose. Species molecular identification confirmed the predominance of An. gambiae (60% of the samples) over An. coluzzii and An. arabiensis in our study area. The kdr mutation L1014F displayed an allelic frequency of 0.75 and was positively associated with increased phenotypic resistance to deltamethrin. Plant diet, particularly B. lupulina, increased the susceptibility of mosquitoes to insecticides. The finding that B. lupulina-fed control individuals (i.e. not exposed to deltamethrin) also displayed increased 24 h mortality suggests that plant-mediated effects may be driven by a direct effect of plant diet on mosquito survival rather than indirect effects through interference with insecticide-resistance mechanisms. Thus, some plant species may weaken mosquitoes, making them less vigorous and more vulnerable to the insecticide. There is a need for further investigation, using a wider range of plant species and insecticides, in combination with other relevant environmental factors, to better understand the expression and evolution of insecticide resistance.
Collapse
Affiliation(s)
- Prisca S. L. Paré
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA), Unité de Formation et de Recherche - Sciences de la Vie et de la Terre (UFR-SVT), Université Joseph KI-ZERBO (UJKZ), Ouagadougou, Burkina Faso
| | - Domonbabele F. D. S. Hien
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Koama Bayili
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé S. Yerbanga
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso ,Institut des Sciences et Techniques (INSTech - BOBO), Bobo‑Dioulasso, Burkina Faso
| | - Anna Cohuet
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - David Carrasco
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Edwige Guissou
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Louis-Clément Gouagna
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Koudraogo B. Yaméogo
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Rickard Ignell
- grid.6341.00000 0000 8578 2742Department of Plant Protection Biology, Unit of Chemical Ecology, Disease Vector Group, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roch K. Dabiré
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Olivier Gnankiné
- Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA), Unité de Formation et de Recherche - Sciences de la Vie et de la Terre (UFR-SVT), Université Joseph KI-ZERBO (UJKZ), Ouagadougou, Burkina Faso
| |
Collapse
|
8
|
Morgan J, Salcedo-Sora JE, Wagner I, Beynon RJ, Triana-Chavez O, Strode C. Rapid Evaporative Ionization Mass Spectrometry (REIMS): a Potential and Rapid Tool for the Identification of Insecticide Resistance in Mosquito Larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:5. [PMID: 36082679 PMCID: PMC9459442 DOI: 10.1093/jisesa/ieac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Insecticide resistance is a significant challenge facing the successful control of mosquito vectors globally. Bioassays are currently the only method for phenotyping resistance. They require large numbers of mosquitoes for testing, the availability of a susceptible comparator strain, and often insectary facilities. This study aimed to trial the novel use of rapid evaporative ionization mass spectrometry (REIMS) for the identification of insecticide resistance in mosquitoes. No sample preparation is required for REIMS and analysis can be rapidly conducted within hours. Temephos resistant Aedes aegypti (Linnaeus) larvae from Cúcuta, Colombia and temephos susceptible larvae from two origins (Bello, Colombia, and the lab reference strain New Orleans) were analyzed using REIMS. We tested the ability of REIMS to differentiate three relevant variants: population source, lab versus field origin, and response to insecticide. The classification of these data was undertaken using linear discriminant analysis (LDA) and random forest. Classification models built using REIMS data were able to differentiate between Ae. aegypti larvae from different populations with 82% (±0.01) accuracy, between mosquitoes of field and lab origin with 89% (±0.01) accuracy and between susceptible and resistant larvae with 85% (±0.01) accuracy. LDA classifiers had higher efficiency than random forest with this data set. The high accuracy observed here identifies REIMS as a potential new tool for rapid identification of resistance in mosquitoes. We argue that REIMS and similar modern phenotyping alternatives should complement existing insecticide resistance management tools.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, L39 4QP, UK
| | | | - Iris Wagner
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | | |
Collapse
|
9
|
Mbwambo SG, Bubun N, Mbuba E, Moore J, Mbina K, Kamande D, Laman M, Mpolya E, Odufuwa OG, Freeman T, Karl S, Moore SJ. Comparison of cone bioassay estimates at two laboratories with different Anopheles mosquitoes for quality assurance of pyrethroid insecticide-treated nets. Malar J 2022; 21:214. [PMID: 35799172 PMCID: PMC9264565 DOI: 10.1186/s12936-022-04217-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background Quality assurance (QA) of insecticide-treated nets (ITNs) delivered to malaria-endemic countries is conducted by measuring physiochemical parameters, but not bioefficacy against malaria mosquitoes. This study explored utility of cone bioassays for pre-delivery QA of pyrethroid ITNs to test the assumption that cone bioassays are consistent across locations, mosquito strains, and laboratories. Methods Double-blinded bioassays were conducted on twenty unused pyrethroid ITNs of 4 brands (100 nets, 5 subsamples per net) that had been delivered for mass distribution in Papua New Guinea (PNG) having passed predelivery inspections. Cone bioassays were performed on the same net pieces following World Health Organization (WHO) guidelines at the PNG Institute of Medical Research (PNGIMR) using pyrethroid susceptible Anopheles farauti sensu stricto (s.s.) and at Ifakara Health Institute (IHI), Tanzania using pyrethroid susceptible Anopheles gambiae s.s. Additionally, WHO tunnel tests were conducted at IHI on ITNs that did not meet cone bioefficacy thresholds. Results from IHI and PNGIMR were compared using Spearman’s Rank correlation, Bland–Altman (BA) analysis and analysis of agreement. Literature review on the use of cone bioassays for unused pyrethroid ITNs testing was conducted. Results In cone bioassays, 13/20 nets (65%) at IHI and 8/20 (40%) at PNGIMR met WHO bioefficacy criteria. All nets met WHO bioefficacy criteria on combined cone/tunnel tests at IHI. Results from IHI and PNGIMR correlated on 60-min knockdown (KD60) (rs = 0.6,p = 0.002,n = 20) and 24-h mortality (M24) (rs = 0.9,p < 0.0001,n = 20) but BA showed systematic bias between the results. Of the 5 nets with discrepant result between IHI and PNGIMR, three had confidence intervals overlapping the 80% mortality threshold, with averages within 1–3% of the threshold. Including these as a pass, the agreement between the results to predict ITN failure was good with kappa = 0.79 (0.53–1.00) and 90% accuracy. Conclusions Based on these study findings, the WHO cone bioassay is a reproducible bioassay for ITNs with > 80% M24, and for all ITNs provided inherent stochastic variation and systematic bias are accounted for. The literature review confirms that WHO cone bioassay bioefficacy criteria have been previously achieved by all pyrethroid ITNs (unwashed), without the need for additional tunnel tests. The 80% M24 threshold remains the most reliable indicator of pyrethroid ITN quality using pyrethroid susceptible mosquitoes. In the absence of alternative tests, cone bioassays could be used as part of pre-delivery QA.
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04217-3.
Collapse
Affiliation(s)
- Stephen G Mbwambo
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania. .,Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania. .,Sokoine RRH, Ministry of Health, Lindi, Tanzania. .,Regional Health Management Team, P.O Box 1011, Lindi, Tanzania.
| | - Nakei Bubun
- Vector Borne Disease Unit, PNG Institute of Medical Research, Madang Province 511, P.O Box 378, Madang, Papua New Guinea
| | - Emmanuel Mbuba
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,University of Basel, Basel, Switzerland.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland
| | - Jason Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland
| | - Kasiani Mbina
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Dismas Kamande
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
| | - Moses Laman
- Vector Borne Disease Unit, PNG Institute of Medical Research, Madang Province 511, P.O Box 378, Madang, Papua New Guinea
| | - Emmanuel Mpolya
- Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,University of Basel, Basel, Switzerland.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland.,MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Tim Freeman
- Rotarian Against Malaria, P.O Box 3686, Boroko, NCD 111, Papua New Guinea
| | - Stephan Karl
- Vector Borne Disease Unit, PNG Institute of Medical Research, Madang Province 511, P.O Box 378, Madang, Papua New Guinea.,Australian Institute of Tropical Health and Medicine, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD, 4870, Australia
| | - Sarah J Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania.,University of Basel, Basel, Switzerland.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland
| |
Collapse
|
10
|
Praulins G, McDermott DP, Spiers A, Lees RS. Reviewing the WHO Tube Bioassay Methodology: Accurate Method Reporting and Numbers of Mosquitoes Are Key to Producing Robust Results. INSECTS 2022; 13:544. [PMID: 35735881 PMCID: PMC9224656 DOI: 10.3390/insects13060544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023]
Abstract
Accurately monitoring insecticide resistance in target mosquito populations is important for combating malaria and other vector-borne diseases, and robust methods are key. The "WHO susceptibility bioassay" has been available from the World Health Organization for 60+ years: mosquitoes of known physiological status are exposed to a discriminating concentration of insecticide. Several changes to the test procedures have been made historically, which may seem minor but could impact bioassay results. The published test procedures and literature for this method were reviewed for methodological details. Areas where there was room for interpretation in the test procedures or where the test procedures were not being followed were assessed experimentally for their impact on bioassay results: covering or uncovering of the tube end during exposure; the number of mosquitoes per test unit; and mosquito age. Many publications do not cite the most recent test procedures; methodological details are reported which contradict the test procedures referenced, or methodological details are not fully reported. As a result, the precise methodology is unclear. Experimental testing showed that using fewer than the recommended 15-30 mosquitoes per test unit significantly reduced mortality, covering the exposure tube had no significant effect, and using mosquitoes older than 2-5 days old increased mortality, particularly in the resistant strain. Recommendations are made for improved reporting of experimental parameters.
Collapse
Affiliation(s)
- Giorgio Praulins
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
| | - Daniel P. McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
| | - Angus Spiers
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
| | - Rosemary Susan Lees
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
11
|
Differential Hatching, Development, Oviposition, and Longevity Patterns among Colombian Aedes aegypti Populations. INSECTS 2022; 13:insects13060536. [PMID: 35735873 PMCID: PMC9224916 DOI: 10.3390/insects13060536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Aedes aegypti is a mosquito that transmits viruses responsible for several diseases in humans, such as dengue, Zika, and chikungunya. It is crucial to study mosquito populations from different countries and regions because control of disease transmission with insecticides can be more effective if adjusted to each population’s characteristics. For this reason, we determined several features of mosquitoes captured in different cities of Colombia: Neiva, Bello, Itagüí, and Riohacha. These included the length of their lifespan, the number of eggs they lay, and the stages in which they die. We found specific patterns for each population. This knowledge will help control programs determine the optimal times to apply insecticides and make surveillance, as well as the type of insecticide used. Abstract Dengue, Zika, and chikungunya are arboviral diseases for which there are no effective therapies or vaccines. The only way to avoid their transmission is by controlling the vector Aedes aegypti, but insecticide resistance limits this strategy. To generate relevant information for surveillance and control mechanisms, we determined life cycle parameters, including longevity, fecundity, and mortality, of Colombian Ae. aegypti populations from four different geographical regions: Neiva, Bello, Itagüí, and Riohacha. When reared at 28 °C, Bello had the shortest development time, and Riohacha had the longest. Each mosquito population had its own characteristic fecundity pattern during four gonotrophic cycles. The survival curves of each population were significantly different, with Riohacha having the longest survival in both males and females and Bello the shortest. High mortality was observed in mosquitoes from Neiva in the egg stage and for Bello in the pupae stage. Finally, when mosquitoes from Neiva and Bello were reared at 35 °C, development times and mortality were severely affected. In conclusion, each population has a unique development pattern with an innate trace in their biological characteristics that confers vulnerability in specific stages of development.
Collapse
|
12
|
Lees RS, Armistead JS, Azizi S, Constant E, Fornadel C, Gimnig JE, Hemingway J, Impoinvil D, Irish SR, Kisinza W, Lissenden N, Mawejje HD, Messenger LA, Moore S, Ngufor C, Oxborough R, Protopopoff N, Ranson H, Small G, Wagman J, Weetman D, Zohdy S, Spiers A. Strain Characterisation for Measuring Bioefficacy of ITNs Treated with Two Active Ingredients (Dual-AI ITNs): Developing a Robust Protocol by Building Consensus. INSECTS 2022; 13:434. [PMID: 35621770 PMCID: PMC9144861 DOI: 10.3390/insects13050434] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023]
Abstract
Durability monitoring of insecticide-treated nets (ITNs) containing a pyrethroid in combination with a second active ingredient (AI) must be adapted so that the insecticidal bioefficacy of each AI can be monitored independently. An effective way to do this is to measure rapid knock down of a pyrethroid-susceptible strain of mosquitoes to assess the bioefficacy of the pyrethroid component and to use a pyrethroid-resistant strain to measure the bioefficacy of the second ingredient. To allow robust comparison of results across tests within and between test facilities, and over time, protocols for bioefficacy testing must include either characterisation of the resistant strain, standardisation of the mosquitoes used for bioassays, or a combination of the two. Through a series of virtual meetings, key stakeholders and practitioners explored different approaches to achieving these goals. Via an iterative process we decided on the preferred approach and produced a protocol consisting of characterising mosquitoes used for bioefficacy testing before and after a round of bioassays, for example at each time point in a durability monitoring study. We present the final protocol and justify our approach to establishing a standard methodology for durability monitoring of ITNs containing pyrethroid and a second AI.
Collapse
Affiliation(s)
- Rosemary S. Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| | - Jennifer S. Armistead
- U.S. President’s Malaria Initiative (PMI), U.S. Agency for International Development (USAID), Washington, DC 20547, USA;
| | - Salum Azizi
- KCMUCo-PAMVERC Test Facility, Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi P.O. Box 2240, Tanzania;
| | - Edi Constant
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan 1303, Côte d’Ivoire;
| | - Christen Fornadel
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (C.F.); (G.S.)
| | - John E. Gimnig
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA; (J.E.G.); (D.I.); (S.Z.)
| | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
| | - Daniel Impoinvil
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA; (J.E.G.); (D.I.); (S.Z.)
- U.S. President’s Malaria Initiative (PMI), Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA;
| | - Seth R. Irish
- U.S. President’s Malaria Initiative (PMI), Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA;
| | - William Kisinza
- Amani Research Centre, National Institute for Medical Research, Muheza P.O. Box 81, Tanzania;
| | - Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| | - Henry D. Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, Kampala P.O. Box 7475, Uganda;
| | - Louisa A. Messenger
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (L.A.M.); (C.N.); (N.P.)
| | - Sarah Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania;
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, Kreuzstrasse 2, Allschwil, 4123 Basel, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Nelson Mandela African Institute of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania
| | - Corine Ngufor
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (L.A.M.); (C.N.); (N.P.)
- Centre de Recherche Entomologique de Cotonou, Cotonou BP 2604, Benin
| | - Richard Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd., Rockville, MD 20852, USA;
| | - Natacha Protopopoff
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (L.A.M.); (C.N.); (N.P.)
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
| | - Graham Small
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (C.F.); (G.S.)
| | - Joseph Wagman
- Malaria and Neglected Tropical Diseases Program, PATH, Washington, DC 20001, USA;
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
| | - Sarah Zohdy
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA; (J.E.G.); (D.I.); (S.Z.)
- U.S. President’s Malaria Initiative (PMI), Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA;
| | - Angus Spiers
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
13
|
Lees RS, Praulins G, Lissenden N, South A, Carson J, Brown F, Lucas J, Malone D. The Residual Efficacy of SumiShield™ 50WG and K-Othrine® WG250 IRS Formulations Applied to Different Building Materials against Anopheles and Aedes Mosquitoes. INSECTS 2022; 13:insects13020112. [PMID: 35206686 PMCID: PMC8877416 DOI: 10.3390/insects13020112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/04/2022]
Abstract
Insecticides with novel modes of action are required to complement the pyrethroids currently relied upon for controlling malaria vectors. One example of this is the neonicotinoid clothianidin, the active ingredient in the indoor residual spray (IRS) SumiShield™ 50WG. In a preliminary experiment, the mortality of insecticide-susceptible and resistant An. gambiae adults exposed to filter papers treated with this IRS product reached 80% by 3 days post-exposure and 100% by 6 days post-exposure. Next, cement, wood, and mud tiles were treated with the clothianidin or a deltamethrin-based IRS formulation (K-Othrine WG250). Insecticide resistant and susceptible Anopheles and Aedes were exposed to these surfaces periodically for up to 18 months. Pyrethroid resistant Cx. quinquefasciatus was also exposed at 9 months. Between exposures, tiles were stored in heat and relative humidity conditions reflecting those found in the field. On these surfaces, the clothianidin IRS was effective at killing both susceptible and resistant An. gambiae for 18 months post-treatment, while mortality amongst the resistant strains when exposed to the deltamethrin IRS was not above that of the negative control. Greater efficacy of clothianidin was also demonstrated against insecticide resistant strains of An. funestus compared to deltamethrin, though the potency was lower when compared with An. gambiae. In general, higher efficacy of the clothianidin IRS was observed on cement and mud compared to wood, though it demonstrated poorer residual activity against Ae.aegypti and Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Rosemary Susan Lees
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
- Liverpool Insect Testing Establishment (LITE), Liverpool School of Tropical Medicine, 1 Daulby Street, Liverpool L7 8XZ, UK
- Correspondence: ; Tel.: +44-(0)-151-705-3344
| | - Giorgio Praulins
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
| | - Natalie Lissenden
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
| | - Andy South
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
| | - Jessica Carson
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
- Liverpool Insect Testing Establishment (LITE), Liverpool School of Tropical Medicine, 1 Daulby Street, Liverpool L7 8XZ, UK
| | - Faye Brown
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
- Institute of Infection, Veterinary and Ecological Sciences, Department of Livestock and One Health, The University of Liverpool, Liverpool L69 3BX, UK
| | - John Lucas
- Environmental Health Division, Sumitomo Chemical (UK) plc, 200 Shepherds Bush Rd, London W6 7NL, UK;
| | - David Malone
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
- Bill & Melinda Gates Foundation, 500 5th Ave N, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Review of the ecology and behaviour of Aedes aegypti and Aedes albopictus in Western Africa and implications for vector control. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100074. [PMID: 35726222 PMCID: PMC7612875 DOI: 10.1016/j.crpvbd.2021.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Western Africa is vulnerable to arboviral disease transmission, having recently experienced major outbreaks of chikungunya, dengue, yellow fever and Zika. However, there have been relatively few studies on the natural history of the two major human arbovirus vectors in this region, Aedes aegypti and Ae. albopictus, potentially limiting the implementation of effective vector control. We systematically searched for and reviewed relevant studies on the behaviour and ecology of Ae. aegypti and Ae. albopictus in Western Africa, published over the last 40 years. We identified 73 relevant studies, over half of which were conducted in Nigeria, Senegal, or Côte d'Ivoire. Most studies investigated the ecology of Ae. aegypti and Ae. albopictus, exploring the impact of seasonality and land cover on mosquito populations and identifying aquatic habitats. This review highlights the adaptation of Ae. albopictus to urban environments and its invasive potential, and the year-round maintenance of Ae. aegypti populations in water storage containers. However, important gaps were identified in the literature on the behaviour of both species, particularly Ae. albopictus. In Western Africa, Ae. aegypti and Ae. albopictus appear to be mainly anthropophilic and to bite predominantly during the day, but further research is needed to confirm this to inform planning of effective vector control strategies. We discuss the public health implications of these findings and comment on the suitability of existing and novel options for control in Western Africa.
Collapse
|
15
|
Lissenden N, Kont MD, Essandoh J, Ismail HM, Churcher TS, Lambert B, Lenhart A, McCall PJ, Moyes CL, Paine MJI, Praulins G, Weetman D, Lees RS. Review and Meta-Analysis of the Evidence for Choosing between Specific Pyrethroids for Programmatic Purposes. INSECTS 2021; 12:insects12090826. [PMID: 34564266 PMCID: PMC8465213 DOI: 10.3390/insects12090826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary A group of insecticides, called pyrethroids, are the main strategy for controlling the mosquito vectors of malaria. Pyrethroids are used in all insecticide-treated bednets, and many indoor residual spray programmes (in which insecticides are sprayed on the interior walls of houses). There are different types of pyrethroids within the class (e.g., deltamethrin and permethrin). Across the world, mosquitoes are showing signs of resistance to the pyrethroids, such as reduced mortality following contact. However, it is unclear if this resistance is uniform across the pyrethroid class (i.e., if a mosquito is resistant to deltamethrin, whether it is resistant to permethrin at the same level). In addition, it is not known if switching between different pyrethroids can be used to effectively maintain mosquito control when resistance to a single pyrethroid has been detected. This review examined the evidence from molecular studies, resistance testing from laboratory and field data, and mosquito behavioural assays to answer these questions. The evidence suggested that in areas where pyrethroid resistance exists, different mortality seen between the pyrethroids is not necessarily indicative of an operationally relevant difference in control performance, and there is no reason to rotate between common pyrethroids (i.e., deltamethrin, permethrin, and alpha-cypermethrin) as an insecticide resistance management strategy. Abstract Pyrethroid resistance is widespread in malaria vectors. However, differential mortality in discriminating dose assays to different pyrethroids is often observed in wild populations. When this occurs, it is unclear if this differential mortality should be interpreted as an indication of differential levels of susceptibility within the pyrethroid class, and if so, if countries should consider selecting one specific pyrethroid for programmatic use over another. A review of evidence from molecular studies, resistance testing with laboratory colonies and wild populations, and mosquito behavioural assays were conducted to answer these questions. Evidence suggested that in areas where pyrethroid resistance exists, different results in insecticide susceptibility assays with specific pyrethroids currently in common use (deltamethrin, permethrin, α-cypermethrin, and λ-cyhalothrin) are not necessarily indicative of an operationally relevant difference in potential performance. Consequently, it is not advisable to use rotation between these pyrethroids as an insecticide-resistance management strategy. Less commonly used pyrethroids (bifenthrin and etofenprox) may have sufficiently different modes of action, though further work is needed to examine how this may apply to insecticide resistance management.
Collapse
Affiliation(s)
- Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Mara D. Kont
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Hanafy M. Ismail
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - Ben Lambert
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - Audrey Lenhart
- U.S. Centers for Disease Control and Prevention, Entomology Branch, Division of Parasitic Diseases and Malaria, Atlanta, GA 30329, USA;
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | | | - Mark J. I. Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Giorgio Praulins
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Rosemary S. Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
- Correspondence: ; Tel.: +44-(0)-151-705-3344
| |
Collapse
|
16
|
Colonization and Authentication of the Pyrethroid-Resistant Anopheles gambiae s.s. Muleba-Kis Strain; an Important Test System for Laboratory Screening of New Insecticides. INSECTS 2021; 12:insects12080710. [PMID: 34442276 PMCID: PMC8396659 DOI: 10.3390/insects12080710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Malaria control and prevention have traditionally relied on the use of insecticides in the form of treated bed nets or residual spraying in households. However, scaling up of these interventions—based on few available insecticide classes—resulted in the development and spread of insecticide resistance in malaria-transmitting mosquitoes. There is therefore an urgent need for introducing and applying new insecticides that are effective against these mosquitoes. Laboratories tasked with evaluating the efficacy of novel insecticides need to establish a large colony of resistant mosquitoes. In this study, we report the procedures used and challenges faced during the establishment and maintenance of a resistant mosquito strain in the laboratory which reflects the characteristics of the wild-resistant mosquito populations found in East Africa. Abstract Background: The emergence and spread of insecticide resistance in malaria vectors to major classes of insecticides call for urgent innovation and application of insecticides with novel modes of action. When evaluating new insecticides for public health, potential candidates need to be screened against both susceptible and resistant mosquitoes to determine efficacy and to identify potential cross-resistance to insecticides currently used for mosquito control. The challenges and lessons learned from establishing, maintaining, and authenticating the pyrethroid-resistant An. gambiae s.s. Muleba-Kis strain at the KCMUCo-PAMVERC Test Facility are described in this paper. Methods: Male mosquitoes from the F1 generation of wild-pyrethroid resistant mosquitoes were cross-bred with susceptible female An. gambiae s.s. Kisumu laboratory strain followed by larval selection using a pyrethroid insecticide solution. Periodic screening for phenotypic and genotypic resistance was done. WHO susceptibility tests and bottle bioassays were used to assess the phenotypic resistance, while Taqman™ assays were used to screen for known target-site resistance alleles (kdr and ace-1). Additionally, the strains were periodically assessed for quality control by monitoring adult weight and wing length. Results: By out-crossing the wild mosquitoes with an established lab strain, a successful resistant insectary colony was established. Intermittent selection pressure using alphacypermethrin has maintained high kdr mutation (leucine-serine) frequencies in the selected colony. There was consistency in the wing length and weight measurements from the year 2016 to 2020, with the exception that one out of four years was significantly different. Mean annual wing length varied between 0.0142–0.0028 mm compared to values obtained in 2016, except in 2019 where it varied by 0.0901 mm. Weight only varied by approximately 0.001 g across four years, except in 2017 where it differed by 0.005 g. Routine phenotypic characterization on Muleba-Kis against pyrethroids using the WHO susceptibility test indicated high susceptibility when type I pyrethroids were used compared to type II pyrethroids. Dynamics on susceptibility status also depended on the lapse time when the selection was last done. Conclusions: This study described the procedure for introducing, colonizing, and maintaining a resistant An. gambiae s.s. strain in the laboratory with leucine to serine substitution kdr allele which reflects the features of the wild-resistant population in East Africa. Challenges in colonizing a wild-resistant mosquito strain were overcome by out-crossing between mosquito strains of desired traits followed by intermittent insecticide selection at the larval stage to select for the resistant phenotype.
Collapse
|
17
|
Namias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. eLife 2021; 10:e65655. [PMID: 34355693 PMCID: PMC8346280 DOI: 10.7554/elife.65655] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Monitoring local mosquito populations for insecticide resistance is critical for effective vector-borne disease control. However, widely used phenotypic assays, which are designed to monitor the emergence and spread of insecticide resistance (technical resistance), do not translate well to the efficacy of vector control products to suppress mosquito numbers in the field (practical resistance). This is because standard testing conditions such as environmental conditions, exposure dose, and type of substrate differ dramatically from those experienced by mosquitoes under field conditions. In addition, field mosquitoes have considerably different physiological characteristics such as age and blood-feeding status. Beyond this, indirect impacts of insecticide resistance and/or exposure on mosquito longevity, pathogen development, host-seeking behavior, and blood-feeding success impact disease transmission. Given the limited number of active ingredients currently available and the observed discordance between resistance and disease transmission, we conclude that additional testing guidelines are needed to determine practical resistance-the efficacy of vector control tools under relevant local conditions- in order to obtain programmatic impact.
Collapse
Affiliation(s)
- Alice Namias
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Ndey Bassin Jobe
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| | - Krijn Petrus Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Biodesign Institute, Tempe, United States
- ISGlobal, Carrer del Rosselló, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, Mozambique
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| |
Collapse
|
18
|
Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, Worku A, Gebresilassie A, Tadesse FG, Gadisa E, Esayas E, Ashine T, Ejeta D, Dugassa S, Yohannes M, Lemma W, Yewhalaw D, Chibsa S, Teka H, Murphy M, Yoshimizu M, Dengela D, Zohdy S, Irish S. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018-2020. Malar J 2021; 20:263. [PMID: 34107943 PMCID: PMC8189708 DOI: 10.1186/s12936-021-03801-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles stephensi, an invasive malaria vector, was first detected in Africa nearly 10 years ago. After the initial finding in Djibouti, it has subsequently been found in Ethiopia, Sudan and Somalia. To better inform policies and vector control decisions, it is important to understand the distribution, bionomics, insecticide susceptibility, and transmission potential of An. stephensi. These aspects were studied as part of routine entomological monitoring in Ethiopia between 2018 and 2020. METHODS Adult mosquitoes were collected using human landing collections, pyrethrum spray catches, CDC light traps, animal-baited tent traps, resting boxes, and manual aspiration from animal shelters. Larvae were collected using hand-held dippers. The source of blood in blood-fed mosquitoes and the presence of sporozoites was assessed through enzyme-linked immunosorbent assays (ELISA). Insecticide susceptibility was assessed for pyrethroids, organophosphates and carbamates. RESULTS Adult An. stephensi were collected with aspiration, black resting boxes, and animal-baited traps collecting the highest numbers of mosquitoes. Although sampling efforts were geographically widespread, An. stephensi larvae were collected in urban and rural sites in eastern Ethiopia, but An. stephensi larvae were not found in western Ethiopian sites. Blood-meal analysis revealed a high proportion of blood meals that were taken from goats, and only a small proportion from humans. Plasmodium vivax was detected in wild-collected An. stephensi. High levels of insecticide resistance were detected to pyrethroids, carbamates and organophosphates. Pre-exposure to piperonyl butoxide increased susceptibility to pyrethroids. Larvae were found to be susceptible to temephos. CONCLUSIONS Understanding the bionomics, insecticide susceptibility and distribution of An. stephensi will improve the quality of a national response in Ethiopia and provide additional information on populations of this invasive species in Africa. Further work is needed to understand the role that An. stephensi will have in Plasmodium transmission and malaria case incidence. While additional data are being collected, national programmes can use the available data to formulate and operationalize national strategies against the threat of An. stephensi.
Collapse
Affiliation(s)
- Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Peter Mumba
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Gedeon Yohannes
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Ephrem Abiy
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sheleme Chibsa
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,United States Agency for International Development (USAID), Addis Ababa, Ethiopia
| | - Hiwot Teka
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.,US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,United States Agency for International Development (USAID), Addis Ababa, Ethiopia
| | - Matt Murphy
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melissa Yoshimizu
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,US President's Malaria Initiative, USAID, Washington, DC, USA
| | - Dereje Dengela
- Abt Associates, PMI VectorLink Project, Rockville, MD, USA
| | - Sarah Zohdy
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Entomology Branch Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Seth Irish
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia. .,Entomology Branch Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
19
|
Buczkowski G. A comparison of insecticide susceptibility levels in 12 species of urban pest ants with special focus on the odorous house ant, Tapinoma sessile. PEST MANAGEMENT SCIENCE 2021; 77:2948-2954. [PMID: 33620757 DOI: 10.1002/ps.6331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Many ant species are pests in urban, agricultural, and natural habitats around the world. The primary means of reducing or eliminating ant infestations utilizes chemical control, mainly applications of residual insecticides. Control failures with residual insecticides are common, driven in part by a lack of understanding of basic biological and life history characteristics, including interspecific variation in susceptibility to insecticides. The current study evaluated the susceptibility of 12 species of urban pest ants to three classes of insecticides. RESULTS Results show significant variation in susceptibility across species. Contrary to the hypothesis of proportionality, no significant relationship was detected between body mass and median lethal time (LT50 ) or time to 100% mortality. The odorous house ant (Tapinoma sessile) was consistently the least susceptible to all insecticides, as indicated by the highest LT50 values and the greatest amount of time required to reach 100% mortality. Comparatively low susceptibility to commonly used spray insecticides may explain why T. sessile is such a persistent pest. Broadcast applications of spray insecticides may kill off the most susceptible species, leaving behind T. sessile. Lack of competition from other ant species, combined with increased access to nesting and feeding resources may allow T. sessile to fill a vacant ecological niche and expand its range. CONCLUSION Considering T. sessile's relatively low susceptibility to insecticides, its ability to become established in areas colonized by other invasive ants, and its highly invasive behaviors, it should be watched for by biosecurity programs as it has high potential to become a globally invasive pest. © 2021 Society of Chemical Industry.
Collapse
|
20
|
Burtis JC, Poggi JD, McMillan JR, Crans SC, Campbell SR, Isenberg A, Pulver J, Casey P, White K, Zondag C, Badger JR, Berger R, Betz J, Giordano S, Kawalkowski M, Petersen JL, Williams G, Andreadis TG, Armstrong PM, Harrington LC. NEVBD Pesticide Resistance Monitoring Network: Establishing a Centralized Network to Increase Regional Capacity for Pesticide Resistance Detection and Monitoring. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:787-797. [PMID: 33128057 DOI: 10.1093/jme/tjaa236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Pesticide resistance in arthropod vectors of disease agents is a growing issue globally. Despite the importance of resistance monitoring to inform mosquito control programs, no regional monitoring programs exist in the United States. The Northeastern Regional Center for Excellence in Vector-Borne Diseases (NEVBD) is a consortium of researchers and public health practitioners with a primary goal of supporting regional vector control activities. NEVBD initiated a pesticide resistance monitoring program to detect resistant mosquito populations throughout the northeastern United States. A regionwide survey was distributed to vector control agencies to determine needs and refine program development and in response, a specimen submission system was established, allowing agencies to submit Culex pipiens (L.) (Diptera:Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) for pesticide resistance testing. NEVBD also established larvicide resistance diagnostics for Bacillus thuringiensis israelensis (Bti) and methoprene. Additional diagnostics were developed for Cx. pipiens resistance to Lysinibacillus sphaericus. We received 58 survey responses, representing at least one agency from each of the 13 northeastern U.S. states. Results indicated that larvicides were deployed more frequently than adulticides, but rarely paired with resistance monitoring. Over 18,000 mosquitoes were tested from six states. Widespread low-level (1 × LC-99) methoprene resistance was detected in Cx. pipiens, but not in Ae. albopictus. No resistance to Bti or L. sphaericus was detected. Resistance to pyrethroids was detected in many locations for both species. Our results highlight the need for increased pesticide resistance testing in the United States and we provide guidance for building a centralized pesticide resistance testing program.
Collapse
Affiliation(s)
- James C Burtis
- Department of Entomology, Cornell University, Ithaca, NY
| | - Joseph D Poggi
- Department of Entomology, Cornell University, Ithaca, NY
| | | | - Scott C Crans
- NJDEP Office of Mosquito Control Coordination, Trenton, NJ
| | | | - Amy Isenberg
- Rockland County Department of Health, Pomona, NY
| | | | - Patti Casey
- Vermont Agency of Agriculture, Food & Markets, Montpelier, VT
| | | | - Craig Zondag
- Lemon Fair Insect Control District, Weybridge, VT
| | - John R Badger
- Delaware Division of Fish and Wildlife, Mosquito Control Section, Milford, DE
| | - Russell Berger
- Morris County Division of Mosquito Control, Morristown, NJ
| | - John Betz
- Department of Public Works, Cumberland County Mosquito Control, Bridgeton, NJ 08302
| | | | | | - John L Petersen
- Center for Vector Biology, Rutgers University, New Brunswick, NJ
| | | | | | | | | |
Collapse
|
21
|
English S, Barreaux AMG. The evolution of sensitive periods in development: insights from insects. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Nouage L, Elanga-Ndille E, Binyang A, Tchouakui M, Atsatse T, Ndo C, Kekeunou S, Wondji CS. Influence of GST- and P450-based metabolic resistance to pyrethroids on blood feeding in the major African malaria vector Anopheles funestus. PLoS One 2020; 15:e0230984. [PMID: 32946446 PMCID: PMC7500606 DOI: 10.1371/journal.pone.0230984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Insecticide resistance genes are often associated with pleiotropic effects on various mosquito life-history traits. However, very little information is available on the impact of insecticide resistance on blood feeding process in mosquitoes. Here, using two recently detected DNA-based metabolic markers in the major malaria vector, An. funestus, we investigated how metabolic resistance genes could affect the blood meal intake. After allowing both the field F1 and lab F8 Anopheles funestus strains to feed on the human arm for 30 minutes, we assessed the association between key parameters of blood meal process including, probing time, feeding duration, blood feeding success, blood meal size, and markers of glutathione S-transferase (L119F-GSTe2) and cytochrome P450 (CYP6P9a_R)-mediated metabolic resistance. None of the parameters of blood meal process was associated with L119F-GSTe2 genotypes. By contrast, for CYP6P9a_R, homozygous resistant mosquitoes were significantly more able to blood-feed than homozygous susceptible (OR = 3.3; CI 95%: 1.4-7.7; P = 0.01) mosquitoes. Moreover, the volume of blood meal ingested by CYP6P9a-SS mosquitoes was lower than that of CYP6P9a-RS (P<0.004) and of CYP6P9a-RR (P<0.006). This suggests that CYP6P9a gene is inked with the feeding success and blood meal size of An. funestus. However, no correlation was found in the expression of CYP6P9a and that of genes encoding for salivary proteins involved in blood meal process. This study suggests that P450-based metabolic resistance may influence the blood feeding process of Anopheles funestus mosquito and consequently its ability to transmit malaria parasites.
Collapse
Affiliation(s)
- Lynda Nouage
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Achille Binyang
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Tatiane Atsatse
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Cyrille Ndo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Sévilor Kekeunou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
23
|
Evaluating insecticide resistance across African districts to aid malaria control decisions. Proc Natl Acad Sci U S A 2020; 117:22042-22050. [PMID: 32843339 PMCID: PMC7486715 DOI: 10.1073/pnas.2006781117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Malaria control in Africa largely relies on the use of insecticides to prevent mosquitoes from transmitting the malaria parasite to humans; however, these mosquitoes have evolved resistance to these insecticides. To manage this threat to malaria control, it is vital that we map locations where the prevalence of resistance exceeds thresholds defined by insecticide resistance management plans. A geospatial model and data from Africa are used to predict locations where thresholds of resistance linked to specific recommended actions are exceeded. This model is shown to provide more accurate next-year predictions than two simpler approaches. The model is used to generate maps that aid insecticide resistance management planning and that allow targeted deployment of interventions that counter specific mechanisms of resistance. Malaria vector control may be compromised by resistance to insecticides in vector populations. Actions to mitigate against resistance rely on surveillance using standard susceptibility tests, but there are large gaps in the monitoring data across Africa. Using a published geostatistical ensemble model, we have generated maps that bridge these gaps and consider the likelihood that resistance exceeds recommended thresholds. Our results show that this model provides more accurate next-year predictions than two simpler approaches. We have used the model to generate district-level maps for the probability that pyrethroid resistance in Anopheles gambiae s.l. exceeds the World Health Organization thresholds for susceptibility and confirmed resistance. In addition, we have mapped the three criteria for the deployment of piperonyl butoxide-treated nets that mitigate against the effects of metabolic resistance to pyrethroids. This includes a critical review of the evidence for presence of cytochrome P450-mediated metabolic resistance mechanisms across Africa. The maps for pyrethroid resistance are available on the IR Mapper website, where they can be viewed alongside the latest survey data.
Collapse
|
24
|
Gowelo S, Chirombo J, Spitzen J, Koenraadt CJM, Mzilahowa T, van den Berg H, Takken W, McCann R. Effects of larval exposure to sublethal doses of Bacillus thuringiensis var. israelensis on body size, oviposition and survival of adult Anopheles coluzzii mosquitoes. Parasit Vectors 2020; 13:259. [PMID: 32416733 PMCID: PMC7229702 DOI: 10.1186/s13071-020-04132-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Application of the larvicide Bacillus thuringiensis var. israelensis (Bti) is a viable complementary strategy for malaria control. Efficacy of Bti is dose-dependent. There is a knowledge gap on the effects of larval exposure to sublethal Bti doses on emerging adult mosquitoes. The present study examined the effect of larval exposure to sublethal doses of Bti on the survival, body size and oviposition rate in adult Anopheles coluzzii. METHODS Third-instar An. coluzzii larvae were exposed to control and sublethal Bti concentrations at LC20, LC50 and LC70 for 48 h. Surviving larvae were reared to adults under standard colony conditions. Thirty randomly selected females from each treatment were placed in separate cages and allowed to blood feed. Twenty-five gravid females from the blood-feeding cages were randomly selected and transferred into new cages where they were provided with oviposition cups. Numbers of eggs laid in each cage and mortality of all adult mosquitoes were recorded daily. Wing lengths were measured of 570 mosquitoes as a proxy for body size. RESULTS Exposure to LC70Bti doses for 48 h as third-instar larvae reduced longevity of adult An. coluzzii mosquitoes. Time to death was 2.58 times shorter in females exposed to LC70Bti when compared to the control females. Estimated mortality hazard rates were also higher in females exposed to the LC50 and LC20 treatments, but these differences were not statistically significant. The females exposed to LC70 concentrations had 12% longer wings than the control group (P < 0.01). No differences in oviposition rate of the gravid females were observed between the treatments. CONCLUSIONS Exposure of An. coluzzii larvae to sublethal Bti doses reduces longevity of resultant adults and is associated with larger adult size and unclear effect on oviposition. These findings suggest that anopheline larval exposure to sublethal Bti doses, though not recommended, could reduce vectorial capacity for malaria vector populations by increasing mortality of resultant adults.
Collapse
Affiliation(s)
- Steven Gowelo
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- Training and Research Unit of Excellence, School of Public Health, College of Medicine, Blantyre, Malawi
| | - James Chirombo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Jeroen Spitzen
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | - Henk van den Berg
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Robert McCann
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- Training and Research Unit of Excellence, School of Public Health, College of Medicine, Blantyre, Malawi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
25
|
Chu VM, Sallum MAM, Moore TE, Emerson KJ, Schlichting CD, Conn JE. Evidence for family-level variation of phenotypic traits in response to temperature of Brazilian Nyssorhynchus darlingi. Parasit Vectors 2020; 13:55. [PMID: 32041663 PMCID: PMC7011564 DOI: 10.1186/s13071-020-3924-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/01/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Nyssorhynchus darlingi (also known as Anopheles darlingi) is the primary malaria vector in the Amazon River Basin. In Brazil, analysis of single nucleotide polymorphisms (SNPs) previously detected three major population clusters, and a common garden experiment in a laboratory setting revealed significant population variation in life history traits. Increasing temperatures and local level variation can affect life history traits, i.e. adult longevity, that alter vectorial capacity with implications for malaria transmission in Ny. darlingi. METHODS We investigated the population structure of Ny. darlingi from 7 localities across Brazil utilizing SNPs and compared them to a comprehensive Ny. darlingi catalog. To test the effects of local level variation on life history traits, we reared F1 progeny from the 7 localities at three constant temperatures (20, 24 and 28 °C), measuring key life history traits (larval development, food-starved adult lifespan, adult size and daily survival). RESULTS Using nextRAD genotyping-by-sequencing, 93 of the field-collected Ny. darlingi were genotyped at 33,759 loci. Results revealed three populations (K = 3), congruent with major biomes (Amazonia, Cerrado and Mata Atlântica), with greater FST values between biomes than within. In the life history experiments, increasing temperature reduced larval development time, adult lifespan, and wing length in all localities. The variation of family responses for all traits within four localities of the Amazonia biome was significant (ANOVA, P < 0.05). Individual families within localities revealed a range of responses as temperature increased, for larval development, adult lifespan, wing length and survival time. CONCLUSIONS SNP analysis of several Brazilian localities provided results in support of a previous study wherein populations of Ny. darlingi were clustered by three major Brazilian biomes. Our laboratory results of temperature effects demonstrated that population variation in life history traits of Ny. darlingi exists at the local level, supporting previous research demonstrating the high plasticity of this species. Understanding this plasticity and inherent variation between families of Ny. darlingi at the local level should be considered when deploying intervention strategies and may improve the likelihood of successful malaria elimination in South America.
Collapse
Affiliation(s)
- Virginia M. Chu
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 150 New Scotland Avenue, Albany, NY USA
- Wadsworth Center, New York State Department of Health, New York State Route 5, Albany, NY USA
| | | | - Timothy E. Moore
- Department of Ecology and Evolutionary Biology, University of Connecticut, Hartford, CT USA
| | - Kevin J. Emerson
- Biology Department, St. Mary’s College of Maryland, St. Mary’s City, Maryland USA
| | - Carl D. Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Hartford, CT USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, New York State Route 5, Albany, NY USA
| |
Collapse
|
26
|
Alves SN, Pujoni DGF, Mocelin G, Melo AL, Serrão JE. Evaluation of Culex quinquefasciatus wings asymmetry after exposure of larvae to sublethal concentration of ivermectin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3483-3488. [PMID: 31820251 DOI: 10.1007/s11356-019-06963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The surviving insects submitted to chemical control have morphological alterations that impact on their mechanisms of resistance and their final development. Those changes are detected and measured using physical features related to symmetry, specifically named fluctuating asymmetry. This is detected when deviations from the perfect bilateral symmetry for specific morphological characteristic is influenced by genetics or environmental stress. Thus, in this paper we analyze the wing in adult of Culex quinquefasciatus (Diptera - Culicidae) after larvae exposure to ivermectin LC50. Three hundred larvae of C. quinquefasciatus were exposed to ivermectin in 1.5 μg/L (LC50) concentration during 30 min, and three hundred larvae were exposed to distilled pure water as control group. For fluctuating asymmetry, adult males and adult females were selected from each group (n = 83) from the untreated group and (n = 79) from treated group. Wings from adults of each group were mounted in glass microscope slides and coverslip in Canada's balsam and analyzed with a stereomicroscope with a video camera attached. The treatment effect on M3 + 4 was marginally significant with higher asymmetry values in the control group. The data obtained here suggest the importance of future experiments to elucidate the mechanisms associated with FA. Moreover, according to the results obtained, it may be suggested that FA is present in females in ornaments, or secondary sexual characters, as an indicator of phenotypic quality of the partners.
Collapse
Affiliation(s)
- Stênio Nunes Alves
- Campus Centro-Oesde Dona Lindu, Federal University of São João del Rei, Av. Sebastião Gonçalves Coelho, 400 - Chanadour, Divinópolis, MG, 35501-296, Brazil.
| | - Diego G F Pujoni
- Department of Ecology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Giovani Mocelin
- Federal University of Paraná, Jardim das Américas, Curitiba, PR, 81531-990, Brazil
| | - Alan L Melo
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - José E Serrão
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| |
Collapse
|
27
|
Meredith HR, Furuya-Kanamori L, Yakob L. Optimising systemic insecticide use to improve malaria control. BMJ Glob Health 2019; 4:e001776. [PMID: 31798988 PMCID: PMC6861066 DOI: 10.1136/bmjgh-2019-001776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/26/2019] [Accepted: 10/12/2019] [Indexed: 01/08/2023] Open
Abstract
Background Long-lasting insecticidal nets and indoor residual sprays have significantly reduced the burden of malaria. However, several hurdles remain before elimination can be achieved: mosquito vectors have developed resistance to public health insecticides, including pyrethroids, and have altered their biting behaviour to avoid these indoor control tools. Systemic insecticides, drugs applied directly to blood hosts to kill mosquitoes that take a blood meal, offer a promising vector control option. To date, most studies focus on repurposing ivermectin, a drug used extensively to treat river blindness. There is concern that overdependence on a single drug will inevitably repeat past experiences with the rapid spread of pyrethroid resistance in malaria vectors. Diversifying the arsenal of systemic insecticides used for mass drug administration would improve this strategy’s sustainability. Methods Here, a review was conducted to identify systemic insecticide candidates and consolidate their pharmacokinetic/pharmacodynamic properties. The impact of alternative integrated vector control options and different dosing regimens on malaria transmission reduction are illustrated through mathematical model simulation. Results The review identified drugs from four classes commonly used in livestock and companion animals: avermectins, milbemycins, isoxazolines and spinosyns. Simulations predicted that isoxazolines and spinosyns are promising candidates for mass drug administration, as they were predicted to need less frequent application than avermectins and milbemycins to maintain mosquitocidal blood concentrations. Conclusions These findings will provide a guide for investigating and applying different systemic insecticides to achieve more effective and sustainable control of malaria transmission.
Collapse
Affiliation(s)
- Hannah R Meredith
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Luis Furuya-Kanamori
- Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Laith Yakob
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
28
|
Vontas J, Mavridis K. Vector population monitoring tools for insecticide resistance management: Myth or fact? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:54-60. [PMID: 31685197 DOI: 10.1016/j.pestbp.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/10/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Insecticide resistance is a large and growing problem for the control of mosquito disease vectors. The World Health Organization (WHO) established the Global Plan for Insecticide Resistance Management (GPIRM) in 2012. In that context, both classical and molecular tools, as well as entomological databases and decision support platforms have been developed and used for IRM. Despite major advances in the molecular elucidation of resistance mechanisms and the development of diagnostic tools, their impact on disease control programs has been limited. In most cases diagnostic tools provide a retrospective examination of changes imposed by insecticides rather than a prospective analysis to guide vector control strategies. The uncertainty of the predictive value of markers, the assay robustness and the common misconceptions in resistance diagnosis terminology are continuing challenges in monitoring vector resistance. Furthermore, an often logistics, as opposed to systematic scientific evidence, based approach to decision for the use of the very few alternative chemicals in vector control, has reduced the value of resistance monitoring in practice. The current deployment of new insecticidal active ingredients should necessitate the application of companion diagnostics (CDx) and the development of modern ways for interpretation and management of the data by trained programme managers. This will establish their real value for use in decision-making, in line with evidence based choice of chemicals in agriculture and medical applications.
Collapse
Affiliation(s)
- John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece.
| | - Konstantinos Mavridis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece
| |
Collapse
|
29
|
Paaijmans K, Brustollin M, Aranda C, Eritja R, Talavera S, Pagès N, Huijben S. Phenotypic insecticide resistance in arbovirus mosquito vectors in Catalonia and its capital Barcelona (Spain). PLoS One 2019; 14:e0217860. [PMID: 31276554 PMCID: PMC6611561 DOI: 10.1371/journal.pone.0217860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/20/2019] [Indexed: 01/22/2023] Open
Abstract
A range of mosquito species that belong to the Culicidae family are responsible for the worldwide transmission of infectious arboviral diseases such as dengue fever, Zika, West Nile fever and Chikungunya fever. Spain is at risk of arbovirus outbreaks, as various arboviral diseases are frequently introduced and it has established competent vector populations. Autochthonous human cases of West Nile virus have been reported infrequently since 2004, and since October 2018 three autochthonous human case of dengue fever have been confirmed. In response to an outbreak of any arboviral disease, space spraying or fogging will be implemented to control adult mosquito populations. To ensure adulticiding is cost-effective, the insecticide susceptibility status of vectors throughout Catalonia, an autonomous region in north-eastern Spain, was assessed through standardized WHO tube and CDC bottle bioassays. All Culex pipiens populations tested were resistant to at least one of the pyrethroids tested, whereas Aedes albopictus populations were susceptible to all pyrethroids tested. More detailed studies on the Cx. pipiens populations from the Barcelona area (the capital and largest city of Catalonia) revealed resistance to all four classes of public health insecticides available (pyrethroids, carbamates, organophosphates and organochlorides). All Ae. albopictus populations were susceptible to those classes, except for one of the tests performed with pirimiphos-methyl (an organophosphate). Pyrethroids are currently the first line chemical class to be used in space spray operations in response to an outbreak of an arboviral disease. While pyrethroids can be effective in reducing Ae. albopictus populations, this class may not be effective to control Cx. pipiens populations.
Collapse
Affiliation(s)
- Krijn Paaijmans
- ISGlobal, Barcelona, Spain
- School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
| | - Marco Brustollin
- Centre de Recerca en Sanitat Animal (CReSA IRTA), Barcelona, Spain
- The Center for Infectious Disease Dynamics, and the Huck Institutes of The Life Sciences, Millennium Science Complex, Pennsylvania State University, University Park, PA, United States of America
| | - Carles Aranda
- Centre de Recerca en Sanitat Animal (CReSA IRTA), Barcelona, Spain
- Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, Barcelona, Spain
| | - Roger Eritja
- Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, Barcelona, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Sandra Talavera
- Centre de Recerca en Sanitat Animal (CReSA IRTA), Barcelona, Spain
| | - Nonito Pagès
- Centre de Recerca en Sanitat Animal (CReSA IRTA), Barcelona, Spain
- CIRAD, UMR ASTRE, Petit Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRA, Montpellier University, Montpellier, France
| | - Silvie Huijben
- ISGlobal, Barcelona, Spain
- School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
30
|
Nattero J, Piccinali RV, Gaspe MS, Gürtler RE. Fluctuating asymmetry and exposure to pyrethroid insecticides in Triatoma infestans populations in northeastern Argentina. INFECTION GENETICS AND EVOLUTION 2019; 74:103925. [PMID: 31220610 DOI: 10.1016/j.meegid.2019.103925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/25/2019] [Accepted: 06/15/2019] [Indexed: 11/19/2022]
Abstract
Fluctuating asymmetry (FA), a phenotypic marker used as indicator of developmental stress or instability, is sometimes associated with insecticide application and resistance. Here we investigated the occurrence and amount of wing size and wing shape FA in Triatoma infestans females and males collected before and 4 months after a community-wide pyrethroid spraying campaign in a well-defined rural area of Pampa del Indio, Argentina. Moderate levels of pyrethroid resistance were previously confirmed for this area, and postspraying house infestation was mainly attributed to this condition. In the absence of insecticide-based selective pressures over the previous 12 years, we hypothesized that 1- if postspraying triatomines were mostly survivors to insecticide spraying (pyrethroid resistant), they would have higher levels of FA than prespraying triatomines. 2- if postspraying triatomines have a selective advantage, they would have lower FA levels than their prespraying counterparts, whereas if postspraying infestation was positively associated with immigrants not exposed to the insecticide, prespraying and postspraying triatomines would display similar FA levels. For 243 adult T. infestans collected at identified sites before insecticide spraying and 112 collected 4 months postspraying, wing size and wing shape asymmetry was estimated from landmark configurations of left and right sides of each individual. At population level, wing size and shape FA significantly decreased in both females and males after spraying. Males displayed greater wing size and shape FA than females. However, at a single peridomestic site that was persistently infested after spraying, FA declined similarly in females whereas the reverse pattern occurred in males. Our results suggest differential survival of adults with more symmetric wings. This pattern may be related to a selective advantage of survivors to insecticide spraying, which may be mediated or not by their pyrethroid-resistant status or to lower triatomine densities after insecticide spraying and the concomitant increase in feeding success.
Collapse
Affiliation(s)
- Julieta Nattero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Laboratorio de Eco-Epidemiología, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Romina Valeria Piccinali
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Laboratorio de Eco-Epidemiología, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Sol Gaspe
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Laboratorio de Eco-Epidemiología, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ricardo Esteban Gürtler
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Laboratorio de Eco-Epidemiología, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
31
|
Mulatier M, Pennetier C, Porciani A, Chandre F, Dormont L, Cohuet A. Prior contact with permethrin decreases its irritancy at the following exposure among a pyrethroid-resistant malaria vector Anopheles gambiae. Sci Rep 2019; 9:8177. [PMID: 31160750 PMCID: PMC6546682 DOI: 10.1038/s41598-019-44633-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022] Open
Abstract
Insecticide-treated nets (ITNs) remain major components for vector control despite the spread of resistance mechanisms among mosquito populations. Multiple exposures to pyrethroids may induce physiological and behavioral changes in mosquitoes, possibly reducing efficacy of control tools. Despite epidemiological relevance, the effects of multiple exposures to pyrethroids on their efficacy against pyrethroid-resistant mosquitoes has received little interest. In the present study, we assessed the effects of a blood-meal successfully obtained upon a permethrin-treated net on the success at taking a second blood-meal in presence of permethrin in Anopheles gambiae, carrying pyrethroid resistance alleles. We also measured the impact of exposure to permethrin on life-history traits to address the delayed efficacy of ITNs. Our results showed that females that successfully blood-fed upon a permethrin-treated net were no longer inhibited by permethrin at the following exposure. Blood-meal inhibition due to permethrin was not affected by female size nor by exposure of mothers when testing the offspring, allowing to discard the effect of genetic or physiological selection. Besides, in our assays, exposure to permethrin did not affect mosquito fecundity, fertility nor survival. These results give insights to understand the long-term efficacy of ITNs, and allow to reevaluate the criteria used when choosing compounds for fighting malaria mosquitoes.
Collapse
Affiliation(s)
- Margaux Mulatier
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France. .,CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Cédric Pennetier
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pierre Richet, Bouaké, Côte d'Ivoire
| | | | | | - Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Anna Cohuet
- Institut Pierre Richet, Bouaké, Côte d'Ivoire
| |
Collapse
|
32
|
Chu VM, Sallum MAM, Moore TE, Lainhart W, Schlichting CD, Conn JE. Regional variation in life history traits and plastic responses to temperature of the major malaria vector Nyssorhynchus darlingi in Brazil. Sci Rep 2019; 9:5356. [PMID: 30926833 PMCID: PMC6441093 DOI: 10.1038/s41598-019-41651-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/13/2019] [Indexed: 11/08/2022] Open
Abstract
The primary Brazilian malaria vector, Nyssorhynchus darlingi (formerly Anopheles darlingi), ranges from 0°S-23°S across three biomes (Amazonia, Cerrado, Mata Atlântica). Rising temperatures will increase mosquito developmental rates, and models predict future malaria transmission by Ny. darlingi in Brazil will shift southward. We reared F1 Ny. darlingi (progeny of field-collected females from 4 state populations across Brazil) at three temperatures (20, 24, 28 °C) and measured key life-history traits. Our results reveal geographic variation due to both genetic differences among localities and plastic responses to temperature differences. Temperature significantly altered all traits: faster larval development, shorter adult life and overall lifespan, and smaller body sizes were seen at 28 °C versus 20 °C. Low-latitude Amazonia mosquitoes had the fastest larval development at all temperatures, but at 28 °C, average development rate of high-latitude Mata Atlântica mosquitoes was accelerated and equivalent to low-latitude Amazonia. Body size of adult mosquitoes from the Mata Atlântica remained larger at all temperatures. We detected genetic variation in the plastic responses among mosquitoes from different localities, with implications for malaria transmission under climate change. Faster development combined with larger body size, without a tradeoff in adult longevity, suggests vectorial capacities of some Mata Atlântica populations may significantly increase under warming climates.
Collapse
Affiliation(s)
- V M Chu
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - M A M Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - T E Moore
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - W Lainhart
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - C D Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - J E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
33
|
Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission. Nature 2019; 567:239-243. [PMID: 30814727 PMCID: PMC6438179 DOI: 10.1038/s41586-019-0973-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/29/2019] [Indexed: 02/03/2023]
Abstract
Every year the bites of Anopheles mosquitoes kill
hundreds of thousands of people, mostly young African children, by transmitting
deadly Plasmodium falciparum malaria parasites. Since the turn
of the century, efforts to prevent transmission of these parasites via the mass
distribution of insecticide-treated bed nets have been extremely successful,
causing an unprecedented reduction in malaria deaths1. However, resistance to insecticides has
become widespread in Anopheles populations2–4, threatening a global resurgence of the disease and making
the generation of effective new malaria control tools an urgent public health
priority. Here, we show that development of P. falciparum can
be rapidly and completely blocked when Anopheles gambiae
females uptake low concentrations of specific antimalarials from treated
surfaces, simulating contact with a bed net. Mosquito exposure to atovaquone
prior to or shortly after P. falciparum infection causes full
parasite arrest in the female midgut, preventing transmission of infection.
Similar transmission-blocking effects are achieved with other cytochrome B
inhibitors, demonstrating that parasite mitochondrial function is a good target
for parasite killing. Incorporating these effects into a model of malaria
transmission dynamics predicts that the inclusion of Plasmodium
inhibitors on mosquito nets would significantly mitigate the global health
impact of insecticide resistance. This study identifies a powerful new strategy
for blocking Plasmodium transmission by
Anopheles females, with promising implications for malaria
eradication efforts.
Collapse
|
34
|
Oladipupo SO, Callaghan A, Holloway GJ, Gbaye OA. Variation in the susceptibility of Anopheles gambiae to botanicals across a metropolitan region of Nigeria. PLoS One 2019; 14:e0210440. [PMID: 30625231 PMCID: PMC6326496 DOI: 10.1371/journal.pone.0210440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022] Open
Abstract
Pesticide resistance is normally associated with genetic changes, resulting in varied responses to insecticides between different populations. There is little evidence of resistance to plant allelochemicals; it is likely that their efficacy varies between genetically diverse populations, which may lead to the development of resistance in the future. This study evaluated the response of Anopheles gambiae (larvae and adults) from spatially different populations to acetone extracts of two botanicals, Piper guineense and Eugenia aromatica. Mosquito samples from 10 locations within Akure metropolis in Southwest Nigeria were tested for variation in susceptibility to the toxic effect of botanical extracts. The spatial distribution of the tolerance magnitude (T.M.) of the mosquito populations to the botanicals was also mapped. The populations of An. gambiae manifested significant differences in their level of tolerance to the botanicals. The centre of the metropolis was the hot spot of tolerance to the botanicals. There was a significant positive correlation between the adulticidal activities of both botanicals and initial knockdown. Hence, knockdown by these botanicals could be a predictor of their subsequent mortality. In revealing variation in response to botanical pesticides, our work has demonstrated that any future use of botanicals as alternative environmentally friendly vector control chemicals needs to be closely monitored to ensure that resistance does not develop.
Collapse
Affiliation(s)
- Seun Olaitan Oladipupo
- Department of Biology, Federal University of Technology, Akure, Nigeria
- Department of Entomology and Plant Pathology, Funchess Hall, Auburn University, Aurburn, Alabama, United States of America
| | - Amanda Callaghan
- Centre for Wildlife Assessment and Conservation, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Graham J. Holloway
- Centre for Wildlife Assessment and Conservation, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | |
Collapse
|
35
|
Kristan M, Abeku TA, Lines J. Effect of environmental variables and kdr resistance genotype on survival probability and infection rates in Anopheles gambiae (s.s.). Parasit Vectors 2018; 11:560. [PMID: 30367663 PMCID: PMC6204000 DOI: 10.1186/s13071-018-3150-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/14/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Environmental factors, especially ambient temperature and relative humidity affect both mosquitoes and malaria parasites. The early part of sporogony is most sensitive and is affected by high temperatures and temperature fluctuation immediately following ingestion of an infectious blood meal. The aim of this study was to explore whether environmental variables such as temperature, together with the presence of the kdr insecticide resistance mutations, have an impact on survival probability and infection rates in wild Anopheles gambiae (s.s.) exposed and unexposed to a pyrethroid insecticide. METHODS Anopheles gambiae (s.s.) were collected as larvae, reared to adults, and fed on blood samples from 42 Plasmodium falciparum-infected local patients at a health facility in mid-western Uganda, then exposed either to nets treated with sub-lethal doses of deltamethrin or to untreated nets. After seven days, surviving mosquitoes were dissected and their midguts examined for oocysts. Prevalence (proportion infected) and intensity of infection (number of oocysts per infected mosquito) were recorded for each group. Mosquito mortality was recorded daily. Temperature and humidity were recorded every 30 minutes throughout the experiments. RESULTS Our findings indicate that apart from the effect of deltamethrin exposure, mean daily temperature during the incubation period, temperature range during the first 24 hours and on day 4 post-infectious feed had a highly significant effect on the risk of infection. Deltamethrin exposure still significantly impaired survival of kdr homozygous mosquitoes, while mean daily temperature and relative humidity during the incubation period independently affected mosquito mortality. Significant differences in survival of resistant genotypes were detected, with the lowest survival recorded in mosquitoes with heterozygote L1014S/L1014F genotype. CONCLUSIONS This study confirmed that the early part of sporogony is most affected by temperature fluctuations, while environmental factors affect mosquito survival. The impact of insecticide resistance on malaria infection and vector survival needs to be assessed separately for mosquitoes with different resistance mechanisms to fully understand its implications for currently available vector control tools and malaria transmission.
Collapse
Affiliation(s)
- Mojca Kristan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK.
| | | | - Jo Lines
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
36
|
Hancock PA, Wiebe A, Gleave KA, Bhatt S, Cameron E, Trett A, Weetman D, Smith DL, Hemingway J, Coleman M, Gething PW, Moyes CL. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proc Natl Acad Sci U S A 2018; 115:5938-5943. [PMID: 29784773 PMCID: PMC6003363 DOI: 10.1073/pnas.1801826115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of insecticide resistance in African malaria vectors threatens the continued efficacy of important vector control methods that rely on a limited set of insecticides. To understand the operational significance of resistance we require quantitative information about levels of resistance in field populations to the suite of vector control insecticides. Estimation of resistance is complicated by the sparsity of observations in field populations, variation in resistance over time and space at local and regional scales, and cross-resistance between different insecticide types. Using observations of the prevalence of resistance in mosquito species from the Anopheles gambiae complex sampled from 1,183 locations throughout Africa, we applied Bayesian geostatistical models to quantify patterns of covariation in resistance phenotypes across different insecticides. For resistance to the three pyrethroids tested, deltamethrin, permethrin, and λ-cyhalothrin, we found consistent forms of covariation across sub-Saharan Africa and covariation between resistance to these pyrethroids and resistance to DDT. We found no evidence of resistance interactions between carbamate and organophosphate insecticides or between these insecticides and those from other classes. For pyrethroids and DDT we found significant associations between predicted mean resistance and the observed frequency of kdr mutations in the Vgsc gene in field mosquito samples, with DDT showing the strongest association. These results improve our capacity to understand and predict resistance patterns throughout Africa and can guide the development of monitoring strategies.
Collapse
Affiliation(s)
- Penelope A Hancock
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom;
| | - Antoinette Wiebe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Katherine A Gleave
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, St Mary's Hospital, Imperial College, W2 1NY London, United Kingdom
| | - Ewan Cameron
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Anna Trett
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121
| | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom;
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - Peter W Gething
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Catherine L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom;
| |
Collapse
|
37
|
Grossman MK, Uc-Puc V, Rodriguez J, Cutler DJ, Morran LT, Manrique-Saide P, Vazquez-Prokopec GM. Restoration of pyrethroid susceptibility in a highly resistant Aedes aegypti population. Biol Lett 2018; 14:20180022. [PMID: 29899128 PMCID: PMC6030600 DOI: 10.1098/rsbl.2018.0022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
Insecticide resistance has evolved in disease vectors worldwide, creating the urgent need to either develop new control methods or restore insecticide susceptibility to regain use of existing tools. Here we show that phenotypic susceptibility can be restored in a highly resistant field-derived strain of Aedes aegypti in only 10 generations through rearing them in the absence of insecticide.
Collapse
|
38
|
Grossman MK, Uc-Puc V, Flores AE, Manrique-Saide PC, Vazquez-Prokopec GM. Larval density mediates knockdown resistance to pyrethroid insecticides in adult Aedes aegypti. Parasit Vectors 2018; 11:282. [PMID: 29724237 PMCID: PMC5934844 DOI: 10.1186/s13071-018-2865-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding mechanisms driving insecticide resistance in vector populations remains a public health priority. To date, most research has focused on the genetic mechanisms underpinning resistance, yet it is unclear what role environmental drivers may play in shaping phenotypic expression. One of the key environmental drivers of Aedes aegypti mosquito population dynamics is resource-driven intraspecific competition at the larval stage. We experimentally investigated the role of density-dependent larval competition in mediating resistance evolution in Ae. aegypti, using knockdown resistance (kdr) as a marker of genotypic resistance and CDC bottle bioassays to determine phenotype. We reared first-instar larvae from susceptible and pyrethroid-resistant field-derived populations of Ae. aegypti at high and low density and measured the resulting phenotypic resistance and population kdr allele frequencies. RESULTS At low density, only 48.2% of the resistant population was knocked down, yet at high density, the population was no longer phenotypically resistant - 93% were knocked down when exposed to permethrin, which is considered susceptible according to WHO guidelines. Furthermore, the frequency of the C1534 kdr allele in the resistant population at high density decreased from 0.98 ± 0.04 to 0.69 ± 0.04 in only one generation of selection. CONCLUSIONS Our results indicate that larval conditions, specifically density, can impact both phenotype and genotype of pyrethroid-resistant populations. Furthermore, phenotypic susceptibility to pyrethroids may be re-established in a resistant population through a gene x environment interaction, a finding that can lead to the development of novel resistance management strategies that capitalize on density-induced costs.
Collapse
Affiliation(s)
- Marissa K Grossman
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA.
| | - Valentin Uc-Puc
- Departamento de Zoología, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimna, 97000, Mérida, Yucatan, Mexico
| | - Adriana E Flores
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Pablo C Manrique-Saide
- Departamento de Zoología, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimna, 97000, Mérida, Yucatan, Mexico
| | | |
Collapse
|
39
|
Patil SV, Patil CD, Narkhede CP, Suryawanshi RK, Koli SH, Shinde L, Mohite BV. Phytosynthesized Gold Nanoparticles-Bacillus thuringiensis (Bt–GNP) Formulation: A Novel Photo Stable Preparation Against Mosquito Larvae. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1368-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Ong SQ, Jaal Z. Larval Age and Nutrition Affect the Susceptibility of Culex quinquefasciatus (Diptera: Culicidae) to Temephos. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4962179. [PMID: 29718500 PMCID: PMC5887730 DOI: 10.1093/jisesa/iey032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Larval age and nutrition significantly affected the insect's physiology. These influences are important when rearing a population of vectors that is used to monitor the resistance level, in which standardized conditions are crucial for a more harmonized result. Little information has been reported on the effects of larval age and nutrition on the susceptibility of insects to insecticides, and therefore, we studied the effects on the susceptibility of Culex quinquefasciatus Say's (Diptera: Culicidae) larvae to temephos by comparing the median lethal concentration (LC50) after 24 hr between the second and fourth instar larvae and between the larvae that fed on protein-based and carbohydrate-based larval diets. The susceptibility of the larvae was significantly affected by the larval diets, as the larvae that fed on protein-based beef food and milk food demonstrated significantly higher LC50 value compared with the larvae that fed on carbohydrate-based food: lab food and yeast food. The larval diet interacted significantly with the larval age: while the second instar larvae were susceptible to temephos when supplied with carbohydrate-based food, the second and fourth instar larvae had no significant effect when supplied with protein-based diets, implying that a protein-rich environment may cause the mosquito to be less susceptible to temephos. This study suggested the importance of standardizing nutrition when rearing a vector population in order to obtain more harmonized dosage-response results in an insecticide resistance monitoring program. Future research could focus on the biochemical mechanism between the nutrition and the enzymatic activities of the vector.
Collapse
Affiliation(s)
- Song-Quan Ong
- Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- KDU Penang University College, Jalan Anson, Georgetown, Penang, Malaysia
| | - Zairi Jaal
- Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
41
|
Fouet C, Atkinson P, Kamdem C. Human Interventions: Driving Forces of Mosquito Evolution. Trends Parasitol 2018; 34:127-139. [PMID: 29301722 DOI: 10.1016/j.pt.2017.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022]
Abstract
One of the most common strategies for controlling mosquito-borne diseases relies on the use of chemical pesticides to repel or kill the mosquito vector. Pesticide exposure interferes with several key biological functions in the mosquito and triggers a variety of adaptive responses whose underlying mechanisms are only partially elucidated. The availability of reference genome sequences opens up the possibility of tracking signatures of evolutionary changes, including the most recent, across the genomes of many vector species. In this review, we highlight the recent genomic changes, which contribute to the fascinating adaptation of malaria vectors of the sub-Saharan African region to intensive insecticide-based interventions. We emphasize the operational significance of detailed genomic knowledge for current monitoring and decision-making.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Peter Atkinson
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Colince Kamdem
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|