1
|
Gibson K, Walsh M, Hynd M, Eisenlohr-Moul T, Walsh E, Bondy E, Gray R, Brierley J, Bizzell J, Styner M, Dichter GS, Schiller CE. The effects of estradiol on subcortical brain volumes in perimenopausal-onset depression. J Affect Disord 2025; 377:45-52. [PMID: 39983774 DOI: 10.1016/j.jad.2025.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Perimenopause is associated with increases in depressive and vasomotor symptoms (VMS), which can be alleviated with transdermal estradiol (TE2) administration. Subcortical brain regions are commonly implicated in depression, are dense with E2 receptors and are susceptible to volumetric changes resulting from E2 regulation of synaptic density. No studies have examined linkages among TE2 administration, perimenopausal-onset major depression (PO-MDD) and subcortical brain volumes. METHODS This is an exploratory data analysis of change in subcortical brain volumes measured via 3 T MRI before and after three-weeks of TE2 administration in 14 women with PO-MDD and 17 euthymic controls. Regions of interest were the hippocampus, amygdala, putamen, thalamus, and caudate nucleus. Multilevel models examined relations between baseline volumes and volumetric changes with symptom trajectories in the PO-MDD group. RESULTS In the PO-MDD group, anhedonia (p < 0.004) and VMS (p < 0.001) significantly reduced following TE2 administration. There was a significant Group X Time interaction in the right hippocampus (p < 0.01), driven by volume increases in the control group (p < 0.001). In the PO-MDD group, change in right hippocampal volumes significantly predicted decreases in anhedonia trajectories from baseline to week 2 and week 3 (p's < 0.001) and decreases in VMS across all timepoints (p's < 0.001). DISCUSSION Women with PO-MDD, who presented with more severe baseline anhedonia and VMS, experienced greater reductions in anhedonia, VMS, and hippocampal volumes, demonstrating a greater response to E2. Hippocampal volume change may be a candidate for predicting treatment response to E2 for anhedonia and vasomotor symptoms in women with PO-MDD. These findings should be validated with a placebo-controlled trial.
Collapse
Affiliation(s)
- Kathryn Gibson
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27514, USA.
| | - Melissa Walsh
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27514, USA
| | - Megan Hynd
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Tory Eisenlohr-Moul
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Erin Walsh
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Erin Bondy
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27514, USA
| | - Reese Gray
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - James Brierley
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Joshua Bizzell
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27514, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27514, USA
| | - Gabriel S Dichter
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27514, USA; Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, Chapel Hill, NC 27510, USA
| | - Crystal E Schiller
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
2
|
Zeng Y, Rong R, You M, Zhu P, Zhang J, Xia X. Light-eye-body axis: exploring the network from retinal illumination to systemic regulation. Theranostics 2025; 15:1496-1523. [PMID: 39816683 PMCID: PMC11729557 DOI: 10.7150/thno.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
The human body is an intricate system, where diverse and complex signaling among different organs sustains physiological activities. The eye, as a primary organ for information acquisition, not only plays a crucial role in visual perception but also, as increasing evidence suggests, exerts a broad influence on the entire body through complex circuits upon receiving light signals which is called non-image-forming vision. However, the extent and mechanisms of light's impact on the body through the eyes remain insufficiently explored. There is also a dearth of comprehensive reviews elucidating the intricate interplay between light, the eye, and the systemic connections to the entire body. Herein, we propose the concept of the light-eye-body axis to systematically encapsulate the extensive non-image-forming effects of light signals received by the retina on the entire body. We reviewed the visual-neural structure basis of the light-eye-body axis, summarized the mechanism by which the eyes regulate the whole body and the current research status and challenges within the physiological and pathological processes involved in the light-eye-body axis. Future research should aim to expand the influence of the light-eye-body axis and explore its deeper mechanisms. Understanding and investigating the light-eye-body axis will contribute to improving lighting conditions to optimize health and guide the establishment of phototherapy standards in clinical practice.
Collapse
Affiliation(s)
- Yi Zeng
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Peng Zhu
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jinglin Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| |
Collapse
|
3
|
Xu Q, Wang J, Li H, Gao Y. Association between serum neurofilament light chains (sNfL) and neurologic disorders in a representative sample of US adults: a cross-sectional study. Rev Clin Esp 2024; 224:510-521. [PMID: 38972635 DOI: 10.1016/j.rceng.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND While increased neurofilament light chain (NfL) in serum concentrations are linked to the progression of several neurological conditions, their distribution and implications within the general adult population remain largely unexplored. The current research aims to clarify the relationship between serum NfL levels and neurological disorders in a broad and representative population sample. METHODS We utilized information gathered from 1751 adults involved in the 2013-2014 cycle of the National Health and Nutrition Examination Survey . Our analytical approach encompassed logistic regression, smoothed curve fitting, and subgroup analyses to identify potential correlations between serum NfL levels and neurological conditions, such as depression, severe hearing and visual impairments, stroke, subjective memory deficits, and sleep problems. RESULTS After adjusting for all confounders, we found that higher serum NfL levels were significantly associated with increased risks of depression, stroke, subjective memory deficits, and longer sleep duration (p < 0.05). Subgroup analyses supported these findings. Additionally, BMI significantly influenced the relationship between serum NfL levels and long-term subjective memory decline. CONCLUSION Our research shows that higher serum NfL levels are strongly related to an elevated risk for several neurological disorders. These findings highlight the role of serum NfL serving as a critical marker for early detection and monitoring of neurological conditions, emphasizing its importance in both clinical and public health settings.
Collapse
Affiliation(s)
- Qi Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Nanyang Medical College, Nanyang, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Jiale Wang
- Department of Internal Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Hanzhi Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| | - Yuwan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| |
Collapse
|
4
|
Gouider R, Souissi A, Mrabet S, Gharbi A, Abida Y, Kacem I, Gargouri-Berrechid A. Environmental factors related to multiple sclerosis progression. J Neurol Sci 2024; 464:123161. [PMID: 39137699 DOI: 10.1016/j.jns.2024.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Multiple Sclerosis (MS) is a complex neurological disease which prevalence is increasing worldwide. The impact of environmental factors on MS susceptibility has already been defined and highlighted in many previous reports, particularly vitamin D or ultraviolet B light exposure, Epstein-Barr virus (EBV) infection, obesity, and smoking. There is increasing evidence that environmental and lifestyle factors are not only important in triggering MS but are also implicated in MS progression. Low sun exposure and vitamin D deficiency exhibit a strong relationship with disease progression in both animal and human studies. The gestational period seems also to impact long-term disease progression as January's babies had a higher risk of requiring walking assistance than those born in other months. The implication of EBV in neurodegeneration and MS progression was also suggested even though its specific targets and mechanisms are still unclear. Cigarette smoking is correlated with faster clinical progression. The association of obesity and smoking seems to be associated with a faster progression and an increased rate of brain atrophy. Although the effect of air pollution on MS pathogenesis remains not fully understood, exposure to polluted air can stimulate several mechanisms that might contribute to MS severity. People with MS with active disease have an altered microbiota compared to patients in the remission phase. Cardiovascular comorbidities, epilepsy, and depression are also associated with a more severe disability accrual. Knowledge about MS modifiable risk factors of progression need to be incorporated into everyday clinical practice in order to ameliorate disease outcomes.
Collapse
Affiliation(s)
- Riadh Gouider
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia.
| | - Amira Souissi
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Saloua Mrabet
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Alya Gharbi
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Youssef Abida
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Imen Kacem
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Amina Gargouri-Berrechid
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| |
Collapse
|
5
|
Liu W, Su JP, Zeng LL, Shen H, Hu DW. Gene expression and brain imaging association study reveals gene signatures in major depressive disorder. Brain Commun 2024; 6:fcae258. [PMID: 39185029 PMCID: PMC11342243 DOI: 10.1093/braincomms/fcae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/03/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Major depressive disorder is often characterized by changes in the structure and function of the brain, which are influenced by modifications in gene expression profiles. How the depression-related genes work together within the scope of time and space to cause pathological changes remains unclear. By integrating the brain-wide gene expression data and imaging data in major depressive disorder, we identified gene signatures of major depressive disorder and explored their temporal-spatial expression specificity, network properties, function annotations and sex differences systematically. Based on correlation analysis with permutation testing, we found 345 depression-related genes significantly correlated with functional and structural alteration of brain images in major depressive disorder and separated them by directional effects. The genes with negative effect for grey matter density and positive effect for functional indices are enriched in downregulated genes in the post-mortem brain samples of patients with depression and risk genes identified by genome-wide association studies than genes with positive effect for grey matter density and negative effect for functional indices and control genes, confirming their potential association with major depressive disorder. By introducing a parameter of dispersion measure on the gene expression data of developing human brains, we revealed higher spatial specificity and lower temporal specificity of depression-related genes than control genes. Meanwhile, we found depression-related genes tend to be more highly expressed in females than males, which may contribute to the difference in incidence rate between male and female patients. In general, we found the genes with negative effect have lower network degree, more specialized function, higher spatial specificity, lower temporal specificity and more sex differences than genes with positive effect, indicating they may play different roles in the occurrence and development of major depressive disorder. These findings can enhance the understanding of molecular mechanisms underlying major depressive disorder and help develop tailored diagnostic and treatment strategies for patients of depression of different sex.
Collapse
Affiliation(s)
- Wei Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Jian-Po Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - De-Wen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| |
Collapse
|
6
|
Khodanovich M, Svetlik M, Kamaeva D, Usova A, Kudabaeva M, Anan’ina T, Vasserlauf I, Pashkevich V, Moshkina M, Obukhovskaya V, Kataeva N, Levina A, Tumentceva Y, Vasilieva S, Schastnyy E, Naumova A. Demyelination in Patients with POST-COVID Depression. J Clin Med 2024; 13:4692. [PMID: 39200834 PMCID: PMC11355865 DOI: 10.3390/jcm13164692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Depression is one of the most severe sequelae of COVID-19, with major depressive disorder often characterized by disruption in white matter (WM) connectivity stemming from changes in brain myelination. This study aimed to quantitatively assess brain myelination in clinically diagnosed post-COVID depression (PCD) using the recently proposed MRI method, macromolecular proton fraction (MPF) mapping. Methods: The study involved 63 recovered COVID-19 patients (52 mild, 11 moderate, and 2 severe) at 13.5 ± 10.0 months post-recovery, with matched controls without prior COVID-19 history (n = 19). A post-COVID depression group (PCD, n = 25) was identified based on psychiatric diagnosis, while a comparison group (noPCD, n = 38) included participants with neurological COVID-19 complications, excluding clinical depression. Results: Fast MPF mapping revealed extensive demyelination in PCD patients, particularly in juxtacortical WM (predominantly occipital lobe and medial surface), WM tracts (inferior fronto-occipital fasciculus (IFOF), posterior thalamic radiation, external capsule, sagittal stratum, tapetum), and grey matter (GM) structures (hippocampus, putamen, globus pallidus, and amygdala). The noPCD group also displayed notable demyelination, but with less magnitude and propagation. Multiple regression analysis highlighted IFOF demyelination as the primary predictor of Hamilton scores, PCD presence, and severity. The number of post-COVID symptoms was a significant predictor of PCD presence, while the number of acute symptoms was a significant predictor of PCD severity. Conclusions: This study, for the first time, reveals extensive demyelination in numerous WM and GM structures in PCD, outlining IFOF demyelination as a key biomarker.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Daria Kamaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Anna Usova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 12/1 Savinykh Street, Tomsk 634028, Russia
| | - Marina Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Tatyana Anan’ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Irina Vasserlauf
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Valentina Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Marina Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Victoria Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Nadezhda Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634028, Russia
| | - Anastasia Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Medica Diagnostic and Treatment Center, 86 Sovetskaya Street, Tomsk 634510, Russia
| | - Yana Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Svetlana Vasilieva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Evgeny Schastnyy
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Anna Naumova
- Department of Radiology, School of Medicine, South Lake Union Campus, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Song J, Saglam A, Zuchero JB, Buch VP. Translating Molecular Approaches to Oligodendrocyte-Mediated Neurological Circuit Modulation. Brain Sci 2024; 14:648. [PMID: 39061389 PMCID: PMC11275066 DOI: 10.3390/brainsci14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The central nervous system (CNS) exhibits remarkable adaptability throughout life, enabled by intricate interactions between neurons and glial cells, in particular, oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs). This adaptability is pivotal for learning and memory, with OLs and OPCs playing a crucial role in neural circuit development, synaptic modulation, and myelination dynamics. Myelination by OLs not only supports axonal conduction but also undergoes adaptive modifications in response to neuronal activity, which is vital for cognitive processing and memory functions. This review discusses how these cellular interactions and myelin dynamics are implicated in various neurocircuit diseases and disorders such as epilepsy, gliomas, and psychiatric conditions, focusing on how maladaptive changes contribute to disease pathology and influence clinical outcomes. It also covers the potential for new diagnostics and therapeutic approaches, including pharmacological strategies and emerging biomarkers in oligodendrocyte functions and myelination processes. The evidence supports a fundamental role for myelin plasticity and oligodendrocyte functionality in synchronizing neural activity and high-level cognitive functions, offering promising avenues for targeted interventions in CNS disorders.
Collapse
Affiliation(s)
- Jingwei Song
- Medical Scientist Training Program, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Aybike Saglam
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| |
Collapse
|
8
|
Saccaro LF, Tassone M, Tozzi F, Rutigliano G. Proton magnetic resonance spectroscopy of N-acetyl aspartate in first depressive episode and chronic major depressive disorder: A systematic review and meta-analysis. J Affect Disord 2024; 355:265-282. [PMID: 38554884 DOI: 10.1016/j.jad.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
N-acetyl aspartate (NAA) is a marker of neuronal integrity and metabolism. Deficiency in neuronal plasticity and hypometabolism are implicated in Major Depressive Disorder (MDD) pathophysiology. To test if cerebral NAA concentrations decrease progressively over the MDD course, we conducted a pre-registered meta-analysis of Proton Magnetic Resonance Spectroscopy (1H-MRS) studies comparing NAA concentrations in chronic MDD (n = 1308) and first episode of depression (n = 242) patients to healthy controls (HC, n = 1242). Sixty-two studies were meta-analyzed using a random-effect model for each brain region. NAA concentrations were significantly reduced in chronic MDD compared to HC within the frontal lobe (Hedges' g = -0.330; p = 0.018), the occipital lobe (Hedges' g = -0.677; p = 0.007), thalamus (Hedges' g = -0.673; p = 0.016), and frontal (Hedges' g = -0.471; p = 0.034) and periventricular white matter (Hedges' g = -0.478; p = 0.047). We highlighted a gap of knowledge regarding NAA levels in first episode of depression patients. Sensitivity analyses indicated that antidepressant treatment may reverse NAA alterations in the frontal lobe. We highlighted field strength and correction for voxel grey matter as moderators of NAA levels detection. Future studies should assess NAA alterations in the early stages of the illness and their longitudinal progression.
Collapse
Affiliation(s)
- Luigi F Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Matteo Tassone
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Francesca Tozzi
- Bio@SNS laboratory, Scuola Normale Superiore, 56124 Pisa, Italy
| | - Grazia Rutigliano
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy; Institute of Clinical Sciences, Imperial College London, MRI Steiner Unit, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
9
|
Viejo-Romero M, Whalley HC, Shen X, Stolicyn A, Smith DJ, Howard DM. An epidemiological study of season of birth, mental health, and neuroimaging in the UK Biobank. PLoS One 2024; 19:e0300449. [PMID: 38776272 PMCID: PMC11111058 DOI: 10.1371/journal.pone.0300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/27/2024] [Indexed: 05/24/2024] Open
Abstract
Environmental exposures during the perinatal period are known to have a long-term effect on adult physical and mental health. One such influential environmental exposure is the time of year of birth which affects the amount of daylight, nutrients, and viral load that an individual is exposed to within this key developmental period. Here, we investigate associations between season of birth (seasonality), four mental health traits (n = 137,588) and multi-modal neuroimaging measures (n = 33,212) within the UK Biobank. Summer births were associated with probable recurrent Major Depressive Disorder (β = 0.026, pcorr = 0.028) and greater mean cortical thickness in temporal and occipital lobes (β = 0.013 to 0.014, pcorr<0.05). Winter births were associated with greater white matter integrity globally, in the association fibers, thalamic radiations, and six individual tracts (β = -0.013 to -0.022, pcorr<0.05). Results of sensitivity analyses adjusting for birth weight were similar, with an additional association between winter birth and white matter microstructure in the forceps minor and between summer births, greater cingulate thickness and amygdala volume. Further analyses revealed associations between probable depressive phenotypes and a range of neuroimaging measures but a paucity of interactions with seasonality. Our results suggest that seasonality of birth may affect later-life brain structure and play a role in lifetime recurrent Major Depressive Disorder. Due to the small effect sizes observed, and the lack of associations with other mental health traits, further research is required to validate birth season effects in the context of different latitudes, and by co-examining genetic and epigenetic measures to reveal informative biological pathways.
Collapse
Affiliation(s)
- Maria Viejo-Romero
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Daniel J. Smith
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - David M. Howard
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
- Institute of Psychiatry, Social, Genetic and Developmental Psychiatry Centre, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Zhang L, Zhang Y, Guo W, Ma Q, Zhang F, Li K, Yi Q. An Effect of Chronic Negative Stress on Hippocampal Structures and Functional Connectivity in Patients with Depressive Disorder. Neuropsychiatr Dis Treat 2024; 20:1011-1024. [PMID: 38764745 PMCID: PMC11102123 DOI: 10.2147/ndt.s460429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Purpose Depressive disorder is a mental health disorder with complicated etiopathogenesis. Environmental stress and neurodevelopment combined with other factors contribute to the occurrence of depression. Especially for the depressive disorder with chronic negative stress, it has characteristics of recurrence and poor curative effect because of unclear mechanism. Here, we investigated the hippocampal structures and functional connectivity (FC) according to resting-state functional magnetic resonance imaging in patients with depression who underwent chronic negative stress. Patients and Methods A total of 65 patients with depression (34 underwent chronic negative stress and 31 non-underwent chronic negative stress) and 30 healthy controls who did not undergo chronic negative stress were included in the study. The volumes of hippocampal subfields, seed-based FCs between hippocampus and the whole brain voxels, and ROI-wise-based FC between hippocampal subfields were compared among the three groups. Results In the patients with depression who underwent chronic negative stress, the volumes of right_GC-ML-DG-head, right_CA4-head and right_CA3-head increased, FCs between Temporal_Mid_R, Precuneus_R, Frontal_Sup_R, Temporal_Sup_R, Angular_L, Frontal_Inf_Tri_R, Supp_Motor_Area_R, Precentral_L and hippocampus increased, and FCs between parasubiculum and CA3, and presubiculum and CA1 decreased. When compared to the patients who did not undergo chronic negative stress, the patients who underwent chronic negative stress had larger volumes of right_GC-ML-DG-head and right_CA3-head, higher FCs between Frontal_Sup_R, Frontal_Inf_Tri_R and hippocampus, and lower FCs between presubiculum and CA1. Conclusion The depression underwent chronic negative stress may experience disrupted hippocampal structures and functional connectivity. It may be one of potential depressive disorder subtypes.
Collapse
Affiliation(s)
- Lili Zhang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Hebei Provincial Mental Health Center, Baoding, Hebei Province, People’s Republic of China
- Hebei Key Laboratory of Major Mental and Behavioural Disorders, Baoding, Hebei Province, People’s Republic of China
| | - Yunshu Zhang
- Hebei Provincial Mental Health Center, Baoding, Hebei Province, People’s Republic of China
- Hebei Key Laboratory of Major Mental and Behavioural Disorders, Baoding, Hebei Province, People’s Republic of China
| | - Wentao Guo
- Hebei Provincial Mental Health Center, Baoding, Hebei Province, People’s Republic of China
- Hebei Key Laboratory of Major Mental and Behavioural Disorders, Baoding, Hebei Province, People’s Republic of China
| | - Qi Ma
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Clinical Research Center for Mental (Psychological) Disorder, Urumqi, People’s Republic of China
| | - Feng Zhang
- Hebei Provincial Mental Health Center, Baoding, Hebei Province, People’s Republic of China
- Hebei Key Laboratory of Major Mental and Behavioural Disorders, Baoding, Hebei Province, People’s Republic of China
| | - Keqing Li
- Hebei Provincial Mental Health Center, Baoding, Hebei Province, People’s Republic of China
- Hebei Key Laboratory of Major Mental and Behavioural Disorders, Baoding, Hebei Province, People’s Republic of China
| | - Qizhong Yi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Clinical Research Center for Mental (Psychological) Disorder, Urumqi, People’s Republic of China
| |
Collapse
|
11
|
Shibukawa S, Kan H, Honda S, Wada M, Tarumi R, Tsugawa S, Tobari Y, Maikusa N, Mimura M, Uchida H, Nakamura Y, Nakajima S, Noda Y, Koike S. Alterations in subcortical magnetic susceptibility and disease-specific relationship with brain volume in major depressive disorder and schizophrenia. Transl Psychiatry 2024; 14:164. [PMID: 38531856 DOI: 10.1038/s41398-024-02862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Quantitative susceptibility mapping is a magnetic resonance imaging technique that measures brain tissues' magnetic susceptibility, including iron deposition and myelination. This study examines the relationship between subcortical volume and magnetic susceptibility and determines specific differences in these measures among patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls (HCs). This was a cross-sectional study. Sex- and age- matched patients with MDD (n = 49), patients with schizophrenia (n = 24), and HCs (n = 50) were included. Magnetic resonance imaging was conducted using quantitative susceptibility mapping and T1-weighted imaging to measure subcortical susceptibility and volume. The acquired brain measurements were compared among groups using analyses of variance and post hoc comparisons. Finally, a general linear model examined the susceptibility-volume relationship. Significant group-level differences were found in the magnetic susceptibility of the nucleus accumbens and amygdala (p = 0.045). Post-hoc analyses indicated that the magnetic susceptibility of the nucleus accumbens and amygdala for the MDD group was significantly higher than that for the HC group (p = 0.0054, p = 0.0065, respectively). However, no significant differences in subcortical volume were found between the groups. The general linear model indicated a significant interaction between group and volume for the nucleus accumbens in MDD group but not schizophrenia or HC groups. This study showed susceptibility alterations in the nucleus accumbens and amygdala in MDD patients. A significant relationship was observed between subcortical susceptibility and volume in the MDD group's nucleus accumbens, which indicated abnormalities in myelination and the dopaminergic system related to iron deposition.
Collapse
Affiliation(s)
- Shuhei Shibukawa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.
- The International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.
| |
Collapse
|
12
|
Chen X, Wei D, Fang F, Song H, Yin L, Kaijser M, Gurholt TP, Andreassen OA, Valdimarsdóttir U, Hu K, Duan M. Peripheral vertigo and subsequent risk of depression and anxiety disorders: a prospective cohort study using the UK Biobank. BMC Med 2024; 22:63. [PMID: 38336700 PMCID: PMC10858592 DOI: 10.1186/s12916-023-03179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Peripheral vertigo is often comorbid with psychiatric disorders. However, no longitudinal study has quantified the association between peripheral vertigo and risk of psychiatric disorders. Furthermore, it remains unknown how the white matter integrity of frontal-limbic network relates to the putative peripheral vertigo-psychiatric disorder link. METHODS We conducted a cohort study including 452,053 participants of the UK Biobank with a follow-up from 2006 through 2021. We assessed the risks of depression and anxiety disorders in relation to a hospitalization episode involving peripheral vertigo using Cox proportional hazards models. We also examined the associations of peripheral vertigo, depression, and anxiety with MRI fractional anisotropy (FA) in a subsample with brain MRI data (N = 36,087), using multivariable linear regression. RESULTS Individuals with an inpatient diagnosis of peripheral vertigo had elevated risks of incident depression (hazard ratio (HR) 2.18; 95% confidence interval (CI) 1.79-2.67) and anxiety (HR 2.11; 95% CI 1.71-2.61), compared to others, particularly within 2 years after hospitalization (HR for depression 2.91; 95% CI 2.04-4.15; HR for anxiety 4.92; 95% CI 3.62-6.69). Depression was associated with lower FA in most studied white matter regions, whereas anxiety and peripheral vertigo did not show statistically significant associations with FA. CONCLUSIONS Individuals with an inpatient diagnosis of peripheral vertigo have increased subsequent risks of depression and anxiety disorders, especially within 2 years after hospitalization. Our findings further indicate a link between depression and lower microstructural connectivity as well as integrity beyond the frontal-limbic network.
Collapse
Affiliation(s)
- Xiaowan Chen
- Department of Otolaryngology Head and Neck Surgery, the First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Otolaryngology Head and Neck Surgery & Audiology and Neurotology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Dang Wei
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Li Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Kaijser
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tiril Pedersen Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital &, University of Oslo, Oslo, Norway
| | - Ole Andreas Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital &, University of Oslo, Oslo, Norway
| | - Unnur Valdimarsdóttir
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kejia Hu
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Maoli Duan
- Department of Otolaryngology Head and Neck Surgery & Audiology and Neurotology, Karolinska University Hospital, Stockholm, Sweden.
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
13
|
Blöchl M, Schaare HL, Kumral D, Gaebler M, Nestler S, Villringer A. Vascular risk factors, white matter microstructure, and depressive symptoms: a longitudinal analysis in the UK Biobank. Psychol Med 2024; 54:125-135. [PMID: 37016768 DOI: 10.1017/s0033291723000697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
BACKGROUND Cumulative burden from vascular risk factors (VRFs) has been associated with an increased risk of depressive symptoms in mid- and later life. It has been hypothesised that this association arises because VRFs disconnect fronto-subcortical white matter tracts involved in mood regulation, which puts older adults at higher risk of developing depressive symptoms. However, evidence for the hypothesis that disconnection of white matter tracts underlies the association between VRF burden and depressive symptoms from longitudinal studies is scarce. METHODS This preregistered study analysed longitudinal data from 6,964 middle-aged and older adults from the UK Biobank who participated in consecutive assessments of VRFs, brain imaging, and depressive symptoms. Using mediation modelling, we directly tested to what extend white matter microstructure mediates the longitudinal association between VRF burden and depressive symptoms. RESULTS VRF burden showed a small association with depressive symptoms at follow-up. However, there was no evidence that fractional anisotropy (FA) of white matter tracts mediated this association. Additional analyses also yielded no mediating effects using alternative operationalisations of VRF burden, mean diffusivity (MD) of single tracts, or overall average of tract-based white matter microstructure (global FA, global MD, white matter hyperintensity volume). CONCLUSIONS Our results lend no support to the hypothesis that disconnection of white matter tracts underlies the association between VRF burden and depressive symptoms, while highlighting the relevance of using longitudinal data to directly test pathways linking vascular and mental health.
Collapse
Affiliation(s)
- Maria Blöchl
- Department for Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School: Neuroscience of Communication: Structure, Function, and Plasticity, Leipzig, Germany
- Department of Psychology, University of Münster, Münster, Germany
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour) Research Centre Jülich, Germany
| | - Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany
- Clinical Psychology and Psychotherapy Unit, Institute of Psychology, University of Freiburg, Freiburg, Germany
| | - Michael Gaebler
- Department for Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, MindBrainBody Institute
- Max Planck Dahlem Campus of Cognition, Berlin, Germany
| | - Steffen Nestler
- Department of Psychology, University of Münster, Münster, Germany
| | - Arno Villringer
- Department for Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
He Z, Zheng Y, Ni J, Huang J, Pang Q, Chen T, Muhlert N, Elliott R. Loneliness is related to smaller gray matter volumes in ACC and right VLPFC in people with major depression: a UK biobank study. Cereb Cortex 2023; 33:11656-11667. [PMID: 37874025 DOI: 10.1093/cercor/bhad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
The anterior cingulate cortex (ACC) and right ventrolateral prefrontal cortex (VLPFC) are thought to have important roles in loneliness (feeling of social isolation/exclusion) experience or regulation and in the pathophysiology of their disturbance in major depressive disorder (MDD). However, the structural abnormalities of these regions and the correlates with loneliness in MDD across the healthy population have not fully been clarified. The study analyzed the link between loneliness and gray matter volumes (GMVs) in the ACC and right VLPFC among 1,005 patients with MDD and 7,247 healthy controls (HCs) using UK Biobank data. Significant reductions in GMV in the right VLPFC were found in MDD males compared to HCs. MDD males also showed a higher association between loneliness and reduced GMVs in the right VLPFC and bilateral ACC than HCs. No such associations were found in MDD females. The findings suggest that loneliness may influence brain structures crucial for emotion experience and regulation, particularly in middle-older aged men with MDD. This highlights the potential adverse effects of loneliness on brain structure in MDD and suggests that social engagement could have a positive impact.
Collapse
Affiliation(s)
- Zhenhong He
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- Division of Neuroscience and Experimental Psychology, School of Biological Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Youcun Zheng
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jingxuan Ni
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Jin Huang
- School of Mathematical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Qingqing Pang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Tongtong Chen
- School of Humanities, Shenzhen University, Shenzhen 518060, China
| | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, School of Biological Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, School of Biological Science, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
15
|
Zhang S, She S, Qiu Y, Li Z, Mao D, Zheng W, Wu H, Huang R. Altered cortical myelin in the salience and default mode networks in major depressive disorder patients: A surface-based analysis. J Affect Disord 2023; 340:113-119. [PMID: 37517634 DOI: 10.1016/j.jad.2023.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION Evidence from previous genetic and post-mortem studies suggested that the myelination abnormality contributed to the pathogenesis of major depressive disorder (MDD). However, image-level alterations in cortical myelin content associated with MDD are still unclear. METHODS The high-resolution T1-weighted (T1w) and T2-weighted (T2w) brain 3D structural images were obtained from 52 MDD patients and 52 healthy controls (HC). We calculated the vertex-based T1w/T2w ratio using the HCP structural pipelines to characterize individual cortical myelin maps at the fs_LR 32 k surface. We attempted to detect the clusters with significant differences in cortical myelin content between MDD and HC groups. We correlated the cluster-wise averaged myelin value and the clinical performances in MDD patients. RESULTS The MDD patients showed significantly lower cortical myelin content in the cluster involving the left insula, orbitofrontal cortex, superior temporal cortex, transverse temporal gyrus, inferior frontal cortex, superior frontal gyrus, anterior cingulate cortex, precentral cortex, and postcentral cortex. The correlation analysis showed a significantly positive correlation between the cluster-wise cortical myelin content and the onset age of MDD patients. CONCLUSION The MDD patients showed lower cortical myelin content in regions of the default mode network regions and salience network than healthy controls.
Collapse
Affiliation(s)
- Shufei Zhang
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Yidan Qiu
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Zezhi Li
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Deng Mao
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Ruiwang Huang
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
16
|
Ping L, Sun S, Zhou C, Que J, You Z, Xu X, Cheng Y. Altered topology of individual brain structural covariance networks in major depressive disorder. Psychol Med 2023; 53:6921-6932. [PMID: 37427670 DOI: 10.1017/s003329172300168x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND The neurobiological pathogenesis of major depression disorder (MDD) remains largely controversial. Previous literatures with limited sample size utilizing group-level structural covariance networks (SCN) commonly generated mixed findings regarding the topology of brain networks. METHODS We analyzed T1 images from a high-powered multisite sample including 1173 patients with MDD and 1019 healthy controls (HCs). We used regional gray matter volume to construct individual SCN by utilizing a novel approach based on the interregional effect size difference. We further investigated MDD-related structural connectivity alterations using topological metrics. RESULTS Compared to HCs, the MDD patients showed a shift toward randomization characterized by increased integration. Further subgroup analysis of patients in different stages revealed this randomization pattern was also observed in patients with recurrent MDD, while the first-episode drug naïve patients exhibited decreased segregation. Altered nodal properties in several brain regions which have a key role in both emotion regulation and executive control were also found in MDD patients compared with HCs. The abnormalities in inferior temporal gyrus were not influenced by any specific site. Moreover, antidepressants increased nodal efficiency in the anterior ventromedial prefrontal cortex. CONCLUSIONS The MDD patients at different stages exhibit distinct patterns of randomization in their brain networks, with increased integration during illness progression. These findings provide valuable insights into the disruption in structural brain networks that occurs in patients with MDD and might be useful to guide future therapeutic interventions.
Collapse
Affiliation(s)
- Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Shan Sun
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China
| | - Jianyu Que
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Zhiyi You
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Costanzo A, van der Velpen IF, Ikram MA, Vernooij-Dassen MJ, Niessen WJ, Vernooij MW, Kas MJ. Social Health Is Associated With Tract-Specific Brain White Matter Microstructure in Community-Dwelling Older Adults. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1003-1011. [PMID: 37881589 PMCID: PMC10593878 DOI: 10.1016/j.bpsgos.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background Poor social health has been linked to a risk of neuropsychiatric disorders. Neuroimaging studies have shown associations between social health and global white matter microstructural integrity. We aimed to identify which white matter tracts are involved in these associations. Methods Social health markers (loneliness, perceived social support, and partnership status) and white matter microstructural integrity of 15 white matter tracts (identified with probabilistic tractography after diffusion magnetic resonance imaging) were collected for 3352 participants (mean age 58.4 years, 54.9% female) from 2002 to 2008 in the Rotterdam Study. Cross-sectional associations were studied using multivariable linear regression. Results Loneliness was associated with higher mean diffusivity (MD) in the superior thalamic radiation and the parahippocampal part of the cingulum (standardized mean difference for both tracts: 0.21, 95% CI, 0.09 to 0.34). Better perceived social support was associated with lower MD in the forceps minor (standardized mean difference per point increase in social support: -0.06, 95% CI, -0.09 to -0.03), inferior fronto-occipital fasciculus, and uncinate fasciculus. In male participants, better perceived social support was associated with lower MD in the forceps minor, and not having a partner was associated with lower fractional anisotropy in the forceps minor. Loneliness was associated with higher MD in the superior thalamic radiation in female participants only. Conclusions Social health was associated with tract-specific white matter microstructure. Loneliness was associated with lower integrity of limbic and sensorimotor tracts, whereas better perceived social support was associated with higher integrity of association and commissural tracts, indicating that social health domains involve distinct neural pathways of the brain.
Collapse
Affiliation(s)
- Andrea Costanzo
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Isabelle F. van der Velpen
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Wiro J. Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Martien J. Kas
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Wang K, Li X, Wang X, Hommel B, Xia X, Qiu J, Fu Y, Zhou Z. In vivo analyses reveal hippocampal subfield volume reductions in adolescents with schizophrenia, but not with major depressive disorder. J Psychiatr Res 2023; 165:56-63. [PMID: 37459779 DOI: 10.1016/j.jpsychires.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Adult studies have reported atypicalities in the hippocampus and subfields in patients with schizophrenia (SCZ) and major depressive disorder (MDD). Both affective and psychotic disorders typically onset in adolescence, when human brain develops rapidly and shows increased susceptibility to adverse environments. However, few in vivo studies have investigated whether hippocampus subfield abnormalities occur in adolescence and whether they differ between SCZ and MDD cases. METHODS We recruited 150 adolescents (49 SCZ patients, 67 MDD patients, and 34 healthy controls) and obtained their structural images. We used FreeSurfer to automatically segment hippocampus into 12 subfields and analyzed subfield volumetric differences between groups by analysis of covariance, covarying for age, sex, and intracranial volume. Composite measures by summing subfield volumes were further compared across groups and analyzed in relation to clinical characteristic. RESULTS SCZ adolescents showed significant volume reductions in subfields of CA1, molecular layer, subiculum, parasubiculum, dentate gyrus and CA4 than healthy controls, and almost significant reductions, as compared to the MDD group, in left molecular layer, dentate gyrus, CA2/3 and CA4. Composite analyses showed smaller volumes in SCZ group than in healthy controls in all bilateral composite measures, and reduced volumes in comparison to MDD group in all left composite measures only. CONCLUSIONS SCZ adolescents exhibited both hippocampal subfield and composite volumes reduction, and also showed greater magnitude of deviance than those diagnosed with MDD, particularly in core CA regions. These results indicate a hippocampal disease process, suggesting a potential intervention marker of early psychotic patients and risk youths.
Collapse
Affiliation(s)
- Kangcheng Wang
- School of Psychology, Shandong Normal University, Jinan, 250358, China; Shandong Mental Health Center, Shandong University, Jinan, 250014, China
| | - Xingyan Li
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Xiaotong Wang
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Xiaodi Xia
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zheyi Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
19
|
Özel F, Hilal S, de Feijter M, van der Velpen I, Direk N, Ikram MA, Vernooij MW, Luik AI. Associations of neuroimaging markers with depressive symptoms over time in middle-aged and elderly persons. Psychol Med 2023; 53:4355-4363. [PMID: 35534463 PMCID: PMC10388307 DOI: 10.1017/s003329172200112x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Cerebrovascular disease is regarded as a potential cause of late-life depression. Yet, evidence for associations of neuroimaging markers of vascular brain disease with depressive symptoms is inconclusive. We examined the associations of neuroimaging markers and depressive symptoms in a large population-based study of middle-aged and elderly persons over time. METHODS A total of 4943 participants (mean age = 64.6 ± 11.1 years, 55.7% women) from the Rotterdam Study were included. At baseline, total brain volume, gray matter volume, white matter volume, white matter hyperintensities volume, cortical infarcts, lacunar infarcts, microbleeds, white matter fractional anisotropy, and mean diffusivity (MD) were measured with a brain MRI (1.5T). Depressive symptoms were assessed twice with the Center for Epidemiologic Studies Depression scale (median follow-up time: 5.5 years, IQR = 0.9). To assess temporal associations of neuroimaging markers and depressive symptoms, linear mixed models were used. RESULTS A smaller total brain volume (β = -0.107, 95% CI -0.192 to -0.022), larger white matter hyperintensities volume (β = 0.047, 95% CI 0.010-0.084), presence of cortical infarcts (β = 0.194, 95% CI 0.047-0.341), and higher MD levels (β = 0.060, 95% CI 0.022-0.098) were cross-sectionally associated with more depressive symptoms. Longitudinal analyses showed that small total brain volume (β = -0.091, 95% CI -0.167 to -0.015) and presence of cortical infarcts (β = 0.168, 95% CI 0.022-0.314) were associated with increasing depressive symptoms over time. After stratification on age, effect sizes were more pronounced at older ages. CONCLUSIONS Neuroimaging markers of white matter microstructural damage were associated with depressive symptoms longitudinally in this study of middle-aged and elderly persons. These associations were more pronounced at older ages, providing evidence for the role of white matter structure in late-life depressive symptomatology.
Collapse
Affiliation(s)
- Fatih Özel
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maud de Feijter
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Isabelle van der Velpen
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nese Direk
- Istanbul Faculty of Medicine, Department of Psychiatry, Istanbul University, Istanbul, Turkey
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie I. Luik
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Fu CHY, Erus G, Fan Y, Antoniades M, Arnone D, Arnott SR, Chen T, Choi KS, Fatt CC, Frey BN, Frokjaer VG, Ganz M, Garcia J, Godlewska BR, Hassel S, Ho K, McIntosh AM, Qin K, Rotzinger S, Sacchet MD, Savitz J, Shou H, Singh A, Stolicyn A, Strigo I, Strother SC, Tosun D, Victor TA, Wei D, Wise T, Woodham RD, Zahn R, Anderson IM, Deakin JFW, Dunlop BW, Elliott R, Gong Q, Gotlib IH, Harmer CJ, Kennedy SH, Knudsen GM, Mayberg HS, Paulus MP, Qiu J, Trivedi MH, Whalley HC, Yan CG, Young AH, Davatzikos C. AI-based dimensional neuroimaging system for characterizing heterogeneity in brain structure and function in major depressive disorder: COORDINATE-MDD consortium design and rationale. BMC Psychiatry 2023; 23:59. [PMID: 36690972 PMCID: PMC9869598 DOI: 10.1186/s12888-022-04509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.
Collapse
Affiliation(s)
- Cynthia H Y Fu
- Department of Psychological Sciences, University of East London, London, UK.
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Danilo Arnone
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Taolin Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Cherise Chin Fatt
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, USA
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
- Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Vibe G Frokjaer
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Jose Garcia
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Beata R Godlewska
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Stefanie Hassel
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Keith Ho
- Department of Psychiatry, University Health Network, Toronto, Canada
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Kun Qin
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Toronto, Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Canada
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, USA
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Aleks Stolicyn
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Irina Strigo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Stephen C Strother
- Rotman Research Institute, Baycrest Centre, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | | | - Dongtao Wei
- School of Psychology, Southwest University, Chongqing, China
| | - Toby Wise
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rachel D Woodham
- Department of Psychological Sciences, University of East London, London, UK
| | - Roland Zahn
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ian M Anderson
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - J F William Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, USA
| | | | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Toronto, Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Canada
- Unity Health Toronto, Toronto, Canada
| | - Gitte M Knudsen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Madhukar H Trivedi
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, USA
| | - Heather C Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
21
|
Lada G, Talbot PS, Chinoy H, Warren RB, McFarquhar M, Kleyn CE. Brain structure and connectivity in psoriasis and associations with depression and inflammation; findings from the UK biobank. Brain Behav Immun Health 2022; 26:100565. [PMID: 36471870 PMCID: PMC9719019 DOI: 10.1016/j.bbih.2022.100565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Psoriasis is a chronic systemic inflammatory skin disease, coexisting with depression in up to 25% of patients. Little is known about the drivers of comorbidity, including shared neurobiology and depression brain imaging patterns in patients. An immune-mediated crosstalk between the brain and skin has been hypothesized in psoriasis. With the aim of investigating brain structure and connectivity in psoriasis in relation to depression comorbidity, we conducted a brain imaging study including the largest psoriasis patient sample to date (to our knowledge) and the first to investigate the role of depression and systemic inflammation in brain measures. Effects of coexisting psoriatic arthritis (PsA), which represents joint involvement in psoriasis and a higher putative inflammatory state, were further explored. Methods Brain magnetic resonance imaging (MRI) data of 1,048 UK Biobank participants were used (131 comorbid patients with psoriasis and depression, age-and sex-matched to: 131 non-depressed psoriasis patients; 393 depressed controls; and 393 non-depressed controls). Interaction effects of psoriasis and depression on volume, thickness and surface of a-priori defined regions of interest (ROIs), white matter tracts and 55x55 partial correlation resting-state connectivity matrices were investigated using general linear models. Linear regression was employed to test associations of brain measures with C-reactive protein (CRP) and neutrophil counts. Results No differences in regional or global brain volumes or white matter integrity were found in patients with psoriasis compared to controls without psoriasis or PsA. Thickness in right precuneus was increased in psoriasis patients compared to controls, only when depression was present (β = 0.26, 95% CI [Confidence Intervals] 0.08, 0.44; p = 0.02). In further analysis, psoriasis patients who had PsA exhibited fronto-occipital decoupling in resting-state connectivity compared to patients without joint involvement (β = 0.39, 95% CI 0.13, 0.64; p = 0.005) and controls (β = 0.49, 95% CI 0.25, 0.74; p < 0.001), which was unrelated to depression comorbidity. Precuneus thickness and fronto-occipital connectivity were not predicted by CRP or neutrophil counts. Precuneus thickening among depressed psoriasis patients showed a marginal correlation with recurrent lifetime suicidality. Conclusions Our findings provide evidence for a combined effect of psoriasis and depression on the precuneus, which is not directly linked to systemic inflammation, and may relate to suicidality or altered somatosensory processing. The use of the UK Biobank may limit generalizability of results in populations with severe disease.
Collapse
Affiliation(s)
- Georgia Lada
- Dermatology Centre, Salford Royal NHS Foundation Trust, National Institute for Health Research Manchester Biomedical Research Centre, The University of Manchester, Manchester, M13 9PL, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Peter S. Talbot
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Hector Chinoy
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, M13 9PL, UK
| | - Richard B. Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, National Institute for Health Research Manchester Biomedical Research Centre, The University of Manchester, Manchester, M13 9PL, UK
| | - Martyn McFarquhar
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - C. Elise Kleyn
- Dermatology Centre, Salford Royal NHS Foundation Trust, National Institute for Health Research Manchester Biomedical Research Centre, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
22
|
Barch DM, Hua X, Kandala S, Harms MP, Sanders A, Brady R, Tillman R, Luby JL. White matter alterations associated with lifetime and current depression in adolescents: Evidence for cingulum disruptions. Depress Anxiety 2022; 39:881-890. [PMID: 36321433 PMCID: PMC10848013 DOI: 10.1002/da.23294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Compared to research on adults with depression, relatively little work has examined white matter microstructure differences in depression arising earlier in life. Here we tested hypotheses about disruptions to white matter structure in adolescents with current and past depression, with an a priori focus on the cingulum bundles, uncinate fasciculi, corpus collosum, and superior longitudinal fasciculus. METHODS One hundred thirty-one children from the Preschool Depression Study were assessed using a Human Connectome Project style diffusion imaging sequence which was processed with HCP pipelines and TRACULA to generate estimates of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). RESULTS We found that reduced FA, reduced AD, and increased RD in the dorsal cingulum bundle were associated with a lifetime diagnosis of major depression and greater cumulative and current depression severity. Reduced FA, reduced AD, and increased RD in the ventral cingulum were associated with greater cumulative depression severity. CONCLUSION These findings support the emergence of white matter differences detected in adolescence associated with earlier life and concurrent depression. They also highlight the importance of connections of the cingulate to other brain regions in association with depression, potentially relevant to understanding emotion dysregulation and functional connectivity differences in depression.
Collapse
Affiliation(s)
- Deanna M. Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Xiao Hua
- Department of Psychological & Brain Sciences, Imaging Sciences Program, Washington University in St. Louis, Missouri, St. Louis, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael P. Harms
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ashley Sanders
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rebecca Brady
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rebecca Tillman
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joan L. Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Ho TC, Shah R, Mishra J, May AC, Tapert SF. Multi-level predictors of depression symptoms in the Adolescent Brain Cognitive Development (ABCD) study. J Child Psychol Psychiatry 2022; 63:1523-1533. [PMID: 35307818 PMCID: PMC9489813 DOI: 10.1111/jcpp.13608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND While identifying risk factors for adolescent depression is critical for early prevention and intervention, most studies have sought to understand the role of isolated factors rather than across a broad set of factors. Here, we sought to examine multi-level factors that maximize the prediction of depression symptoms in US children participating in the Adolescent Brain and Cognitive Development (ABCD) study. METHODS A total of 7,995 participants from ABCD (version 3.0 release) provided complete data at baseline and 1-year follow-up data. Depression symptoms were measured with the Child Behavior Checklist. Predictive features included child demographic, environmental, and structural and resting-state fMRI variables, parental depression history and demographic characteristics. We used linear (elastic net regression, EN) and non-linear (gradient-boosted trees, GBT) predictive models to identify which set of features maximized prediction of depression symptoms at baseline and, separately, at 1-year follow-up. RESULTS Both linear and non-linear models achieved comparable results for predicting baseline (EN: MAE = 3.757; R2 = 0.156; GBT: MAE = 3.761; R2 = 0.147) and 1-year follow-up (EN: MAE = 4.255; R2 = 0.103; GBT: MAE = 4.262; R2 = 0.089) depression. Parental history of depression, greater family conflict, and shorter child sleep duration were among the top predictors of concurrent and future child depression symptoms across both models. Although resting-state fMRI features were relatively weaker predictors, functional connectivity of the caudate was consistently the strongest neural feature associated with depression symptoms at both timepoints. CONCLUSIONS Consistent with prior research, parental mental health, family environment, and child sleep quality are important risk factors for youth depression. Functional connectivity of the caudate is a relatively weaker predictor of depression symptoms but may represent a biomarker for depression risk.
Collapse
Affiliation(s)
- Tiffany C. Ho
- Department of Psychiatry & Behavioral Sciences; Weill Institute of Neurosciences; University of California, San Francisco, San Francisco, CA
| | - Rutvik Shah
- Department of Psychiatry & Behavioral Sciences; Weill Institute of Neurosciences; University of California, San Francisco, San Francisco, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - Jyoti Mishra
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - April C. May
- Department of Psychiatry, University of California, San Diego, San Diego, CA
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA
| | - Susan F. Tapert
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| |
Collapse
|
24
|
Langhein M, Seitz-Holland J, Lyall AE, Pasternak O, Chunga N, Cetin-Karayumak S, Kubicki A, Mulert C, Espinoza RT, Narr KL, Kubicki M. Association between peripheral inflammation and free-water imaging in Major Depressive Disorder before and after ketamine treatment - A pilot study. J Affect Disord 2022; 314:78-85. [PMID: 35779673 PMCID: PMC11186306 DOI: 10.1016/j.jad.2022.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Alterations in the peripheral inflammatory profile and white matter (WM) deterioration are frequent in Major Depressive Disorder (MDD). The present study applies free-water imaging to investigate the relationship between altered peripheral inflammation and WM microstructure and their predictive value in determining response to ketamine treatment in MDD. METHODS Ten individuals with MDD underwent diffusion-weighted magnetic resonance imaging and a blood-draw before and 24 h after ketamine infusion. We utilized MANCOVAs and ANCOVAs to compare tissue-specific fractional anisotropy (FAT) and free-water (FW) of the forceps and cingulum, and the ratio of pro-inflammatory interleukin(IL)-8/anti-inflammatory IL-10 between individuals with MDD and 15 healthy controls at baseline. Next, we compared all baseline measures between ketamine responders (6) and non-responders (4) and analyzed changes in imaging and blood data after ketamine infusion. RESULTS The MDD group exhibited an increased IL-8/IL-10 ratio compared to controls at baseline (p = .040), which positively correlated with average FW across regions of interest (p = .013). Ketamine responders demonstrated higher baseline FAT in the left cingulum than non-responders (p = .023). Ketamine infusion did not influence WM microstructure but decreased the IL-8/IL-10 ratio (p = .043). LIMITATIONS The small sample size and short follow-up period limit the conclusion regarding the longer-term effects of ketamine in MDD. CONCLUSIONS This pilot study provides evidence for the role of inflammation in MDD by illustrating an association between peripheral inflammation and WM microstructure. Additionally, we demonstrate that free-water diffusion-weighted imaging might be a valuable tool to determine which individuals with MDD benefit from the anti-inflammatory mediated effects of ketamine treatment.
Collapse
Affiliation(s)
- Mina Langhein
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia Chunga
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antoni Kubicki
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Christoph Mulert
- Centre for Psychiatry, Justus-Liebig-University, Giessen, Germany
| | - Randall T Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Thng G, Shen X, Stolicyn A, Harris MA, Adams MJ, Barbu MC, Kwong ASF, Frangou S, Lawrie SM, McIntosh AM, Romaniuk L, Whalley HC. Comparing personalized brain-based and genetic risk scores for major depressive disorder in large population samples of adults and adolescents. Eur Psychiatry 2022; 65:e44. [PMID: 35899848 PMCID: PMC9393914 DOI: 10.1192/j.eurpsy.2022.2301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a polygenic disorder associated with brain alterations but until recently, there have been no brain-based metrics to quantify individual-level variation in brain morphology. Here, we evaluated and compared the performance of a new brain-based 'Regional Vulnerability Index' (RVI) with polygenic risk scores (PRS), in the context of MDD. We assessed associations with syndromal MDD in an adult sample (N = 702, age = 59 ± 10) and with subclinical depressive symptoms in a longitudinal adolescent sample (baseline N = 3,825, age = 10 ± 1; 2-year follow-up N = 2,081, age = 12 ± 1). METHODS MDD-RVIs quantify the correlation of the individual's corresponding brain metric with the expected pattern for MDD derived in an independent sample. Using the same methodology across samples, subject-specific MDD-PRS and six MDD-RVIs based on different brain modalities (subcortical volume, cortical thickness, cortical surface area, mean diffusivity, fractional anisotropy, and multimodal) were computed. RESULTS In adults, MDD-RVIs (based on white matter and multimodal measures) were more strongly associated with MDD (β = 0.099-0.281, PFDR = 0.001-0.043) than MDD-PRS (β = 0.056-0.152, PFDR = 0.140-0.140). In adolescents, depressive symptoms were associated with MDD-PRS at baseline and follow-up (β = 0.084-0.086, p = 1.38 × 10-4-4.77 × 10-4) but not with any MDD-RVIs (β < 0.05, p > 0.05). CONCLUSIONS Our results potentially indicate the ability of brain-based risk scores to capture a broader range of risk exposures than genetic risk scores in adults and are also useful in helping us to understand the temporal origins of depression-related brain features. Longitudinal data, specific to the developmental period and on white matter measures, will be useful in informing risk for subsequent psychiatric illness.
Collapse
Affiliation(s)
- Gladi Thng
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Aleks Stolicyn
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Mathew A. Harris
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Miruna C. Barbu
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Alex S. F. Kwong
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sophia Frangou
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen M. Lawrie
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Noyes BK, Munoz DP, Khalid-Khan S, Brietzke E, Booij L. Is subthreshold depression in adolescence clinically relevant? J Affect Disord 2022; 309:123-130. [PMID: 35429521 DOI: 10.1016/j.jad.2022.04.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 04/10/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Subthreshold depression is highly prevalent in adolescence, but compared to major depressive disorder, the clinical impact is under-researched. The aim of this review was to compare subthreshold depression and major depressive disorder in adolescents by reviewing available literature on epidemiology, risk factors, illness trajectories, brain anatomy and function, genetics, and treatment response. METHODS We conducted a scoping review of papers on subthreshold depression and major depressive disorder in adolescence published in English. Studies in adults were included when research in adolescence was not available. RESULTS We found that individuals with subthreshold depression were similar to individuals with major depressive disorder in several regards, including female/male ratio, onset, functional impairment, comorbidity, health care utilization, suicidal ideation, genetic predisposition, brain alterations, and treatment response. Further, subthreshold depression was about two times more common than major depressive disorder. LIMITATIONS The definition of subthreshold depression is highly variable across studies. Adolescent-specific data are limited in the areas of neurobiology and treatment. CONCLUSIONS The findings of the current review support the idea that subthreshold depression is of clinical importance and provide evidence for a spectrum, versus categorical model, for depressive symptomatology. Given the frequency of subthreshold depression escalating to major depressive disorder, a greater recognition and awareness of the significance of subthreshold depression in research, clinical practice and policy-making may facilitate the development and application of early prevention and intervention.
Collapse
Affiliation(s)
- Blake K Noyes
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada; Department of Medicine, Queen's University, Kingston, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Department of Psychology, Queen's University, Kingston, Canada
| | - Sarosh Khalid-Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada; Department of Psychology, Queen's University, Kingston, Canada; Department of Psychiatry, Queen's University, Kingston, Canada
| | - Elisa Brietzke
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada; Department of Medicine, Queen's University, Kingston, Canada; Department of Psychiatry, Queen's University, Kingston, Canada
| | - Linda Booij
- Department of Psychology, Queen's University, Kingston, Canada; Department of Psychology, Concordia University, Montréal, Canada; CHU Sainte-Justine Hospital Research Centre, University of Montréal, Montréal, Canada; Department of Psychiatry, McGill University, Montréal, Canada.
| |
Collapse
|
27
|
Yang Y, Yang Y, Pan A, Xu Z, Wang L, Zhang Y, Nie K, Huang B. Identifying Depression in Parkinson's Disease by Using Combined Diffusion Tensor Imaging and Support Vector Machine. Front Neurol 2022; 13:878691. [PMID: 35795798 PMCID: PMC9251067 DOI: 10.3389/fneur.2022.878691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Objective To investigate white matter microstructural alterations in Parkinson's disease (PD) patients with depression using the whole-brain diffusion tensor imaging (DTI) method and to explore the DTI–based machine learning model in identifying depressed PD (dPD). Methods The DTI data were collected from 37 patients with dPD and 35 patients with non-depressed PD (ndPD), and 25 healthy control (HC) subjects were collected as the reference. An atlas-based analysis method was used to compare fractional anisotropy (FA) and mean diffusivity (MD) among the three groups. A support vector machine (SVM) was trained to examine the probability of discriminating between dPD and ndPD. Results As compared with ndPD, dPD group exhibited significantly decreased FA in the bilateral corticospinal tract, right cingulum (cingulate gyrus), left cingulum hippocampus, bilateral inferior longitudinal fasciculus, and bilateral superior longitudinal fasciculus, and increased MD in the right cingulum (cingulate gyrus) and left superior longitudinal fasciculus-temporal part. For discriminating between dPD and ndPD, the SVM model with DTI features exhibited an accuracy of 0.70 in the training set [area under the receiver operating characteristic curve (ROC) was 0.78] and an accuracy of 0.73 in the test set (area under the ROC was 0.71). Conclusion Depression in PD is associated with white matter microstructural alterations. The SVM machine learning model based on DTI parameters could be valuable for the individualized diagnosis of dPD.
Collapse
Affiliation(s)
- Yunjun Yang
- Department of Radiology, The First People's Hospital of Foshan, Foshan, China
| | - Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Aizhen Pan
- Department of Radiology, The First People's Hospital of Foshan, Foshan, China
| | - Zhifeng Xu
- Department of Radiology, The First People's Hospital of Foshan, Foshan, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Biao Huang
| |
Collapse
|
28
|
Wen J, Fu CHY, Tosun D, Veturi Y, Yang Z, Abdulkadir A, Mamourian E, Srinivasan D, Skampardoni I, Singh A, Nawani H, Bao J, Erus G, Shou H, Habes M, Doshi J, Varol E, Mackin RS, Sotiras A, Fan Y, Saykin AJ, Sheline YI, Shen L, Ritchie MD, Wolk DA, Albert M, Resnick SM, Davatzikos C. Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptoms, and Genetics Among Patients With Late-Life Depression. JAMA Psychiatry 2022; 79:464-474. [PMID: 35262657 PMCID: PMC8908227 DOI: 10.1001/jamapsychiatry.2022.0020] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022]
Abstract
Importance Late-life depression (LLD) is characterized by considerable heterogeneity in clinical manifestation. Unraveling such heterogeneity might aid in elucidating etiological mechanisms and support precision and individualized medicine. Objective To cross-sectionally and longitudinally delineate disease-related heterogeneity in LLD associated with neuroanatomy, cognitive functioning, clinical symptoms, and genetic profiles. Design, Setting, and Participants The Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) study is an international multicenter consortium investigating brain aging in pooled and harmonized data from 13 studies with more than 35 000 participants, including a subset of individuals with major depressive disorder. Multimodal data from a multicenter sample (N = 996), including neuroimaging, neurocognitive assessments, and genetics, were analyzed in this study. A semisupervised clustering method (heterogeneity through discriminative analysis) was applied to regional gray matter (GM) brain volumes to derive dimensional representations. Data were collected from July 2017 to July 2020 and analyzed from July 2020 to December 2021. Main Outcomes and Measures Two dimensions were identified to delineate LLD-associated heterogeneity in voxelwise GM maps, white matter (WM) fractional anisotropy, neurocognitive functioning, clinical phenotype, and genetics. Results A total of 501 participants with LLD (mean [SD] age, 67.39 [5.56] years; 332 women) and 495 healthy control individuals (mean [SD] age, 66.53 [5.16] years; 333 women) were included. Patients in dimension 1 demonstrated relatively preserved brain anatomy without WM disruptions relative to healthy control individuals. In contrast, patients in dimension 2 showed widespread brain atrophy and WM integrity disruptions, along with cognitive impairment and higher depression severity. Moreover, 1 de novo independent genetic variant (rs13120336; chromosome: 4, 186387714; minor allele, G) was significantly associated with dimension 1 (odds ratio, 2.35; SE, 0.15; P = 3.14 ×108) but not with dimension 2. The 2 dimensions demonstrated significant single-nucleotide variant-based heritability of 18% to 27% within the general population (N = 12 518 in UK Biobank). In a subset of individuals having longitudinal measurements, those in dimension 2 experienced a more rapid longitudinal change in GM and brain age (Cohen f2 = 0.03; P = .02) and were more likely to progress to Alzheimer disease (Cohen f2 = 0.03; P = .03) compared with those in dimension 1 (N = 1431 participants and 7224 scans from the Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], and Biomarkers for Older Controls at Risk for Dementia [BIOCARD] data sets). Conclusions and Relevance This study characterized heterogeneity in LLD into 2 dimensions with distinct neuroanatomical, cognitive, clinical, and genetic profiles. This dimensional approach provides a potential mechanism for investigating the heterogeneity of LLD and the relevance of the latent dimensions to possible disease mechanisms, clinical outcomes, and responses to interventions.
Collapse
Affiliation(s)
- Junhao Wen
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Cynthia H. Y. Fu
- University of East London, School of Psychology, London, United Kingdom
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Yogasudha Veturi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Zhijian Yang
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ahmed Abdulkadir
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ioanna Skampardoni
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Hema Nawani
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Erdem Varol
- Department of Statistics, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, New York
| | - R. Scott Mackin
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine, St Louis, Missouri
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Andrew J. Saykin
- Radiology and Imaging Sciences, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer’s Disease Research Center and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis
| | - Yvette I. Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Marylyn D. Ritchie
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David A. Wolk
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Neurology and Penn Memory Center, University of Pennsylvania, Philadelphia
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
29
|
Harris MA, Cox SR, de Nooij L, Barbu MC, Adams MJ, Shen X, Deary IJ, Lawrie SM, McIntosh AM, Whalley HC. Structural neuroimaging measures and lifetime depression across levels of phenotyping in UK biobank. Transl Psychiatry 2022; 12:157. [PMID: 35418197 PMCID: PMC9007989 DOI: 10.1038/s41398-022-01926-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Depression is assessed in various ways in research, with large population studies often relying on minimal phenotyping. Genetic results suggest clinical diagnoses and self-report measures of depression show some core similarities, but also important differences. It is not yet clear how neuroimaging associations depend on levels of phenotyping. We studied 39,300 UK Biobank imaging participants (20,701 female; aged 44.6 to 82.3 years, M = 64.1, SD = 7.5) with structural neuroimaging and lifetime depression data. Past depression phenotypes included a single-item self-report measure, an intermediate measure of 'probable' lifetime depression, derived from multiple questionnaire items relevant to a history of depression, and a retrospective clinical diagnosis according to DSM-IV criteria. We tested (i) associations between brain structural measures and each depression phenotype, and (ii) effects of phenotype on these associations. Depression-brain structure associations were small (β < 0.1) for all phenotypes, but still significant after FDR correction for many regional metrics. Lifetime depression was consistently associated with reduced white matter integrity across phenotypes. Cortical thickness showed negative associations with Self-reported Depression in particular. Phenotype effects were small across most metrics, but significant for cortical thickness in most regions. We report consistent effects of lifetime depression in brain structural measures, including reduced integrity of thalamic radiations and association fibres. We also observed significant differences in associations with cortical thickness across depression phenotypes. Although these results did not relate to level of phenotyping as expected, effects of phenotype definition are still an important consideration for future depression research.
Collapse
Affiliation(s)
- Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Laura de Nooij
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
30
|
van de Weijer MP, Baselmans BML, Hottenga JJ, Dolan CV, Willemsen G, Bartels M. Expanding the environmental scope: an environment-wide association study for mental well-being. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:195-204. [PMID: 34127788 PMCID: PMC8920882 DOI: 10.1038/s41370-021-00346-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Identifying modifiable factors associated with well-being is of increased interest for public policy guidance. Developments in record linkage make it possible to identify what contributes to well-being from a myriad of factors. To this end, we link two large-scale data resources; the Geoscience and Health Cohort Consortium, a collection of geo-data, and the Netherlands Twin Register, which holds population-based well-being data. OBJECTIVE We perform an Environment-Wide Association Study (EnWAS), where we examine 139 neighbourhood-level environmental exposures in relation to well-being. METHODS First, we performed a generalized estimation equation regression (N = 11,975) to test for the effects of environmental exposures on well-being. Second, to account for multicollinearity amongst exposures, we performed principal component regression. Finally, using a genetically informative design, we examined whether environmental exposure is driven by genetic predisposition for well-being. RESULTS We identified 21 environmental factors that were associated with well-being in the domains: housing stock, income, core neighbourhood characteristics, livability, and socioeconomic status. Of these associations, socioeconomic status and safety are indicated as the most important factors to explain differences in well-being. No evidence of gene-environment correlation was found. SIGNIFICANCE These observed associations, especially neighbourhood safety, could be informative for policy makers and provide public policy guidance to improve well-being. Our results show that linking databases is a fruitful exercise to identify determinants of mental health that would remain unknown by a more unilateral approach.
Collapse
Affiliation(s)
- Margot P van de Weijer
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, The Netherlands.
| | - Bart M L Baselmans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Maruani J, Geoffroy PA. Multi-Level Processes and Retina-Brain Pathways of Photic Regulation of Mood. J Clin Med 2022; 11:jcm11020448. [PMID: 35054142 PMCID: PMC8781294 DOI: 10.3390/jcm11020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Light exerts powerful biological effects on mood regulation. Whereas the source of photic information affecting mood is well established at least via intrinsically photosensitive retinal ganglion cells (ipRGCs) secreting the melanopsin photopigment, the precise circuits that mediate the impact of light on depressive behaviors are not well understood. This review proposes two distinct retina–brain pathways of light effects on mood: (i) a suprachiasmatic nucleus (SCN)-dependent pathway with light effect on mood via the synchronization of biological rhythms, and (ii) a SCN-independent pathway with light effects on mood through modulation of the homeostatic process of sleep, alertness and emotion regulation: (1) light directly inhibits brain areas promoting sleep such as the ventrolateral preoptic nucleus (VLPO), and activates numerous brain areas involved in alertness such as, monoaminergic areas, thalamic regions and hypothalamic regions including orexin areas; (2) moreover, light seems to modulate mood through orexin-, serotonin- and dopamine-dependent pathways; (3) in addition, light activates brain emotional processing areas including the amygdala, the nucleus accumbens, the perihabenular nucleus, the left hippocampus and pathways such as the retina–ventral lateral geniculate nucleus and intergeniculate leaflet–lateral habenula pathway. This work synthetizes new insights into the neural basis required for light influence mood
Collapse
Affiliation(s)
- Julia Maruani
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| | - Pierre A. Geoffroy
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, F-67000 Strasbourg, France
- GHU Paris—Psychiatry & Neurosciences, 1 Rue Cabanis, F-75014 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| |
Collapse
|
32
|
Shen X, MacSweeney N, Chan SW, Barbu MC, Adams MJ, Lawrie SM, Romaniuk L, McIntosh AM, Whalley HC. Brain structural associations with depression in a large early adolescent sample (the ABCD study®). EClinicalMedicine 2021; 42:101204. [PMID: 34849476 PMCID: PMC8608869 DOI: 10.1016/j.eclinm.2021.101204] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Depression is the leading cause of disability worldwide with > 50% of cases emerging before the age of 25 years. Large-scale neuroimaging studies in depression implicate robust structural brain differences in the disorder. However, most studies have been conducted in adults and therefore, the temporal origins of depression-related imaging features remain largely unknown. This has important implications for understanding aetiology and informing timings of potential intervention. METHODS Here, we examine associations between brain structure (cortical metrics and white matter microstructural integrity) and depression ratings (from caregiver and child), in a large sample (N = 8634) of early adolescents (9 to 11 years old) from the US-based, Adolescent Brain and Cognitive Development (ABCD) Study®. Data was collected from 2016 to 2018. FINDINGS We report significantly decreased global cortical and white matter metrics, and regionally in frontal, limbic and temporal areas in adolescent depression (Cohen's d = -0⋅018 to -0⋅041, β = -0·019 to -0⋅057). Further, we report consistently stronger imaging associations for caregiver-reported compared to child-reported depression ratings. Divergences between reports (caregiver vs child) were found to significantly relate to negative socio-environmental factors (e.g., family conflict, absolute β = 0⋅048 to 0⋅169). INTERPRETATION Depression ratings in early adolescence were associated with similar imaging findings to those seen in adult depression samples, suggesting neuroanatomical abnormalities may be present early in the disease course, arguing for the importance of early intervention. Associations between socio-environmental factors and reporter discrepancy warrant further consideration, both in the wider context of the assessment of adolescent psychopathology, and in relation to their role in aetiology. FUNDING Wellcome Trust (References: 104036/Z/14/Z and 220857/Z/20/Z) and the Medical Research Council (MRC, Reference: MC_PC_17209).
Collapse
Affiliation(s)
- Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
- Corresponding author.
| | - Niamh MacSweeney
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Stella W.Y. Chan
- Department of Clinical Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Miruna C. Barbu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Stephen M. Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| |
Collapse
|
33
|
Green C, Stolicyn A, Harris MA, Shen X, Romaniuk L, Barbu MC, Hawkins EL, Wardlaw JM, Steele JD, Waiter GD, Sandu AL, Campbell A, Porteous DJ, Seckl JR, Lawrie SM, Reynolds RM, Cavanagh J, McIntosh AM, Whalley HC. Hair glucocorticoids are associated with childhood adversity, depressive symptoms and reduced global and lobar grey matter in Generation Scotland. Transl Psychiatry 2021; 11:523. [PMID: 34642301 PMCID: PMC8511057 DOI: 10.1038/s41398-021-01644-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysregulation has been commonly reported in major depressive disorder (MDD), but with considerable heterogeneity of results; potentially due to the predominant use of acute measures of an inherently variable/phasic system. Chronic longer-term measures of HPA-axis activity have yet to be systematically examined in MDD, particularly in relation to brain phenotypes, and in the context of early-life/contemporaneous stress. Here, we utilise a temporally stable measure of cumulative HPA-axis function (hair glucocorticoids) to investigate associations between cortisol, cortisone and total glucocorticoids with concurrent measures of (i) lifetime-MDD case/control status and current symptom severity, (ii) early/current-life stress and (iii) structural neuroimaging phenotypes, in N = 993 individuals from Generation Scotland (mean age = 59.1 yrs). Increased levels of hair cortisol were significantly associated with reduced global and lobar brain volumes with reductions in the frontal, temporal and cingulate regions (βrange = -0.057 to -0.104, all PFDR < 0.05). Increased levels of hair cortisone were significantly associated with MDD (lifetime-MDD status, current symptoms, and severity; βrange = 0.071 to 0.115, all PFDR = < 0.05), with early-life adversity (β = 0.083, P = 0.017), and with reduced global and regional brain volumes (global: β = -0.059, P = 0.043; nucleus accumbens: β = -0.075, PFDR = 0.044). Associations with total glucocorticoids followed a similar pattern to the cortisol findings. In this large community-based sample, elevated glucocorticoids were significantly associated with MDD, with early, but not later-life stress, and with reduced global and regional brain phenotypes. These findings provide important foundations for future mechanistic studies to formally explore causal relationships between early adversity, chronic rather than acute measures of glucocorticoids, and neurobiological associations relevant to the aetiology of MDD.
Collapse
Affiliation(s)
- Claire Green
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK.
| | - Aleks Stolicyn
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Emma L Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonathan R Seckl
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Rebecca M Reynolds
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jonathan Cavanagh
- Institute of Infection, Immunity & Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
34
|
Li D, Zhang H, Liu Y, Liang X, Chen Y, Zheng Y, Qiu S, Cui Y. Abnormal Functional Connectivity of Posterior Cingulate Cortex Correlates With Phonemic Verbal Fluency Deficits in Major Depressive Disorder. Front Neurol 2021; 12:724874. [PMID: 34512534 PMCID: PMC8427063 DOI: 10.3389/fneur.2021.724874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Major depressive disorder (MDD) patients face an increased risk of developing cognitive impairments. One of the prominent cognitive impairments in MDD patients is verbal fluency deficit. Nonetheless, it is not clear which vulnerable brain region in MDD is interactively linked to verbal fluency deficit. It is important to gain an improved understanding for verbal fluency deficit in MDD. Methods: Thirty-four MDD patients and 34 normal controls (NCs) completed resting-state fMRI (rs-fMRI) scan and a set of verbal fluency tests (semantic VFT and phonemic VFT). Fourteen brain regions from five brain networks/systems (central executive network, default mode network, salience network, limbic system, cerebellum) based on their vital role in MDD neuropathology were selected as seeds for functional connectivity (FC) analyses with the voxels in the whole brain. Finally, correlations between the z-score of the FCs from clusters showing significant between-group difference and z-score of the VFTs were calculated using Pearson correlation analyses. Results: Increased FCs in MDD patients vs. NCs were identified between the bilateral posterior cingulate cortex (PCC) and the right inferior frontal gyrus (triangular part), in which the increased FC between the right PCC and the right inferior frontal gyrus (triangular part) was positively correlated with the z score of phonemic VFT in the MDD patients. Moreover, decreased FCs were identified between the right hippocampal gyrus and PCC, as well as left cerebellum Crus II and right parahippocampal gyrus in MDD patients vs. NCs. Conclusions: The MDD patients have altered FCs among key brain regions in the default mode network, the central executive network, the limbic system, and the cerebellum. The increased FC between the right PCC and the right inferior frontal gyrus (triangular part) may be useful to better characterize pathophysiology of MDD and functional correlates of the phonemic verbal fluency deficit in MDD.
Collapse
Affiliation(s)
- Danian Li
- Cerebropathy Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanyue Zhang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Liu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinyu Liang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoping Chen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanting Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Cui
- Cerebropathy Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Dennis EL, Disner SG, Fani N, Salminen LE, Logue M, Clarke EK, Haswell CC, Averill CL, Baugh LA, Bomyea J, Bruce SE, Cha J, Choi K, Davenport ND, Densmore M, du Plessis S, Forster GL, Frijling JL, Gonenc A, Gruber S, Grupe DW, Guenette JP, Hayes J, Hofmann D, Ipser J, Jovanovic T, Kelly S, Kennis M, Kinzel P, Koch SBJ, Koerte I, Koopowitz S, Korgaonkar M, Krystal J, Lebois LAM, Li G, Magnotta VA, Manthey A, May GJ, Menefee DS, Nawijn L, Nelson SM, Neufeld RWJ, Nitschke JB, O'Doherty D, Peverill M, Ressler KJ, Roos A, Sheridan MA, Sierk A, Simmons A, Simons RM, Simons JS, Stevens J, Suarez-Jimenez B, Sullivan DR, Théberge J, Tran JK, van den Heuvel L, van der Werff SJA, van Rooij SJH, van Zuiden M, Velez C, Verfaellie M, Vermeiren RRJM, Wade BSC, Wager T, Walter H, Winternitz S, Wolff J, York G, Zhu Y, Zhu X, Abdallah CG, Bryant R, Daniels JK, Davidson RJ, Fercho KA, Franz C, Geuze E, Gordon EM, Kaufman ML, Kremen WS, Lagopoulos J, Lanius RA, Lyons MJ, McCauley SR, McGlinchey R, McLaughlin KA, Milberg W, Neria Y, Olff M, Seedat S, Shenton M, Sponheim SR, Stein DJ, Stein MB, Straube T, Tate DF, van der Wee NJA, Veltman DJ, Wang L, Wilde EA, Thompson PM, Kochunov P, Jahanshad N, Morey RA. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. Mol Psychiatry 2021; 26:4315-4330. [PMID: 31857689 PMCID: PMC7302988 DOI: 10.1038/s41380-019-0631-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023]
Abstract
A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.
Collapse
Affiliation(s)
- Emily L Dennis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
- Department of Neurology, University of Utah, Salt Lake City, UT, USA.
- Stanford Neurodevelopment, Affect, and Psychopathology Laboratory, Stanford, CA, USA.
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Mark Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Emily K Clarke
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- VISN 6 MIRECC, Durham VA, Durham, NC, USA
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- VISN 6 MIRECC, Durham VA, Durham, NC, USA
| | - Christopher L Averill
- Clinical Neuroscience Division, National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Jessica Bomyea
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Jiook Cha
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Kyle Choi
- Health Services Research Center, University of California, San Diego, CA, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Maria Densmore
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atilla Gonenc
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Staci Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jasmeet Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Jonathan Ipser
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sinead Kelly
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mitzy Kennis
- Brain Center Rudolf Magnus, Department of Psychiatry, UMCU, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Philipp Kinzel
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Saskia B J Koch
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sheri Koopowitz
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Institute of Medical Research, University of Sydney, Westmead, NSW, Australia
| | - John Krystal
- Clinical Neuroscience Division, National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Gen Li
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | | | - Geoff J May
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, Bryan, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Deleene S Menefee
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- South Central MIRECC, Houston, TX, USA
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Location VU University Medical Center, VU University, Amsterdam, The Netherlands
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Richard W J Neufeld
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
- Department of Neuroscience, Western University, London, ON, Canada
- Department of Psychology, University of British Columbia, Okanagan, BC, Canada
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Annerine Roos
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Margaret A Sheridan
- Department of Psychology and Brain Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anika Sierk
- University Medical Centre Charite, Berlin, Germany
| | - Alan Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Jennifer Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Suarez-Jimenez
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Jean Théberge
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | | | | | - Steven J A van der Werff
- Department of Psychiatry, LUMC, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carmen Velez
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Mieke Verfaellie
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | | | - Benjamin S C Wade
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Jonathan Wolff
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Gerald York
- Joint Trauma System, 3698 Chambers Pass, Joint Base San Antonio, Fort Sam Houston, TX, USA
- Alaska Radiology Associates, Anchorage, AK, USA
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Chadi G Abdallah
- Clinical Neuroscience Division, National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Carol Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Elbert Geuze
- Brain Center Rudolf Magnus, Department of Psychiatry, UMCU, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - William S Kremen
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Jim Lagopoulos
- University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Ruth A Lanius
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
- Department of Neuroscience, Western University, London, ON, Canada
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Stephen R McCauley
- Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Regina McGlinchey
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
| | | | - William Milberg
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Soraya Seedat
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Martha Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Dan J Stein
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Nic J A van der Wee
- Department of Psychiatry, LUMC, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Centers, Location VU University Medical Center, VU University, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- VISN 6 MIRECC, Durham VA, Durham, NC, USA
| |
Collapse
|
36
|
Williams CM, Peyre H, Toro R, Ramus F. Neuroanatomical norms in the UK Biobank: The impact of allometric scaling, sex, and age. Hum Brain Mapp 2021; 42:4623-4642. [PMID: 34268815 PMCID: PMC8410561 DOI: 10.1002/hbm.25572] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Few neuroimaging studies are sufficiently large to adequately describe population‐wide variations. This study's primary aim was to generate neuroanatomical norms and individual markers that consider age, sex, and brain size, from 629 cerebral measures in the UK Biobank (N = 40,028). The secondary aim was to examine the effects and interactions of sex, age, and brain allometry—the nonlinear scaling relationship between a region and brain size (e.g., total brain volume)—across cerebral measures. Allometry was a common property of brain volumes, thicknesses, and surface areas (83%) and was largely stable across age and sex. Sex differences occurred in 67% of cerebral measures (median |β| = .13): 37% of regions were larger in males and 30% in females. Brain measures (49%) generally decreased with age, although aging effects varied across regions and sexes. While models with an allometric or linear covariate adjustment for brain size yielded similar significant effects, omitting brain allometry influenced reported sex differences in variance. Finally, we contribute to the reproducibility of research on sex differences in the brain by replicating previous studies examining cerebral sex differences. This large‐scale study advances our understanding of age, sex, and brain allometry's impact on brain structure and provides data for future UK Biobank studies to identify the cerebral regions that covary with specific phenotypes, independently of sex, age, and brain size.
Collapse
Affiliation(s)
- Camille Michèle Williams
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| | - Hugo Peyre
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France.,INSERM UMR 1141, Paris Diderot University, Paris, France.,Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Paris, France.,Center for Research and Interdisciplinarity (CRI), INSERM U1284, Paris, France.,Université de Paris, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| |
Collapse
|
37
|
Quantitative evaluation of brain volumes in drug-free major depressive disorder using MRI-Cloud method. Neuroreport 2021; 32:1027-1034. [PMID: 34075004 DOI: 10.1097/wnr.0000000000001682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Quantitative analysis of the high-resolution T1-weighted images provides useful markers to measure anatomical changes during brain degeneration related to major depressive disorder (MDD). However, there are controversial findings regarding these volume alterations in MDD indicating even to increased volumes in some specific regions in MDD patients. METHODS This study is a case-controlled study including 23 depression patients and 15 healthy subject person and 20-38 years of age, who have been treated at the Neurology and Psychiatry Department here. We compared specific anatomic regions between drug-free MDD patients and control group through MRI-Cloud, which is a novel brain imaging method that enables to analyze multiple brain regions simultaneously. RESULTS We have found that frontal, temporal, and parietal hemispheric volumes and middle frontal gyrus, inferior frontal gyrus, superior parietal gyrus, cingulum-hippocampus, lateral fronto-orbital gyrus, superior temporal gyrus, superior temporal white matter, middle temporal gyrus subanatomic regions were significantly reduced bilaterally in MDD patients compared to the control group, while striatum, amygdala, putamen, and nucleus accumbens bilaterally increased in MDD group compared to the control group suggesting that besides the heterogeneity among studies, also comorbid factors such as anxiety and different personal traits could be responsible for these discrepant results. CONCLUSION Our study gives a strong message that depression is associated with altered structural brain volumes, especially, in drug-free and first-episode MDD patients who present with similar duration and severity of depression while the role of demographic and comorbid risk factors should not be neglected.
Collapse
|
38
|
Im S, Lee J, Kim S. Preliminary Comparison of Subcortical Structures in Elderly Subclinical Depression: Structural Analysis with 3T MRI. Exp Neurobiol 2021; 30:183-202. [PMID: 33972469 PMCID: PMC8118753 DOI: 10.5607/en20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 01/23/2023] Open
Abstract
Depression in the elderly population has shown increased likelihood of neurological disorders due to structural changes in the subcortical area. However, further investigation into depression related subcortical changes is needed due to mismatches in structural analysis results between studies as well as scarcities in research regarding subcortical connectivity patterns of subclinical depression populations. This study aims to investigate structural differences in subcortical regions of aged participants with subclinical depression using 3Tesla MRI. In structural analysis, volumes of each subcortical region were measured to observe the volumetric difference and asymmetry between groups, but no significant difference was found. In addition, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) did not show any significant differences between groups. Structural analysis using probabilistic tractography indicated that the connection strength between left nucleus accumbens-right hippocampus, and right thalamus-right caudate was higher in the control group than the subclinical depression group. The differences in subcortical connection strength of subclinical depression groups, have shown to correlate with emotional and cognitive disorders, such as anxiety and memory impairment. We believe that the analysis of structural differences and cross-regional network measures in subcortical structures can help identify neurophysiological changes occurring in subclinical depression.
Collapse
Affiliation(s)
- SangJin Im
- Lee Gil Ya Cancer & Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| |
Collapse
|
39
|
Rupprechter S, Stankevicius A, Huys QJM, Series P, Steele JD. Abnormal reward valuation and event-related connectivity in unmedicated major depressive disorder. Psychol Med 2021; 51:795-803. [PMID: 31907081 DOI: 10.1017/s0033291719003799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Experience of emotion is closely linked to valuation. Mood can be viewed as a bias to experience positive or negative emotions and abnormally biased subjective reward valuation and cognitions are core characteristics of major depression. METHODS Thirty-four unmedicated subjects with major depressive disorder and controls estimated the probability that fractal stimuli were associated with reward, based on passive observations, so they could subsequently choose the higher of either their estimated fractal value or an explicitly presented reward probability. Using model-based functional magnetic resonance imaging, we estimated each subject's internal value estimation, with psychophysiological interaction analysis used to examine event-related connectivity, testing hypotheses of abnormal reward valuation and cingulate connectivity in depression. RESULTS Reward value encoding in the hippocampus and rostral anterior cingulate was abnormal in depression. In addition, abnormal decision-making in depression was associated with increased anterior mid-cingulate activity and a signal in this region encoded the difference between the values of the two options. This localised decision-making and its impairment to the anterior mid-cingulate cortex (aMCC) consistent with theories of cognitive control. Notably, subjects with depression had significantly decreased event-related connectivity between the aMCC and rostral cingulate regions during decision-making, implying impaired communication between the neural substrates of expected value estimation and decision-making in depression. CONCLUSIONS Our findings support the theory that abnormal neural reward valuation plays a central role in major depressive disorder (MDD). To the extent that emotion reflects valuation, abnormal valuation could explain abnormal emotional experience in MDD, reflect a core pathophysiological process and be a target of treatment.
Collapse
Affiliation(s)
- S Rupprechter
- Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
| | - A Stankevicius
- Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
| | - Q J M Huys
- Max Planck Centre for Computational Psychiatry and Ageing Research, UCL, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - P Series
- Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
| | - J D Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, UK
- Department of Neurology, Ninewells Hospital, NHS Tayside, Dundee, UK
| |
Collapse
|
40
|
Hou G, Lai W, Jiang W, Liu X, Qian L, Zhang Y, Zhou Z. Myelin deficits in patients with recurrent major depressive disorder: An inhomogeneous magnetization transfer study. Neurosci Lett 2021; 750:135768. [PMID: 33636288 DOI: 10.1016/j.neulet.2021.135768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
PURPOSES The recently developed myelin imaging method, inhomogeneous magnetization transfer (ihMT), is a surrogate measure of myelin content. The goal of the current study was to investigate alterations in myelin integrity in patients with recurrent major depressive disorder (rMDD). METHODS Fifty-two patients with rMDD (36 female and 16 male) and 42 healthy controls (HC, 29 female and 13 male) were included. Two ihMT indices, quantitative ihMT (qihMT) and quantitative MT (qMT), were estimated from the ihMT data. A 50 white matter atlas was used to extract the regional quantitative values for each subject. The differences in qihMT and qMT values between the rMDD and HC groups were compared by a general linear model. Pearson correlation analyses were conducted to investigate associations between the significantly altered ihMT indices and clinical measures (Hamilton Depression Rating Scale scores and disease duration) in rMDD group. RESULTS The rMDD group showed significantly lower qihMT values in the fornix, left anterior limb of internal capsule, and left sagittal stratum, and lower qMT values in the fornix and left anterior limb of internal capsule than those of the HC group (p < 0.05, false discovery rate corrected). Both the qihMT and qMT values in the fornix of patients with rMDD were negatively correlated with disease duration (qihMT: r = -0.478, p < 0.001, Bonferroni corrected; qMT: r = -0.433, p = 0.001, Bonferroni corrected). CONCLUSION Our findings suggested that rMDD is associated with myelin impairment in the fornix, left anterior limb of internal capsule, and left sagittal stratum. In addition, this disruption of myelin integrity in the fornix could be cumulative as the disease progresses.
Collapse
Affiliation(s)
- Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Wentao Lai
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Wentao Jiang
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Xia Liu
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, 100176, China
| | - Yingli Zhang
- Department of Psychology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Zhifeng Zhou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| |
Collapse
|
41
|
Green C, Shen X, Stevenson AJ, Conole ELS, Harris MA, Barbu MC, Hawkins EL, Adams MJ, Hillary RF, Lawrie SM, Evans KL, Walker RM, Morris SW, Porteous DJ, Wardlaw JM, Steele JD, Waiter GD, Sandu AL, Campbell A, Marioni RE, Cox SR, Cavanagh J, McIntosh AM, Whalley HC. Structural brain correlates of serum and epigenetic markers of inflammation in major depressive disorder. Brain Behav Immun 2021; 92:39-48. [PMID: 33221487 PMCID: PMC7910280 DOI: 10.1016/j.bbi.2020.11.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory processes are implicated in the aetiology of Major Depressive Disorder (MDD); however, the relationship between peripheral inflammation, brain structure and depression remains unclear, partly due to complexities around the use of acute/phasic inflammatory biomarkers. Here, we report the first large-scale study of both serological and methylomic signatures of CRP (considered to represent acute and chronic measures of inflammation respectively) and their associations with depression status/symptoms, and structural neuroimaging phenotypes (T1 and diffusion MRI) in a large community-based sample (Generation Scotland; NMDD cases = 271, Ncontrols = 609). Serum CRP was associated with overall MDD severity, and specifically with current somatic symptoms- general interest (β = 0.145, PFDR = 6 × 10-4) and energy levels (β = 0.101, PFDR = 0.027), along with reduced entorhinal cortex thickness (β = -0.095, PFDR = 0.037). DNAm CRP was significantly associated with reduced global grey matter/cortical volume and widespread reductions in integrity of 16/24 white matter tracts (with greatest regional effects in the external and internal capsules, βFA= -0.12 to -0.14). In general, the methylation-based measures showed stronger associations with imaging metrics than serum-based CRP measures (βaverage = -0.15 versus βaverage = 0.01 respectively). These findings provide evidence for central effects of peripheral inflammation from both serological and epigenetic markers of inflammation, including in brain regions previously implicated in depression. This suggests that these imaging measures may be involved in the relationship between peripheral inflammation and somatic/depressive symptoms. Notably, greater effects on brain morphology were seen for methylation-based rather than serum-based measures of inflammation, indicating the importance of such measures for future studies.
Collapse
Affiliation(s)
- Claire Green
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK.
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Eleanor L S Conole
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Emma L Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - Jonathan Cavanagh
- Institute of Infection, Immunity & Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, UK; Institute of Health and Wellbeing, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK; Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
42
|
Schoorl J, Barbu MC, Shen X, Harris MR, Adams MJ, Whalley HC, Lawrie SM. Grey and white matter associations of psychotic-like experiences in a general population sample (UK Biobank). Transl Psychiatry 2021; 11:21. [PMID: 33414383 PMCID: PMC7791107 DOI: 10.1038/s41398-020-01131-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 01/29/2023] Open
Abstract
There has been a substantial amount of research reporting the neuroanatomical associations of psychotic symptoms in people with schizophrenia. Comparatively little attention has been paid to the neuroimaging correlates of subclinical psychotic symptoms, so-called "psychotic-like experiences" (PLEs), within large healthy populations. PLEs are relatively common in the general population (7-13%), can be distressing and negatively affect health. This study therefore examined gray and white matter associations of four different PLEs (auditory or visual PLEs, and delusional ideas about conspiracies or communications) in subjects of the UK Biobank study with neuroimaging data (N = 21,390, mean age = 63 years). We tested for associations between any PLE (N = 768) and individual PLEs with gray and white matter brain structures, controlling for sex, age, intracranial volume, scanning site, and position in the scanner. Individuals that reported having experienced auditory hallucinations (N = 272) were found to have smaller volumes of the caudate, putamen, and accumbens (β = -0.115-0.134, pcorrected = 0.048-0.036), and reduced temporal lobe volume (β = -0.017, pcorrected = 0.047) compared to those that did not. People who indicated that they had ever believed in unreal conspiracies (N = 111) had a larger volume of the left amygdala (β = 0.023, pcorrected = 0.038). Individuals that reported a history of visual PLEs (N = 435) were found to have reduced white matter microstructure of the forceps major (β = -0.029, pcorrected = 0.009), an effect that was more marked in participants who reported PLEs as distressing. These associations were not accounted for by diagnoses of psychotic or depressive illness, nor the known risk factors for psychotic symptoms of childhood adversity or cannabis use. These findings suggest altered regional gray matter volumes and white matter microstructure in association with PLEs in the general population. They further suggest that these alterations may appear more frequently with the presentation of different psychotic symptoms in the absence of clinically diagnosed psychotic disorders.
Collapse
Affiliation(s)
- Julie Schoorl
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Miruna C Barbu
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Xueyi Shen
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Mat R Harris
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Mark J Adams
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Heather C Whalley
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK.
| |
Collapse
|
43
|
Zeng M, Yu M, Qi G, Zhang S, Ma J, Hu Q, Zhang J, Li H, Wu H, Xu J. Concurrent alterations of white matter microstructure and functional activities in medication-free major depressive disorder. Brain Imaging Behav 2020; 15:2159-2167. [PMID: 33155171 DOI: 10.1007/s11682-020-00411-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Although numerous studies have revealed the structural and functional alterations in major depressive disorder (MDD) using unimodal diffusion magnetic resonance imaging (MRI) or functional MRI, however, the potential associations between changed microstructure and corresponding functional activities in the MDD has been largely uninvestigated. Herein, 27 medication-free MDD patients and 54 gender-, age-, and educational level-matched healthy controls (HC) were used to investigate the concurrent alterations of white matter microstructure and functional activities using tract-based spatial statistics (TBSS) analyses, fractional amplitude of low-frequency fluctuation (fALFF), and degree centrality (DC). The TBSS analyses revealed significantly decreased fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF I) in the MDD patients compared to HC. Correlation analyses showed that decreased FA in the SLF I was significantly correlated with fALFF in left pre/postcentral gyrus and binary, weighted DC in right posterior cerebellum. Moreover, the fALFF in left pre/postcentral gyrus significantly reduced in MDD patients while binary and weighted DC in right posterior cerebellum significantly increased in MDD patients. Our results revealed concurrent structural and functional changes in MDD patients suggesting that the underlying structural disruptions are an important indicator of functional abnormalities.
Collapse
Affiliation(s)
- Min Zeng
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Min Yu
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, 213003, China
| | - Guiqiang Qi
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Shaojin Zhang
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Jijian Ma
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.,CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jinhuan Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.,The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 518000, Shenzhen, China
| | - Hongxing Li
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, 213003, China.
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 510370, Guangzhou, China.
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
44
|
Neumann A, Muetzel RL, Lahey BB, Bakermans-Kranenburg MJ, van IJzendoorn MH, Jaddoe VW, Hillegers MHJ, White T, Tiemeier H. White Matter Microstructure and the General Psychopathology Factor in Children. J Am Acad Child Adolesc Psychiatry 2020; 59:1285-1296. [PMID: 31982582 DOI: 10.1016/j.jaac.2019.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/25/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Co-occurrence of behavioral and emotional problems in childhood is widespread, and previous studies have suggested that this reflects vulnerability to experience a range of psychiatric problems, often termed a general psychopathology factor. However, the neurobiological substrate of this general factor is not well understood. We tested the hypothesis that lower overall white matter microstructure is associated with higher levels of the general psychopathology factor in children and less with specific factors. METHOD Global white matter microstructure at age 10 years was related to general and specific psychopathology factors. These factors were estimated using a latent bifactor model with multiple informants and instruments between ages 6 and 10 years in 3,030 children from the population-based birth cohort Generation R. The association of global white matter microstructure and the psychopathology factors was examined with a structural equation model adjusted for sex, age at scan, age at psychopathology assessment, parental education/income, and genetic ancestry. RESULTS A 1-SD increase of the global white matter factor was associated with a β = -0.07SD (standard error [SE] = 0.02, p < .01) decrease in general psychopathology. In contrast, a 1-SD increase of white matter microstructure predicted an increase of β = +0.07 SD (SE = 0.03, p < .01) specific externalizing factor levels. No association was found with the specific internalizing and specific attention factor. CONCLUSION The results suggest that general psychopathology in childhood is related to white matter structure across the brain and not only to specific tracts. Taking into account general psychopathology may also help reveal neurobiological mechanisms behind specific symptoms that are otherwise obscured by comorbidity.
Collapse
Affiliation(s)
- Alexander Neumann
- Erasmus University Medical Center, Rotterdam, the Netherlands; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ryan L Muetzel
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | - Tonya White
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Erasmus University Medical Center, Rotterdam, the Netherlands; Harvard TH Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
45
|
Nolan M, Roman E, Nasa A, Levins KJ, O'Hanlon E, O'Keane V, Willian Roddy D. Hippocampal and Amygdalar Volume Changes in Major Depressive Disorder: A Targeted Review and Focus on Stress. CHRONIC STRESS 2020; 4:2470547020944553. [PMID: 33015518 PMCID: PMC7513405 DOI: 10.1177/2470547020944553] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
Medial temporal lobe structures have long been implicated in the pathogenesis of
major depressive disorder. Although findings of smaller hippocampal and
amygdalar volumes are common, inconsistencies remain in the literature. In this
targeted review, we examine recent and significant neuroimaging papers examining
the volumes of these structures in major depressive disorder. A targeted
PubMed/Google Scholar search was undertaken focusing on volumetric neuroimaging
studies of the hippocampus and amygdala in major depressive disorder. Where
possible, mean volumes and accompanying standard deviations were extracted
allowing computation of Cohen’s ds effect sizes. Although not a
meta-analysis, this allows a broad comparison of volume changes across studies.
Thirty-nine studies in total were assessed. Hippocampal substructures and
amygdale substructures were investigated in 11 and 2 studies, respectively. The
hippocampus was more consistently smaller than the amygdala across studies,
which is reflected in the larger cumulative difference in volume found with the
Cohen’s ds calculations. The left and right hippocampi were,
respectively, 92% and 91.3% of the volume found in controls, and the left and
right amygdalae were, respectively, 94.8% and 92.6% of the volume of controls
across all included studies. The role of stress in temporal lobe structure
volume reduction in major depressive disorder is discussed.
Collapse
Affiliation(s)
- Mark Nolan
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Elena Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Anurag Nasa
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kirk J Levins
- Department of Anaesthesia, Intensive Care and Pain Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Darren Willian Roddy
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Cotter DL, Walters SM, Fonseca C, Wolf A, Cobigo Y, Fox EC, You MY, Altendahl M, Djukic N, Staffaroni AM, Elahi FM, Kramer JH, Casaletto KB. Aging and Positive Mood: Longitudinal Neurobiological and Cognitive Correlates. Am J Geriatr Psychiatry 2020; 28:946-956. [PMID: 32527600 PMCID: PMC7484115 DOI: 10.1016/j.jagp.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Despite the losses commonly associated with aging, older adults seem to possess particularly preserved emotional regulation. To further understand this phenomenon, the authors examined longitudinal trajectories between age, depressive symptoms, brain structure, and cognition. METHODS Seven hundred and sixteen functionally intact older adults (age M = 67.9, 56.8% female), followed longitudinally (visit range: 1-13, M = 2.5), completed cognitive testing and the Geriatric Depression Scale (GDS). A subset (N = 327) underwent 3T brain MRI. Mixed-effects linear regression models were conducted controlling for sex, education, and total intracranial volume. RESULTS There was a significant interaction between age and time on GDS, such that GDS improved with increasing age over time, but attenuated around age 71 (age*time b = 0.10, p <0.001). Fractional anisotropy (FA) and mean diffusivity interacted with age to predict longitudinal changes in GDS (FA: b = -0.02, p = 0.01; MD: b = 0.03, p = 0.007), such that age-related benefits on GDS were attenuated in those with declining FA. Executive function (EF) and processing speed also interacted with age to predict longitudinal changes in GDS (EF: b = -0.04, p = 0.03; speed: b = 0.04, p = 0.04). Again, the positive effect of age on GDS attenuated in those with worsening EF and speed. There were no associations with memory, semantic fluency, or gray matter (p values >0.05). CONCLUSION EF, processing speed, and white matter integrity moderated the longitudinal relationship between age and mood. Previous studies demonstrate the link between positivity and better cognitive control, leading to improved mood in older adults. Our results are not only consistent, but establish a potential neurobiological correlate. Future research further exploring biological mechanisms driving psychological processes may have important therapeutic implications.
Collapse
|
47
|
Abstract
In the post-genomic era, genetics has led to limited clinical applications in the diagnosis and treatment of major depressive disorder (MDD). Variants in genes coding for cytochrome enzymes are included in guidelines for assisting in antidepressant choice and dosing, but there are no recommendations involving genes responsible for antidepressant pharmacodynamics and no consensus applications for guiding diagnosis or prognosis. However, genetics has contributed to a better understanding of MDD pathogenesis and the mechanisms of antidepressant action, also thanks to recent methodological innovations that overcome the challenges posed by the polygenic architecture of these traits. Polygenic risk scores can be used to estimate the risk of disease at the individual level, which may have clinical relevance in cases with extremely high scores (e.g. top 1%). Genetic studies have also shed light on a wide genetic overlap between MDD and other psychiatric disorders. The relationships between genes/pathways associated with MDD and known drug targets are a promising tool for drug repurposing and identification of new pharmacological targets. Increase in power thanks to larger samples and methods integrating genetic data with gene expression, the integration of common variants and rare variants, are expected to advance our knowledge and assist in personalized psychiatry.
Collapse
|
48
|
Poon CH, Heng BC, Lim LW. New insights on brain-derived neurotrophic factor epigenetics: from depression to memory extinction. Ann N Y Acad Sci 2020; 1484:9-31. [PMID: 32808327 DOI: 10.1111/nyas.14458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Advances in characterizing molecular profiles provide valuable insights and opportunities for deciphering the neuropathology of depression. Although abnormal brain-derived neurotrophic factor (BDNF) expression in depression has gained much support from preclinical and clinical research, how it mediates behavioral alterations in the depressed state remains largely obscure. Environmental factors contribute significantly to the onset of depression and produce robust epigenetic changes. Epigenetic regulation of BDNF, as one of the most characterized gene loci in epigenetics, has recently emerged as a target in research on memory and psychiatric disorders. Specifically, epigenetic alterations of BDNF exons are heavily involved in mediating memory functions and antidepressant effects. In this review, we discuss key research on stress-induced depression from both preclinical and clinical studies, which revealed that differential epigenetic regulation of specific BDNF exons is associated with depression pathophysiology. Considering that BDNF has a central role in depression, we argue that memory extinction, an adaptive response to fear exposure, is dependent on BDNF modulation and holds promise as a prospective target for alleviating or treating depression and anxiety disorders.
Collapse
Affiliation(s)
- Chi Him Poon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.,Department of Biological Sciences, Sunway University, Selangor, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biological Sciences, Sunway University, Selangor, Malaysia
| |
Collapse
|
49
|
Choi YY, Lee JJ, Choi KY, Seo EH, Choo ILH, Kim H, Song MK, Choi SM, Cho SH, Kim BC, Lee KH. The Aging Slopes of Brain Structures Vary by Ethnicity and Sex: Evidence From a Large Magnetic Resonance Imaging Dataset From a Single Scanner of Cognitively Healthy Elderly People in Korea. Front Aging Neurosci 2020; 12:233. [PMID: 32903525 PMCID: PMC7437271 DOI: 10.3389/fnagi.2020.00233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/03/2020] [Indexed: 01/12/2023] Open
Abstract
The aging of the brain is a well-investigated topic, but existing analyses have mainly focused on Caucasian samples. To investigate brain aging in East Asians, we measured cortical and subcortical volumes from magnetic resonance imaging (MRI) scans of 1,008 cognitively normal elderly Koreans from the Gwangju Alzheimer's and Related Dementia cohort and 342 Caucasians from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. To determine whether the aging effect varies with ethnicity and sex, beta coefficients of age and confidence intervals (CIs) were estimated in each ethnicity-sex group using a bootstrap method and a regression analysis using the relative volume to intracranial volume as predicted. The betas or aging slopes largely were not significantly different between ethnicity and sex groups in most types of brain structures. However, ethnic differences between the two female groups were found in the brain, most cortical regions, and a few subcortical regions. Ethnic differences in brain aging are likely due in large part to genetic factors; thus, we compared carriers and non-carriers of a gene relevant to longevity and neurodegenerative diseases, such as apolipoprotein E (APOE) ε4. The regions with ethnic differences in women also showed significant differences between Korean APOE ε4 non-carriers and Caucasian APOE ε4 carriers. Furthermore, Caucasian women showed significant APOE ε4 effects in the largest number of regions. These results illustrate that much of the ethnic differences in females may be explained by synergistic effects of ethnic background and APOE ε4 carrier status. Our results suggest that sex-dependent differences of aging between ethnic backgrounds may be due to ethnicity-dependent effects of genetic risk factors, such as APOE ε4. We also presented the normative information on volume estimates of the brain structures of the elderly Korean people in the subdivided age groups. This normative information of the aging brain stratified by ethnicity provides the age-related reference ranges quantified to replace visual judgment and facilitate precise clinical decision-making.
Collapse
Affiliation(s)
- Yu Yong Choi
- Gwangju Alzheimer’s Disease and Related Dementias (GARD) Cohort Research Center, Chosun University, Gwangju, South Korea
- Biomedical Technology Center, Chosun University Hospital, Gwangju, South Korea
| | - Jang Jae Lee
- Gwangju Alzheimer’s Disease and Related Dementias (GARD) Cohort Research Center, Chosun University, Gwangju, South Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer’s Disease and Related Dementias (GARD) Cohort Research Center, Chosun University, Gwangju, South Korea
| | - Eun Hyun Seo
- Gwangju Alzheimer’s Disease and Related Dementias (GARD) Cohort Research Center, Chosun University, Gwangju, South Korea
- Biomedical Technology Center, Chosun University Hospital, Gwangju, South Korea
| | - IL Han Choo
- Department of Neuropsychiatry, Chosun University School of Medicine and Hospital, Gwangju, South Korea
| | - Hoowon Kim
- Gwangju Alzheimer’s Disease and Related Dementias (GARD) Cohort Research Center, Chosun University, Gwangju, South Korea
- Biomedical Technology Center, Chosun University Hospital, Gwangju, South Korea
- Department of Neurology, Chosun University School of Medicine and Hospital, Gwangju, South Korea
| | - Min-Kyung Song
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease and Related Dementias (GARD) Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | | |
Collapse
|
50
|
Harris MA, Shen X, Cox SR, Gibson J, Adams MJ, Clarke TK, Deary IJ, Lawrie SM, McIntosh AM, Whalley HC. Stratifying major depressive disorder by polygenic risk for schizophrenia in relation to structural brain measures. Psychol Med 2020; 50:1653-1662. [PMID: 31317844 DOI: 10.1017/s003329171900165x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Substantial clinical heterogeneity of major depressive disorder (MDD) suggests it may group together individuals with diverse aetiologies. Identifying distinct subtypes should lead to more effective diagnosis and treatment, while providing more useful targets for further research. Genetic and clinical overlap between MDD and schizophrenia (SCZ) suggests an MDD subtype may share underlying mechanisms with SCZ. METHODS The present study investigated whether a neurobiologically distinct subtype of MDD could be identified by SCZ polygenic risk score (PRS). We explored interactive effects between SCZ PRS and MDD case/control status on a range of cortical, subcortical and white matter metrics among 2370 male and 2574 female UK Biobank participants. RESULTS There was a significant SCZ PRS by MDD interaction for rostral anterior cingulate cortex (RACC) thickness (β = 0.191, q = 0.043). This was driven by a positive association between SCZ PRS and RACC thickness among MDD cases (β = 0.098, p = 0.026), compared to a negative association among controls (β = -0.087, p = 0.002). MDD cases with low SCZ PRS showed thinner RACC, although the opposite difference for high-SCZ-PRS cases was not significant. There were nominal interactions for other brain metrics, but none remained significant after correcting for multiple comparisons. CONCLUSIONS Our significant results indicate that MDD case-control differences in RACC thickness vary as a function of SCZ PRS. Although this was not the case for most other brain measures assessed, our specific findings still provide some further evidence that MDD in the presence of high genetic risk for SCZ is subtly neurobiologically distinct from MDD in general.
Collapse
Affiliation(s)
- Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jude Gibson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | | | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|