1
|
Laughlin PM, Young K, Gonzalez-Gutierrez G, Wang JCY, Zlotnick A. A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation. J Biol Chem 2024; 300:107831. [PMID: 39343003 PMCID: PMC11541828 DOI: 10.1016/j.jbc.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
SARS-CoV-2 Nucleocapsid protein (N) is a viral structural protein that packages the 30 kb genomic RNA inside virions and forms condensates within infected cells through liquid-liquid phase separation (LLPS). In both soluble and condensed forms, N has accessory roles in the viral life cycle including genome replication and immunosuppression. The ability to perform these tasks depends on phase separation and its reversibility. The conditions that stabilize and destabilize N condensates and the role of N-N interactions are poorly understood. We have investigated LLPS formation and dissolution in a minimalist system comprised of N protein and an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS assembly reactions from the perspective of the oligonucleotide. We find that N alone can form oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a ∼1:1 ratio of N to oligonucleotide, LLPS formation is maximal. We find that a modest excess of N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions examined here, assembly has a critical concentration of about 1 μM. The responsiveness of N condensates to their environment may have biological consequences. A better understanding of how nucleic acid modulates N-N association will shed light on condensate activity and could inform antiviral strategies targeting LLPS.
Collapse
Affiliation(s)
- Patrick M Laughlin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Kimberly Young
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Joseph C-Y Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
2
|
Du L, Deiter F, Bouzidi MS, Billaud JN, Simmons G, Dabral P, Selvarajah S, Lingappa AF, Michon M, Yu SF, Paulvannan K, Manicassamy B, Lingappa VR, Boushey H, Greenland JR, Pillai SK. A viral assembly inhibitor blocks SARS-CoV-2 replication in airway epithelial cells. Commun Biol 2024; 7:486. [PMID: 38649430 PMCID: PMC11035691 DOI: 10.1038/s42003-024-06130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
The ongoing evolution of SARS-CoV-2 to evade vaccines and therapeutics underlines the need for innovative therapies with high genetic barriers to resistance. Therefore, there is pronounced interest in identifying new pharmacological targets in the SARS-CoV-2 viral life cycle. The small molecule PAV-104, identified through a cell-free protein synthesis and assembly screen, was recently shown to target host protein assembly machinery in a manner specific to viral assembly. In this study, we investigate the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). We show that PAV-104 inhibits >99% of infection with diverse SARS-CoV-2 variants in immortalized AECs, and in primary human AECs cultured at the air-liquid interface (ALI) to represent the lung microenvironment in vivo. Our data demonstrate that PAV-104 inhibits SARS-CoV-2 production without affecting viral entry, mRNA transcription, or protein synthesis. PAV-104 interacts with SARS-CoV-2 nucleocapsid (N) and interferes with its oligomerization, blocking particle assembly. Transcriptomic analysis reveals that PAV-104 reverses SARS-CoV-2 induction of the type-I interferon response and the maturation of nucleoprotein signaling pathway known to support coronavirus replication. Our findings suggest that PAV-104 is a promising therapeutic candidate for COVID-19 with a mechanism of action that is distinct from existing clinical management approaches.
Collapse
Affiliation(s)
- Li Du
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | - Fred Deiter
- University of California, San Francisco, CA, 94143, USA
- Veterans Administration Health Care System, 4150 Clement St., San Francisco, CA, 94121, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | | | - Graham Simmons
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | - Prerna Dabral
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | | | | | - Maya Michon
- Prosetta Biosciences Inc, 670 5th St., San Francisco, CA, 94107, USA
| | - Shao Feng Yu
- Prosetta Biosciences Inc, 670 5th St., San Francisco, CA, 94107, USA
| | - Kumar Paulvannan
- Prosetta Biosciences Inc, 670 5th St., San Francisco, CA, 94107, USA
| | | | | | - Homer Boushey
- University of California, San Francisco, CA, 94143, USA
| | - John R Greenland
- University of California, San Francisco, CA, 94143, USA
- Veterans Administration Health Care System, 4150 Clement St., San Francisco, CA, 94121, USA
| | - Satish K Pillai
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA.
- University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Laughlin PM, Young K, Gonzalez-Gutierrez G, Wang JC, Zlotnick A. A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588883. [PMID: 38645044 PMCID: PMC11030382 DOI: 10.1101/2024.04.10.588883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
SARS-CoV-2 Nucleocapsid protein (N) is a viral structural protein that packages the 30kb genomic RNA inside virions and forms condensates within infected cells through liquid-liquid phase separation (LLPS). N, in both soluble and condensed forms, has accessory roles in the viral life cycle including genome replication and immunosuppression. The ability to perform these tasks depends on phase separation and its reversibility. The conditions that stabilize and destabilize N condensates and the role of N-N interactions are poorly understood. We have investigated LLPS formation and dissolution in a minimalist system comprised of N protein and an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS assembly reactions from the perspective of the oligonucleotide. We find that N alone can form oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a ~1:1 ratio of N to oligonucleotide LLPS formation is maximal. We find that a modest excess of N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions examined here assembly has a critical concentration of about 1 μM. The responsiveness of N condensates to their environment may have biological consequences. A better understanding of how nucleic acid modulates N-N association will shed light on condensate activity and could inform antiviral strategies targeting LLPS.
Collapse
Affiliation(s)
| | - Kimberly Young
- Department of Molecular and Cellular Biochemistry, Indiana University
| | | | - Joseph C.Y. Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University
| |
Collapse
|
4
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar E, Abu Zeid IM, Bouback TA, Bamagoos A, Aljohny BO, Uversky VN, Redwan EM. Overview of the SARS-CoV-2 nucleocapsid protein. Int J Biol Macromol 2024; 260:129523. [PMID: 38232879 DOI: 10.1016/j.ijbiomac.2024.129523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/19/2024]
Abstract
Since the emergence of SARS-CoV in 2003, researchers worldwide have been toiling away at deciphering this virus's biological intricacies. In line with other known coronaviruses, the nucleocapsid (N) protein is an important structural component of SARS-CoV. As a result, much emphasis has been placed on characterizing this protein. Independent research conducted by a variety of laboratories has clearly demonstrated the primary function of this protein, which is to encapsidate the viral genome. Furthermore, various accounts indicate that this particular protein disrupts diverse intracellular pathways. Such observations imply its vital role in regulating the virus as well. The opening segment of this review will expound upon these distinct characteristics succinctly exhibited by the N protein. Additionally, it has been suggested that the N protein possesses diagnostic and vaccine capabilities when dealing with SARS-CoV. In light of this fact, we will be reviewing some recent headway in the use cases for N protein toward clinical purposes within this article's concluding segments. This forward movement pertains to both developments of COVID-19-oriented therapeutic targets as well as diagnostic measures. The strides made by medical researchers offer encouragement, knowing they are heading toward a brighter future combating global pandemic situations such as these.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab Mattar
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Bassam O Aljohny
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
5
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
6
|
Adly AN, Bi M, Carlson CR, Syed AM, Ciling A, Doudna JA, Cheng Y, Morgan DO. Assembly of SARS-CoV-2 ribonucleosomes by truncated N ∗ variant of the nucleocapsid protein. J Biol Chem 2023; 299:105362. [PMID: 37863261 PMCID: PMC10665939 DOI: 10.1016/j.jbc.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compacts the RNA genome into viral ribonucleoprotein (vRNP) complexes within virions. Assembly of vRNPs is inhibited by phosphorylation of the N protein serine/arginine (SR) region. Several SARS-CoV-2 variants of concern carry N protein mutations that reduce phosphorylation and enhance the efficiency of viral packaging. Variants of the dominant B.1.1 viral lineage also encode a truncated N protein, termed N∗ or Δ(1-209), that mediates genome packaging despite lacking the N-terminal RNA-binding domain and SR region. Here, we use mass photometry and negative stain electron microscopy to show that purified Δ(1-209) and viral RNA assemble into vRNPs that are remarkably similar in size and shape to those formed with full-length N protein. We show that assembly of Δ(1-209) vRNPs requires the leucine-rich helix of the central disordered region and that this helix promotes N protein oligomerization. We also find that fusion of a phosphomimetic SR region to Δ(1-209) inhibits RNA binding and vRNP assembly. Our results provide new insights into the mechanisms by which RNA binding promotes N protein self-association and vRNP assembly, and how this process is modulated by phosphorylation.
Collapse
Affiliation(s)
- Armin N Adly
- Department of Physiology, University of California, San Francisco, California, USA
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | | | - Abdullah M Syed
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Alison Ciling
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Jennifer A Doudna
- J. David Gladstone Institutes, San Francisco, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA; Innovative Genomics Institute, University of California, Berkeley, California, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA; Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, California, USA.
| |
Collapse
|
7
|
Abou Baker DH, Hassan EM, El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2023; 13:100632. [PMID: 37251276 PMCID: PMC10198795 DOI: 10.1016/j.jafr.2023.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Worldwide, Severe acute respiratory syndrome Coronavirus (SARS-CoV-2) pandemic crisis, causing many morbidities, mortality, and devastating impact on economies, so the current outbreak of the CoV-2 is a major concern for global health. The infection spread quickly and caused chaos in many countries around the world. The slow discovery of CoV-2 and the limited treatment options are among the main challenges. Therefore, the development of a drug that is safe and effective against CoV-2 is urgently needed. The present overview briefly summarizes CoV-2 drug targets ex: RNA-dependent RNA polymerase (RdRp), papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), transmembrane serine protease enzymes (TMPRSS2), angiotensin-converting enzyme 2 (ACE2), structural protein (N, S, E, and M), and virulence factors (NSP1, ORF7a, and NSP3c) for which drug design perspective can be considered. In addition, summarize all anti-COVID-19 medicinal plants and phytocompounds and their mechanisms of action to be used as a guide for further studies.
Collapse
Affiliation(s)
- Doha H Abou Baker
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
8
|
Pillai S, Du L, Deiter F, Bouzidi M, Billaud JN, Graham S, Prerna D, Selvarajah S, Lingappa A, Michon M, Yu S, Paulvannan K, Lingappa V, Boushey H, Greenland J. A Novel Viral Assembly Inhibitor Blocks SARS-CoV-2 Replication in Airway Epithelial Cells. RESEARCH SQUARE 2023:rs.3.rs-2887435. [PMID: 37292622 PMCID: PMC10246244 DOI: 10.21203/rs.3.rs-2887435/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ongoing evolution of SARS-CoV-2 to evade vaccines and therapeutics underlines the need for novel therapies with high genetic barriers to resistance. The small molecule PAV-104, identified through a cell-free protein synthesis and assembly screen, was recently shown to target host protein assembly machinery in a manner specific to viral assembly. Here, we investigated the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). Our data demonstrate that PAV-104 inhibited > 99% of infection with diverse SARS-CoV-2 variants in primary and immortalized human AECs. PAV-104 suppressed SARS-CoV-2 production without affecting viral entry or protein synthesis. PAV-104 interacted with SARS-CoV-2 nucleocapsid (N) and interfered with its oligomerization, blocking particle assembly. Transcriptomic analysis revealed that PAV-104 reversed SARS-CoV-2 induction of the Type-I interferon response and the 'maturation of nucleoprotein' signaling pathway known to support coronavirus replication. Our findings suggest that PAV-104 is a promising therapeutic candidate for COVID-19.
Collapse
Affiliation(s)
| | - Li Du
- Vitalant Research Institute/UCSF
| | - Fred Deiter
- Veterans Administration Health Care System/UCSF
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhao H, Wu D, Hassan SA, Nguyen A, Chen J, Piszczek G, Schuck P. A conserved oligomerization domain in the disordered linker of coronavirus nucleocapsid proteins. SCIENCE ADVANCES 2023; 9:eadg6473. [PMID: 37018390 PMCID: PMC10075959 DOI: 10.1126/sciadv.adg6473] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 06/01/2023]
Abstract
The nucleocapsid (N-)protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a key role in viral assembly and scaffolding of the viral RNA. It promotes liquid-liquid phase separation (LLPS), forming dense droplets that support the assembly of ribonucleoprotein particles with as-of-yet unknown macromolecular architecture. Combining biophysical experiments, molecular dynamics simulations, and analysis of the mutational landscape, we describe a heretofore unknown oligomerization site that contributes to LLPS, is required for the assembly of higher-order protein-nucleic acid complexes, and is coupled to large-scale conformational changes of N-protein upon nucleic acid binding. The self-association interface is located in a leucine-rich sequence of the intrinsically disordered linker between N-protein folded domains and formed by transient helices assembling into trimeric coiled-coils. Critical residues stabilizing hydrophobic and electrostatic interactions between adjacent helices are highly protected against mutations in viable SARS-CoV-2 genomes, and the oligomerization motif is conserved across related coronaviruses, thus presenting a target for antiviral therapeutics.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergio A. Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Vidal LEL, Figueira-Mansur J, Jurgilas PB, Argondizzo APC, Pestana CP, Martins FO, da Silva Junior HC, Miguez M, Loureiro BO, Marques CDFS, Trinta KS, da Silva LBR, de Mello MB, da Silva ED, Bastos RC, Esteves G. Process development and characterization of recombinant nucleocapsid protein for its application on COVID-19 diagnosis. Protein Expr Purif 2023; 207:106263. [PMID: 36921810 PMCID: PMC10012136 DOI: 10.1016/j.pep.2023.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
COVID-19 pandemic was caused by the severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2). The nucleocapsid (N) protein from Sars-CoV-2 is a highly immunogenic antigen and responsible for genome packing. Serological assays are important tools to detect previous exposure to SARS-CoV-2, complement epidemiological studies, vaccine evaluation and also in COVID-19 surveillance. SARS-CoV-2 N (r2N) protein was produced in Escherichia coli, characterized, and the immunological performance was evaluated by enzyme-linked immunosorbent assay (ELISA) and beads-based array immunoassay. r2N protein oligomers were evidenced when it is associated to nucleic acid. Benzonase treatment reduced host nucleic acid associated to r2N protein, but crosslinking assay still demonstrates the presence of higher-order oligomers. Nevertheless, after RNase treatment the higher-order oligomers reduced, and dimer form increased, suggesting RNA contributes to the oligomer formation. Structural analysis revealed nucleic acid did not interfere with the thermal stability of the recombinant protein. Interestingly, nucleic acid was able to prevent r2N protein aggregation even with increasing temperature while the protein benzonase treated begin aggregation process above 55 °C. In immunological characterization, ELISA performed with 233 serum samples presented a sensitivity of 97.44% (95% Confidence Interval, CI, 91.04%, 99.69%) and a specificity of 98.71% (95% CI, 95.42%, 99.84%) while beads-based array immunoassay carried out with 217 samples showed 100% sensitivity and 98.6% specificity. The results exhibited an excellent immunological performance of r2N protein in serologic assays showing that, even in presence of nucleic acid, it can be used as a component of an immunoassay for the sensitive and specific detection of SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Luãnna Elisa Liebscher Vidal
- Macromolecules Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil.
| | - Janaina Figueira-Mansur
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Patrícia Barbosa Jurgilas
- Macromolecules Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Ana Paula Correa Argondizzo
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Cristiane Pinheiro Pestana
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Fernanda Otaviano Martins
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Haroldo Cid da Silva Junior
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Mariana Miguez
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Bernardo Oliveira Loureiro
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Christiane de Fátima Silva Marques
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Karen Soares Trinta
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Leila Botelho Rodrigues da Silva
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Marcelle Bral de Mello
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Edimilson Domingos da Silva
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Renata Chagas Bastos
- Macromolecules Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Gabriela Esteves
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
11
|
Stocks BB, Thibeault MP, L’Abbé D, Stuible M, Durocher Y, Melanson JE. Production and Characterization of a SARS-CoV-2 Nucleocapsid Protein Reference Material. ACS MEASUREMENT SCIENCE AU 2022; 2:620-628. [PMID: 36785774 PMCID: PMC9662649 DOI: 10.1021/acsmeasuresciau.2c00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/02/2023]
Abstract
Rapid antigen tests have become a widely used COVID-19 diagnostic tool with demand accelerating in response to the highly contagious SARS-CoV-2 Omicron variant. Hundreds of such test kits are approved for use worldwide, predominantly reporting on the presence of the viral nucleocapsid (N) protein, yet the comparability among manufacturers remains unclear and the need for reference standards is recognized. To address this lack of standardization, the National Research Council Canada has developed a SARS-CoV-2 nucleocapsid protein reference material solution, NCAP-1. Reference value determination for N protein content was realized by amino acid analysis (AAA) via double isotope dilution liquid chromatography-tandem mass spectrometry (LC-ID-MS/MS) following acid hydrolysis of the protein, in conjunction with UV spectrophotometry based on tryptophan and tyrosine absorbance at 280 nm. The homogeneity of the material was established through spectrophotometric absorbance readings at 280 nm. The molar concentration of the N protein in NCAP-1 was 10.0 ± 1.9 μmol L-1 (k = 2, 95% confidence interval). Reference mass concentration and mass fraction values were subsequently calculated using the protein molecular weight and density of the NCAP-1 solution. Changes to protein higher-order structure, probed by size-exclusion liquid chromatography (LC-SEC) with UV detection, were used to evaluate transportation and storage stabilities. LC-SEC revealed nearly 90% of the N protein in the material is present as a mixture of hexamers and tetramers. The remaining low molecular weight species (<30 kDa) were interrogated by top-down mass spectrometry and determined to be autolysis products homologous to those previously documented for N protein of the original SARS-CoV [Biochem. Biophys. Res. Commun.2008t, 377, 429-433].
Collapse
Affiliation(s)
- Bradley B. Stocks
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A
0R6, Canada
| | - Marie-Pier Thibeault
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A
0R6, Canada
| | - Denis L’Abbé
- Human
Health Therapeutics, National Research Council
Canada, 6100 Royalmount
Avenue, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human
Health Therapeutics, National Research Council
Canada, 6100 Royalmount
Avenue, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human
Health Therapeutics, National Research Council
Canada, 6100 Royalmount
Avenue, Montreal, QC H4P 2R2, Canada
| | - Jeremy E. Melanson
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A
0R6, Canada
| |
Collapse
|
12
|
Morse M, Sefcikova J, Rouzina I, Beuning PJ, Williams M. Structural domains of SARS-CoV-2 nucleocapsid protein coordinate to compact long nucleic acid substrates. Nucleic Acids Res 2022; 51:290-303. [PMID: 36533523 PMCID: PMC9841419 DOI: 10.1093/nar/gkac1179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein performs several functions including binding, compacting, and packaging the ∼30 kb viral genome into the viral particle. N protein consists of two ordered domains, with the N terminal domain (NTD) primarily associated with RNA binding and the C terminal domain (CTD) primarily associated with dimerization/oligomerization, and three intrinsically disordered regions, an N-arm, a C-tail, and a linker that connects the NTD and CTD. We utilize an optical tweezers system to isolate a long single-stranded nucleic acid substrate to measure directly the binding and packaging function of N protein at a single molecule level in real time. We find that N protein binds the nucleic acid substrate with high affinity before oligomerizing and forming a highly compact structure. By comparing the activities of truncated protein variants missing the NTD, CTD, and/or linker, we attribute specific steps in this process to the structural domains of N protein, with the NTD driving initial binding to the substrate and ensuring high localized protein density that triggers interprotein interactions mediated by the CTD, which forms a compact and stable protein-nucleic acid complex suitable for packaging into the virion.
Collapse
Affiliation(s)
- Michael Morse
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jana Sefcikova
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Mark C Williams
- To whom correspondence should be addressed. Tel: +1 617 373 5705;
| |
Collapse
|
13
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Respiratory illness virus infections with special emphasis on COVID-19. Eur J Med Res 2022; 27:236. [PMID: 36348452 PMCID: PMC9641310 DOI: 10.1186/s40001-022-00874-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses that emerge pose challenges for treatment options as their uniqueness would not know completely. Hence, many viruses are causing high morbidity and mortality for a long time. Despite large diversity, viruses share common characteristics for infection. At least 12 different respiratory-borne viruses are reported belonging to various virus taxonomic families. Many of these viruses multiply and cause damage to the upper and lower respiratory tracts. The description of these viruses in comparison with each other concerning their epidemiology, molecular characteristics, disease manifestations, diagnosis and treatment is lacking. Such information helps diagnose, differentiate, and formulate the control measures faster. The leading cause of acute illness worldwide is acute respiratory infections (ARIs) and are responsible for nearly 4 million deaths every year, mostly in young children and infants. Lower respiratory tract infections are the fourth most common cause of death globally, after non-infectious chronic conditions. This review aims to present the characteristics of different viruses causing respiratory infections, highlighting the uniqueness of SARS-CoV-2. We expect this review to help understand the similarities and differences among the closely related viruses causing respiratory infections and formulate specific preventive or control measures.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
14
|
Carlson CR, Adly AN, Bi M, Howard CJ, Frost A, Cheng Y, Morgan DO. Reconstitution of the SARS-CoV-2 ribonucleosome provides insights into genomic RNA packaging and regulation by phosphorylation. J Biol Chem 2022; 298:102560. [PMID: 36202211 PMCID: PMC9529352 DOI: 10.1016/j.jbc.2022.102560] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 is responsible for compaction of the ∼30-kb RNA genome in the ∼90-nm virion. Previous studies suggest that each virion contains 35 to 40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined in vitro with short fragments of the viral genome, forms 15-nm particles similar to the vRNP structures observed within virions. These vRNPs depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine region weakens these interactions to generate less compact vRNPs. We propose that unmodified N protein binds structurally diverse regions in genomic RNA to form compact vRNPs within the nucleocapsid, while phosphorylation alters vRNP structure to support other N protein functions in viral transcription.
Collapse
Affiliation(s)
| | - Armin N Adly
- Department of Physiology, University of California, San Francisco, California, USA
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Conor J Howard
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Adam Frost
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, California, USA.
| |
Collapse
|
15
|
Carlson CR, Adly AN, Bi M, Cheng Y, Morgan DO. Reconstitution of the SARS-CoV-2 ribonucleosome provides insights into genomic RNA packaging and regulation by phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.23.493138. [PMID: 35664996 PMCID: PMC9164447 DOI: 10.1101/2022.05.23.493138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nucleocapsid (N) protein of coronaviruses is responsible for compaction of the ∼30-kb RNA genome in the ∼100-nm virion. Cryo-electron tomography suggests that each virion contains 35-40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined with viral RNA fragments in vitro, forms cylindrical 15-nm particles similar to the vRNP structures observed within coronavirus virions. These vRNPs form in the presence of stem-loop-containing RNA and depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine (SR) region weakens these interactions and disrupts vRNP assembly. We propose that unmodified N binds stem-loop-rich regions in genomic RNA to form compact vRNP complexes within the nucleocapsid, while phosphorylated N maintains uncompacted viral RNA to promote the protein's transcriptional function.
Collapse
Affiliation(s)
| | - Armin N. Adly
- Department of Physiology, University of California, San Francisco CA 94143
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco CA 94143
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco CA 94143
| | - David O. Morgan
- Department of Physiology, University of California, San Francisco CA 94143
| |
Collapse
|
16
|
Kolesov DE, Sinegubova MV, Safenkova IV, Vorobiev II, Orlova NA. Antigenic properties of the SARS-CoV-2 nucleoprotein are altered by the RNA admixture. PeerJ 2022; 10:e12751. [PMID: 35036106 PMCID: PMC8744485 DOI: 10.7717/peerj.12751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
Determining the presence of antibodies to the SARS-CoV-2 antigens is the best way to identify infected people, regardless of the development of symptoms of COVID-19. The nucleoprotein (NP) of the SARS-CoV-2 is an immunodominant antigen of the virus; anti-NP antibodies are detected in persons previously infected with the virus with the highest titers. Many test systems for detecting antibodies to SARS-CoV-2 contain NP or its fragments as antigen. The sensitivity and specificity of such test systems differ significantly, which can be explained by variations in the antigenic properties of NP caused by differences in the methods of its cultivation, isolation and purification. We investigated this effect for the Escherichia coli-derived SARS-CoV-2 NP, obtained from the cytoplasm in the soluble form. We hypothesized that co-purified nucleic acids that form a strong complex with NP might negatively affect NP's antigenic properties. Therefore, we have established the NP purification method, which completely eliminates the RNA in the NP preparation. Two stages of RNA removal were used: treatment of the crude lysate of E. coli with RNase A and subsequent selective RNA elution with 2 M NaCl solution. The resulting NP without RNA has a significantly better signal-to-noise ratio when used as an ELISA antigen and tested with a control panel of serum samples with antibodies to SARS-CoV-2; therefore, it is preferable for in vitro diagnostic use. The same increase of the signal-to-noise ratio was detected for the free N-terminal domain of the NP. Complete removal of RNA complexed with NP during purification will significantly improve its antigenic properties, and the absence of RNA in NP preparations should be controlled during the production of this antigen.
Collapse
Affiliation(s)
- Denis E. Kolesov
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V. Safenkova
- Laboratory of Immunobiochemistry, Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia, Moscow, Russia
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Jia Z, Liu C, Chen Y, Jiang H, Wang Z, Yao J, Yang J, Zhu J, Zhang B, Yuchi Z. Crystal structures of the SARS-CoV-2 nucleocapsid protein C-terminal domain and development of nucleocapsid-targeting nanobodies. FEBS J 2021; 289:3813-3825. [PMID: 34665939 PMCID: PMC8646419 DOI: 10.1111/febs.16239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
The ongoing outbreak of COVID-19 caused by SARS-CoV-2 has resulted in a serious public health threat globally. Nucleocapsid protein is a major structural protein of SARS-CoV-2 that plays important roles in the viral RNA packing, replication, assembly, and infection. Here, we report two crystal structures of nucleocapsid protein C-terminal domain (CTD) at resolutions of 2.0 Å and 3.1 Å, respectively. These two structures, crystallized under different conditions, contain 2 and 12 CTDs in asymmetric unit, respectively. Interestingly, despite different crystal packing, both structures show a similar dimeric form as the smallest unit, consistent with its solution form measured by the size-exclusion chromatography, suggesting an important role of CTD in the dimerization of nucleocapsid proteins. By analyzing the surface charge distribution, we identified a stretch of positively charged residues between Lys257 and Arg262 that are involved in RNA-binding. Through screening a single-domain antibodies (sdAbs) library, we identified four sdAbs targeting different regions of nucleocapsid protein with high affinities that have future potential to be used in viral detection and therapeutic purposes.
Collapse
Affiliation(s)
- Zhenghu Jia
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China.,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China.,International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Chen Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Yuewen Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Zijing Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Jialu Yao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Jie Yang
- International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Jiaxing Zhu
- International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Boqing Zhang
- International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| |
Collapse
|
18
|
Ryu JK, Hwang DE, Choi JM. Current Understanding of Molecular Phase Separation in Chromosomes. Int J Mol Sci 2021; 22:10736. [PMID: 34639077 PMCID: PMC8509192 DOI: 10.3390/ijms221910736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular phase separation denotes the demixing of a specific set of intracellular components without membrane encapsulation. Recent studies have found that biomolecular phase separation is involved in a wide range of cellular processes. In particular, phase separation is involved in the formation and regulation of chromosome structures at various levels. Here, we review the current understanding of biomolecular phase separation related to chromosomes. First, we discuss the fundamental principles of phase separation and introduce several examples of nuclear/chromosomal biomolecular assemblies formed by phase separation. We also briefly explain the experimental and computational methods used to study phase separation in chromosomes. Finally, we discuss a recent phase separation model, termed bridging-induced phase separation (BIPS), which can explain the formation of local chromosome structures.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Da-Eun Hwang
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
19
|
Hamorsky KT, Bushau-Sprinkle AM, Kitterman K, Corman JM, DeMarco J, Keith RJ, Bhatnagar A, Fuqua JL, Lasnik A, Joh J, Chung D, Klein J, Flynn J, Gardner M, Barve S, Ghare SS, Palmer KE. Serological assessment of SARS-CoV-2 infection during the first wave of the pandemic in Louisville Kentucky. Sci Rep 2021; 11:18285. [PMID: 34521900 PMCID: PMC8440627 DOI: 10.1038/s41598-021-97423-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays intended for diagnosis, sero-epidemiologic assessment, and measurement of protective antibody titers upon infection or vaccination are essential for managing the SARS-CoV-2 pandemic. Serological assays measuring the antibody responses against SARS-CoV-2 antigens are readily available. However, some lack appropriate characteristics to accurately measure SARS-CoV-2 antibodies titers and neutralization. We developed an Enzyme-linked Immunosorbent Assay (ELISA) methods for measuring IgG, IgA, and IgM responses to SARS-CoV-2, Spike (S), receptor binding domain (RBD), and nucleocapsid (N) proteins. Performance characteristics of sensitivity and specificity have been defined. ELISA results show positive correlation with microneutralization and Plaque Reduction Neutralization assays with infectious SARS-CoV-2. Our ELISA was used to screen healthcare workers in Louisville, KY during the first wave of the local pandemic in the months of May and July 2020. We found a seropositive rate of approximately 1.4% and 2.3%, respectively. Our analyses demonstrate a broad immune response among individuals and suggest some non-RBD specific S IgG and IgA antibodies neutralize SARS-CoV-2.
Collapse
Affiliation(s)
- Krystal T Hamorsky
- James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA.
- Department of Medicine, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Adrienne M Bushau-Sprinkle
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Medicine, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kathleen Kitterman
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Medicine, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Julia M Corman
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jennifer DeMarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Rachel J Keith
- Christine Lee Brown Envirome Institute, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Christine Lee Brown Envirome Institute, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Joshua L Fuqua
- James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Amanda Lasnik
- James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Joongho Joh
- James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Medicine, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Donghoon Chung
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jon Klein
- Department of Medicine, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Joseph Flynn
- Norton Cancer Institute, Norton Healthcare, Louisville, KY, USA
| | - Marti Gardner
- Norton Cancer Institute, Norton Healthcare, Louisville, KY, USA
| | - Shirish Barve
- Department of Medicine, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Alcohol Research Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Smita S Ghare
- Department of Medicine, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Alcohol Research Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kenneth E Palmer
- James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
20
|
Lutomski C, El-Baba TJ, Bolla JR, Robinson CV. Multiple Roles of SARS-CoV-2 N Protein Facilitated by Proteoform-Specific Interactions with RNA, Host Proteins, and Convalescent Antibodies. JACS AU 2021; 1:1147-1157. [PMID: 34462738 PMCID: PMC8231660 DOI: 10.1021/jacsau.1c00139] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 05/12/2023]
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is a highly immunogenic viral protein that plays essential roles in replication and virion assembly. Here, using native mass spectrometry, we show that dimers are the functional unit of ribonucleoprotein assembly and that N protein binds RNA with a preference for GGG motifs, a common motif in coronavirus packaging signals. Unexpectedly, proteolytic processing of N protein resulted in the formation of additional proteoforms. The N-terminal proteoforms bind RNA, with the same preference for GGG motifs, and bind to cyclophilin A, an interaction which can be abolished by approved immunosuppressant cyclosporin A. Furthermore, N proteoforms showed significantly different interactions with IgM, IgG, and IgA antibodies from convalescent plasma. Notably, the C-terminal proteoform exhibited a heightened interaction with convalescent antibodies, suggesting the antigenic epitope is localized to the C-terminus. Overall, the different interactions of N proteoforms highlight potential avenues for therapeutic intervention and identify a stable and immunogenic proteoform as a possible candidate for immune-directed therapies.
Collapse
Affiliation(s)
- Corinne
A. Lutomski
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks Road, OX13QZ Oxford, U.K.
| | - Tarick J. El-Baba
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks Road, OX13QZ Oxford, U.K.
| | - Jani R. Bolla
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks Road, OX13QZ Oxford, U.K.
| | - Carol V. Robinson
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks Road, OX13QZ Oxford, U.K.
| |
Collapse
|
21
|
Forsythe HM, Rodriguez Galvan J, Yu Z, Pinckney S, Reardon P, Cooley RB, Zhu P, Rolland AD, Prell JS, Barbar E. Multivalent binding of the partially disordered SARS-CoV-2 nucleocapsid phosphoprotein dimer to RNA. Biophys J 2021; 120:2890-2901. [PMID: 33794152 PMCID: PMC8007181 DOI: 10.1016/j.bpj.2021.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/16/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
The nucleocapsid phosphoprotein N plays critical roles in multiple processes of the severe acute respiratory syndrome coronavirus 2 infection cycle: it protects and packages viral RNA in N assembly, interacts with the inner domain of spike protein, binds to structural membrane (M) protein during virion packaging and maturation, and to proteases causing replication of infective virus particle. Even with its importance, very limited biophysical studies are available on the N protein because of its high level of disorder, high propensity for aggregation, and high susceptibility for autoproteolysis. Here, we successfully prepare the N protein and a 1000-nucleotide fragment of viral RNA in large quantities and purity suitable for biophysical studies. A combination of biophysical and biochemical techniques demonstrates that the N protein is partially disordered and consists of an independently folded RNA-binding domain and a dimerization domain, flanked by disordered linkers. The protein assembles as a tight dimer with a dimerization constant of sub-micromolar but can also form transient interactions with other N proteins, facilitating larger oligomers. NMR studies on the ∼100-kDa dimeric protein identify a specific domain that binds 1-1000-nt RNA and show that the N-RNA complex remains highly disordered. Analytical ultracentrifugation, isothermal titration calorimetry, multiangle light scattering, and cross-linking experiments identify a heterogeneous mixture of complexes with a core corresponding to at least 70 dimers of N bound to 1-1000 RNA. In contrast, very weak binding is detected with a smaller construct corresponding to the RNA-binding domain using similar experiments. A model that explains the importance of the bivalent structure of N to its binding on multivalent sites of the viral RNA is presented.
Collapse
Affiliation(s)
| | | | - Zhen Yu
- Department of Biochemistry and Biophysics Corvallis, Oregon
| | - Seth Pinckney
- Department of Biochemistry and Biophysics Corvallis, Oregon
| | | | | | - Phillip Zhu
- Department of Biochemistry and Biophysics Corvallis, Oregon
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon
| | - Elisar Barbar
- Department of Biochemistry and Biophysics Corvallis, Oregon.
| |
Collapse
|
22
|
Chauhan A, Avti P, Shekhar N, Prajapat M, Sarma P, Bhattacharyya A, Kumar S, Kaur H, Prakash A, Medhi B. Structural and conformational analysis of SARS CoV 2 N-CTD revealing monomeric and dimeric active sites during the RNA-binding and stabilization: Insights towards potential inhibitors for N-CTD. Comput Biol Med 2021; 134:104495. [PMID: 34022485 PMCID: PMC8123409 DOI: 10.1016/j.compbiomed.2021.104495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
The advent of SARS-CoV-2 has become a universal health issue with no appropriate cure available to date. The coronavirus nucleocapsid (N) protein combines viral genomic RNA into a ribonucleoprotein and protects the viral genome from the host's nucleases. Structurally, the N protein comprises two independent domains: the N-terminal domain (NTD) for RNA-binding and C-terminal domain (CTD) involved in RNA-binding, protein dimerization, and nucleocapsid stabilization. The present study explains the structural aspects associated with the involvement of nucleocapsid C-terminal domain in the subunit assembly that helps the RNA binding and further stabilizing the virus assembly by protecting RNA from the hosts exonucleases degradation. The molecular dynamics (MD) simulations of the N-CTD and RNA complex suggests two active sites (site I: a monomer) and (site II: a dimer) with structural stability (RMSD: ~2 Å), Cα fluctuations (RMSF: ~3 Å) and strong protein-ligand interactions were estimated through the SiteMap module of Schrodinger. Virtual screening of 2456 FDA-approved drugs using structure-based docking identified top two leads distinctively against Site-I (monomer): Ceftaroline fosamil (MM-GBSA = -47.12 kcal/mol) and Cefoperazone (-45.84 kcal/mol); and against Site-II (dimer): Boceprevir, (an antiviral protease inhibitor, -106.78 kcal/mol) and Ceftaroline fosamil (-99.55 kcal/mol). The DCCM and PCA of drugs Ceftaroline fosamil (PC1+PC2 = 71.9%) and Boceprevir (PC1 +PC2 = 61.6%) show significant correlated residue motions which suggests highly induced conformational changes in the N-CTD dimer. Therefore, we propose N-CTD as a druggable target with two active binding sites (monomer and dimer) involved in specific RNA binding and stability. The RNA binding site with Ceftaroline fosamil binding can prevent viral assembly and can act as an antiviral for coronavirus.
Collapse
Affiliation(s)
- Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
23
|
Zhao H, Wu D, Nguyen A, Li Y, Adão RC, Valkov E, Patterson GH, Piszczek G, Schuck P. Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. iScience 2021; 24:102523. [PMID: 33997662 PMCID: PMC8103780 DOI: 10.1016/j.isci.2021.102523] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleocapsid (N) protein of the SARS-CoV-2 virus packages the viral genome into well-defined ribonucleoprotein particles, but the molecular pathway is still unclear. N-protein is dimeric and consists of two folded domains with nucleic acid (NA) binding sites, surrounded by intrinsically disordered regions that promote liquid-liquid phase separation. Here, we use biophysical tools to study N-protein interactions with oligonucleotides of different lengths, examining the size, composition, secondary structure, and energetics of the resulting states. We observe the formation of supramolecular clusters or nuclei preceding growth into phase-separated droplets. Short hexanucleotide NA forms compact 2:2 N-protein/NA complexes with reduced disorder. Longer oligonucleotides expose additional N-protein interactions and multi-valent protein-NA interactions, which generate higher-order mixed oligomers and simultaneously promote growth of droplets. Phase separation is accompanied by a significant change in protein secondary structure, different from that caused by initial NA binding, which may contribute to the assembly of ribonucleoprotein particles within macromolecular condensates.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Regina C. Adão
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Eugene Valkov
- Messenger RNA Regulation and Decay Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Building 560, Room 21-105A, Frederick, MD 21702, USA
| | - George H. Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Wu Y, Ma L, Cai S, Zhuang Z, Zhao Z, Jin S, Xie W, Zhou L, Zhang L, Zhao J, Cui J. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation. Signal Transduct Target Ther 2021; 6:167. [PMID: 33895773 PMCID: PMC8065320 DOI: 10.1038/s41392-021-00575-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.
Collapse
Affiliation(s)
- Yaoxing Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihui Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiyao Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weihong Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lingli Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Benzigar MR, Bhattacharjee R, Baharfar M, Liu G. Current methods for diagnosis of human coronaviruses: pros and cons. Anal Bioanal Chem 2021; 413:2311-2330. [PMID: 33219449 PMCID: PMC7679240 DOI: 10.1007/s00216-020-03046-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
The current global fight against coronavirus disease (COVID-19) to flatten the transmission curve is put forth by the World Health Organization (WHO) as there is no immediate diagnosis or cure for COVID-19 so far. In order to stop the spread, researchers worldwide are working around the clock aiming to develop reliable tools for early diagnosis of severe acute respiratory syndrome (SARS-CoV-2) understanding the infection path and mechanisms. Currently, nucleic acid-based molecular diagnosis (real-time reverse transcription polymerase chain reaction (RT-PCR) test) is considered the gold standard for early diagnosis of SARS-CoV-2. Antibody-based serology detection is ineffective for the purpose of early diagnosis, but a potential tool for serosurveys, providing people with immune certificates for clearance from COVID-19 infection. Meanwhile, there are various blooming methods developed these days. In this review, we summarise different types of coronavirus discovered which can be transmitted between human beings. Methods used for diagnosis of the discovered human coronavirus (SARS, MERS, COVID-19) including nucleic acid detection, gene sequencing, antibody detection, antigen detection, and clinical diagnosis are presented. Their merits, demerits and prospects are discussed which can help the researchers to develop new generation of advanced diagnostic tools for accurate and effective control of human coronavirus transmission in the communities and hospitals.
Collapse
Affiliation(s)
- Mercy R Benzigar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ripon Bhattacharjee
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mahroo Baharfar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
26
|
Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat Commun 2021; 12:1936. [PMID: 33782395 PMCID: PMC8007728 DOI: 10.1038/s41467-021-21953-3] [Citation(s) in RCA: 286] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - J Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Melissa D Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Michael D Ward
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Neha Vithani
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Jason A Wagoner
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
Caldas LA, Carneiro FA, Monteiro FL, Augusto I, Higa LM, Miranda K, Tanuri A, de Souza W. Intracellular host cell membrane remodelling induced by SARS-CoV-2 infection in vitro. Biol Cell 2021; 113:281-293. [PMID: 33600624 PMCID: PMC8013410 DOI: 10.1111/boc.202000146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Background Information Severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) infection induces an alteration in the endomembrane system of the mammalian cells. In this study, we used transmission electron microscopy and electron tomography to investigate the main structural alterations in the cytoplasm of Vero cells infected with a SARS‐CoV‐2 isolate from São Paulo state (Brazil). Results Different membranous structures derived from the zippered endoplasmic reticulum were observed along with virus assembly through membrane budding. Also, we demonstrated the occurrence of annulate lamellae in the cytoplasm of infected cells and the presence of virus particles in the perinuclear space. Conclusions and Significance This study contributes to a better understanding of the cell biology of SARS‐CoV‐2 and the mechanisms of the interaction of the virus with the host cell that promote morphological changes, recruitment of organelles and cell components, in a context of a virus‐induced membrane remodelling.
Collapse
Affiliation(s)
- Lucio Ayres Caldas
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, RJ, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Fabiana Avila Carneiro
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Fabio Luis Monteiro
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ingrid Augusto
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Luiza Mendonça Higa
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB) and Centro Nacional de Biologia Estutural e Bioimagen (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB) and Centro Nacional de Biologia Estutural e Bioimagen (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Comparative Genomics and Integrated Network Approach Unveiled Undirected Phylogeny Patterns, Co-mutational Hot Spots, Functional Cross Talk, and Regulatory Interactions in SARS-CoV-2. mSystems 2021; 6:6/1/e00030-21. [PMID: 33622851 PMCID: PMC8573956 DOI: 10.1128/msystems.00030-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in 92 million cases in a span of 1 year. The study focuses on understanding population-specific variations attributing its high rate of infections in specific geographical regions particularly in the United States. Rigorous phylogenomic network analysis of complete SARS-CoV-2 genomes (245) inferred five central clades named a (ancestral), b, c, d, and e (subtypes e1 and e2). Clade d and subclade e2 were found exclusively comprised of U.S. strains. Clades were distinguished by 10 co-mutational combinations in Nsp3, ORF8, Nsp13, S, Nsp12, Nsp2, and Nsp6. Our analysis revealed that only 67.46% of single nucleotide polymorphism (SNP) mutations were at the amino acid level. T1103P mutation in Nsp3 was predicted to increase protein stability in 238 strains except for 6 strains which were marked as ancestral type, whereas co-mutation (P409L and Y446C) in Nsp13 were found in 64 genomes from the United States highlighting its 100% co-occurrence. Docking highlighted mutation (D614G) caused reduction in binding of spike proteins with angiotensin-converting enzyme 2 (ACE2), but it also showed better interaction with the TMPRSS2 receptor contributing to high transmissibility among U.S. strains. We also found host proteins, MYO5A, MYO5B, and MYO5C, that had maximum interaction with viral proteins (nucleocapsid [N], spike [S], and membrane [M] proteins). Thus, blocking the internalization pathway by inhibiting MYO5 proteins which could be an effective target for coronavirus disease 2019 (COVID-19) treatment. The functional annotations of the host-pathogen interaction (HPI) network were found to be closely associated with hypoxia and thrombotic conditions, confirming the vulnerability and severity of infection. We also screened CpG islands in Nsp1 and N conferring the ability of SARS-CoV-2 to enter and trigger zinc antiviral protein (ZAP) activity inside the host cell. IMPORTANCE In the current study, we presented a global view of mutational pattern observed in SARS-CoV-2 virus transmission. This provided a who-infect-whom geographical model since the early pandemic. This is hitherto the most comprehensive comparative genomics analysis of full-length genomes for co-mutations at different geographical regions especially in U.S. strains. Compositional structural biology results suggested that mutations have a balance of opposing forces affecting pathogenicity suggesting that only a few mutations are effective at the translation level. Novel HPI analysis and CpG predictions elucidate the proof of concept of hypoxia and thrombotic conditions in several patients. Thus, the current study focuses the understanding of population-specific variations attributing a high rate of SARS-CoV-2 infections in specific geographical regions which may eventually be vital for the most severely affected countries and regions for sharp development of custom-made vindication strategies.
Collapse
|
29
|
Zhao H, Wu D, Nguyen A, Li Y, Adão RC, Valkov E, Patterson GH, Piszczek G, Schuck P. Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.08.430344. [PMID: 33594360 PMCID: PMC7885910 DOI: 10.1101/2021.02.08.430344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nucleocapsid (N) protein of the SARS-CoV-2 virus packages the viral genome into well-defined ribonucleoprotein particles, but the molecular pathway is still unclear. N-protein is dimeric and consists of two folded domains with nucleic acid (NA) binding sites, surrounded by intrinsically disordered regions that promote liquid-liquid phase separation. Here we use biophysical tools to study N-protein interactions with oligonucleotides of different length, examining the size, composition, secondary structure, and energetics of the resulting states. We observe formation of supramolecular clusters or nuclei preceding growth into phase-separated droplets. Short hexanucleotide NA forms compact 2:2 N-protein/NA complexes with reduced disorder. Longer oligonucleotides expose additional N-protein interactions and multi-valent protein-NA interactions, which generate higher-order mixed oligomers and simultaneously promote growth of droplets. Phase separation is accompanied by a significant increase in protein secondary structure, different from that caused by initial NA binding, which may contribute to the assembly of ribonucleoprotein particles within molecular condensates.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Regina C. Adão
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Eugene Valkov
- Messenger RNA Regulation and Decay Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Building 560, Room 21–105A, Frederick, MD 21702
| | - George H. Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Bruinsma RF, Wuite GJL, Roos WH. Physics of viral dynamics. NATURE REVIEWS. PHYSICS 2021; 3:76-91. [PMID: 33728406 PMCID: PMC7802615 DOI: 10.1038/s42254-020-00267-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 05/12/2023]
Abstract
Viral capsids are often regarded as inert structural units, but in actuality they display fascinating dynamics during different stages of their life cycle. With the advent of single-particle approaches and high-resolution techniques, it is now possible to scrutinize viral dynamics during and after their assembly and during the subsequent development pathway into infectious viruses. In this Review, the focus is on the dynamical properties of viruses, the different physical virology techniques that are being used to study them, and the physical concepts that have been developed to describe viral dynamics.
Collapse
Affiliation(s)
- Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California, USA
| | - Gijs J. L. Wuite
- Fysica van levende systemen, Vrije Universiteit, Amsterdam, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| |
Collapse
|
31
|
Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.17.158121. [PMID: 32587966 PMCID: PMC7310622 DOI: 10.1101/2020.06.17.158121] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.
Collapse
|
32
|
Iserman C, Roden CA, Boerneke MA, Sealfon RSG, McLaughlin GA, Jungreis I, Fritch EJ, Hou YJ, Ekena J, Weidmann CA, Theesfeld CL, Kellis M, Troyanskaya OG, Baric RS, Sheahan TP, Weeks KM, Gladfelter AS. Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. Mol Cell 2020; 80:1078-1091.e6. [PMID: 33290746 PMCID: PMC7691212 DOI: 10.1016/j.molcel.2020.11.041] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.
Collapse
Affiliation(s)
- Christiane Iserman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine A Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark A Boerneke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Grace A McLaughlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ethan J Fritch
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joanne Ekena
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chandra L Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Carlson CR, Asfaha JB, Ghent CM, Howard CJ, Hartooni N, Safari M, Frankel AD, Morgan DO. Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for its Dual Functions. Mol Cell 2020; 80:1092-1103.e4. [PMID: 33248025 PMCID: PMC7677695 DOI: 10.1016/j.molcel.2020.11.025] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription. It is not clear how the N protein mediates such distinct functions. The N protein contains two RNA-binding domains surrounded by regions of intrinsic disorder. Phosphorylation of the central disordered region promotes the protein's transcriptional function, but the underlying mechanism is not known. Here, we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates. Unmodified N protein forms partially ordered gel-like condensates and discrete 15-nm particles based on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces these interactions, generating a more liquid-like droplet. We propose that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing.
Collapse
Affiliation(s)
- Christopher R Carlson
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan B Asfaha
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chloe M Ghent
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Conor J Howard
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nairi Hartooni
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maliheh Safari
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan D Frankel
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Perdikari TM, Murthy AC, Ryan VH, Watters S, Naik MT, Fawzi NL. SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. EMBO J 2020; 39:e106478. [PMID: 33200826 PMCID: PMC7737613 DOI: 10.15252/embj.2020106478] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and assemble within viral factories, dynamic compartments formed within the host cells associated with human stress granules. Here, we test the possibility that the multivalent RNA-binding nucleocapsid protein (N) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) condenses with RNA via liquid-liquid phase separation (LLPS) and that N protein can be recruited in phase-separated forms of human RNA-binding proteins associated with SG formation. Robust LLPS with RNA requires two intrinsically disordered regions (IDRs), the N-terminal IDR and central-linker IDR, as well as the folded C-terminal oligomerization domain, while the folded N-terminal domain and the C-terminal IDR are not required. N protein phase separation is induced by addition of non-specific RNA. In addition, N partitions in vitro into phase-separated forms of full-length human hnRNPs (TDP-43, FUS, hnRNPA2) and their low-complexity domains (LCs). These results provide a potential mechanism for the role of N in SARS-CoV-2 viral genome packing and in host-protein co-opting necessary for viral replication and infectivity.
Collapse
Affiliation(s)
| | - Anastasia C Murthy
- Molecular BiologyCell Biology & Biochemistry Graduate ProgramBrown UniversityProvidenceRIUSA
| | - Veronica H Ryan
- Neuroscience Graduate ProgramBrown UniversityProvidenceRIUSA
| | - Scott Watters
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
| | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
- Robert J. and Nancy D. Carney Institute for Brain ScienceBrown UniversityProvidenceRIUSA
| |
Collapse
|
35
|
Moosa MM, Banerjee PR. Subversion of host stress granules by coronaviruses: Potential roles of π-rich disordered domains of viral nucleocapsids. J Med Virol 2020; 92:2891-2893. [PMID: 32558957 PMCID: PMC7323341 DOI: 10.1002/jmv.26195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022]
|
36
|
Peng Y, Du N, Lei Y, Dorje S, Qi J, Luo T, Gao GF, Song H. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. EMBO J 2020; 39:e105938. [PMID: 32914439 PMCID: PMC7560215 DOI: 10.15252/embj.2020105938] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, has resulted in severe and unprecedented economic and social disruptions in the world. Nucleocapsid (N) protein, which is the major structural component of the virion and is involved in viral replication, assembly and immune regulation, plays key roles in the viral life cycle. Here, we solved the crystal structures of the N- and C-terminal domains (N-NTD and N-CTD) of SARS-CoV-2 N protein, at 1.8 and 1.5 Å resolution, respectively. Both structures show conserved features from other CoV N proteins. The binding sites targeted by small molecules against HCoV-OC43 and MERS-CoV, which inhibit viral infection by blocking the RNA-binding activity or normal oligomerization of N protein, are relatively conserved in our structure, indicating N protein is a promising drug target. In addition, certain areas of N-NTD and N-CTD display distinct charge distribution patterns in SARS-CoV-2, which may alter the RNA-binding modes. The specific antigenic characteristics are critical for developing specific immune-based rapid diagnostic tests. Our structural information can aid in the discovery and development of antiviral inhibitors against SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Ya Peng
- Laboratory of Animal Infectious DiseasesCollege of Animal Sciences and Veterinary MedicineGuangxi UniversityNanningChina
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Ning Du
- Research Network of Immunity and Health (RNIH)Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
| | - Yuqing Lei
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sonam Dorje
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tingrong Luo
- Laboratory of Animal Infectious DiseasesCollege of Animal Sciences and Veterinary MedicineGuangxi UniversityNanningChina
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Research Network of Immunity and Health (RNIH)Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hao Song
- Research Network of Immunity and Health (RNIH)Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
| |
Collapse
|
37
|
Paggiaro AO, Carvalho VF, Gemperli R. Effect of different human tissue processing techniques on SARS-CoV-2 inactivation-review. Cell Tissue Bank 2020; 22:1-10. [PMID: 33033963 PMCID: PMC7543962 DOI: 10.1007/s10561-020-09869-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
The safety of the tissue transplant recipient is a top priority for tissue banks, and the emergence of the new coronavirus SARS-CoV-2 has raised significant concerns about the risks of releasing tissue for clinical use. In the present study, we conducted a literature review about the potential infectivity of SARS-CoV-2 in different biological tissues and the influence of various tissue processing and sterilization procedures on viral inactivation. The search revealed that SARS-CoV-2 binds to the human angiotensin-converting enzyme receptor to penetrate human cells. These receptors are present in skin cells, musculoskeletal tissue, amniotic membranes, cardiovascular tissue and ocular tissues, including the cornea. In general, we found that coronaviruses are stable at low temperatures, and inactivated upon exposure to extreme heat and pH. Notably, gamma irradiation, which has already been employed to inactivate SARS and MERS, could be useful for sterilizing skin, amnion and musculoskeletal tissues against SARS-CoV-2. We conclude that due to the limited information about the effects of physical and chemical tissue processing methods on viral neutralization, rigorous donor screening is still essential for tissue transplant recipient safety.
Collapse
Affiliation(s)
- André Oliveira Paggiaro
- ICHC Tissue Bank-HCFMUSP, Eneas de Carvalho, São Paulo, 05403-000, Brazil. .,Plastic Surgery Department-HCFMUSP, Universidade de São Paulo, São Paulo, 07023-070, Brazil. .,Nursing Post Graduation-Universidade Guarulhos, Guarulhos, 05403-000, Brazil.
| | | | - Rolf Gemperli
- Plastic Surgery Department-HCFMUSP, Universidade de São Paulo, São Paulo, 07023-070, Brazil
| |
Collapse
|
38
|
Ye Q, West AMV, Silletti S, Corbett KD. Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Sci 2020; 29:1890-1901. [PMID: 32654247 PMCID: PMC7405475 DOI: 10.1002/pro.3909] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/18/2023]
Abstract
The COVID-2019 pandemic is the most severe acute public health threat of the twenty-first century. To properly address this crisis with both robust testing and novel treatments, we require a deep understanding of the life cycle of the causative agent, the SARS-CoV-2 coronavirus. Here, we examine the architecture and self-assembly properties of the SARS-CoV-2 nucleocapsid protein, which packages viral RNA into new virions. We determined a 1.4 Å resolution crystal structure of this protein's N2b domain, revealing a compact, intertwined dimer similar to that of related coronaviruses including SARS-CoV. While the N2b domain forms a dimer in solution, addition of the C-terminal spacer B/N3 domain mediates formation of a homotetramer. Using hydrogen-deuterium exchange mass spectrometry, we find evidence that at least part of this putatively disordered domain is structured, potentially forming an α-helix that self-associates and cooperates with the N2b domain to mediate tetramer formation. Finally, we map the locations of amino acid substitutions in the N protein from over 38,000 SARS-CoV-2 genome sequences. We find that these substitutions are strongly clustered in the protein's N2a linker domain, and that substitutions within the N1b and N2b domains cluster away from their functional RNA binding and dimerization interfaces. Overall, this work reveals the architecture and self-assembly properties of a key protein in the SARS-CoV-2 life cycle, with implications for both drug design and antibody-based testing.
Collapse
Affiliation(s)
- Qiaozhen Ye
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Alan M. V. West
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Steve Silletti
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Kevin D. Corbett
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCaliforniaUSA
- Ludwig Institute for Cancer ResearchLa JollaCaliforniaUSA
| |
Collapse
|
39
|
Kumar V. Emerging Human Coronavirus Infections (SARS, MERS, and COVID-19): Where They Are Leading Us. Int Rev Immunol 2020; 40:5-53. [PMID: 32744465 DOI: 10.1080/08830185.2020.1800688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus infections are responsible for mild, moderate, and severe infections in birds and mammals. These were first isolated in humans as causal microorganisms responsible for common cold. The 2002-2003 SARS epidemic caused by SARS-CoV and 2012 MERS epidemic (64 countries affected) caused by MERS-CoV showed their acute and fatal side. These two CoV infections killed thousands of patients infected worldwide. However, WHO has still reported the MERS case in December 2019 in middle-eastern country (Saudi Arabia), indicating the MERS epidemic has not ended completely yet. Although we have not yet understood completely these two CoV epidemics, a third most dangerous and severe CoV infection has been originated in the Wuhan city, Hubei district of China in December 2019. This CoV infection called COVID-19 or SARS-CoV2 infection has now spread to 210 countries and territories around the world. COVID-19 has now been declared a pandemic by the World Health Organization (WHO). It has infected more than 16.69 million people with more than 663,540 deaths across the world. Thus the current manuscript aims to describe all three (SARS, MERS, and COVID-19) in terms of their causal organisms (SARS-CoV, MERS-CoV, and SARS-CoV2), similarities and differences in their clinical symptoms, outcomes, immunology, and immunopathogenesis, and possible future therapeutic approaches.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
40
|
Artika IM, Dewantari AK, Wiyatno A. Molecular biology of coronaviruses: current knowledge. Heliyon 2020; 6:e04743. [PMID: 32835122 PMCID: PMC7430346 DOI: 10.1016/j.heliyon.2020.e04743] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) late December 2019 in Wuhan, China, marked the third introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The constant spillover of coronaviruses from natural hosts to humans has been linked to human activities and other factors. The seriousness of this infection and the lack of effective, licensed countermeasures clearly underscore the need of more detailed and comprehensive understanding of coronavirus molecular biology. Coronaviruses are large, enveloped viruses with a positive sense single-stranded RNA genome. Currently, coronaviruses are recognized as one of the most rapidly evolving viruses due to their high genomic nucleotide substitution rates and recombination. At the molecular level, the coronaviruses employ complex strategies to successfully accomplish genome expression, virus particle assembly and virion progeny release. As the health threats from coronaviruses are constant and long-term, understanding the molecular biology of coronaviruses and controlling their spread has significant implications for global health and economic stability. This review is intended to provide an overview of our current basic knowledge of the molecular biology of coronaviruses, which is important as basic knowledge for the development of coronavirus countermeasures.
Collapse
Affiliation(s)
- I. Made Artika
- Biosafety Level 3 Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor, 16680, Indonesia
| | - Aghnianditya Kresno Dewantari
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
| | - Ageng Wiyatno
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
| |
Collapse
|
41
|
Abstract
The current global pandemic COVID-19 caused by the SARS-CoV-2 virus has already inflicted insurmountable damage both to the human lives and global economy. There is an immediate need for identification of effective drugs to contain the disastrous virus outbreak. Global efforts are already underway at a war footing to identify the best drug combination to address the disease. In this review, an attempt has been made to understand the SARS-CoV-2 life cycle, and based on this information potential druggable targets against SARS-CoV-2 are summarized. Also, the strategies for ongoing and future drug discovery against the SARS-CoV-2 virus are outlined. Given the urgency to find a definitive cure, ongoing drug repurposing efforts being carried out by various organizations are also described. The unprecedented crisis requires extraordinary efforts from the scientific community to effectively address the issue and prevent further loss of human lives and health.
Collapse
Affiliation(s)
- Ambrish Saxena
- Indian Institute of Technology Tirupati, Tirupati, India
| |
Collapse
|
42
|
Xian Y, Zhang J, Bian Z, Zhou H, Zhang Z, Lin Z, Xu H. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharm Sin B 2020; 10:1163-1174. [PMID: 32834947 PMCID: PMC7278644 DOI: 10.1016/j.apsb.2020.06.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023] Open
Abstract
Coronaviruses (CoVs), a family of enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, unusually large RNA genome, and unique replication capability. CoVs are known to cause various potentially lethal human respiratory infectious diseases, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the very recent coronavirus disease 2019 (COVID-19) outbreak. Unfortunately, neither drug nor vaccine has yet been approved to date to prevent and treat these diseases caused by CoVs. Therefore, effective prevention and treatment medications against human coronavirus are in urgent need. In the past decades, many natural compounds have been reported to possess multiple biological activities, including antiviral properties. In this article, we provided a comprehensive review on the natural compounds that interfere with the life cycles of SARS and MERS, and discussed their potential use for the treatment of COVID-19.
Collapse
Key Words
- 3CLpro, chymotrypsin-like protease
- ACE2, angiotensin-converting enzyme 2
- BALF, bronchoalveolar lavage fluid
- COVID-19
- COVID-19, coronavirus disease 2019
- CoVs, coronaviruses
- Coronavirus
- DAT, desaminotyrosine
- ER, endoplasmic reticulum
- ERGIC, endoplasmic reticulum–Golgi intermediate compartment
- HCoVs, human coronaviruses
- HLH, hemophagocytic lymphohistiocytosis
- HR, heptad repeats
- HSV, herpes simplex virus
- IL, interleukin
- LHQWC, Lian-Hua-Qing-Wen Capsule
- MAPK, mitogen-activated protein kinase
- MERS, Middle East respiratory syndrome
- MERS-CoV
- MERS-CoV, Middle East respiratory syndrome coronavirus
- N protein, nucleocapsid protein
- NCIP, novel coronavirus-infected pneumonia
- NF-κB, nuclear factor-κB
- Natural compounds
- PI3K, phosphoinositide 3-kinases
- PLpro, papain-like protease
- RNA-Virus
- RTC, replication transcription complex
- RdRp, RNA-dependent RNA polymerase
- S protein, spike protein
- SARS, severe acute respiratory syndrome
- SARS-CoV
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- STAT, signal transducer and activator of transcription
- TCM, traditional Chinese medicine
- WHO, World Health Organization
Collapse
Affiliation(s)
- Yanfang Xian
- School of Chinese Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
- Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaoxiang Bian
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenbiao Zhang
- School of Chinese Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhixiu Lin
- School of Chinese Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
- Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Integrative Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
43
|
Carlson CR, Asfaha JB, Ghent CM, Howard CJ, Hartooni N, Morgan DO. Phosphorylation modulates liquid-liquid phase separation of the SARS-CoV-2 N protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32637943 DOI: 10.1101/2020.06.28.176248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription in the infected cell 1-3 . The N protein contains two globular RNA-binding domains surrounded by regions of intrinsic disorder 4 . Phosphorylation of the central disordered region is required for normal viral genome transcription 5,6 , which occurs in a cytoplasmic structure called the replication transcription complex (RTC) 7-11 . It is not known how phosphorylation controls N protein function. Here we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates 12-15 . Unmodified N protein forms partially ordered gel-like structures that depend on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces a subset of these interactions, generating a more liquid-like droplet. We speculate that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing. Inhibitors of N protein phosphorylation could therefore serve as antiviral therapy.
Collapse
|
44
|
Iserman C, Roden C, Boerneke M, Sealfon R, McLaughlin G, Jungreis I, Park C, Boppana A, Fritch E, Hou YJ, Theesfeld C, Troyanskaya OG, Baric RS, Sheahan TP, Weeks K, Gladfelter AS. Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.11.147199. [PMID: 32587965 PMCID: PMC7310621 DOI: 10.1101/2020.06.11.147199] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A mechanistic understanding of the SARS-CoV-2 viral replication cycle is essential to develop new therapies for the COVID-19 global health crisis. In this study, we show that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with the viral genome, and propose a model of viral packaging through LLPS. N-protein condenses with specific RNA sequences in the first 1000 nts (5'-End) under physiological conditions and is enhanced at human upper airway temperatures. N-protein condensates exclude non-packaged RNA sequences. We comprehensively map sites bound by N-protein in the 5'-End and find preferences for single-stranded RNA flanked by stable structured elements. Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules thus presenting screenable processes for identifying antiviral compounds effective against SARS-CoV-2.
Collapse
Affiliation(s)
- Christiane Iserman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Boerneke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel Sealfon
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Grace McLaughlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Chris Park
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Avinash Boppana
- Department of Computer Science, Princeton University, Princeton, NJ USA
| | - Ethan Fritch
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chandra Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Olga G Troyanskaya
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Department of Computer Science, Princeton University, Princeton, NJ USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Perdikari TM, Murthy AC, Ryan VH, Watters S, Naik MT, Fawzi NL. SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation stimulated by RNA and partitions into phases of human ribonucleoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.09.141101. [PMID: 32577653 PMCID: PMC7302208 DOI: 10.1101/2020.06.09.141101] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and may assemble within viral factories, dynamic compartments formed within the host cells. Here, we examine the possibility that the multivalent RNA-binding nucleocapsid protein (N) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) compacts RNA via protein-RNA liquid-liquid phase separation (LLPS) and that N interactions with host RNA-binding proteins are mediated by phase separation. To this end, we created a construct expressing recombinant N fused to a N-terminal maltose binding protein tag which helps keep the oligomeric N soluble for purification. Using in vitro phase separation assays, we find that N is assembly-prone and phase separates avidly. Phase separation is modulated by addition of RNA and changes in pH and is disfavored at high concentrations of salt. Furthermore, N enters into in vitro phase separated condensates of full-length human hnRNPs (TDP-43, FUS, and hnRNPA2) and their low complexity domains (LCs). However, N partitioning into the LC of FUS, but not TDP-43 or hnRNPA2, requires cleavage of the solubilizing MBP fusion. Hence, LLPS may be an essential mechanism used for SARS-CoV-2 and other RNA viral genome packing and host protein co-opting, functions necessary for viral replication and hence infectivity.
Collapse
Affiliation(s)
| | - Anastasia C Murthy
- Molecular Biology, Cell Biology & Biochemistry Graduate Program, Brown University, Providence, RI, USA
| | - Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, RI, USA
| | - Scott Watters
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
46
|
On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater. WATER 2020. [DOI: 10.3390/w12061598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it.
Collapse
|
47
|
Enayatkhani M, Hasaniazad M, Faezi S, Gouklani H, Davoodian P, Ahmadi N, Einakian MA, Karmostaji A, Ahmadi K. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. J Biomol Struct Dyn 2020; 39:2857-2872. [PMID: 32295479 PMCID: PMC7196925 DOI: 10.1080/07391102.2020.1756411] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
At present, novel Coronavirus (2019-nCoV, the causative agent of COVID-19) has caused worldwide social and economic disruption. The disturbing statistics of this infection promoted us to develop an effective vaccine candidate against the COVID-19. In this study, bioinformatics approaches were employed to design and introduce a novel multi-epitope vaccine against 2019-nCoV that can potentially trigger both CD4+ and CD8+ T-cell immune responses and investigated its biological activities by computational tools. Three known antigenic proteins (Nucleocapsid, ORF3a, and Membrane protein, hereafter called NOM) from the virus were selected and analyzed for prediction of the potential immunogenic B and T-cell epitopes and then validated using bioinformatics tools. Based on in silico analysis, we have constructed a multi-epitope vaccine candidate (NOM) with five rich-epitopes domain including highly scored T and B-cell epitopes. After predicting and evaluating of the third structure of the protein candidate, the best 3 D predicted model was applied for docking studies with Toll-like receptor 4 (TLR4) and HLA-A*11:01. In the next step, molecular dynamics (MD) simulation was used to evaluate the stability of the designed fusion protein with TLR4 and HLA-A*11:01 receptors. MD studies demonstrated that the NOM-TLR4 and NOM-HLA-A*11:01 docked models were stable during simulation time. In silico evaluation showed that the designed chimeric protein could simultaneously elicit humoral and cell-mediated immune responses. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Enayatkhani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Hasaniazad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parivash Davoodian
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Ahmadi
- Department of pharmaceutical chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Einakian
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afsaneh Karmostaji
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
48
|
Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle. J Virol 2020; 94:JVI.01925-19. [PMID: 31776274 PMCID: PMC6997762 DOI: 10.1128/jvi.01925-19] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/21/2022] Open
Abstract
CoVs have long been regarded as relatively harmless pathogens for humans. Severe respiratory tract infection outbreaks caused by severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, however, have caused high pathogenicity and mortality rates in humans. These outbreaks highlighted the relevance of being able to control CoV infections. We used a model CoV, MHV, to investigate the importance of the recruitment of N protein, a central component of CoV virions, to intracellular platforms where CoVs replicate, transcribe, and translate their genomes. By identifying the principal binding partner at these intracellular platforms and generating a specific mutant, we found that N protein recruitment to these locations is crucial for promoting viral RNA synthesis. Moreover, blocking this recruitment strongly inhibits viral infection. Thus, our results explain an important aspect of the CoV life cycle and reveal an interaction of viral proteins that could be targeted in antiviral therapies. Coronavirus (CoV) nucleocapsid (N) proteins are key for incorporating genomic RNA into progeny viral particles. In infected cells, N proteins are present at the replication-transcription complexes (RTCs), the sites of CoV RNA synthesis. It has been shown that N proteins are important for viral replication and that the one of mouse hepatitis virus (MHV), a commonly used model CoV, interacts with nonstructural protein 3 (nsp3), a component of the RTCs. These two aspects of the CoV life cycle, however, have not been linked. We found that the MHV N protein binds exclusively to nsp3 and not other RTC components by using a systematic yeast two-hybrid approach, and we identified two distinct regions in the N protein that redundantly mediate this interaction. A selective N protein variant carrying point mutations in these two regions fails to bind nsp3 in vitro, resulting in inhibition of its recruitment to RTCs in vivo. Furthermore, in contrast to the wild-type N protein, this N protein variant impairs the stimulation of genomic RNA and viral mRNA transcription in vivo and in vitro, which in turn leads to impairment of MHV replication and progeny production. Altogether, our results show that N protein recruitment to RTCs, via binding to nsp3, is an essential step in the CoV life cycle because it is critical for optimal viral RNA synthesis. IMPORTANCE CoVs have long been regarded as relatively harmless pathogens for humans. Severe respiratory tract infection outbreaks caused by severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, however, have caused high pathogenicity and mortality rates in humans. These outbreaks highlighted the relevance of being able to control CoV infections. We used a model CoV, MHV, to investigate the importance of the recruitment of N protein, a central component of CoV virions, to intracellular platforms where CoVs replicate, transcribe, and translate their genomes. By identifying the principal binding partner at these intracellular platforms and generating a specific mutant, we found that N protein recruitment to these locations is crucial for promoting viral RNA synthesis. Moreover, blocking this recruitment strongly inhibits viral infection. Thus, our results explain an important aspect of the CoV life cycle and reveal an interaction of viral proteins that could be targeted in antiviral therapies.
Collapse
|
49
|
Sungsuwan S, Jongkaewwattana A, Jaru-Ampornpan P. Nucleocapsid proteins from other swine enteric coronaviruses differentially modulate PEDV replication. Virology 2019; 540:45-56. [PMID: 31756532 PMCID: PMC7112109 DOI: 10.1016/j.virol.2019.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) share tropism for swine intestinal epithelial cells. Whether mixing of viral components during co-infection alters pathogenic outcomes or viral replication is not known. In this study, we investigated how different coronavirus nucleocapsid (CoV N) proteins interact and affect PEDV replication. We found that PDCoV N and TGEV N can competitively interact with PEDV N. However, the presence of PDCoV or TGEV N led to very different outcomes on PEDV replication. While PDCoV N significantly suppresses PEDV replication, overexpression of TGEV N, like that of PEDV N, increases production of PEDV RNA and virions. Despite partial interchangeability in nucleocapsid oligomerization and viral RNA synthesis, endogenous PEDV N cannot be replaced in the production of infectious PEDV particles. Results from this study give insights into functional compatibilities and evolutionary relationship between CoV viral proteins during viral co-infection and co-evolution. PDCoV N and TGEV N interact with PEDV N in a competitive, RNA-dependent manner. PEDV replication in cell culture is enhanced by overexpression of TGEV or PEDV N but strongly suppressed by that of PDCoV N. Both TGEV and PDCoV N can partially rescue viral RNA and protein synthesis functions of PEDV N, albeit to different degrees. Neither TGEV nor PDCoV N can completely replace PEDV N in the production of PEDV infectious virions.
Collapse
Affiliation(s)
- Suttipun Sungsuwan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
50
|
Kim WM, Huang YH, Gandhi A, Blumberg RS. CEACAM1 structure and function in immunity and its therapeutic implications. Semin Immunol 2019; 42:101296. [PMID: 31604530 PMCID: PMC6814268 DOI: 10.1016/j.smim.2019.101296] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
The type I membrane protein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) distinctively exhibits significant alternative splicing that allows for tunable functions upon homophilic binding. CEACAM1 is highly expressed in the tumor environment and is strictly regulated on lymphocytes such that its expression is restricted to activated cells where it is now recognized to function in tolerance pathways. CEACAM1 is also an important target for microbes which have co-opted these attributes of CEACAM1 for the purposes of invading the host and evading the immune system. These properties, among others, have focused attention on CEACAM1 as a unique target for immunotherapy in autoimmunity and cancer. This review examines recent structural information derived from the characterization of CEACAM1:CEACAM1 interactions and heterophilic modes of binding especially to microbes and how this relates to CEACAM1 function. Through this, we aim to provide insights into targeting CEACAM1 for therapeutic intervention.
Collapse
Affiliation(s)
- Walter M Kim
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Amit Gandhi
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|