1
|
Pyöriä L, Pratas D, Toppinen M, Simmonds P, Hedman K, Sajantila A, Perdomo MF. Intra-host genomic diversity and integration landscape of human tissue-resident DNA virome. Nucleic Acids Res 2024:gkae871. [PMID: 39436041 DOI: 10.1093/nar/gkae871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The viral intra-host genetic diversities and interactions with the human genome during decades of persistence remain poorly characterized. In this study, we analyzed the variability and integration sites of persisting viruses in nine organs from thirteen individuals who died suddenly from non-viral causes. The viruses studied included parvovirus B19, six herpesviruses, Merkel cell (MCPyV) and JC polyomaviruses, totaling 127 genomes. The viral sequences across organs were remarkably conserved within each individual, suggesting that persistence stems from single dominant strains. This indicates that intra-host viral evolution, thus far inferred primarily from immunocompromised patients, is likely overestimated in healthy subjects. Indeed, we detected increased viral subpopulations in two individuals with putative reactivations, suggesting that replication status influences diversity. Furthermore, we identified asymmetrical mutation patterns reflecting selective pressures exerted by the host. Strikingly, our analysis revealed non-clonal viral integrations even in individuals without cancer. These included MCPyV integrations and truncations resembling clonally expanded variants in Merkel cell carcinomas, as well as novel junctions between herpesvirus 6B and mitochondrial sequences, the significance of which remains to be evaluated. Our work systematically characterizes the genomic landscape of the tissue-resident virome, highlighting potential deviations occurring during disease.
Collapse
Affiliation(s)
- Lari Pyöriä
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
| | - Diogo Pratas
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
- IEETA, Institute of Electronics and Informatics Engineering of Aveiro, and LASI, Intelligent Systems Associate Laboratory, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mari Toppinen
- Department of Forensic Medicine, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, OX1 3SY, Oxford, UK
| | - Klaus Hedman
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166 A, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Maria F Perdomo
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
| |
Collapse
|
2
|
Schalkwijk HH, Georgala A, Gillemot S, Temblador A, Topalis D, Wittnebel S, Andrei G, Snoeck R. A Herpes Simplex Virus 1 DNA Polymerase Multidrug Resistance Mutation Identified in a Patient With Immunodeficiency and Confirmed by Gene Editing. J Infect Dis 2023; 228:1505-1515. [PMID: 37224525 DOI: 10.1093/infdis/jiad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Herpes simplex virus 1 can cause severe infections in individuals who are immunocompromised. In these patients, emergence of drug resistance mutations causes difficulties in infection management. METHODS Seventeen herpes simplex virus 1 isolates were obtained from orofacial/anogenital lesions in a patient with leaky severe combined immunodeficiency over 7 years, before and after stem cell transplantation. Spatial/temporal evolution of drug resistance was characterized genotypically-with Sanger and next-generation sequencing of viral thymidine kinase (TK) and DNA polymerase (DP)-and phenotypically. CRISPR/Cas9 was used to introduce the novel DP Q727R mutation, and dual infection-competition assays were performed to assess viral fitness. RESULTS Isolates had identical genetic backgrounds, suggesting that orofacial/anogenital infections derived from the same virus lineage. Eleven isolates proved heterogeneous TK virus populations by next-generation sequencing, undetectable by Sanger sequencing. Thirteen isolates were acyclovir resistant due to TK mutations, and the Q727R isolate additionally exhibited foscarnet/adefovir resistance. Recombinant Q727R mutant virus showed multidrug resistance and increased fitness under antiviral pressure. CONCLUSIONS Long-term follow-up of a patient with severe combined immunodeficiency revealed virus evolution and frequent reactivation of wild-type and TK mutant strains, mostly as heterogeneous populations. The DP Q727R resistance phenotype was confirmed with CRISPR/Cas9, a useful tool to validate novel drug resistance mutations.
Collapse
Affiliation(s)
| | - Aspasia Georgala
- Department of Infectious Diseases, Jules Bordet Institute, Université Libre de Bruxelles, Brussels
| | - Sarah Gillemot
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| | - Arturo Temblador
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| | - Dimitri Topalis
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| | - Sebastian Wittnebel
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| |
Collapse
|
3
|
Heinz JL, Swagemakers SMA, von Hofsten J, Helleberg M, Thomsen MM, De Keukeleere K, de Boer JH, Ilginis T, Verjans GMGM, van Hagen PM, van der Spek PJ, Mogensen TH. Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants. Front Mol Neurosci 2023; 16:1253040. [PMID: 38025266 PMCID: PMC10630912 DOI: 10.3389/fnmol.2023.1253040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.
Collapse
Affiliation(s)
- Johanna L. Heinz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrid M. A. Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michelle M. Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Kerstin De Keukeleere
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Joke H. de Boer
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tomas Ilginis
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Georges M. G. M. Verjans
- HerpeslabNL, Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter M. van Hagen
- Department of Internal Medicine and Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Dweikat SN, Renner DW, Bowen CD, Szpara ML. Multi-phenotype analysis for enhanced classification of 11 herpes simplex virus 1 strains. J Gen Virol 2022; 103:001780. [PMID: 36264606 PMCID: PMC10019087 DOI: 10.1099/jgv.0.001780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV1) is best known for causing oral lesions and mild clinical symptoms, but it can produce a significant range of disease severities and rates of reactivation. To better understand this phenotypic variation, we characterized 11 HSV1 strains that were isolated from individuals with diverse infection outcomes. We provide new data on genomic and in vitro plaque phenotype analysis for these isolates and compare these data to previously reported quantitation of the disease phenotype of each strain in a murine animal model. We show that integration of these three types of data permitted clustering of these HSV1 strains into four groups that were not distinguishable by any single dataset alone, highlighting the benefits of combinatorial multi-parameter phenotyping. Two strains (group 1) produced a partially or largely syncytial plaque phenotype and attenuated disease phenotypes in mice. Three strains of intermediate plaque size, causing severe disease in mice, were genetically clustered to a second group (group 2). Six strains with the smallest average plaque sizes were separated into two subgroups (groups 3 and 4) based on their different genetic clustering and disease severity in mice. Comparative genomics and network graph analysis suggested a separation of HSV1 isolates with attenuated vs. virulent phenotypes. These observations imply that virulence phenotypes of these strains may be traceable to genetic variation within the HSV1 population.
Collapse
Affiliation(s)
- Sarah N Dweikat
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Daniel W Renner
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Christopher D Bowen
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Moriah L Szpara
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| |
Collapse
|
5
|
Rathbun MM, Shipley MM, Bowen CD, Selke S, Wald A, Johnston C, Szpara ML. Comparison of herpes simplex virus 1 genomic diversity between adult sexual transmission partners with genital infection. PLoS Pathog 2022; 18:e1010437. [PMID: 35587470 PMCID: PMC9119503 DOI: 10.1371/journal.ppat.1010437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 01/15/2023] Open
Abstract
Herpes simplex virus (HSV) causes chronic infection in the human host, characterized by self-limited episodes of mucosal shedding and lesional disease, with latent infection of neuronal ganglia. The epidemiology of genital herpes has undergone a significant transformation over the past two decades, with the emergence of HSV-1 as a leading cause of first-episode genital herpes in many countries. Though dsDNA viruses are not expected to mutate quickly, it is not yet known to what degree the HSV-1 viral population in a natural host adapts over time, or how often viral population variants are transmitted between hosts. This study provides a comparative genomics analysis for 33 temporally-sampled oral and genital HSV-1 genomes derived from five adult sexual transmission pairs. We found that transmission pairs harbored consensus-level viral genomes with near-complete conservation of nucleotide identity. Examination of within-host minor variants in the viral population revealed both shared and unique patterns of genetic diversity between partners, and between anatomical niches. Additionally, genetic drift was detected from spatiotemporally separated samples in as little as three days. These data expand our prior understanding of the complex interaction between HSV-1 genomics and population dynamics after transmission to new infected persons.
Collapse
Affiliation(s)
- Molly M. Rathbun
- Department of Biochemistry and Molecular Biology, Department of Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mackenzie M. Shipley
- Department of Biochemistry and Molecular Biology, Department of Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Christopher D. Bowen
- Department of Biochemistry and Molecular Biology, Department of Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
| | - Anna Wald
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christine Johnston
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Moriah L. Szpara
- Department of Biochemistry and Molecular Biology, Department of Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
6
|
Abstract
Herpes simplex viruses (HSV) cause chronic infection in humans that are characterized by periodic episodes of mucosal shedding and ulcerative disease. HSV causes millions of infections world-wide, with lifelong bouts of viral reactivation from latency in neuronal ganglia. Infected individuals experience different levels of disease severity and frequency of reactivation. There are two distantly related HSV species, with HSV-1 infections historically found most often in the oral niche and HSV-2 infections in the genital niche. Over the last two decades, HSV-1 has emerged as the leading cause of first-episode genital herpes in multiple countries. While HSV-1 has the highest level of genetic diversity among human alpha-herpesviruses, it is not yet known how quickly the HSV-1 viral population in a human host adapts over time, or if there are population bottlenecks associated with viral reactivation and/or transmission. It is also unknown how the ecological environments in which HSV infections occur influence their evolutionary trajectory, or that of co-occurring viruses and microbes. In this review, we explore how HSV accrues genetic diversity within each new infection, and yet maintains its ability to successfully infect most of the human population. A holistic examination of the ecological context of natural human infections can expand our awareness of how HSV adapts as it moves within and between human hosts, and reveal the complexity of these lifelong human-virus interactions. These insights may in turn suggest new areas of exploration for other chronic pathogens that successfully evolve and persist among their hosts.
Collapse
|
7
|
Koujah L, Allaham M, Patil CD, Ames JM, Suryawanshi RK, Yadavalli T, Agelidis A, Mun C, Surenkhuu B, Jain S, Shukla D. Entry receptor bias in evolutionarily distant HSV-1 clinical strains drives divergent ocular and nervous system pathologies. Ocul Surf 2021; 21:238-249. [PMID: 33766740 DOI: 10.1016/j.jtos.2021.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE Herpes simplex virus-1 (HSV-1) infection leads to varying pathologies including the development of ocular lesions, stromal keratitis and encephalitis. While the role for host immunity in disease progression is well understood, the contribution of genetic variances in generating preferential viral entry receptor usage and resulting immunopathogenesis in humans are not known. METHODS Ocular cultures were obtained from patients presenting distinct pathologies of herpes simplex keratitis (HSK). Next-generation sequencing and subsequent analysis characterized genetic variances among the strains and estimated evolutionary divergence. Murine model of ocular infection was used to assess phenotypic contributions of strain variances on damage to the ocular surface and propagation of innate immunity. Flow cytometry of eye tissue identified differential recruitment of immune cell populations, cytokine array probed for programming of local immune response in the draining lymph node and histology was used to assess inflammation of the trigeminal ganglion (TG). Ex-vivo corneal cultures and in-vitro studies elucidated the role of genetic variances in altering host-pathogen interactions, leading to divergent host responses. RESULTS Phylogenetic analysis of the clinical isolates suggests evolutionary divergence among currently circulating HSV-1 strains. Mutations causing alterations in functional host interactions were identified, particularly in viral entry glycoproteins which generated a receptor bias to herpesvirus entry mediator, an immune modulator involved in immunopathogenic diseases like HSK, leading to exacerbated ocular surface pathologies and heightened viral burden in the TG and brainstem. CONCLUSIONS Our data suggests receptor bias resulting from genetic variances in clinical strains may dictate disease severity and treatment outcome.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mowafak Allaham
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chandrashekhar D Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joshua M Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul K Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Christine Mun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bayasgalan Surenkhuu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Casto AM, Stout SC, Selvarangan R, Freeman AF, Newell BD, Stahl ED, Ahmed AA, Greninger AL, Yin DE. Evaluation of Genotypic Antiviral Resistance Testing as an Alternative to Phenotypic Testing in a Patient with DOCK8 Deficiency and Severe HSV-1 Disease. J Infect Dis 2021; 221:2035-2042. [PMID: 31970398 DOI: 10.1093/infdis/jiaa020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 11/14/2022] Open
Abstract
Antiviral resistance frequently complicates the treatment of herpes simplex virus (HSV) infections in immunocompromised patients. Here we present the case of an adolescent boy with dedicator of cytokinesis 8 (DOCK8) deficiency, who experienced recurrent infections with resistant HSV-1. We used both phenotypic and genotypic methodologies to characterize the resistance profile of HSV-1 in the patient and conclude that genotypic testing outperformed phenotypic testing. We also present the first analysis of intrahost HSV-1 evolution in an immunocompromised patient. While HSV-1 can remain static in an immunocompetent individual for decades, the virus from this patient rapidly acquired genetic changes throughout its genome. Finally, we document a likely case of transmitted resistance in HSV-1 between the patient and his brother, who also has DOCK8 deficiency. This event demonstrates that resistant HSV-1 is transmissible among immunocompromised persons.
Collapse
Affiliation(s)
- Amanda M Casto
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sean C Stout
- Department of Pediatrics, Children's Mercy, Kansas City, Missouri, USA
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, Missouri, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Division of Infectious Diseases, Department of Pediatrics, Children's Mercy, Kansas City, Missouri, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brandon D Newell
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Division of Dermatology, Department of Pediatrics, Children's Mercy, Kansas City, Missouri, USA
| | - Erin D Stahl
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Section of Ophthalmology, Department of Surgery, Children's Mercy, Kansas City, Missouri, USA
| | - Atif A Ahmed
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, Missouri, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Dwight E Yin
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Division of Infectious Diseases, Department of Pediatrics, Children's Mercy, Kansas City, Missouri, USA.,Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy, Kansas City, Missouri, USA
| |
Collapse
|
9
|
Abstract
Alphaherpesviruses, as large double-stranded DNA viruses, were long considered to be genetically stable and to exist in a homogeneous state. Recently, the proliferation of high-throughput sequencing (HTS) and bioinformatics analysis has expanded our understanding of herpesvirus genomes and the variations found therein. Recent data indicate that herpesviruses exist as diverse populations, both in culture and in vivo, in a manner reminiscent of RNA viruses. In this review, we discuss the past, present, and potential future of alphaherpesvirus genomics, including the technical challenges that face the field. We also review how recent data has enabled genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures, including those introduced by cell culture. While we focus on the human alphaherpesviruses, we draw key insights from related veterinary species and from the beta- and gamma-subfamilies of herpesviruses. Promising technologies and potential future directions for herpesvirus genomics are highlighted as well, including the potential to link viral genetic differences to phenotypic and disease outcomes.
Collapse
Affiliation(s)
- Chad V. Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Moriah L. Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
10
|
Sergeyev OV, Bosh'ian RE, Barinsky IF. [RETRACTED: High-throughput sequencing in diagnostics and prevention of herpes simplex virus infection (Herpesviridae, Alphaherpesvirinae, Simplexvirus, Human alphaherpesvirus 1)]. Vopr Virusol 2020; 65:126-131. [PMID: 33533214 DOI: 10.36233/0507-4088-2020-65-3-126-131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
RETRACTEDHerpes simplex viruses types 1 (HSV-1) and 2 (HSV-2) are among the most common viruses in the human population. The clinical manifestations of HSV infection vary widely, which necessitates reliable molecular methods for the timely diagnosis of herpes virus infection, as well as for detection of mutations in the genes responsible for drug resistance. PCR is often unable to detect HSV isolates with nucleotide substitutions at the primer binding site. Sanger sequencing of the whole genome reveals mutations mainly at the consensus level, which accumulate at advanced stages of viral infection. High-throughput sequencing (HTS, next generation sequencing) offers an obvious advantage both in early diagnosis of herpes virus infection and identification of HSV variants.
Collapse
Affiliation(s)
- O V Sergeyev
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - R E Bosh'ian
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I F Barinsky
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| |
Collapse
|
11
|
Kolb AW, Brandt CR. Genomic nucleotide-based distance analysis for delimiting old world monkey derived herpes simplex virus species. BMC Genomics 2020; 21:436. [PMID: 32590937 PMCID: PMC7318535 DOI: 10.1186/s12864-020-06847-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex viruses form a genus within the alphaherpesvirus subfamily, with three identified viral species isolated from Old World monkeys (OWM); Macacine alphaherpesvirus 1 (McHV-1; herpes B), Cercopithecine alphaherpesvirus 2 (SA8), and Papiine alphaherpesvirus 2 (PaHV-2; herpes papio). Herpes B is endemic to macaques, while PaHV-2 and SA8 appear endemic to baboons. All three viruses are genetically and antigenically similar, with SA8 and PaHV-2 thought to be avirulent in humans, while herpes B is a biosafety level 4 pathogen. Recently, next-generation sequencing (NGS) has resulted in an increased number of published OWM herpes simplex genomes, allowing an encompassing phylogenetic analysis. RESULTS In this study, phylogenetic networks, in conjunction with a genome-based genetic distance cutoff method were used to examine 27 OWM monkey herpes simplex isolates. Genome-based genetic distances were calculated, resulting in distances between lion and pig-tailed simplex viruses themselves, and versus herpes B core strains that were higher than those between PaHV-2 and SA8 (approximately 14 and 10% respectively). The species distance cutoff was determined to be 8.94%, with the method recovering separate species status for PaHV-2 and SA8 and showed that lion and pig-tailed simplex viruses (vs core herpes B strains) were well over the distance species cutoff. CONCLUSIONS We propose designating lion and pig-tailed simplex viruses as separate, individual viral species, and that this may be the first identification of viral cryptic species.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave, Madison, WI, 53706, USA.
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave, Madison, WI, 53706, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Sawtell NM, Thompson RL. HSV Mutant Generation and Dual Detection Methods for Gaining Insight into Latent/Lytic Cycles In Vivo. Methods Mol Biol 2020; 2060:219-239. [PMID: 31617181 DOI: 10.1007/978-1-4939-9814-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two important components of a useful strategy to examine viral gene function, regulation, and pathogenesis in vivo are (1) a highly efficient protocol to generate viral mutants that limits undesired mutation and retains full replication competency in vivo, and (2) an efficient system to detect and quantify viral promoter activity and gene expression in rare cells in vivo and to gain insight into the surrounding tissue environment. Our strategy and protocols for generating, characterizing, and employing HSV viral promoter/reporter mutants in vivo are provided in this two-part chapter.
Collapse
Affiliation(s)
- Nancy M Sawtell
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Richard L Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Kuny CV, Bowen CD, Renner DW, Johnston CM, Szpara ML. In vitro evolution of herpes simplex virus 1 (HSV-1) reveals selection for syncytia and other minor variants in cell culture. Virus Evol 2020; 6:veaa013. [PMID: 32296542 PMCID: PMC7151645 DOI: 10.1093/ve/veaa013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The large dsDNA virus herpes simplex virus 1 (HSV-1) is considered to be genetically stable, yet it can rapidly evolve in response to strong selective pressures such as antiviral treatment. Deep sequencing has revealed that clinical and laboratory isolates of this virus exist as populations that contain a mixture of minor alleles or variants, similar to many RNA viruses. The classic virology approach of plaque purifying virus creates a genetically homogenous population, but it is not clear how closely this represents the mixed virus populations found in nature. We sought to study the evolution of mixed versus highly purified HSV-1 populations in controlled cell culture conditions, to examine the impact of this genetic diversity on evolution. We found that a mixed population of HSV-1 acquired more genetic diversity and underwent a more dramatic phenotypic shift than a plaque-purified population, producing a viral population that was almost entirely syncytial after just ten passages. At the genomic level, adaptation and genetic diversification occurred at the level of minor alleles or variants in the viral population. Certain genetic variants in the mixed viral population appeared to be positively selected in cell culture, and this shift was also observed in clinical samples during their first passages in vitro. In contrast, the plaque-purified viral population did not appear to change substantially in phenotype or overall quantity of minor allele diversity. These data indicate that HSV-1 is capable of evolving rapidly in a given environment, and that this evolution is facilitated by diversity in the viral population.
Collapse
Affiliation(s)
- Chad V Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Christopher D Bowen
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Daniel W Renner
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Christine M Johnston
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Moriah L Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
Shipley MM, Renner DW, Pandey U, Ford B, Bloom DC, Grose C, Szpara ML. Personalized viral genomic investigation of herpes simplex virus 1 perinatal viremic transmission with dual fatality. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004382. [PMID: 31582464 PMCID: PMC6913147 DOI: 10.1101/mcs.a004382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Here we present a personalized viral genomics approach to investigating a rare case of perinatal herpes simplex virus 1 (HSV-1) transmission that ended in death of both mother and neonate. We sought to determine whether the virus involved in this rare case had any unusual features that may have contributed to the dire patient outcome. A pregnant woman with negative HerpeSelect antibody test underwent cesarean section at 30 wk gestation and died the same day. The premature newborn died 5 d later. Both individuals were found postmortem to have positive blood HSV-1 PCR tests. Using oligonucleotide enrichment and deep sequencing, we determined that viral transmission from mother to infant was nearly perfect at the consensus genome level. At the virus population level, 77% of minor variants (MVs) in the mother's blood also appeared on the neonate's skin, of which more than half were disseminated into the neonate's blood. We also detected nonmaternal MVs that arose de novo in the neonate's viral populations. Of note, one de novo MV in the neonate's skin virus induced a nonsynonymous mutation in the UL6 protein, which is a component of the portal that allows DNA entry into new progeny capsids. This case suggests that perinatal viremic HSV-1 transmission includes the majority of genetic diversity from the maternal virus population and that new, nonsynonymous mutations can occur after relatively few rounds of replication. This report expands our understanding of viral transmission in humans and may lead to improved diagnostic strategies for neonatal HSV-1 acquisition.
Collapse
Affiliation(s)
- Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bradley Ford
- Department of Pathology, University of Iowa, Iowa City, Iowa 52242, USA
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Charles Grose
- Division of Infectious Disease/Virology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
15
|
Akhtar LN, Szpara ML. Viral genetic diversity and its potential contributions to the development and progression of neonatal herpes simplex virus (HSV) disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:249-256. [PMID: 32944492 PMCID: PMC7491914 DOI: 10.1007/s40588-019-00131-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Neonatal infection by herpes simplex virus (HSV) 1 or 2 presents a devastating burden to new parents, due to the unpredictability of severe clinical outcomes, as well as the potential for lifelong reactivation. While just under half of neonatal HSV infections have mild clinical impacts akin to those observed in adults, the other half experience viral spread throughout the body (disseminated infection) and/or the brain (central nervous system infection). SUMMARY Here we summarize current data on clinical diagnostic measures, antiviral therapy, and known factors of human host biology that contribute to the distinct neonatal outcomes of HSV infection. RECENT FINDINGS We then explore recent new data on how viral genetic diversity between infections may impact clinical outcomes. Further research will be critical to build upon these early findings and to provide statistical power to our ability to discern and/or predict the potential clinical path of a given neonatal infection.
Collapse
Affiliation(s)
- Lisa N. Akhtar
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Moriah L. Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
16
|
Persistent Infection with Herpes Simplex Virus 1 and Alzheimer's Disease-A Call to Study How Variability in Both Virus and Host may Impact Disease. Viruses 2019; 11:v11100966. [PMID: 31635156 PMCID: PMC6833100 DOI: 10.3390/v11100966] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing attention has focused on the contributions of persistent microbial infections with the manifestation of disease later in life, including neurodegenerative conditions such as Alzheimer’s disease (AD). Current data has shown the presence of herpes simplex virus 1 (HSV-1) in regions of the brain that are impacted by AD in elderly individuals. Additionally, neuronal infection with HSV-1 triggers the accumulation of amyloid beta deposits and hyperphosphorylated tau, and results in oxidative stress and synaptic dysfunction. All of these factors are implicated in the development of AD. These data highlight the fact that persistent viral infection is likely a contributing factor, rather than a sole cause of disease. Details of the correlations between HSV-1 infection and AD development are still just beginning to emerge. Future research should investigate the relative impacts of virus strain- and host-specific factors on the induction of neurodegenerative processes over time, using models such as infected neurons in vitro, and animal models in vivo, to begin to understand their relationship with cognitive dysfunction.
Collapse
|
17
|
Houldcroft CJ. Human Herpesvirus Sequencing in the Genomic Era: The Growing Ranks of the Herpetic Legion. Pathogens 2019; 8:E186. [PMID: 31614759 PMCID: PMC6963362 DOI: 10.3390/pathogens8040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
The nine human herpesviruses are some of the most ubiquitous pathogens worldwide, causing life-long latent infection in a variety of different tissues. Human herpesviruses range from mild childhood infections to known tumour viruses and 'trolls of transplantation'. Epstein-Barr virus was the first human herpesvirus to have its whole genome sequenced; GenBank now includes thousands of herpesvirus genomes. This review will cover some of the recent advances in our understanding of herpesvirus diversity and disease that have come about as a result of new sequencing technologies, such as target enrichment and long-read sequencing. It will also look at the problem of resolving mixed-genotype infections, whether with short or long-read sequencing methods; and conclude with some thoughts on the future of the field as herpesvirus population genomics becomes a reality.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambs CB2 0QQ UK.
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs CB10 1SA, UK.
| |
Collapse
|
18
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. HIV Vaccine Mystery and Viral Shell Disorder. Biomolecules 2019; 9:biom9050178. [PMID: 31072073 PMCID: PMC6572542 DOI: 10.3390/biom9050178] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Hundreds of billions of dollars have been spent for over three decades in the search for an effective human immunodeficiency virus (HIV) vaccine with no success. There are also at least two other sexually transmitted viruses, for which no vaccine is available, the herpes simplex virus (HSV) and the hepatitis C virus (HCV). Traditional textbook explanatory paradigm of rapid mutation of retroviruses cannot adequately address the unavailability of vaccine for many sexually transmissible viruses, since HSV and HCV are DNA and non-retroviral RNA viruses, respectively, whereas effective vaccine for the horsefly-transmitted retroviral cousin of HIV, equine infectious anemia virus (EIAV), was found in 1973. We reported earlier the highly disordered nature of proteins in outer shells of the HIV, HCV, and HSV. Such levels of disorder are completely absent among the classical viruses, such as smallpox, rabies, yellow fever, and polio viruses, for which efficient vaccines were discovered. This review analyzes the physiology and shell disorder of the various related and non-related viruses to argue that EIAV and the classical viruses need harder shells to survive during harsher conditions of non-sexual transmissions, thus making them vulnerable to antibody detection and neutralization. In contrast, the outer shell of the HIV-1 (with its preferential sexual transmission) is highly disordered, thereby allowing large scale motions of its surface glycoproteins and making it difficult for antibodies to bind to them. The theoretical underpinning of this concept is retrospectively traced to a classical 1920s experiment by the legendary scientist, Oswald Avery. This concept of viral shapeshifting has implications for improved treatment of cancer and infections via immune evasion.
Collapse
Affiliation(s)
| | - A Keith Dunker
- Center for Computational Biology, Indiana and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia.
| |
Collapse
|
19
|
Comparison of Herpes Simplex Virus 1 Strains Circulating in Finland Demonstrates the Uncoupling of Whole-Genome Relatedness and Phenotypic Outcomes of Viral Infection. J Virol 2019; 93:JVI.01824-18. [PMID: 30760568 PMCID: PMC6450105 DOI: 10.1128/jvi.01824-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex viruses (HSV) infect a majority of adults. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent genomic relatedness between strains from the same geographic regions. We used HSV-1 clinical isolates from Finland to test the relationship between viral genomic and geographic relationships, differences in specific genes, and characteristics of viral infection. We found that viral isolates from Finland separated into two distinct groups of genomic and geographic relatedness, potentially reflecting historical patterns of human and viral migration into Finland. These Finnish HSV-1 isolates had distinct infection characteristics in multiple cell types tested, which were specific to each isolate and did not group according to genomic and geographic relatedness. This demonstrates that HSV-1 strain differences in specific characteristics of infection are set by a combination of host cell type and specific viral gene-level differences. A majority of adults in Finland are seropositive carriers of herpes simplex viruses (HSV). Infection occurs at epithelial or mucosal surfaces, after which virions enter innervating nerve endings, eventually establishing lifelong infection in neurons of the sensory or autonomic nervous system. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent geographic patterns in strain similarity. Though multiple HSV-1 genomes have been sequenced from Europe to date, there is a lack of sequenced genomes from the Nordic countries. Finland’s history includes at least two major waves of human migration, suggesting the potential for diverse viruses to persist in the population. Here, we used HSV-1 clinical isolates from Finland to test the relationship between viral phylogeny, genetic variation, and phenotypic characteristics. We found that Finnish HSV-1 isolates separated into two distinct phylogenetic groups, potentially reflecting historical waves of human (and viral) migration into Finland. Each HSV-1 isolate harbored a distinct set of phenotypes in cell culture, including differences in the amount of virus production, extracellular virus release, and cell-type-specific fitness. Importantly, the phylogenetic clusters were not predictive of any detectable pattern in phenotypic differences, demonstrating that whole-genome relatedness is not a proxy for overall viral phenotype. Instead, we highlight specific gene-level differences that may contribute to observed phenotypic differences, and we note that strains from different phylogenetic groups can contain the same genetic variations. IMPORTANCE Herpes simplex viruses (HSV) infect a majority of adults. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent genomic relatedness between strains from the same geographic regions. We used HSV-1 clinical isolates from Finland to test the relationship between viral genomic and geographic relationships, differences in specific genes, and characteristics of viral infection. We found that viral isolates from Finland separated into two distinct groups of genomic and geographic relatedness, potentially reflecting historical patterns of human and viral migration into Finland. These Finnish HSV-1 isolates had distinct infection characteristics in multiple cell types tested, which were specific to each isolate and did not group according to genomic and geographic relatedness. This demonstrates that HSV-1 strain differences in specific characteristics of infection are set by a combination of host cell type and specific viral gene-level differences.
Collapse
|
20
|
Akhtar LN, Bowen CD, Renner DW, Pandey U, Della Fera AN, Kimberlin DW, Prichard MN, Whitley RJ, Weitzman MD, Szpara ML. Genotypic and Phenotypic Diversity of Herpes Simplex Virus 2 within the Infected Neonatal Population. mSphere 2019; 4:e00590-18. [PMID: 30814317 PMCID: PMC6393728 DOI: 10.1128/msphere.00590-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
More than 14,000 neonates are infected with herpes simplex virus (HSV) annually. Approximately half display manifestations limited to the skin, eyes, or mouth (SEM disease). The rest develop invasive infections that spread to the central nervous system (CNS disease or encephalitis) or throughout the infected neonate (disseminated disease). Invasive HSV disease is associated with significant morbidity and mortality, but the viral and host factors that predispose neonates to these forms are unknown. To define viral diversity within the infected neonatal population, we evaluated 10 HSV-2 isolates from newborns with a range of clinical presentations. To assess viral fitness independently of host immune factors, we measured viral growth characteristics in cultured cells and found diverse in vitro phenotypes. Isolates from neonates with CNS disease were associated with larger plaque size and enhanced spread, with the isolates from cerebrospinal fluid (CSF) exhibiting the most robust growth. We sequenced complete viral genomes of all 10 neonatal viruses, providing new insights into HSV-2 genomic diversity in this clinical setting. We found extensive interhost and intrahost genomic diversity throughout the viral genome, including amino acid differences in more than 90% of the viral proteome. The genes encoding glycoprotein G (gG; US4), glycoprotein I (gI; US7), and glycoprotein K (gK; UL53) and viral proteins UL8, UL20, UL24, and US2 contained variants that were found in association with CNS isolates. Many of these viral proteins are known to contribute to cell spread and neurovirulence in mouse models of CNS disease. This report represents the first application of comparative pathogen genomics to neonatal HSV disease.IMPORTANCE Herpes simplex virus (HSV) causes invasive disease in half of infected neonates, resulting in significant mortality and permanent cognitive morbidity. The factors that contribute to invasive disease are not understood. This study revealed diversity among HSV isolates from infected neonates and detected the first associations between viral genetic variations and clinical disease manifestations. We found that viruses isolated from newborns with encephalitis showed enhanced spread in culture. These viruses contained protein-coding variations not found in viruses causing noninvasive disease. Many of these variations were found in proteins known to impact neurovirulence and viral spread between cells. This work advances our understanding of HSV diversity in the neonatal population and how it may impact disease outcome.
Collapse
Affiliation(s)
- Lisa N Akhtar
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher D Bowen
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Ashley N Della Fera
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David W Kimberlin
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark N Prichard
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard J Whitley
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
21
|
Pandey U, Szpara ML. Herpes Simplex Virus Disease Management and Diagnostics in the Era of High-Throughput Sequencing. ACTA ACUST UNITED AC 2019; 41:41-48. [PMID: 34305220 DOI: 10.1016/j.clinmicnews.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Herpes simplex virus (HSV) serotypes 1 and 2 are among the most widespread human viruses. HSV disease has a complex phenotype, with symptoms that can range from mild lesions to encephalitis. In the clinical setting, this diversity of outcomes poses a major challenge, making timely disease diagnosis and treatment challenging. High-throughput sequencing (HTS) has been one of the breakthrough technologies in the modern era of molecular biology, and it is revolutionizing the study of pathogen biology and clinical diagnostics. Here, we review recent studies that have used HTS to answer questions related to the evolution of drug resistance, transmission and spread, virulence marker identification, and the design of better antiviral therapeutics for HSV. We also highlight practical considerations for handling computational analysis of HSV genomes and adoption of HTS as a routine diagnostic procedure in the clinical laboratories.
Collapse
Affiliation(s)
- Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
22
|
Mancini M, Vidal SM. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mamm Genome 2018; 29:425-445. [PMID: 30167845 PMCID: PMC6132704 DOI: 10.1007/s00335-018-9772-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/09/2018] [Indexed: 01/05/2023]
Abstract
A majority of the world population is infected with herpes simplex viruses (HSV; human herpesvirus types 1 and 2). These viruses, perhaps best known for their manifestation in the genital or oral mucosa, can also cause herpes simplex encephalitis, a severe and often fatal disease of the central nervous system. Antiviral therapies for HSV are only partially effective since the virus can establish latent infections in neurons, and severe pathological sequelae in the brain are common. A better understanding of disease pathogenesis is required to develop new strategies against herpes simplex encephalitis, including the precise viral and host genetic determinants that promote virus invasion into the central nervous system and its associated immunopathology. Here we review the current understanding of herpes simplex encephalitis from the host genome perspective, which has been illuminated by groundbreaking work on rare herpes simplex encephalitis patients together with mechanistic insight from single-gene mouse models of disease. A complex picture has emerged, whereby innate type I interferon-mediated antiviral signaling is a central pathway to control viral replication, and the regulation of immunopathology and the balance between apoptosis and autophagy are critical to disease severity in the central nervous system. The lessons learned from mouse studies inform us on fundamental defense mechanisms at the interface of host–pathogen interactions within the central nervous system, as well as possible rationales for intervention against infections from severe neuropathogenic viruses.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|