1
|
Yuze Ma, Liu N, Shao X, Shi T, Lin J, Liu B, Shen T, Guo B, Jiang Q. Mechanical loading on osteocytes regulates thermogenesis homeostasis of brown adipose tissue by influencing osteocyte-derived exosomes. J Orthop Translat 2024; 48:39-52. [PMID: 39087139 PMCID: PMC11287067 DOI: 10.1016/j.jot.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Background Osteocytes are the main stress-sensing cells in bone. The substances secreted by osteocytes under mechanical loading play a crucial role in maintaining body homeostasis. Osteocytes have recently been found to release exosomes into the circulation, but whether they are affected by mechanical loading or participate in the regulation of systemic homeostasis remains unclear. Methods We used a tail-suspension model to achieve mechanical unloading on osteocytes. Osteocyte-specific CD63 reporter mice were used for osteocyte exosome tracing. Exosome detection and inhibitor treatment were performed to confirm the effect of mechanical loading on exosome secretion by osteocytes. Co-culture, GW4869 and exosome treatment were used to investigate the biological functions of osteocyte-derived exosomes on brown adipose tissue (BAT) and primary brown adipocytes. Osteocyte-specific Dicer KO mice were used to screen for loading-sensitive miRNAs. Dual luciferase assay was performed to validate the selected target gene. Results Firstly, we found the thermogenic activity was increased in BAT of mice subjected to tail suspension, which is due to the effect of unloaded bone on circulating exosomes. Further, we showed that the secretion of exosomes from osteocytes is regulated by mechanical loading, and osteocyte-derived exosomes can reach BAT and affect thermogenic activity. More importantly, we confirmed the effect of osteocyte exosomes on BAT both in vivo and in vitro. Finally, we discovered that let-7e-5p contained in exosomes is under regulation of mechanical loading and regulates thermogenic activity of BAT by targeting Ppargc1a. Conclusion Exosomes derived from osteocytes are loading-sensitive, and play a vital role in regulation on BAT, suggesting that regulation of exosomes secretion can restore homeostasis. The translational potential of this article This study provides a biological rationale for using osteocyte exosomes as potential agents to modulate BAT and even whole-body homeostasis. It also provides a new pathological basis and a new treatment approach for mechanical unloading conditions such as spaceflight.
Collapse
Affiliation(s)
- Yuze Ma
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoyan Shao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Tianshu Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiaquan Lin
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tao Shen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Baosheng Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Seidler RD, Mao XW, Tays GD, Wang T, Zu Eulenburg P. Effects of spaceflight on the brain. Lancet Neurol 2024; 23:826-835. [PMID: 38945144 DOI: 10.1016/s1474-4422(24)00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.
Collapse
Affiliation(s)
- Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Grant D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Tianyi Wang
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Peter Zu Eulenburg
- Institute for Neuroradiology, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
3
|
Wu F, Du H, Overbey E, Kim J, Makhijani P, Martin N, Lerner CA, Nguyen K, Baechle J, Valentino TR, Fuentealba M, Bartleson JM, Halaweh H, Winer S, Meydan C, Garrett-Bakelman F, Sayed N, Melov S, Muratani M, Gerencser AA, Kasler HG, Beheshti A, Mason CE, Furman D, Winer DA. Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight. Nat Commun 2024; 15:4795. [PMID: 38862487 PMCID: PMC11166937 DOI: 10.1038/s41467-023-42013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/27/2023] [Indexed: 06/13/2024] Open
Abstract
Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.
Collapse
Grants
- R01 MH117406 NIMH NIH HHS
- T32 AG000266 NIA NIH HHS
- This work was supported in part through funds derived from the Buck Institute for Research on Aging (D.A.W., D.F.), and the Huiying Memorial Foundation (D.A.W.). T.V. and J.B. are funded by a T32 NIH fellowship grant (NIA T32 AG000266). C.E.M. thanks the Scientific Computing Unit (SCU) at WCM, the WorldQuant Foundation, NASA (NNX14AH50G, NNX17AB26G, 80NSSC22K0254, NNH18ZTT001N-FG2, 80NSSC22K0254, NNX16AO69A), the National Institutes of Health (R01MH117406), and LLS (MCL7001-18, LLS 9238-16).
Collapse
Affiliation(s)
- Fei Wu
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Huixun Du
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Priya Makhijani
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nicolas Martin
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Chad A Lerner
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Khiem Nguyen
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Jordan Baechle
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | | | | | - Heather Halaweh
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francine Garrett-Bakelman
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | | | | | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94043, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Research in Translational Medicine, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina.
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
4
|
Overbey EG, Ryon K, Kim J, Tierney BT, Klotz R, Ortiz V, Mullane S, Schmidt JC, MacKay M, Damle N, Najjar D, Matei I, Patras L, Garcia Medina JS, Kleinman AS, Wain Hirschberg J, Proszynski J, Narayanan SA, Schmidt CM, Afshin EE, Innes L, Saldarriaga MM, Schmidt MA, Granstein RD, Shirah B, Yu M, Lyden D, Mateus J, Mason CE. Collection of biospecimens from the inspiration4 mission establishes the standards for the space omics and medical atlas (SOMA). Nat Commun 2024; 15:4964. [PMID: 38862509 PMCID: PMC11166662 DOI: 10.1038/s41467-024-48806-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, 78701, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - J Sebastian Garcia Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - S Anand Narayanan
- Florida State University, College of Education, Health, and Human Sciences, Department of Health, Nutrition, and Food Sciences, Tallahassee, FL, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lucinda Innes
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Michael A Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | | | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- BioAstra, Inc, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
5
|
Zaccaria T, de Jonge MI, Domínguez-Andrés J, Netea MG, Beblo-Vranesevic K, Rettberg P. Survival of Environment-Derived Opportunistic Bacterial Pathogens to Martian Conditions: Is There a Concern for Human Missions to Mars? ASTROBIOLOGY 2024; 24:100-113. [PMID: 38227836 DOI: 10.1089/ast.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The health of astronauts during space travel to new celestial bodies in the Solar System is a critical factor in the planning of a mission. Despite cleaning and decontamination protocols, microorganisms from the Earth have been and will be identified on spacecraft. This raises concerns for human safety and planetary protection, especially if these microorganisms can evolve and adapt to the new environment. In this study, we examined the tolerance of clinically relevant nonfastidious bacterial species that originate from environmental sources (Burkholderia cepacia, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) to simulated martian conditions. Our research showed changes in growth and survival of these species in the presence of perchlorates, under desiccating conditions, exposure to ultraviolet radiation, and exposure to martian atmospheric composition and pressure. In addition, our results demonstrate that growth was enhanced by the addition of a martian regolith simulant to the growth media. Additional future research is warranted to examine potential changes in the infectivity, pathogenicity, and virulence of these species with exposure to martian conditions.
Collapse
Affiliation(s)
- Tommaso Zaccaria
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jorge Domínguez-Andrés
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristina Beblo-Vranesevic
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| | - Petra Rettberg
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| |
Collapse
|
6
|
Bothe TL, Gunga HC, Pilz N, Heinz V, Opatz OS. Relativistic aspects of physiology: Expanding our understanding of conventional control loops. Acta Physiol (Oxf) 2023; 239:e14064. [PMID: 37964669 DOI: 10.1111/apha.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Affiliation(s)
- T L Bothe
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - H C Gunga
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - N Pilz
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - V Heinz
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - O S Opatz
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Wang S, Wang T, Zeng X, Chu X, Zhuoma D, Zhao Y, Chen YZ. Exploring outer space biophysical phenomena via SpaceLID. Sci Rep 2023; 13:17400. [PMID: 37833498 PMCID: PMC10575925 DOI: 10.1038/s41598-023-44729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023] Open
Abstract
Extensive investigations in outer space have revealed not only how life adapts to the space environment, but also that interesting biophysical phenomena occur. These phenomena affect human health and other life forms (animals, plants, bacteria, and fungi), and to ensure the safety of future human space exploration need to be further investigated. This calls for joint research efforts between biologists and physicists, as these phenomena present cross-disciplinary barriers. Various national organizations provide useful forums for bridging this gap. Additional discussion avenues and database resources are helpful for facilitating the interdisciplinary investigations of these phenomena. In this paper, we present the newly established Space Life Investigation Database (SpaceLID, https://bidd.group/spacelid/ ) which provides information about biophysical phenomena occurring in space. Examples obtained using the database are given while discussing the underlying causes of these phenomena and their implications for the physiology and health of life in space.
Collapse
Affiliation(s)
- Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Tao Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Xian Zeng
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xinyi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | | | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China.
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 102206, China.
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
8
|
Robin A, Van Ombergen A, Laurens C, Bergouignan A, Vico L, Linossier MT, Pavy-Le Traon A, Kermorgant M, Chopard A, Py G, Green DA, Tipton M, Choukér A, Denise P, Normand H, Blanc S, Simon C, Rosnet E, Larcher F, Fernandez P, de Glisezinski I, Larrouy D, Harant-Farrugia I, Antunes I, Gauquelin-Koch G, Bareille MP, Billette De Villemeur R, Custaud MA, Navasiolava N. Comprehensive assessment of physiological responses in women during the ESA dry immersion VIVALDI microgravity simulation. Nat Commun 2023; 14:6311. [PMID: 37813884 PMCID: PMC10562467 DOI: 10.1038/s41467-023-41990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Astronauts in microgravity experience multi-system deconditioning, impacting their inflight efficiency and inducing dysfunctions upon return to Earth gravity. To fill the sex gap of knowledge in the health impact of spaceflights, we simulate microgravity with a 5-day dry immersion in 18 healthy women (ClinicalTrials.gov Identifier: NCT05043974). Here we show that dry immersion rapidly induces a sedentarily-like metabolism shift mimicking the beginning of a metabolic syndrome with a drop in glucose tolerance, an increase in the atherogenic index of plasma, and an impaired lipid profile. Bone remodeling markers suggest a decreased bone formation coupled with an increased bone resorption. Fluid shifts and muscular unloading participate to a marked cardiovascular and sensorimotor deconditioning with decreased orthostatic tolerance, aerobic capacity, and postural balance. Collected datasets provide a comprehensive multi-systemic assessment of dry immersion effects in women and pave the way for future sex-based evaluations of countermeasures.
Collapse
Affiliation(s)
- Adrien Robin
- Univ Angers, CRC, CHU Angers, Inserm, CNRS, MITOVASC, Equipe CARME, SFR ICAT, F-49000, Angers, France.
| | | | - Claire Laurens
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Audrey Bergouignan
- Anschutz Health and Wellness Center, Division of Endocrinology, University of Colorado, Aurora, CO, USA
| | - Laurence Vico
- INSERM, University Jean Monnet, Mines Saint-Etienne, U 1059, Saint Etienne, France
| | | | - Anne Pavy-Le Traon
- Department of Neurology, CHU Toulouse and I2MC-INSERM 1297, Toulouse, France
| | - Marc Kermorgant
- Department of Neurology, CHU Toulouse and I2MC-INSERM 1297, Toulouse, France
| | - Angèle Chopard
- DMEM, Montpellier University, INRAE, Montpellier, France
| | - Guillaume Py
- DMEM, Montpellier University, INRAE, Montpellier, France
| | - David Andrew Green
- Centre of Human and Applied Physiological Sciences, King's College London, London, UK
| | - Michael Tipton
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, PO1 2EF, UK
| | - Alexander Choukér
- Laboratory of Translational Research Stress and Immunity, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University (LUM), Munich, Germany
| | - Pierre Denise
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, F-14000, Caen, France
| | - Hervé Normand
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, F-14000, Caen, France
| | - Stéphane Blanc
- DEPE-IPHC - Département Ecologie, Physiologie et Ethologie, Strasbourg, France
| | - Chantal Simon
- CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, Human Nutrition Research Center Rhône-Alpes, Oullins, France
| | - Elisabeth Rosnet
- Faculty of Sport Sciences, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Peter Fernandez
- INSERM, University Jean Monnet, Mines Saint-Etienne, U 1059, Saint Etienne, France
| | - Isabelle de Glisezinski
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Larrouy
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Isabelle Harant-Farrugia
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Inês Antunes
- Telespazio Belgium S.R.L. for the European Space Agency, Noordwijk, The Netherlands
| | | | | | | | - Marc-Antoine Custaud
- Univ Angers, CRC, CHU Angers, Inserm, CNRS, MITOVASC, Equipe CARME, SFR ICAT, F-49000, Angers, France.
| | - Nastassia Navasiolava
- Univ Angers, CRC, CHU Angers, Inserm, CNRS, MITOVASC, Equipe CARME, SFR ICAT, F-49000, Angers, France.
| |
Collapse
|
9
|
Overbey EG, Ryon K, Kim J, Tierney B, Klotz R, Ortiz V, Mullane S, Schmidt JC, MacKay M, Damle N, Najjar D, Matei I, Patras L, Medina JSG, Kleinman A, Hirschberg JW, Proszynski J, Narayanan SA, Schmidt CM, Afshin EE, Innes L, Saldarriaga MM, Schmidt MA, Granstein RD, Shirah B, Yu M, Lyden D, Mateus J, Mason CE. Collection of Biospecimens from the Inspiration4 Mission Establishes the Standards for the Space Omics and Medical Atlas (SOMA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539108. [PMID: 37205403 PMCID: PMC10187258 DOI: 10.1101/2023.05.02.539108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample set. The collection process included samples such as venous blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies, which were processed to obtain aliquots of serum, plasma, extracellular vesicles, and peripheral blood mononuclear cells. All samples were then processed in clinical and research laboratories for optimal isolation and testing of DNA, RNA, proteins, metabolites, and other biomolecules. This paper describes the complete set of collected biospecimens, their processing steps, and long-term biobanking methods, which enable future molecular assays and testing. As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can also aid future experiments in human spaceflight and space biology.
Collapse
Affiliation(s)
- Eliah G. Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Julian C. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | | | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Caleb M. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Evan E. Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lucinda Innes
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Michael A. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | | | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
10
|
Sanford LD, Adkins AM, Boden AF, Gotthold JD, Harris RD, Shuboni-Mulligan D, Wellman LL, Britten RA. Sleep and Core Body Temperature Alterations Induced by Space Radiation in Rats. Life (Basel) 2023; 13:life13041002. [PMID: 37109531 PMCID: PMC10144689 DOI: 10.3390/life13041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sleep problems in astronauts can arise from mission demands and stress and can impact both their health and ability to accomplish mission objectives. In addition to mission-related physical and psychological stressors, the long durations of the proposed Mars missions will expose astronauts to space radiation (SR), which has a significant impact on the brain and may also alter sleep and physiological functions. Therefore, in this study, we assessed sleep, EEG spectra, activity, and core body temperature (CBT) in rats exposed to SR and compared them to age-matched nonirradiated rats. Male outbred Wistar rats (8-9 months old at the time of the study) received SR (15 cGy GCRsim, n = 15) or served as age- and time-matched controls (CTRL, n = 15) without irradiation. At least 90 days after SR and 3 weeks prior to recording, all rats were implanted with telemetry transmitters for recording EEG, activity, and CBT. Sleep, EEG spectra (delta, 0.5-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; sigma, 12-16 Hz; beta, 16-24 Hz), activity, and CBT were examined during light and dark periods and during waking and sleeping states. When compared to the CTRLs, SR produced significant reductions in the amounts of dark period total sleep time, total nonrapid eye movement sleep (NREM), and total rapid eye movement sleep (REM), with significant decreases in light and dark period NREM deltas and dark period REM thetas as well as increases in alpha and sigma in NREM and REM during either light or dark periods. The SR animals showed modest increases in some measures of activity. CBT was significantly reduced during waking and sleeping in the light period. These data demonstrate that SR alone can produce alterations to sleep and temperature control that could have consequences for astronauts and their ability to meet mission demands.
Collapse
Affiliation(s)
- Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Austin M Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Alea F Boden
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Justin D Gotthold
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ryan D Harris
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Dorela Shuboni-Mulligan
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Laurie L Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Richard A Britten
- Center for Integrative Neuroscience and Inflammatory Diseases, Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
11
|
Malhan D, Yalçin M, Schoenrock B, Blottner D, Relógio A. Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent. NPJ Microgravity 2023; 9:30. [PMID: 37012297 PMCID: PMC10070655 DOI: 10.1038/s41526-023-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Britt Schoenrock
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Neuromuscular System and Neuromuscular Signaling, Berlin Center of Space Medicine & Extreme Environments, Berlin, 10115, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|
12
|
Hélissen O, Kermorgant M, Déjean S, Mercadie A, Le Gonidec S, Zahreddine R, Calise D, Nasr N, Galès C, Arvanitis DN, Pavy-Le Traon A. Autonomic Nervous System Adaptation and Circadian Rhythm Disturbances of the Cardiovascular System in a Ground-Based Murine Model of Spaceflight. Life (Basel) 2023; 13:life13030844. [PMID: 36983999 PMCID: PMC10057816 DOI: 10.3390/life13030844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Whether in real or simulated microgravity, Humans or animals, the kinetics of cardiovascular adaptation and its regulation by the autonomic nervous system (ANS) remain controversial. In this study, we used hindlimb unloading (HU) in 10 conscious mice. Blood pressure (BP), heart rate (HR), temperature, and locomotor activity were continuously monitored with radio-telemetry, during 3 days of control, 5 days of HU, and 2 days of recovery. Six additional mice were used to assess core temperature. ANS activity was indirectly determined by analyzing both heart rate variability (HRV) and baroreflex sensitivity (BRS). Our study showed that HU induced an initial bradycardia, accompanied by an increase in vagal activity markers of HRV and BRS, together with a decrease in water intake, indicating the early adaptation to fluid redistribution. During HU, BRS was reduced; temperature and BP circadian rhythms were altered, showing a loss in day/night differences, a decrease in cycle amplitude, a drop in core body temperature, and an increase in day BP suggestive of a rise in sympathetic activity. Reloading induced resting tachycardia and a decrease in BP, vagal activity, and BRS. In addition to cardiovascular deconditioning, HU induces disruption in day/night rhythmicity of locomotor activity, temperature, and BP.
Collapse
Affiliation(s)
- Ophélie Hélissen
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
| | - Marc Kermorgant
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
- Neurology Department, University Hospital of Toulouse, 31400 Toulouse, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR5219, CNRS, Université de Toulouse, UT3, 31062 Toulouse, France
| | - Aurélie Mercadie
- Institut de Mathématiques de Toulouse, UMR5219, CNRS, Université de Toulouse, UT3, 31062 Toulouse, France
| | - Sophie Le Gonidec
- CREFRE-Anexplo, Services Phénotypage et Microchirurgie, UMS006, INSERM, Université de Toulouse, UT3, ENVT, 31062 Toulouse, France
| | - Rana Zahreddine
- CREFRE-Anexplo, Services Phénotypage et Microchirurgie, UMS006, INSERM, Université de Toulouse, UT3, ENVT, 31062 Toulouse, France
| | - Denis Calise
- CREFRE-Anexplo, Services Phénotypage et Microchirurgie, UMS006, INSERM, Université de Toulouse, UT3, ENVT, 31062 Toulouse, France
| | - Nathalie Nasr
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
| | - Céline Galès
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
| | - Dina N Arvanitis
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
| | - Anne Pavy-Le Traon
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
- Neurology Department, University Hospital of Toulouse, 31400 Toulouse, France
| |
Collapse
|
13
|
Kuldavletova O, Navarro Morales DC, Quarck G, Denise P, Clément G. Spaceflight alters reaction time and duration judgment of astronauts. Front Physiol 2023; 14:1141078. [PMID: 37007995 PMCID: PMC10063900 DOI: 10.3389/fphys.2023.1141078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
We report a study on astronauts aimed at characterizing duration judgment before, during, and after long-duration stays on board the International Space Station. Ten astronauts and a control group of 15 healthy (non-astronaut) participants performed a duration reproduction task and a duration production task using a visual target duration ranging from 2 to 38 s. Participants also performed a reaction time test for assessing attention. Compared to control participants and preflight responses, the astronauts' reaction time increased during spaceflight. Also, during spaceflight, time intervals were under-produced while counting aloud and under-reproduced when there was a concurrent reading task. We hypothesize that time perception during spaceflight is altered by two mechanisms: (a) an acceleration of the internal clock through the changes in vestibular inputs in microgravity, and (b) difficulties in attention and working memory when a concurrent reading task is present. Prolonged isolation in confined areas, weightlessness, stress related to workload, and high-performance expectations could account for these cognitive impairments.
Collapse
Affiliation(s)
| | | | | | | | - Gilles Clément
- University of Caen Normandy, INSERM, COMETE U1075, CYCERON, CHU of Caen, Caen, France
| |
Collapse
|
14
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
16
|
Bharindwal S, Goswami N, Jha P, Pandey S, Jobby R. Prospective Use of Probiotics to Maintain Astronaut Health during Spaceflight. Life (Basel) 2023; 13:life13030727. [PMID: 36983881 PMCID: PMC10058446 DOI: 10.3390/life13030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Maintaining an astronaut's health during space travel is crucial. Multiple studies have observed various changes in the gut microbiome and physiological health. Astronauts on board the International Space Station (ISS) had changes in the microbial communities in their gut, nose, and skin. Additionally, immune system cell alterations have been observed in astronauts with changes in neutrophils, monocytes, and T-cells. Probiotics help tackle these health issues caused during spaceflight by inhibiting pathogen adherence, enhancing epithelial barrier function by reducing permeability, and producing an anti-inflammatory effect. When exposed to microgravity, probiotics demonstrated a shorter lag phase, faster growth, improved acid tolerance, and bile resistance. A freeze-dried Lactobacillus casei strain Shirota capsule was tested for its stability on ISS for a month and has been shown to enhance innate immunity and balance intestinal microbiota. The usage of freeze-dried spores of B. subtilis proves to be advantageous to long-term spaceflight because it qualifies for all the aspects tested for commercial probiotics under simulated conditions. These results demonstrate a need to further study the effect of probiotics in simulated microgravity and spaceflight conditions and to apply them to overcome the effects caused by gut microbiome dysbiosis and issues that might occur during spaceflight.
Collapse
Affiliation(s)
- Sahaj Bharindwal
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Department of Biology, University of Naples Federico II, 80131 Naples, Italy
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Nidhi Goswami
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Pamela Jha
- Sunandan Divatia School of Science, NMIMS University Mumbai, Mumbai 400056, Maharashtra, India
| | - Siddharth Pandey
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
| | - Renitta Jobby
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
17
|
Le H, Rai V, Agrawal DK. Cholesterol: An Important Determinant of Muscle Atrophy in Astronauts. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2023; 6:67-79. [PMID: 37006714 PMCID: PMC10062007 DOI: 10.26502/jbb.2642-91280072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Since cholesterol is not routinely measured in astronauts before and after their return from space, there is no data on the role of blood cholesterol level in muscle atrophy and microgravity. Since the first moon landing, aerospace medicine became outdated and has not pushed boundaries like its rocket engineering counterpart. Since the 2019 astronaut twin study, there has yet to be another scientific breakthrough for aerospace medicine. Microgravity-induced muscle atrophy is the most known consequence of spaceflight. Yet, so far, there is no therapeutic solution to prevent it or any real efforts in understanding it on a cellular or molecular level. The most obvious reason to this unprecedented level of research is due to the small cohort of astronauts. With the establishment of private space industries and exponential recruitment of astronauts, there is more reason to push forward spaceflight-related health guidelines and ensure the safety of the brave humans who risk their lives for the progression of mankind. Spaceflight is considered the most challenging job and the failure to prevent injury or harm should be considered reckless negligence by the institutions that actively prevented sophistication of aerospace medicine. In this critical review, role of cholesterol is analyzed across the NASA-established parameters of microgravity-induced muscle atrophy with a focus on potential therapeutic targets for research.
Collapse
Affiliation(s)
- Hoangvi Le
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
18
|
Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Kaplin S, Dunn C, Kry SF, Russomano T, Shepanek M, Stowe RP, Kirkpatrick AW, Broderick TJ, Sibonga JD, Lee AG, Crucian BE. Human Health during Space Travel: State-of-the-Art Review. Cells 2022; 12:cells12010040. [PMID: 36611835 PMCID: PMC9818606 DOI: 10.3390/cells12010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Department of Medicine and Center for Space Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Emmanuel Urquieta
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric M. Bershad
- Department of Neurology, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Scott Kaplin
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
| | - Carly Dunn
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Marc Shepanek
- Office of the Chief Health and Medical Officer, NASA, Washington, DC 20546, USA
| | | | - Andrew W. Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Jean D. Sibonga
- Division of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Andrew G. Lee
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Ophthalmology, Texas A and M College of Medicine, College Station, TX 77807, USA
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| |
Collapse
|
19
|
Richardson RB, Mailloux RJ. WITHDRAWN: Mitochondria need their sleep: Sleep-wake cycling and the role of redox, bioenergetics, and temperature regulation, involving cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Free Radic Biol Med 2022:S0891-5849(22)01013-9. [PMID: 36462628 DOI: 10.1016/j.freeradbiomed.2022.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Richard B Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada; McGill Medical Physics Unit, McGill University, Cedars Cancer Centre - Glen Site, Montreal, Quebec QC, H4A 3J1, Canada.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
20
|
Siems K, Runzheimer K, Rehm A, Schwengers O, Heidler von Heilborn D, Kaser L, Arndt F, Neidhöfer C, Mengel JP, Parcina M, Lipski A, Hain T, Moeller R. Phenotypic and genomic assessment of the potential threat of human spaceflight-relevant Staphylococcus capitis isolates under stress conditions. Front Microbiol 2022; 13:1007143. [PMID: 36406458 PMCID: PMC9669719 DOI: 10.3389/fmicb.2022.1007143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/06/2022] [Indexed: 08/05/2023] Open
Abstract
Previous studies have reported that spaceflight specific conditions such as microgravity lead to changes in bacterial physiology and resistance behavior including increased expression of virulence factors, enhanced biofilm formation and decreased susceptibility to antibiotics. To assess if spaceflight induced physiological changes can manifest in human-associated bacteria, we compared three spaceflight relevant Staphylococcus capitis isolates (DSM 111179, ISS; DSM 31028, clean room; DSM 113836; artificial gravity bedrest study) with the type strain (DSM 20326T). We tested the three strains regarding growth, colony morphology, metabolism, fatty acid and polar lipid pattern, biofilm formation, susceptibility to antibiotics and survival in different stress conditions such as treatment with hydrogen peroxide, exposure to desiccation, and irradiation with X-rays and UV-C. Moreover, we sequenced, assembled, and analyzed the genomes of all four strains. Potential genetic determinants for phenotypic differences were investigated by comparative genomics. We found that all four strains show similar metabolic patterns and the same susceptibility to antibiotics. All four strains were considered resistant to fosfomycin. Physiological differences were mainly observed compared to the type strain and minor differences among the other three strains. The ISS isolate and the bedrest study isolate exhibit a strong delayed yellow pigmentation, which is absent in the other two strains. Pigments were extracted and analyzed by UV/Vis spectroscopy showing characteristic carotenoid spectra. The ISS isolate showed the highest growth rate as well as weighted average melting temperature (WAMT) of fatty acids (41.8°C) of all strains. The clean room isolate showed strongest biofilm formation and a high tolerance to desiccation. In general, all strains survived desiccation better in absence of oxygen. There were no differences among the strains regarding radiation tolerance. Phenotypic and genomic differences among the strains observed in this study are not inevitably indicating an increased virulence of the spaceflight isolate. However, the increased growth rate, higher WAMT and colony pigmentation of the spaceflight isolate are relevant phenotypes that require further research within the human spaceflight context. We conclude that combining genetic analysis with classical microbiological methods allows the detailed assessment of the potential threat of bacteria in highly regulated and extreme environments such as spaceflight environments.
Collapse
Affiliation(s)
- Katharina Siems
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Katharina Runzheimer
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Anna Rehm
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Schwengers
- Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - David Heidler von Heilborn
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Bonn, Germany
| | - Liv Kaser
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Franca Arndt
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jan Philipp Mengel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Marijo Parcina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - André Lipski
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Bonn, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Justus Liebig University Giessen, Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Ralf Moeller
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
21
|
Longitudinal metabolomic profiles reveal sex-specific adjustments to long-duration spaceflight and return to Earth. Cell Mol Life Sci 2022; 79:578. [DOI: 10.1007/s00018-022-04566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
|
22
|
Seidler RD, Stern C, Basner M, Stahn AC, Wuyts FL, zu Eulenburg P. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Front Neural Circuits 2022; 16:876789. [PMID: 35991346 PMCID: PMC9387435 DOI: 10.3389/fncir.2022.876789] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A team of experts on the effects of the spaceflight environment on the brain and eye (SANS: Spaceflight-Associated Neuro-ocular Syndrome) was convened by NASA and ESA to (1) review spaceflight-associated structural and functional changes of the human brain and eye, and any interactions between the two; and (2) identify critical future research directions in this area to help characterize the risk and identify possible countermeasures and strategies to mitigate the spaceflight-induced brain and eye alterations. The experts identified 14 critical future research directions that would substantially advance our knowledge of the effects of spending prolonged periods of time in the spaceflight environment on SANS, as well as brain structure and function. They used a paired comparison approach to rank the relative importance of these 14 recommendations, which are discussed in detail in the main report and are summarized briefly below.
Collapse
Affiliation(s)
- Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Claudia Stern
- Department of Clinical Aerospace Medicine, German Aerospace Center (DLR) and ISS Operations and Astronauts Group, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- *Correspondence: Claudia Stern,
| | - Mathias Basner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Floris L. Wuyts
- Department of Physics, University of Antwerp, Antwerp, Belgium
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), Antwerp, Belgium
| | - Peter zu Eulenburg
- German Vertigo and Balance Center, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| |
Collapse
|
23
|
Mechanical deconditioning of the heart due to long-term bed rest as observed on seismocardiogram morphology. NPJ Microgravity 2022; 8:25. [PMID: 35821029 PMCID: PMC9276739 DOI: 10.1038/s41526-022-00206-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
During head-down tilt bed rest (HDT) the cardiovascular system is subject to headward fluid shifts. The fluid shift phenomenon is analogous to weightlessness experienced during spaceflight microgravity. The purpose of this study was to investigate the effect of prolonged 60-day bed rest on the mechanical performance of the heart using the morphology of seismocardiography (SCG). Three-lead electrocardiogram (ECG), SCG and blood pressure recordings were collected simultaneously from 20 males in a 60-day HDT study (MEDES, Toulouse, France). The study was divided into two campaigns of ten participants. The first commenced in January, and the second in September. Signals were recorded in the supine position during the baseline data collection (BDC) before bed rest, during 6° HDT bed rest and during recovery (R), post-bed rest. Using SCG and blood pressure at the finger, the following were determined: Pulse Transit Time (PTT); and left-ventricular ejection time (LVET). SCG morphology was analyzed using functional data analysis (FDA). The coefficients of the model were estimated over 20 cycles of SCG recordings of BDC12 and HDT52. SCG fiducial morphology AO (aortic valve opening) and AC (aortic valve closing) amplitudes showed significant decrease between BDC12 and HDT52 (p < 0.03). PTT and LVET were also found to decrease through HDT bed rest (p < 0.01). Furthermore, PTT and LVET magnitude of response to bed rest was found to be different between campaigns (p < 0.001) possibly due to seasonal effects on of the cardiovascular system. Correlations between FDA and cardiac timing intervals PTT and LVET using SCG suggests decreases in mechanical strength of the heart and increased arterial stiffness due to fluid shifts associated with the prolonged bed rest.
Collapse
|
24
|
Gervasoni E, Bertoni R, Anastasi D, Solaro C, Di Giovanni R, Grange E, Gunga HC, Rovaris M, Cattaneo D, Maggioni MA, Merati G. Acute Thermoregulatory and Cardiovascular Response to Submaximal Exercise in People With Multiple Sclerosis. Front Immunol 2022; 13:842269. [PMID: 35874684 PMCID: PMC9296825 DOI: 10.3389/fimmu.2022.842269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Heat sensitivity occurs in a high percentage of people with multiple sclerosis (PwMS), in response to environmental or exercise-induced increase in body temperature. However, the kinetic and magnitude of adaptation of the internal load and of the core body temperature (CBT) to a submaximal continuous exercise has been poorly addressed in PwMS; this may be relevant for the brief exercise bouts usually occurring in normal daily life. The aim of this work was to evaluate whether multiple sclerosis influences the acute adaptation of the internal load, the CBT and the perceptual load in response to a constant submaximal work step. Methods CBT has been continuously monitored (0.5 Hz) by a validated wearable heat-flux sensor and electrocardiography was recorded (250 Hz) by a wearable device during a standard 6-minute walk test (6MWT) in 14 PwMS (EDSS, 4.7 ± 1.2; disease duration: 13.0 ± 10.2 years; m ± SD) and 14 age, sex and BMI-matched healthy subjects (HS). The rate of perceived exertion (RPE) of the lower limbs was assessed during the 6MWT by the Borg scale (6-20). Results As expected, PwMS walked a significantly shorter distance (361 ± 98 m) than the HS group (613 ± 62 m, p<0.001 vs PwMS). However, the kinetics of adaptation of CBT and the magnitude of CBT change from baseline did not differ between groups. Similarly, heart rate (HR) kinetics and HR change from baseline were comparable between groups during the 6MWT. Finally, lower limbs RPE gradually increased during the exercise test, but without significant differences between groups. Conclusion The internal load, the metabolic heat production, and the perceptive load due to a standard submaximal walking exercise seems to be preserved in PwMS, suggesting a comparable acute heat production and dissipation during exercise. Therefore, it is unlikely that the different distance achieved during the 6MWT may be caused by altered thermoregulatory responses to exercise. Rather, this appears to be a consequence of the known increased energy cost of locomotion in PwMS.
Collapse
Affiliation(s)
| | | | | | - Claudio Solaro
- Rehabilitation Department, CRRF Mons. L. Novarese, Moncrivello, Italy
| | | | - Erica Grange
- Rehabilitation Department, CRRF Mons. L. Novarese, Moncrivello, Italy
| | - Hanns-Christian Gunga
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments, Berlin, Germany
| | | | - Davide Cattaneo
- IRCCS Fondazione Don Gnocchi, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Martina Anna Maggioni
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments, Berlin, Germany
- Department of Biomedical Sciences for Health (SCIBIS), University of Milan, Milan, Italy
| | - Giampiero Merati
- IRCCS Fondazione Don Gnocchi, Milano, Italy
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| |
Collapse
|
25
|
Masè M, Werner A, Putzer G, Avancini G, Falla M, Brugger H, Micarelli A, Strapazzon G. Low Ambient Temperature Exposition Impairs the Accuracy of a Non-invasive Heat-Flux Thermometer. Front Physiol 2022; 13:830059. [PMID: 35309078 PMCID: PMC8931521 DOI: 10.3389/fphys.2022.830059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Indirect core body temperature (CBT) monitoring from skin sensors is gaining attention for in-field applications thanks to non-invasivity, portability, and easy probe positioning. Among skin sensors, heat-flux devices, such as the so-called Double Sensor (DS), have demonstrated reliability under various experimental and clinical conditions. Still, their accuracy at low ambient temperatures is unknown. In this randomized cross-over trial, we tested the effects of cold temperature exposition on DS performance in tracking CBT. Methods Twenty-one participants were exposed to a warm (23.2 ± 0.4°C) and cold (−18.7 ± 1.0°C) room condition for 10 min, following a randomized cross-over design. The accuracy of the DS to estimate CBT in both settings was assessed by quantitative comparison with esophageal (reference) and tympanic (comparator) thermometers, using Bland–Altman and correlation analyses (Pearson’s correlation coefficient, r, and Lin’s concordance correlation coefficient, CCC). Results In the warm room setting, the DS showed a moderate agreement with the esophageal sensor [bias = 0.09 (−1.51; 1.69) °C, r = 0.40 (p = 0.069), CCC = 0.22 (−0.006; 0.43)] and tympanic sensor [bias = 2.74 (1.13; 4.35) °C, r = 0.54 (p < 0.05), CCC = 0.09 (0.008; 0.16)]. DS accuracy significantly deteriorated in the cold room setting, where DS temperature overestimated esophageal temperature [bias = 2.16 (−0.89; 5.22) °C, r = 0.02 (0.94), CCC = 0.002 (−0.05; 0.06)]. Previous exposition to the cold influenced temperature values measured by the DS in the warm room setting, where significant differences (p < 0.00001) in DS temperature were observed between randomization groups. Conclusion DS accuracy is influenced by environmental conditions and previous exposure to cold settings. These results suggest the present inadequacy of the DS device for in-field applications in low-temperature environments and advocate further technological advancements and proper sensor insulation to improve performance in these conditions.
Collapse
Affiliation(s)
- Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Andreas Werner
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Air Force – Centre of Aerospace Medicine, Aviation Physiology Training Centre, Aviation Physiology Diagnostic and Research, Königsbrück, Germany
| | - Gabriel Putzer
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Giovanni Avancini
- Department of Anaesthesia and Intensive Care, Santa Chiara Hospital, Trento, Italy
| | - Marika Falla
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Centre for Mind/Brain Sciences, CIMeC, University of Trento, Rovereto, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Alessandro Micarelli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Giacomo Strapazzon,
| |
Collapse
|
26
|
Buckey JC, Lan M, Phillips SD, Archambault-Leger V, Fellows AM. A theory for why the spaceflight-associated neuro-ocular syndrome develops. J Appl Physiol (1985) 2022; 132:1201-1203. [PMID: 35201930 PMCID: PMC9054259 DOI: 10.1152/japplphysiol.00854.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jay C Buckey
- Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Mimi Lan
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | | | | | - Abigail M Fellows
- Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| |
Collapse
|
27
|
Howard J, Murashov V, Cauda E, Snawder J. Advanced sensor technologies and the future of work. Am J Ind Med 2022; 65:3-11. [PMID: 34647336 DOI: 10.1002/ajim.23300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023]
Abstract
Exposure science is fundamental to the field of occupational safety and health. The measurement of worker exposures to hazardous agents informs effective workplace risk mitigation strategies. The modern era of occupational exposure measurement began with the invention of the personal sampling device, which is still widely used today in the practice of occupational hygiene. Newer direct-reading sensor devices are incorporating recent advances in transducers, nanomaterials, electronics miniaturization, portability, batteries with high-power density, wireless communication, energy-efficient microprocessing, and display technology to usher in a new era in exposure science. Commercial applications of new sensor technologies have led to a variety of health and lifestyle management devices for everyday life. These applications are also being investigated as tools to measure occupational and environmental exposures. As the next-generation placeable, wearable, and implantable sensor technologies move from the research laboratory to the workplace, their role in the future of work will be of increasing importance to employers, workers, and occupational safety and health researchers and practitioners. This commentary discusses some of the benefits and challenges of placeable, wearable, and implantable sensor technologies in the future of work.
Collapse
Affiliation(s)
- John Howard
- Office of the Director, National Institute for Occupational Safety and Health, Washington District of Columbia USA
| | - Vladimir Murashov
- Office of the Director, National Institute for Occupational Safety and Health, Washington District of Columbia USA
| | - Emanuele Cauda
- Center for Direct Reading and Sensor Technologies, Pittsburgh Mining Research Division National Institute for Occupational Safety and Health Pittsburgh Pennsylvania USA
| | - John Snawder
- Center for Direct Reading and Sensor Technologies, Health Effects Laboratory Division National Institute for Occupational Safety and Health Cincinnati Ohio USA
| |
Collapse
|
28
|
Tang H, Rising HH, Majji M, Brown RD. Long-Term Space Nutrition: A Scoping Review. Nutrients 2021; 14:nu14010194. [PMID: 35011072 PMCID: PMC8747021 DOI: 10.3390/nu14010194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/30/2023] Open
Abstract
This scoping review aimed to identify current evidence and gaps in the field of long-term space nutrition. Specifically, the review targeted critical nutritional needs during long-term manned missions in outer space in addition to the essential components of a sustainable space nutrition system for meeting these needs. The search phrase "space food and the survival of astronauts in long-term missions" was used to collect the initial 5432 articles from seven Chinese and seven English databases. From these articles, two independent reviewers screened titles and abstracts to identify 218 articles for full-text reviews based on three themes and 18 keyword combinations as eligibility criteria. The results suggest that it is possible to address short-term adverse environmental factors and nutritional deficiencies by adopting effective dietary measures, selecting the right types of foods and supplements, and engaging in specific sustainable food production and eating practices. However, to support self-sufficiency during long-term space exploration, the most optimal and sustainable space nutrition systems are likely to be supported primarily by fresh food production, natural unprocessed foods as diets, nutrient recycling of food scraps and cultivation systems, and the establishment of closed-loop biospheres or landscape-based space habitats as long-term life support systems.
Collapse
Affiliation(s)
- Hong Tang
- College of Landscape and Tourism, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hope Hui Rising
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| | - Manoranjan Majji
- Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Robert D. Brown
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
29
|
Barteit S, Boudo V, Ouedraogo A, Zabré P, Ouremi L, Sié A, Munga S, Obor D, Kwaro D, Huhn S, Bunker A, Sauerborn R, Gunga HC, Maggioni MA, Bärnighausen T. Feasibility, acceptability and validation of wearable devices for climate change and health research in the low-resource contexts of Burkina Faso and Kenya: Study protocol. PLoS One 2021; 16:e0257170. [PMID: 34591893 PMCID: PMC8483291 DOI: 10.1371/journal.pone.0257170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
As the epidemiological transition progresses throughout sub-Saharan Africa, life lived with diseases is an increasingly important part of a population's burden of disease. The burden of disease of climate-sensitive health outcomes is projected to increase considerably within the next decades. Objectively measured, reliable population health data is still limited and is primarily based on perceived illness from recall. Technological advances like non-invasive, consumer-grade wearable devices may play a vital role in alleviating this data gap and in obtaining insights on the disease burden in vulnerable populations, such as heat stress on human cardiovascular response. The overall goal of this study is to investigate whether consumer-grade wearable devices are an acceptable, feasible and valid means to generate data on the individual level in low-resource contexts. Three hundred individuals are recruited from the two study locations in the Nouna health and demographic surveillance system (HDSS), Burkina Faso, and the Siaya HDSS, Kenya. Participants complete a structured questionnaire that comprises question items on acceptability and feasibility under the supervision of trained data collectors. Validity will be evaluated by comparing consumer-grade wearable devices to research-grade devices. Furthermore, we will collect demographic data as well as the data generated by wearable devices. This study will provide insights into the usage of consumer-grade wearable devices to measure individual vital signs in low-resource contexts, such as Burkina Faso and Kenya. Vital signs comprising activity (steps), sleep (duration, quality) and heart rate (hr) are important measures to gain insights on individual behavior and activity patterns in low-resource contexts. These vital signs may be associated with weather variables-as we gather them from weather stations that we have setup as part of this study to cover the whole Nouna and Siaya HDSSs-in order to explore changes in behavior and other variables, such as activity, sleep, hr, during extreme weather events like heat stress exposure. Furthermore, wearable data could be linked to health outcomes and weather events. As a result, consumer-grade wearables may serve as a supporting technology for generating reliable measurements in low-resource contexts and investigating key links between weather occurrences and health outcomes. Thus, wearable devices may provide insights to better inform mitigation and adaptation interventions in these low-resource settings that are direly faced by climate change-induced changes, such as extreme weather events.
Collapse
Affiliation(s)
- Sandra Barteit
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- * E-mail:
| | | | | | - Pascal Zabré
- Centre de Recherche en Santé, Nouna, Burkina Faso
| | | | - Ali Sié
- Centre de Recherche en Santé, Nouna, Burkina Faso
| | | | - David Obor
- Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Sophie Huhn
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Aditi Bunker
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Rainer Sauerborn
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Hanns-Christian Gunga
- Institute of Physiology, Center for Space Medicine and extreme Environment Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martina A. Maggioni
- Institute of Physiology, Center for Space Medicine and extreme Environment Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Biomedical Sciences for health, Università degli Studi di Milano, Milan, Italy
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Department of Global Health and Population, Harvard T.MLP. Chan School of Public Health, Boston, Massachusetts, United States of America
- Africa Health Research Institute (AHRI), Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
30
|
Abstract
History books are rife with examples of the role of nutrition in determining either the success or the failure of human exploration on Earth. With planetary exploration in our future, it is imperative that we understand the role of nutrition in optimizing health before humans can safely take the next giant leaps in space exploration.
Collapse
Affiliation(s)
- Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, Texas
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
31
|
Limper U, Tank J, Ahnert T, Maegele M, Grottke O, Hein M, Jordan J. The thrombotic risk of spaceflight: has a serious problem been overlooked for more than half of a century? Eur Heart J 2021; 42:97-100. [PMID: 32428936 DOI: 10.1093/eurheartj/ehaa359] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
The first ever venous thrombotic condition associated with spaceflight, an internal jugular vein thrombus requiring anticoagulation, has recently been reported. Systematic investigation of space travel-associated thrombotic risk has not been conducted. Cellular, animal, and human studies performed in ground-based models and in actual weightlessness revealed influences of weightlessness and gravity on the blood coagulation system. However, human study populations were small and limited to highly selected participants. Evidence in individuals with medical conditions and older persons is lacking. Evidence for thrombotic risk in spaceflight is unsatisfactory. This issue deserves further study in heterogeneous, high risk populations to find prevention strategies and to enable safe governmental and touristic human spaceflight.
Collapse
Affiliation(s)
- Ulrich Limper
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Department of Anaesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Jens Tank
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Tobias Ahnert
- Department of Orthopedic Surgery Traumatology and Sports Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Marc Maegele
- Department of Orthopedic Surgery Traumatology and Sports Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Oliver Grottke
- Department of Anaesthesiology, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | - Marc Hein
- Department of Anaesthesiology, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Chair of Aerospace Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
32
|
Mendt S, Brauns K, Friedl-Werner A, Belavy DL, Steinach M, Schlabs T, Werner A, Gunga HC, Stahn AC. Long-Term Bed Rest Delays the Circadian Phase of Core Body Temperature. Front Physiol 2021; 12:658707. [PMID: 34040542 PMCID: PMC8141791 DOI: 10.3389/fphys.2021.658707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Spaceflight can be associated with sleep loss and circadian misalignment as a result of non-24 h light-dark cycles, operational shifts in work/rest cycles, high workload under pressure, and psychological factors. Head-down tilt bed rest (HDBR) is an established model to mimic some of the physiological and psychological adaptions observed in spaceflight. Data on the effects of HDBR on circadian rhythms are scarce. To address this gap, we analyzed the change in the circadian rhythm of core body temperature (CBT) in two 60-day HDBR studies sponsored by the European Space Agency [n = 13 men, age: 31.1 ± 8.2 years (M ± SD)]. CBT was recorded for 36 h using a non-invasive and validated dual-sensor heatflux technology during the 3rd and the 8th week of HDBR. Bed rest induced a significant phase delay from the 3rd to the 8th week of HDBR (16.23 vs. 16.68 h, p = 0.005, g = 0.85) irrespective of the study site (p = 0.416, g = −0.46), corresponding to an average phase delay of about 0.9 min per day of HDBR. In conclusion, long-term bed rest weakens the entrainment of the circadian system to the 24-h day. We attribute this effect to the immobilization and reduced physical activity levels associated with HDBR. Given the critical role of diurnal rhythms for various physiological functions and behavior, our findings highlight the importance of monitoring circadian rhythms in circumstances in which gravity or physical activity levels are altered.
Collapse
Affiliation(s)
- Stefan Mendt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Katharina Brauns
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Anika Friedl-Werner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,INSERM U 1075 COMETE, Université de Normandie, Caen, France
| | - Daniel L Belavy
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Muscle and Bone Research, Berlin, Germany
| | - Mathias Steinach
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Thomas Schlabs
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Internal Medicine and Cardiology, Berlin, Germany
| | - Andreas Werner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,German Air Force - Centre of Aerospace Medicine, Aviation Physiology Training Centre, Aviation Physiology Diagnostic and Research, Königsbrück, Germany
| | - Hanns-Christian Gunga
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Alexander C Stahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Hibernation as a Tool for Radiation Protection in Space Exploration. Life (Basel) 2021; 11:life11010054. [PMID: 33466717 PMCID: PMC7828799 DOI: 10.3390/life11010054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
With new and advanced technology, human exploration has reached outside of the Earth's boundaries. There are plans for reaching Mars and the satellites of Jupiter and Saturn, and even to build a permanent base on the Moon. However, human beings have evolved on Earth with levels of gravity and radiation that are very different from those that we have to face in space. These issues seem to pose a significant limitation on exploration. Although there are plausible solutions for problems related to the lack of gravity, it is still unclear how to address the radiation problem. Several solutions have been proposed, such as passive or active shielding or the use of specific drugs that could reduce the effects of radiation. Recently, a method that reproduces a mechanism similar to hibernation or torpor, known as synthetic torpor, has started to become possible. Several studies show that hibernators are resistant to acute high-dose-rate radiation exposure. However, the underlying mechanism of how this occurs remains unclear, and further investigation is needed. Whether synthetic hibernation will also protect from the deleterious effects of chronic low-dose-rate radiation exposure is currently unknown. Hibernators can modulate their neuronal firing, adjust their cardiovascular function, regulate their body temperature, preserve their muscles during prolonged inactivity, regulate their immune system, and most importantly, increase their radioresistance during the inactive period. According to recent studies, synthetic hibernation, just like natural hibernation, could mitigate radiation-induced toxicity. In this review, we see what artificial hibernation is and how it could help the next generation of astronauts in future interplanetary missions.
Collapse
|
34
|
Koutnik AP, Favre ME, Noboa K, Sanchez-Gonzalez MA, Moss SE, Goubran B, Ari C, Poff AM, Rogers CQ, DeBlasi JM, Samy B, Moussa M, Serrador JM, D'Agostino DP. Human Adaptations to Multiday Saturation on NASA NEEMO. Front Physiol 2021; 11:610000. [PMID: 33510647 PMCID: PMC7835980 DOI: 10.3389/fphys.2020.610000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Human adaptation to extreme environments has been explored for over a century to understand human psychology, integrated physiology, comparative pathologies, and exploratory potential. It has been demonstrated that these environments can provide multiple external stimuli and stressors, which are sufficient to disrupt internal homeostasis and induce adaptation processes. Multiday hyperbaric and/or saturated (HBS) environments represent the most understudied of environmental extremes due to inherent experimental, analytical, technical, temporal, and safety limitations. National Aeronautic Space Agency (NASA) Extreme Environment Mission Operation (NEEMO) is a space-flight analog mission conducted within Florida International University’s Aquarius Undersea Research Laboratory (AURL), the only existing operational and habitable undersea saturated environment. To investigate human objective and subjective adaptations to multiday HBS, we evaluated aquanauts living at saturation for 9–10 days via NASA NEEMO 22 and 23, across psychologic, cardiac, respiratory, autonomic, thermic, hemodynamic, sleep, and body composition parameters. We found that aquanauts exposed to saturation over 9–10 days experienced intrapersonal physical and mental burden, sustained good mood and work satisfaction, decreased heart and respiratory rates, increased parasympathetic and reduced sympathetic modulation, lower cerebral blood flow velocity, intact cerebral autoregulation and maintenance of baroreflex functionality, as well as losses in systemic bodyweight and adipose tissue. Together, these findings illustrate novel insights into human adaptation across multiple body systems in response to multiday hyperbaric saturation.
Collapse
Affiliation(s)
- Andrew P Koutnik
- Human Health, Resilience, & Performance, Institute for Human and Machine Cognition, Pensacola, FL, United States.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Michelle E Favre
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Karina Noboa
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - Sara E Moss
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Bishoy Goubran
- Department of Psychiatry, Larkin Health System, Miami, FL, United States
| | - Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States.,Ketone Technologies LLC, Tampa, FL, United States
| | - Angela M Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Chris Q Rogers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Janine M DeBlasi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Bishoy Samy
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Mark Moussa
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jorge M Serrador
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, NJ, United States.,Department of Cardiovascular Electronics, National University of Ireland Galway, Galway, Ireland
| | - Dominic P D'Agostino
- Human Health, Resilience, & Performance, Institute for Human and Machine Cognition, Pensacola, FL, United States.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Ketone Technologies LLC, Tampa, FL, United States
| |
Collapse
|
35
|
Buoite Stella A, Ajčević M, Furlanis G, Manganotti P. Neurophysiological adaptations to spaceflight and simulated microgravity. Clin Neurophysiol 2020; 132:498-504. [PMID: 33450569 DOI: 10.1016/j.clinph.2020.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023]
Abstract
Changes in physiological functions after spaceflight and simulated spaceflight involve several mechanisms. Microgravity is one of them and it can be partially reproduced with models, such as head down bed rest (HDBR). Yet, only a few studies have investigated in detail the complexity of neurophysiological systems and their integration to maintain homeostasis. Central nervous system changes have been studied both in their structural and functional component with advanced techniques, such as functional magnetic resonance (fMRI), showing the main involvement of the cerebellum, cortical sensorimotor, and somatosensory areas, as well as vestibular-related pathways. Analysis of electroencephalography (EEG) led to contrasting results, mainly due to the different factors affecting brain activity. The study of corticospinal excitability may enable a deeper understanding of countermeasures' effect, since greater excitability has been shown being correlated with better preservation of functions. Less is known about somatosensory evoked potentials and peripheral nerve function, yet they may be involved in a homeostatic mechanism fundamental to thermoregulation. Extending the knowledge of such alterations during simulated microgravity may be useful not only for space exploration, but for its application in clinical conditions and for life on Earth, as well.
Collapse
Affiliation(s)
- Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Miloš Ajčević
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy; Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Giovanni Furlanis
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy.
| |
Collapse
|
36
|
Choukér A, Stahn AC. COVID-19-The largest isolation study in history: the value of shared learnings from spaceflight analogs. NPJ Microgravity 2020; 6:32. [PMID: 33110938 PMCID: PMC7582843 DOI: 10.1038/s41526-020-00122-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023] Open
Abstract
The world is currently experiencing the largest isolation experiment in history. In an attempt to slow down the spread of the COVID-19 pandemic numerous countries across the world have been shutting down economies, education, and public life. Governments have mandated strict regulations of quarantine and social distancing in an unprecedented manner. The effects of these measures on brain, behavior, neuro-humoral and immunological responses in humans are largely unknown. Life science research for space exploration has a long history in using high-fidelity spaceflight analogs to better understand the effect of prolonged isolation and confinement on genes, molecules, cells, neural circuits, and physiological systems to behavior. We here propose to leverage the extensive experience and data from these studies and build a bridge between spaceflight research and clinical settings to foster transdisciplinary approaches to characterize the neurobehavioral effects on the immune system and vice versa. These approaches are expected to develop innovative and efficient health screening tools, diagnostic systems, and treatments to mitigate health risks associated with isolation and confinement on Earth and during future exploratory spaceflight missions.
Collapse
Affiliation(s)
- Alexander Choukér
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Marchioninistrasse 15, 81377 Munich, Germany
| | - Alexander C. Stahn
- Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Research Section for Behavioral Regulation and Health, 1016 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19004 USA
| |
Collapse
|
37
|
van Loon JJWA, Cras P, Bouwens WHACM, Roozendaal W, Vernikos J. Gravity Deprivation: Is It Ethical for Optimal Physiology? Front Physiol 2020; 11:470. [PMID: 32457658 PMCID: PMC7227601 DOI: 10.3389/fphys.2020.00470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jack J W A van Loon
- Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center Location VUmc & Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands
| | - Patrick Cras
- Faculty of Medicine & Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Edegem, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
38
|
Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions. Acta Physiol (Oxf) 2020; 228:e13434. [PMID: 31872965 DOI: 10.1111/apha.13434] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
Abstract
Weightlessness in space induces a fluid shift from the dependent to the cephalad parts of the body leading to distension of the cardiac chambers and an accumulation of blood in the veins of the head and neck. Surprisingly, central venous pressure (CVP) during the initial hours of spaceflight decreases compared to being horizontal supine on the ground. The explanation is that the thorax is expanded by weightlessness leading to a decrease in inter-pleural pressure (IPP), which exceeds the measured decrease in CVP. Thus, transmural CVP (TCVP = CVP - IPP) is increased indicating an augmented cardiac preload. Simultaneously, stroke volume and cardiac output (CO) are increased by 18%-26% within the initial weeks and more so by 35%-56% during the subsequent months of flight relative to in the upright posture on the ground. Mean arterial pressure (MAP) is decreased indicating a lower systemic vascular resistance (MAP/CO). It is therefore a surprise that sympathetic nerve activity is not suppressed in space and thus cannot be a mechanism for the systemic vasodilation, which still needs to be explored. Recent observations indicate that the fluid shift during long duration (months) flights is associated with increased retinal thickness that sometimes leads to optical disc oedema. Ocular and cerebral structural changes, increases in left atrial size and decreased flows with thrombi formation in the left internal jugular vein have also been observed. This is of concern for future long duration deep space missions because the health implications are unknown.
Collapse
Affiliation(s)
- Peter Norsk
- Center for Space Medicine & Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston TX USA
| |
Collapse
|
39
|
Reply to Ludwig et al.: A potential mechanism for intracranial cerebrospinal fluid accumulation during long-duration spaceflight. Proc Natl Acad Sci U S A 2019; 116:20265-20266. [PMID: 31530727 PMCID: PMC6789921 DOI: 10.1073/pnas.1913041116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Laurens C, Simon C, Vernikos J, Gauquelin-Koch G, Blanc S, Bergouignan A. Revisiting the Role of Exercise Countermeasure on the Regulation of Energy Balance During Space Flight. Front Physiol 2019; 10:321. [PMID: 30984019 PMCID: PMC6449861 DOI: 10.3389/fphys.2019.00321] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/11/2019] [Indexed: 01/24/2023] Open
Abstract
A body mass loss has been consistently observed in astronauts. This loss is of medical concern since energy deficit can exacerbate some of the deleterious physiological changes observed during space flight including cardiovascular deconditioning, bone density, muscle mass and strength losses, impaired exercise capacity, and immune deficiency among others. These may jeopardize crew health and performance, a healthy return to Earth and mission’s overall success. In the context of planning for planetary exploration, achieving energy balance during long-term space flights becomes a research and operational priority. The regulation of energy balance and its components in current longer duration missions in space must be re-examined and fully understood. The purpose of this review is to summarize current understanding of how energy intake, energy expenditure, and hence energy balance are regulated in space compared to Earth. Data obtained in both actual and simulated microgravity thus far suggest that the obligatory exercise countermeasures program, rather than the microgravity per se, may be partly responsible for the chronic weight loss in space. Little is known of the energy intake, expenditure, and balance during the intense extravehicular activities which will become increasingly more frequent and difficult. The study of the impact of exercise on energy balance in space also provides further insights on lifestyle modalities such as intensity and frequency of exercise, metabolism, and the regulation of body weight on Earth, which is currently a topic of animated debate in the field of energy and obesity research. While not dismissing the significance of exercise as a countermeasure during space flight, data now challenge the current exercise countermeasure program promoted and adopted for many years by all the International Space Agencies. An alternative exercise approach that has a minimum impact on total energy expenditure in space, while preventing muscle mass loss and other physiological changes, is needed in order to better understand the in-flight regulation of energy balance and estimate daily energy requirements. A large body of data generated on Earth suggests that alternate approaches, such as high intensity interval training (HIIT), in combination or not with sessions of resistive exercise, might fulfill such needs.
Collapse
Affiliation(s)
- Claire Laurens
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien UMR 7178, Strasbourg, France.,Centre National d'Etudes Spatiales, Paris, France
| | - Chantal Simon
- Carmen INSERM U1060, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Université de Lyon, Lyon, France.,Human Nutrition Research Centre of Rhône-Alpes, Hospices Civils de Lyon, Lyon, France
| | | | | | - Stéphane Blanc
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien UMR 7178, Strasbourg, France
| | - Audrey Bergouignan
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien UMR 7178, Strasbourg, France.,Anschutz Health and Wellness Center, Anschutz Medical Campus, Aurora, CO, United States.,Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
41
|
Tomilovskaya E, Shigueva T, Sayenko D, Rukavishnikov I, Kozlovskaya I. Dry Immersion as a Ground-Based Model of Microgravity Physiological Effects. Front Physiol 2019; 10:284. [PMID: 30971938 PMCID: PMC6446883 DOI: 10.3389/fphys.2019.00284] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 03/04/2019] [Indexed: 01/04/2023] Open
Abstract
Dry immersion (DI) is one of the most widely used ground models of microgravity. DI accurately and rapidly reproduces most of physiological effects of short-term space flights. The model simulates such factors of space flight as lack of support, mechanical and axial unloading as well as physical inactivity. The current manuscript gathers the results of physiological studies performed from the time of the model's development. This review describes the changes induced by DI of different duration (from few hours to 56 days) in the neuromuscular, sensory-motor, cardiorespiratory, digestive and excretory, and immune systems, as well as in the metabolism and hemodynamics. DI reproduces practically the full spectrum of changes in the body systems during the exposure to microgravity. The numerous publications from Russian researchers, which until present were mostly inaccessible for scientists from other countries are summarized in this work. These data demonstrated and validated DI as a ground-based model for simulation of physiological effects of weightlessness. The magnitude and rate of physiological changes during DI makes this method advantageous as compared with other ground-based microgravity models. The actual and potential uses of the model are discussed in the context of fundamental studies and applications for Earth medicine.
Collapse
Affiliation(s)
- Elena Tomilovskaya
- RF SSC – Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Shigueva
- RF SSC – Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dimitry Sayenko
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Ilya Rukavishnikov
- RF SSC – Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inessa Kozlovskaya
- RF SSC – Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Jackson TC, Kochanek PM. A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Ther Hypothermia Temp Manag 2019; 9:13-47. [PMID: 30802174 PMCID: PMC6434603 DOI: 10.1089/ther.2019.0001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three decades of animal studies have reproducibly shown that hypothermia is profoundly cerebroprotective during or after a central nervous system (CNS) insult. The success of hypothermia in preclinical acute brain injury has not only fostered continued interest in research on the classic secondary injury mechanisms that are prevented or blunted by hypothermia but has also sparked a surge of new interest in elucidating beneficial signaling molecules that are increased by cooling. Ironically, while research into cold-induced neuroprotection is enjoying newfound interest in chronic neurodegenerative disease, conversely, the scope of the utility of therapeutic hypothermia (TH) across the field of acute brain injury is somewhat controversial and remains to be fully defined. This has led to the era of Targeted Temperature Management, which emphasizes a wider range of temperatures (33–36°C) showing benefit in acute brain injury. In this comprehensive review, we focus on our current understandings of the novel neuroprotective mechanisms activated by TH, and discuss the critical importance of developmental age germane to its clinical efficacy. We review emerging data on four cold stress hormones and three cold shock proteins that have generated new interest in hypothermia in the field of CNS injury, to create a framework for new frontiers in TH research. We make the case that further elucidation of novel cold responsive pathways might lead to major breakthroughs in the treatment of acute brain injury, chronic neurological diseases, and have broad potential implications for medicines of the distant future, including scenarios such as the prevention of adverse effects of long-duration spaceflight, among others. Finally, we introduce several new phrases that readily summarize the essence of the major concepts outlined by this review—namely, Ultramild Hypothermia, the “Responsivity of Cold Stress Pathways,” and “Hypothermia in a Syringe.”
Collapse
Affiliation(s)
- Travis C Jackson
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Capri M, Morsiani C, Santoro A, Moriggi M, Conte M, Martucci M, Bellavista E, Fabbri C, Giampieri E, Albracht K, Flück M, Ruoss S, Brocca L, Canepari M, Longa E, Di Giulio I, Bottinelli R, Cerretelli P, Salvioli S, Gelfi C, Franceschi C, Narici M, Rittweger J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting. FASEB J 2019; 33:5168-5180. [PMID: 30620616 PMCID: PMC6436655 DOI: 10.1096/fj.201801625r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Sarcolab pilot study of 2 crewmembers, investigated before and after a 6-mo International Space Station mission, has demonstrated the substantial muscle wasting and weakness, along with disruption of muscle's oxidative metabolism. The present work aimed at evaluating the pro/anti-inflammatory status in the same 2 crewmembers (A, B). Blood circulating (c-)microRNAs (miRs), c-proteasome, c-mitochondrial DNA, and cytokines were assessed by real-time quantitative PCR or ELISA tests. Time series analysis was performed ( i.e., before flight and after landing) at 1 and 15 d of recovery (R+1 and R+15, respectively). C-biomarkers were compared with an age-matched control population and with 2-dimensional proteomic analysis of the 2 crewmembers' muscle biopsies. Striking differences were observed between the 2 crewmembers at R+1, in terms of inflamma-miRs (c-miRs-21-5p, -126-3p, and -146a-5p), muscle specific (myo)-miR-206, c-proteasome, and IL-6/leptin, thus making the 2 astronauts dissimilar to each other. Final recovery levels of c-proteasome, c-inflamma-miRs, and c-myo-miR-206 were not reverted to the baseline values in crewmember A. In both crewmembers, myo-miR-206 changed significantly after recovery. Muscle biopsy of astronaut A showed an impressive 80% increase of α-1-antitrypsin, a target of miR-126-3p. These results point to a strong stress response induced by spaceflight involving muscle tissue and the proinflammatory setting, where inflamma-miRs and myo-miR-206 mediate the systemic recovery phase after landing.-Capri, M., Morsiani, C., Santoro, A., Moriggi, M., Conte, M., Martucci, M., Bellavista, E., Fabbri, C., Giampieri, E., Albracht, K., Flück, M., Ruoss, S., Brocca, L., Canepari, M., Longa, E., Di Giulio, I., Bottinelli, R., Cerretelli, P., Salvioli, S., Gelfi, C., Franceschi, C., Narici, M., Rittweger, J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Manuela Moriggi
- National Research Council-Institute of Molecular Bioimaging and Physiology (CNR-IBFM), Segrate, Milan, Italy.,Italian National Olympic Committee (CONI), Rome, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Elena Bellavista
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Fabbri
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Enrico Giampieri
- Galvani Interdepartmental Center, University of Bologna, Bologna, Italy.,Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Kirsten Albracht
- Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
| | - Martin Flück
- Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Severin Ruoss
- Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Longa
- Sport Medicine Center, University of Pavia, Pavia, Italy
| | - Irene Di Giulio
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Fondazione Salvatore Maugeri, Institute of Hospitalization and Scientific Care (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Paolo Cerretelli
- National Research Council-Institute of Molecular Bioimaging and Physiology (CNR-IBFM), Segrate, Milan, Italy.,Italian National Olympic Committee (CONI), Rome, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS, Istituto Ortopedico Galeazzi, Milan, Italy
| | - Claudio Franceschi
- Department of Applied Mathematics, Institute of Information Technology, Mathematics, and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), Nizhny Novogoro, Russia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; and.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Crucian BE, Choukèr A, Simpson RJ, Mehta S, Marshall G, Smith SM, Zwart SR, Heer M, Ponomarev S, Whitmire A, Frippiat JP, Douglas GL, Lorenzi H, Buchheim JI, Makedonas G, Ginsburg GS, Ott CM, Pierson DL, Krieger SS, Baecker N, Sams C. Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Front Immunol 2018; 9:1437. [PMID: 30018614 PMCID: PMC6038331 DOI: 10.3389/fimmu.2018.01437] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have established that dysregulation of the human immune system and the reactivation of latent herpesviruses persists for the duration of a 6-month orbital spaceflight. It appears certain aspects of adaptive immunity are dysregulated during flight, yet some aspects of innate immunity are heightened. Interaction between adaptive and innate immunity also seems to be altered. Some crews experience persistent hypersensitivity reactions during flight. This phenomenon may, in synergy with extended duration and galactic radiation exposure, increase specific crew clinical risks during deep space exploration missions. The clinical challenge is based upon both the frequency of these phenomena in multiple crewmembers during low earth orbit missions and the inability to predict which specific individual crewmembers will experience these changes. Thus, a general countermeasure approach that offers the broadest possible coverage is needed. The vehicles, architecture, and mission profiles to enable such voyages are now under development. These include deployment and use of a cis-Lunar station (mid 2020s) with possible Moon surface operations, to be followed by multiple Mars flyby missions, and eventual human Mars surface exploration. Current ISS studies will continue to characterize physiological dysregulation associated with prolonged orbital spaceflight. However, sufficient information exists to begin consideration of both the need for, and nature of, specific immune countermeasures to ensure astronaut health. This article will review relevant in-place operational countermeasures onboard ISS and discuss a myriad of potential immune countermeasures for exploration missions. Discussion points include nutritional supplementation and functional foods, exercise and immunity, pharmacological options, the relationship between bone and immune countermeasures, and vaccination to mitigate herpes (and possibly other) virus risks. As the immune system has sentinel connectivity within every other physiological system, translational effects must be considered for all potential immune countermeasures. Finally, we shall discuss immune countermeasures in the context of their individualized implementation or precision medicine, based on crewmember specific immunological biases.
Collapse
Affiliation(s)
- Brian E. Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Alexander Choukèr
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Richard J. Simpson
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | | | - Gailen Marshall
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Scott M. Smith
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Sara R. Zwart
- University of Texas Medical Branch, Galveston, TX, United States
| | - Martina Heer
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | | | | | - Jean P. Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Nancy, France
| | - Grace L. Douglas
- Human Systems Engineering and Development Division, NASA Johnson Space Center, Houston, TX, United States
| | | | - Judith-Irina Buchheim
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | | | - Geoffrey S. Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Durham, NC, United States
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Duane L. Pierson
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | | | - Natalie Baecker
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | - Clarence Sams
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| |
Collapse
|