1
|
Vásquez E, Oresti GM, Paez MD, Callegari EA, Masone D, Muñoz EM. Impact of aging on the GABA B receptor-mediated connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606013. [PMID: 39131332 PMCID: PMC11312617 DOI: 10.1101/2024.07.31.606013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
GABA B receptors (GABABRs) are heterodimeric seven-transmembrane receptors that interact with a range of proteins and form large protein complexes on cholesterol-rich membrane microdomains. As the brain ages, membrane cholesterol levels exhibit alterations, although it remains unclear how these changes impact protein-protein interactions and downstream signaling. Herein, we studied the structural bases for the interaction between GABABR and the KCC2 transporter, including their protein expression and distribution, and we compared data between young and aged rat cerebella. Also, we analyzed lipid profiles for both groups, and we used molecular dynamics simulations on three plasma membrane systems with different cholesterol concentrations, to further explore the GABABR-transporter interaction. Based on our results, we report that a significant decrease in GABAB2 subunit expression occurs in the aged rat cerebella. After performing a comparative co-immunoprecipitation analysis, we confirm that GABABR and KCC2 form a protein complex in adult and aged rat cerebella, although their interaction levels are reduced substantially as the cerebellum ages. On the other hand, our lipid analyses reveal a significant increase in cholesterol and sphingomyelin levels of the aged cerebella. Finally, we used the Martini coarse-grained model to conduct molecular dynamics simulations, from which we observed that membrane cholesterol concentrations can dictate whether the GABABR tail domains physically establish G protein-independent contacts with a transporter, and the timing when those associations eventually occur. Taken together, our findings illustrate how age-related alterations in membrane cholesterol levels affect protein-protein interactions, and how they could play a crucial role in regulating GABABR's interactome-mediated signaling. Significance Statement This study elucidates age-related changes in cerebellar GABAB receptors (GABABRs), KCC2, and plasma membrane lipids, shedding light on mechanisms underlying neurological decline. Molecular dynamics simulations reveal how membrane lipids influence protein-protein interactions, offering insights into age-related neurodegeneration. The findings underscore the broader impact of cerebellar aging on motor functions, cognition, and emotional processing in the elderly. By elucidating plasma membrane regulation and GABAergic dynamics, this research lays the groundwork for understanding aging-related neurological disorders and inspires further investigation into therapeutic interventions.
Collapse
Affiliation(s)
- Elena Vásquez
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Gerardo M. Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María D. Paez
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Eduardo A. Callegari
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Estela M. Muñoz
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| |
Collapse
|
2
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Kok M, Hartnett-Scott K, Happe CL, MacDonald ML, Aizenman E, Brodsky JL. The expression system influences stability, maturation efficiency, and oligomeric properties of the potassium-chloride co-transporter KCC2. Neurochem Int 2024; 174:105695. [PMID: 38373478 PMCID: PMC10923169 DOI: 10.1016/j.neuint.2024.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The neuron-specific K+/Cl- co-transporter 2, KCC2, which is critical for brain development, regulates γ-aminobutyric acid-dependent inhibitory neurotransmission. Consistent with its function, mutations in KCC2 are linked to neurodevelopmental disorders, including epilepsy, schizophrenia, and autism. KCC2 possesses 12 transmembrane spans and forms an intertwined dimer. Based on its complex architecture and function, reduced cell surface expression and/or activity have been reported when select disease-associated mutations are present in the gene encoding the protein, SLC12A5. These data suggest that KCC2 might be inherently unstable, as seen for other complex polytopic ion channels, thus making it susceptible to cellular quality control pathways that degrade misfolded proteins. To test these hypotheses, we examined KCC2 stability and/or maturation in five model systems: yeast, HEK293 cells, primary rat neurons, and rat and human brain synaptosomes. Although studies in yeast revealed that KCC2 is selected for endoplasmic reticulum-associated degradation (ERAD), experiments in HEK293 cells supported a more subtle role for ERAD in maintaining steady-state levels of KCC2. Nevertheless, this system allowed for an analysis of KCC2 glycosylation in the ER and Golgi, which serves as a read-out for transport through the secretory pathway. In turn, KCC2 was remarkably stable in primary rat neurons, suggesting that KCC2 folds efficiently in more native systems. Consistent with these data, the mature glycosylated form of KCC2 was abundant in primary rat neurons as well as in rat and human brain. Together, this work details the first insights into the influence that the cellular and membrane environments have on several fundamental KCC2 properties, acknowledges the advantages and disadvantages of each system, and helps set the stage for future experiments to assess KCC2 in a normal or disease setting.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karen Hartnett-Scott
- Department of Neurobiology and the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cassandra L Happe
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elias Aizenman
- Department of Neurobiology and the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Kim HR, Martina M. Bidirectional Regulation of GABA A Reversal Potential in the Adult Brain: Physiological and Pathological Implications. Life (Basel) 2024; 14:143. [PMID: 38276272 PMCID: PMC10817304 DOI: 10.3390/life14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In physiological conditions, the intracellular chloride concentration is much lower than the extracellular. As GABAA channels are permeable to anions, the reversal potential of GABAA is very close to that of Cl-, which is the most abundant free anion in the intra- and extracellular spaces. Intracellular chloride is regulated by the activity ratio of NKCC1 and KCC2, two chloride-cation cotransporters that import and export Cl-, respectively. Due to the closeness between GABAA reversal potential and the value of the resting membrane potential in most neurons, small changes in intracellular chloride have a major functional impact, which makes GABAA a uniquely flexible signaling system. In most neurons of the adult brain, the GABAA reversal potential is slightly more negative than the resting membrane potential, which makes GABAA hyperpolarizing. Alterations in GABAA reversal potential are a common feature in numerous conditions as they are the consequence of an imbalance in the NKCC1-KCC2 activity ratio. In most conditions (including Alzheimer's disease, schizophrenia, and Down's syndrome), GABAA becomes depolarizing, which causes network desynchronization and behavioral impairment. In other conditions (neonatal inflammation and neuropathic pain), however, GABAA reversal potential becomes hypernegative, which affects behavior through a potent circuit deactivation.
Collapse
Affiliation(s)
- Haram R. Kim
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
| | - Marco Martina
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Trejo F, Elizalde S, Mercado A, Gamba G, de losHeros P. SLC12A cryo-EM: analysis of relevant ion binding sites, structural domains, and amino acids. Am J Physiol Cell Physiol 2023; 325:C921-C939. [PMID: 37545407 DOI: 10.1152/ajpcell.00089.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
The solute carrier family 12A (SLC12A) superfamily of membrane transporters modulates the movement of cations coupled with chloride across the membrane. In doing so, these cotransporters are involved in numerous aspects of human physiology: cell volume regulation, ion homeostasis, blood pressure regulation, and neurological action potential via intracellular chloride concentration modulation. Their physiological characterization has been largely studied; however, understanding the mechanics of their function and the relevance of structural domains or specific amino acids has been a pending task. In recent years, single-particle cryogenic electron microscopy (cryo-EM) has been successfully applied to members of the SLC12A family including all K+:Cl- cotransporters (KCCs), Na+:K+:2Cl- cotransporter NKCC1, and recently Na+:Cl- cotransporter (NCC); revealing structural elements that play key roles in their function. The present review analyzes the data provided by these cryo-EM reports focusing on structural domains and specific amino acids involved in ion binding, domain interactions, and other important SCL12A structural elements. A comparison of cryo-EM data from NKCC1 and KCCs is presented in the light of the two recent NCC cryo-EM studies, to propose insight into structural elements that might also be found in NCC and are necessary for its proper function. In the final sections, the importance of key coordination residues for substrate specificity and their implication on various pathophysiological conditions and genetic disorders is reviewed, as this could provide the basis to correlate structural elements with the development of novel and selective treatments, as well as mechanistic insight into the function and regulation of cation-coupled chloride cotransporters (CCCs).
Collapse
Affiliation(s)
- Fátima Trejo
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Mercado
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gerardo Gamba
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de losHeros
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Cheung DL, Toda T, Narushima M, Eto K, Takayama C, Ooba T, Wake H, Moorhouse AJ, Nabekura J. KCC2 downregulation after sciatic nerve injury enhances motor function recovery. Sci Rep 2023; 13:7871. [PMID: 37188694 DOI: 10.1038/s41598-023-34701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
Injury to mature neurons induces downregulated KCC2 expression and activity, resulting in elevated intracellular [Cl-] and depolarized GABAergic signaling. This phenotype mirrors immature neurons wherein GABA-evoked depolarizations facilitate neuronal circuit maturation. Thus, injury-induced KCC2 downregulation is broadly speculated to similarly facilitate neuronal circuit repair. We test this hypothesis in spinal cord motoneurons injured by sciatic nerve crush, using transgenic (CaMKII-KCC2) mice wherein conditional CaMKIIα promoter-KCC2 expression coupling selectively prevents injury-induced KCC2 downregulation. We demonstrate, via an accelerating rotarod assay, impaired motor function recovery in CaMKII-KCC2 mice relative to wild-type mice. Across both cohorts, we observe similar motoneuron survival and re-innervation rates, but differing post-injury reorganization patterns of synaptic input to motoneuron somas-for wild-type, both VGLUT1-positive (excitatory) and GAD67-positive (inhibitory) terminal counts decrease; for CaMKII-KCC2, only VGLUT1-positive terminal counts decrease. Finally, we recapitulate the impaired motor function recovery of CaMKII-KCC2 mice in wild-type mice by administering local spinal cord injections of bicuculline (GABAA receptor blockade) or bumetanide (lowers intracellular [Cl-] by NKCC1 blockade) during the early post-injury period. Thus, our results provide direct evidence that injury-induced KCC2 downregulation enhances motor function recovery and suggest an underlying mechanism of depolarizing GABAergic signaling driving adaptive reconfiguration of presynaptic GABAergic input.
Collapse
Affiliation(s)
- Dennis Lawrence Cheung
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Takuya Toda
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Madoka Narushima
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Kei Eto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | - Tatsuko Ooba
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hiroaki Wake
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Andrew John Moorhouse
- School of Biomedical Sciences, UNSW Sydney (The University of New South Wales), Sydney, New South Wales, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan.
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
7
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Jarvis R, Josephine Ng SF, Nathanson AJ, Cardarelli RA, Abiraman K, Wade F, Evans-Strong A, Fernandez-Campa MP, Deeb TZ, Smalley JL, Jamier T, Gurrell IK, McWilliams L, Kawatkar A, Conway LC, Wang Q, Burli RW, Brandon NJ, Chessell IP, Goldman AJ, Maguire JL, Moss SJ. Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice. Cell Rep Med 2023; 4:100957. [PMID: 36889319 PMCID: PMC10040380 DOI: 10.1016/j.xcrm.2023.100957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl- extrusion, a process that is facilitated by the neuronal specific K+/Cl- co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl- accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury.
Collapse
Affiliation(s)
- Rebecca Jarvis
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Shu Fun Josephine Ng
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Ross A Cardarelli
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Krithika Abiraman
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Fergus Wade
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Aidan Evans-Strong
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Marina P Fernandez-Campa
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Tanguy Jamier
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ian K Gurrell
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Lisa McWilliams
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aarti Kawatkar
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Leslie C Conway
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Qi Wang
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Roland W Burli
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Nicholas J Brandon
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Iain P Chessell
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Aaron J Goldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1 6BT, UK.
| |
Collapse
|
9
|
Talifu Z, Pan Y, Gong H, Xu X, Zhang C, Yang D, Gao F, Yu Y, Du L, Li J. The role of KCC2 and NKCC1 in spinal cord injury: From physiology to pathology. Front Physiol 2022; 13:1045520. [PMID: 36589461 PMCID: PMC9799334 DOI: 10.3389/fphys.2022.1045520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The balance of ion concentrations inside and outside the cell is an essential homeostatic mechanism in neurons and serves as the basis for a variety of physiological activities. In the central nervous system, NKCC1 and KCC2, members of the SLC12 cation-chloride co-transporter (CCC) family, participate in physiological and pathophysiological processes by regulating intracellular and extracellular chloride ion concentrations, which can further regulate the GABAergic system. Over recent years, studies have shown that NKCC1 and KCC2 are essential for the maintenance of Cl- homeostasis in neural cells. NKCC1 transports Cl- into cells while KCC2 transports Cl- out of cells, thereby regulating chloride balance and neuronal excitability. An imbalance of NKCC1 and KCC2 after spinal cord injury will disrupt CI- homeostasis, resulting in the transformation of GABA neurons from an inhibitory state into an excitatory state, which subsequently alters the spinal cord neural network and leads to conditions such as spasticity and neuropathic pain, among others. Meanwhile, studies have shown that KCC2 is also an essential target for motor function reconstruction after spinal cord injury. This review mainly introduces the physiological structure and function of NKCC1 and KCC2 and discusses their pathophysiological roles after spinal cord injury.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| |
Collapse
|
10
|
Yeo M, Zhang Q, Ding L, Shen X, Chen Y, Liedtke W. Spinal cord dorsal horn sensory gate in preclinical models of chemotherapy-induced painful neuropathy and contact dermatitis chronic itch becomes less leaky with Kcc2 gene expression-enhancing treatments. Front Mol Neurosci 2022; 15:911606. [PMID: 36504679 PMCID: PMC9731339 DOI: 10.3389/fnmol.2022.911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Low intraneuronal chloride in spinal cord dorsal horn (SCDH) pain relay neurons is of critical relevance for physiological transmission of primary sensory afferents because low intraneuronal chloride dictates GABA-ergic and glycin-ergic neurotransmission to be inhibitory. If neuronal chloride rises to unphysiological levels, the primary sensory gate in the spinal cord dorsal horn becomes corrupted, with resulting behavioral hallmarks of hypersensitivity and allodynia, for example in pathological pain. Low chloride in spinal cord dorsal horn neurons relies on the robust gene expression of Kcc2 and sustained transporter function of the KCC2 chloride-extruding electroneutral transporter. Based on a recent report where we characterized the GSK3-inhibitory small molecule, kenpaullone, as a Kcc2 gene expression-enhancer that potently repaired diminished Kcc2 expression and KCC2 transporter function in SCDH pain relay neurons, we extend our recent findings by reporting (i) effective pain control in a preclinical model of taxol-induced painful peripheral neuropathy that was accomplished by topical application of a TRPV4/TRPA1 dual-inhibitory compound (compound 16-8), and was associated with the repair of diminished Kcc2 gene expression in the SCDH; and (ii) potent functioning of kenpaullone as an antipruritic in a DNFB contact dermatitis preclinical model. These observations suggest that effective peripheral treatment of chemotherapy-induced painful peripheral neuropathy impacts the pain-transmitting neural circuit in the SCDH in a beneficial manner by enhancing Kcc2 gene expression, and that chronic pruritus might be relayed in the primary sensory gate of the spinal cord, following similar principles as pathological pain, specifically relating to the critical functioning of Kcc2 gene expression and the KCC2 transporter function.
Collapse
Affiliation(s)
- Michele Yeo
- Departments of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Qiaojuan Zhang
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States
| | - LeAnne Ding
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Xiangjun Shen
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Yong Chen
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Yong Chen
| | - Wolfgang Liedtke
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States,Wolfgang Liedtke
| |
Collapse
|
11
|
Escher J, Yan W, Rissman EF, Wang HLV, Hernandez A, Corces VG. Beyond Genes: Germline Disruption in the Etiology of Autism Spectrum Disorders. J Autism Dev Disord 2022; 52:4608-4624. [PMID: 34596807 PMCID: PMC9035896 DOI: 10.1007/s10803-021-05304-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/31/2023]
Abstract
Investigations into the etiology of autism spectrum disorders have been largely confined to two realms: variations in DNA sequence and somatic developmental exposures. Here we suggest a third route-disruption of the germline epigenome induced by exogenous toxicants during a parent's gamete development. Similar to cases of germline mutation, these molecular perturbations may produce dysregulated transcription of brain-related genes during fetal and early development, resulting in abnormal neurobehavioral phenotypes in offspring. Many types of exposures may have these impacts, and here we discuss examples of anesthetic gases, tobacco components, synthetic steroids, and valproic acid. Alterations in parental germline could help explain some unsolved phenomena of autism, including increased prevalence, missing heritability, skewed sex ratio, and heterogeneity of neurobiology and behavior.
Collapse
Affiliation(s)
- Jill Escher
- Escher Fund for Autism, 1590 Calaveras Avenue, San Jose, CA, USA.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emilie F Rissman
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Arturo Hernandez
- Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
13
|
Al Awabdh S, Donneger F, Goutierre M, Séveno M, Vigy O, Weinzettl P, Russeau M, Moutkine I, Lévi S, Marin P, Poncer JC. Gephyrin Interacts with the K-Cl Cotransporter KCC2 to Regulate Its Surface Expression and Function in Cortical Neurons. J Neurosci 2022; 42:166-182. [PMID: 34810232 PMCID: PMC8802937 DOI: 10.1523/jneurosci.2926-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/31/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022] Open
Abstract
The K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.
Collapse
Affiliation(s)
- Sana Al Awabdh
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Florian Donneger
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Marie Goutierre
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Martial Séveno
- BCM, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Oana Vigy
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Pauline Weinzettl
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Institute of Biotechnology, University of Applied Sciences, Krems, Austria
| | - Marion Russeau
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Imane Moutkine
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| |
Collapse
|
14
|
Hamze M, Medina I, Delmotte Q, Porcher C. Contribution of Smoothened Receptor Signaling in GABAergic Neurotransmission and Chloride Homeostasis in the Developing Rodent Brain. Front Physiol 2021; 12:798066. [PMID: 34955901 PMCID: PMC8703190 DOI: 10.3389/fphys.2021.798066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
In the early stages of the central nervous system growth and development, γ-aminobutyric acid (GABA) plays an instructive trophic role for key events including neurogenesis, migration, synaptogenesis, and network formation. These actions are associated with increased concentration of chloride ions in immature neurons [(Cl−)i] that determines the depolarizing strength of ion currents mediated by GABAA receptors, a ligand-gated Cl− permeable ion channel. During neuron maturation the (Cl−)i progressively decreases leading to weakening of GABA induced depolarization and enforcing GABA function as principal inhibitory neurotransmitter. A neuron restricted potassium-chloride co-transporter KCC2 is a key molecule governing Cl− extrusion and determining the resting level of (Cl−)i in developing and mature mammalian neurons. Among factors controlling the functioning of KCC2 and the maturation of inhibitory circuits, is Smoothened (Smo), the transducer in the receptor complex of the developmental protein Sonic Hedgehog (Shh). Too much or too little Shh-Smo action will have mirror effects on KCC2 stability at the neuron membrane, the GABA inhibitory strength, and ultimately on the newborn susceptibility to neurodevelopmental disorders. Both canonical and non-canonical Shh-Smo signal transduction pathways contribute to the regulation of KCC2 and GABAergic synaptic activity. In this review, we discuss the recent findings of the action of Shh-Smo signaling pathways on chloride ions homeostasis through the control of KCC2 membrane trafficking, and consequently on inhibitory neurotransmission and network activity during postnatal development.
Collapse
Affiliation(s)
- Mira Hamze
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Igor Medina
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Quentin Delmotte
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Christophe Porcher
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
15
|
Pae EK, Harper RM. Potential Mechanisms Underlying Hypoxia-Induced Diabetes in a Rodent Model: Implications for COVID-19. CHILDREN 2021; 8:children8121178. [PMID: 34943374 PMCID: PMC8700366 DOI: 10.3390/children8121178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023]
Abstract
Previous studies reported that repetitive hypoxia in rat pups reduces insulin secretion and elevates fasting blood glucose levels; these sequelae persisted for several months. This report describes how episodic hypoxic events elevate a chloride ion exporter, K+-Cl− cotransporter-2 (KCC2), in the plasma membrane of insulin-secreting pancreatic β-cells. We assume that acute diabetic symptoms observed in rat pups with periodic oxygen desaturation could result from a lack of blood insulin levels due to disturbed β-cell function. This acute hypo-insulinemia may result from a disruption in chloride balance in β-cells arising from an imbalanced KCC2-NKCC1 (chloride exporter-importer) density as a consequence of periodic oxygen desaturation. Mechanistically, we postulate that a reduced insulin secretion due to the KCC2-NKCC1 imbalance subsequent to acute oxygen desaturation could result in hyperglycemia in rat pups, paralleling symptoms shown in patients with COVID-19 who experienced acute respiratory distress.
Collapse
Affiliation(s)
- Eung-Kwon Pae
- School of Dentistry, University of Maryland, 650 W. Baltimore St., Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-310-740-6161
| | - Ronald M. Harper
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA 90095, USA;
| |
Collapse
|
16
|
Yeo M, Chen Y, Jiang C, Chen G, Wang K, Chandra S, Bortsov A, Lioudyno M, Zeng Q, Wang P, Wang Z, Busciglio J, Ji RR, Liedtke W. Repurposing cancer drugs identifies kenpaullone which ameliorates pathologic pain in preclinical models via normalization of inhibitory neurotransmission. Nat Commun 2021; 12:6208. [PMID: 34707084 PMCID: PMC8551327 DOI: 10.1038/s41467-021-26270-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibitory GABA-ergic neurotransmission is fundamental for the adult vertebrate central nervous system and requires low chloride concentration in neurons, maintained by KCC2, a neuroprotective ion transporter that extrudes intracellular neuronal chloride. To identify Kcc2 gene expression‑enhancing compounds, we screened 1057 cell growth-regulating compounds in cultured primary cortical neurons. We identified kenpaullone (KP), which enhanced Kcc2/KCC2 expression and function in cultured rodent and human neurons by inhibiting GSK3ß. KP effectively reduced pathologic pain-like behavior in mouse models of nerve injury and bone cancer. In a nerve-injury pain model, KP restored Kcc2 expression and GABA-evoked chloride reversal potential in the spinal cord dorsal horn. Delta-catenin, a phosphorylation-target of GSK3ß in neurons, activated the Kcc2 promoter via KAISO transcription factor. Transient spinal over-expression of delta-catenin mimicked KP analgesia. Our findings of a newly repurposed compound and a novel, genetically-encoded mechanism that each enhance Kcc2 gene expression enable us to re-normalize disrupted inhibitory neurotransmission through genetic re-programming.
Collapse
Affiliation(s)
- Michele Yeo
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| | - Changyu Jiang
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Gang Chen
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Kaiyuan Wang
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Sharat Chandra
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Andrey Bortsov
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Maria Lioudyno
- Department of Neurobiology & Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, USA
| | - Qian Zeng
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Peng Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Zilong Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Jorge Busciglio
- Department of Neurobiology & Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, USA
| | - Ru-Rong Ji
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Duke Neurology Clinics for Headache, Head-Pain and Trigeminal Sensory Disorders, Duke University Medical Center, Durham, NC, USA.
- Duke Anesthesiology Clinics for Innovative Pain Therapy, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
17
|
Portioli C, Ruiz Munevar MJ, De Vivo M, Cancedda L. Cation-coupled chloride cotransporters: chemical insights and disease implications. TRENDS IN CHEMISTRY 2021; 3:832-849. [PMID: 34604727 PMCID: PMC8461084 DOI: 10.1016/j.trechm.2021.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cation-coupled chloride cotransporters (CCCs) modulate the transport of sodium and/or potassium cations coupled with chloride anions across the cell membrane. CCCs thus help regulate intracellular ionic concentration and consequent cell volume homeostasis. This has been largely exploited in the past to develop diuretic drugs that act on CCCs expressed in the kidney. However, a growing wealth of evidence has demonstrated that CCCs are also critically involved in a great variety of other pathologies, motivating most recent drug discovery programs targeting CCCs. Here, we examine the structure–function relationship of CCCs. By linking recent high-resolution cryogenic electron microscopy (cryo-EM) data with older biochemical/functional studies on CCCs, we discuss the mechanistic insights and opportunities to design selective CCC modulators to treat diverse pathologies. The structural topology and function of all cation-coupled chloride cotransporters (CCCs) have been continuously investigated over the past 40 years, with great progress also thanks to the recent cryogenic electron microscopy (cryo-EM) resolution of the structures of five CCCs. In particular, such studies have clarified the structure–function relationship for the Na-K-Cl cotransporter NKCC1 and K-Cl cotransporters KCC1–4. The constantly growing evidence of the crucial involvement of CCCs in physiological and various pathological conditions, as well as the evidence of their wide expression in diverse body tissues, has promoted CCCs as targets for the discovery and development of new, safer, and more selective/effective drugs for a plethora of pathologies. Post-translational modification anchor points on the structure of CCCs may offer alternative strategies for small molecule drug discovery.
Collapse
Affiliation(s)
- Corinne Portioli
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.,Laboratory of Molecular Modeling and Drug Discovery, IIT, Via Morego, 30 16163 Genoa, Italy
| | | | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, IIT, Via Morego, 30 16163 Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.,Dulbecco Telethon Institute, Via Varese 16b, 00185 Rome, Italy
| |
Collapse
|
18
|
Lee KL, Abiraman K, Lucaj C, Ollerhead TA, Brandon NJ, Deeb TZ, Maguire J, Moss SJ. Inhibiting with-no-lysine kinases enhances K+/Cl- cotransporter 2 activity and limits status epilepticus. Brain 2021; 145:950-963. [PMID: 34528073 DOI: 10.1093/brain/awab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/25/2021] [Accepted: 08/14/2021] [Indexed: 11/12/2022] Open
Abstract
First-in-line benzodiazepine treatment fails to terminate seizures in about 30% of epilepsy patients, highlighting a need for novel antiseizure strategies. Impaired GABAergic inhibition is key to the development of such benzodiazepine-resistant seizures, as well as the pathophysiology of status epilepticus (SE). It is emerging that reduced or impaired neuronal K+/Cl- cotransporter 2 (KCC2) activity contributes to deficits in γ-aminobutyric acid (GABA)-mediated inhibition and increased seizure vulnerability. The with-no-lysine kinase (WNK)-STE20/SPS1-related proline/alanine-rich (SPAK) kinase signaling pathway inhibits neuronal KCC2 via KCC2-T1007 phosphorylation. A selective WNK kinase inhibitor, WNK463, was recently synthesized by Novartis. Exploiting WNK463, we test the hypothesis that pharmacological WNK inhibition will enhance KCC2 activity, increase the efficacy of GABAergic inhibition, and thereby limit seizure activity in animal models. Immunoprecipitation and Western blot analysis were used to examine WNK463's effects on KCC2-T1007 phosphorylation, in vitro and in vivo. A thallium (Tl+) uptake assay was used in human embryonic kidney (HEK-293) cells expressing KCC2 to test WNK463's effects on KCC2-mediated Tl+ transport. Gramicidin-perforated- and whole-cell patch-clamp recordings in cortical rat neurons were used to examine WNK463's effects on KCC2-mediated Cl- transport. In mouse brain slices (entorhinal cortex), field recordings were utilized to examine WNK463's effects on 4-aminopyridine-induced seizure activity. Last, WNK463 was directly deliver to the mouse hippocampus in vivo and tested in a kainic acid model of diazepam-resistant SE. WNK463 significantly reduces KCC2-T1007 phosphorylation in vitro and in vivo (mice). In human embryonic kidney 293 (HEK-293) cells expressing KCC2, WNK463 greatly enhanced the rates Tl+ transport. However, the drug did not enhance Tl+ transport in cells expressing a KCC2-phospho null T1007 mutant. In cultured rat neurons, WNK463 rapidly reduced intracellular Cl- and consequently hyperpolarized the Cl- reversal potential (EGABA). In mature neurons that were artificially loaded with 30 mM Cl-, WNK463 significantly enhanced KCC2-mediated Cl- export and hyperpolarized EGABA. In a 4-aminopyridine model of acute seizures, WNK463 reduced the frequency and number of seizure-like events (SLEs). Finally, in an in vivo kainic acid (KA) model of diazepam-resistant SE, WNK463 slowed the onset and reduced the severity of KA-induced status epilepticus. Last, WNK463 prevented the development of pharmaco-resistance to diazepam in drug-treated mice. Our findings demonstrate that acute WNK463 treatment potentiates KCC2 activity in neurons and limits seizure burden in two well-established models of seizures and epilepsy. Our work suggests that agents which act to increase KCC2 activity may be useful adjunct therapeutics to alleviate diazepam-resistant SE.
Collapse
Affiliation(s)
- Kathryn L Lee
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Krithika Abiraman
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Christopher Lucaj
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111.,AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Thomas A Ollerhead
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA 02451
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111.,AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111.,AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111.,Department of Neuroscience, Physiology and Pharmacology, University College London, WC16BT, UK
| |
Collapse
|
19
|
Corvest V, Jawhari A. Solubilization and Stabilization of Native Membrane Proteins for Drug Discovery. Methods Mol Biol 2021; 2247:257-267. [PMID: 33301122 DOI: 10.1007/978-1-0716-1126-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membrane proteins (MPs) are stable in their native lipid environment. To enable structural and functional investigations, MPs need to be extracted from the membrane. This is a critical step that represents the main obstacle for MP biochemistry and structural biology. Here we describe detergent solubilization screening of MPs using dot-blot and Western-blot analyses. Good solubilization conditions are ranked for their best capacity to stabilize MPs using thermal shift assay. The protein functionality is evaluated by radioligand binding (for G-protein-coupled receptor) and ATPase activity (ABC Transporter) and finally the aggregation status as well as protein homogeneity are assessed by Native-polyacrylamide gel, chemical cross-linking, and size exclusion chromatography.
Collapse
|
20
|
Smalley JL, Kontou G, Choi C, Ren Q, Albrecht D, Abiraman K, Santos MAR, Bope CE, Deeb TZ, Davies PA, Brandon NJ, Moss SJ. Isolation and Characterization of Multi-Protein Complexes Enriched in the K-Cl Co-transporter 2 From Brain Plasma Membranes. Front Mol Neurosci 2020; 13:563091. [PMID: 33192291 PMCID: PMC7643010 DOI: 10.3389/fnmol.2020.563091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Kcc2 plays a critical role in determining the efficacy of synaptic inhibition, however, the cellular mechanisms neurons use to regulate its membrane trafficking, stability and activity are ill-defined. To address these issues, we used affinity purification to isolate stable multi-protein complexes of K-Cl Co-transporter 2 (Kcc2) from the plasma membrane of murine forebrain. We resolved these using blue-native polyacrylamide gel electrophoresis (BN-PAGE) coupled to LC-MS/MS and label-free quantification. Data are available via ProteomeXchange with identifier PXD021368. Purified Kcc2 migrated as distinct molecular species of 300, 600, and 800 kDa following BN-PAGE. In excess of 90% coverage of the soluble N- and C-termini of Kcc2 was obtained. In total we identified 246 proteins significantly associated with Kcc2. The 300 kDa species largely contained Kcc2, which is consistent with a dimeric quaternary structure for this transporter. The 600 and 800 kDa species represented stable multi-protein complexes of Kcc2. We identified a set of novel structural, ion transporting, immune related and signaling protein interactors, that are present at both excitatory and inhibitory synapses, consistent with the proposed localization of Kcc2. These included spectrins, C1qa/b/c and the IP3 receptor. We also identified interactors more directly associated with phosphorylation; Akap5, Akap13, and Lmtk3. Finally, we used LC-MS/MS on the same purified endogenous plasma membrane Kcc2 to detect phosphorylation sites. We detected 11 sites with high confidence, including known and novel sites. Collectively our experiments demonstrate that Kcc2 is associated with components of the neuronal cytoskeleton and signaling molecules that may act to regulate transporter membrane trafficking, stability, and activity.
Collapse
Affiliation(s)
- Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Georgina Kontou
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Catherine Choi
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Qiu Ren
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - David Albrecht
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Krithika Abiraman
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | | | - Christopher E Bope
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Nicholas J Brandon
- AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States.,Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Zimanyi CM, Guo M, Mahmood A, Hendrickson WA, Hirsh D, Cheung J. Structure of the Regulatory Cytosolic Domain of a Eukaryotic Potassium-Chloride Cotransporter. Structure 2020; 28:1051-1060.e4. [PMID: 32679039 PMCID: PMC8408865 DOI: 10.1016/j.str.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023]
Abstract
Cation-chloride cotransporters (CCCs) regulate the movement of chloride across membranes, controlling physiological processes from cell volume maintenance to neuronal signaling. Human CCCs are clinical targets for existing diuretics and potentially additional indications. Here, we report the X-ray crystal structure of the soluble C-terminal regulatory domain of a eukaryotic potassium-chloride cotransporter, Caenorhabditis elegans KCC-1. We observe a core α/β fold conserved among CCCs. Using structure-based sequence alignment, we analyze similarities and differences to the C-terminal domains of other CCC family members. We find that important regulatory motifs are in less-structured regions and residues important for dimerization are not widely conserved, suggesting that oligomerization and its effects may vary within the larger family. This snapshot of a eukaryotic KCC is a valuable starting point for the rational design of studies of cellular chloride regulation.
Collapse
Affiliation(s)
- Christina M Zimanyi
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA.
| | - Mo Guo
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Arshad Mahmood
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Wayne A Hendrickson
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - David Hirsh
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jonah Cheung
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| |
Collapse
|
22
|
Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: Overcoming the antigen challenge and enabling discovery strategies. Methods 2020; 180:111-126. [PMID: 32422249 DOI: 10.1016/j.ymeth.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning helices, encompass families of proteins which are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels and transporters. Although these proteins have typically been targeted by small molecule drugs and peptides, the high specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. However, it remains the case that isolation of antibodies with desired pharmacological function(s) has proven difficult due to technical challenges in preparing membrane protein antigens suitable to support antibody drug discovery. In this review recent progress in defining strategies for generation of membrane protein antigens is outlined. We also highlight antibody isolation strategies which have generated antibodies which bind the membrane protein and modulate the protein function.
Collapse
|
23
|
Reid MS, Kern DM, Brohawn SG. Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs. eLife 2020; 9:e52505. [PMID: 32286222 PMCID: PMC7200160 DOI: 10.7554/elife.52505] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/12/2020] [Indexed: 01/24/2023] Open
Abstract
Cation-chloride-cotransporters (CCCs) catalyze transport of Cl- with K+ and/or Na+across cellular membranes. CCCs play roles in cellular volume regulation, neural development and function, audition, regulation of blood pressure, and renal function. CCCs are targets of clinically important drugs including loop diuretics and their disruption has been implicated in pathophysiology including epilepsy, hearing loss, and the genetic disorders Andermann, Gitelman, and Bartter syndromes. Here we present the structure of a CCC, the Mus musculus K+-Cl- cotransporter (KCC) KCC4, in lipid nanodiscs determined by cryo-EM. The structure, captured in an inside-open conformation, reveals the architecture of KCCs including an extracellular domain poised to regulate transport activity through an outer gate. We identify binding sites for substrate K+ and Cl- ions, demonstrate the importance of key coordinating residues for transporter activity, and provide a structural explanation for varied substrate specificity and ion transport ratio among CCCs. These results provide mechanistic insight into the function and regulation of a physiologically important transporter family.
Collapse
Affiliation(s)
- Michelle S Reid
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - David M Kern
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - Stephen Graf Brohawn
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| |
Collapse
|
24
|
Novel calixarene-based surfactant enables low dose split inactivated vaccine protection against influenza infection. Vaccine 2019; 38:278-287. [PMID: 31630939 DOI: 10.1016/j.vaccine.2019.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023]
Abstract
Influenza A viruses cause major morbidity and represent a severe global health problem. Current influenza vaccines are mainly egg-based products requiring the split of whole viruses using classical detergents such as Triton X-100, which implies certain limitations. Here, we report the use of the novel calixarene-based surfactant CALX133ACE as an alternative to classical detergents for influenza inactivated split vaccine preparation. We confirmed that CALX133ACE-based split HA antigens are fully functional and quantifiable by the "gold standard" method SRID. Additionally, as in the case of the Triton X-100-based split, the CALX133ACE-based split antigens are stable for at least 6 months at 4 °C. Moreover, immunization of mice with CALX133ACE-based split NYMC X-179A (H1N1) antigens harboring 10 to 30-fold less antigen than the commercialized trivalent inactivated vaccines Vaxigrip® or Fluviral® induced comparable efficient protection and neutralizing antibody responses against A(H1N1)pdm09 infection. Taken together, our results demonstrate for the first time the use of a calixarene-based detergent as an efficient splitting agent for the production of optimized influenza split antigens, paving the way for significant improvement in the vaccine manufacturing process, notably with regard to the current regulation on the prohibition of endocrine disruptors, such as Triton X-100.
Collapse
|
25
|
Pisella LI, Gaiarsa JL, Diabira D, Zhang J, Khalilov I, Duan J, Kahle KT, Medina I. Impaired regulation of KCC2 phosphorylation leads to neuronal network dysfunction and neurodevelopmental pathology. Sci Signal 2019; 12:eaay0300. [PMID: 31615899 PMCID: PMC7192243 DOI: 10.1126/scisignal.aay0300] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
KCC2 is a vital neuronal K+/Cl- cotransporter that is implicated in the etiology of numerous neurological diseases. In normal cells, KCC2 undergoes developmental dephosphorylation at Thr906 and Thr1007 We engineered mice with heterozygous phosphomimetic mutations T906E and T1007E (KCC2E/+ ) to prevent the normal developmental dephosphorylation of these sites. Immature (postnatal day 15) but not juvenile (postnatal day 30) KCC2E/+ mice exhibited altered GABAergic inhibition, an increased glutamate/GABA synaptic ratio, and greater susceptibility to seizure. KCC2E/+ mice also had abnormal ultrasonic vocalizations at postnatal days 10 to 12 and impaired social behavior at postnatal day 60. Postnatal bumetanide treatment restored network activity by postnatal day 15 but failed to restore social behavior by postnatal day 60. Our data indicate that posttranslational KCC2 regulation controls the GABAergic developmental sequence in vivo, indicating that deregulation of KCC2 could be a risk factor for the emergence of neurological pathology.
Collapse
Affiliation(s)
- Lucie I Pisella
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Jean-Luc Gaiarsa
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Diabé Diabira
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Ilgam Khalilov
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| | - JingJing Duan
- Department of Neurobiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Igor Medina
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France.
| |
Collapse
|
26
|
Agez M, Mandon ED, Iwema T, Gianotti R, Limani F, Herter S, Mössner E, Kusznir EA, Huber S, Lauer M, Ringler P, Ferrara C, Klein C, Jawhari A. Biochemical and biophysical characterization of purified native CD20 alone and in complex with rituximab and obinutuzumab. Sci Rep 2019; 9:13675. [PMID: 31548565 PMCID: PMC6757138 DOI: 10.1038/s41598-019-50031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/24/2019] [Indexed: 11/17/2022] Open
Abstract
CD20 is a B-lymphocyte specific integral membrane protein, an activated-glycosylated phosphoprotein expressed on the surface of B-cells and a clinically validated target of monoclonal antibodies such as rituximab, ocrelizumab, ofatumumab and obinutuzumab in the treatment of all B cell lymphomas and leukemias as well as autoimmune diseases. Here, we report the extraction and purification of native CD20 from SUDHL4 and RAMOS cell lines. To improve the protein yield, we applied a calixarene-based detergent approach to solubilize, stabilize and purify native CD20 from HEK293 cells. Size Exclusion Chromatography (SEC) and Analytical Ultracentrifugation show that purified CD20 was non-aggregated and that CD20 oligomerization is concentration dependent. Negative stain electron microscopy and atomic force microscopy revealed homogenous populations of CD20. However, no defined structure could be observed. Interestingly, micellar solubilized and purified CD20 particles adopt uniformly confined nanodroplets which do not fuse and aggregate. Finally, purified CD20 could bind to rituximab and obinutuzumab as demonstrated by SEC, and Surface Plasmon Resonance (SPR). Specificity of binding was confirmed using CD20 antibody mutants to human B-cell lymphoma cells. The strategy described in this work will help investigate CD20 binding with newly developed antibodies and eventually help to optimize them. This approach may also be applicable to other challenging membrane proteins.
Collapse
Affiliation(s)
- Morgane Agez
- CALIXAR, 60 avenue Rockefeller 69008, Lyon, France
| | | | - Thomas Iwema
- CALIXAR, 60 avenue Rockefeller 69008, Lyon, France
| | - Reto Gianotti
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Florian Limani
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Sylvia Herter
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Eric A Kusznir
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Matthias Lauer
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Claudia Ferrara
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | |
Collapse
|
27
|
Jin SC, Furey CG, Zeng X, Allocco A, Nelson‐Williams C, Dong W, Karimy JK, Wang K, Ma S, Delpire E, Kahle KT. SLC12A ion transporter mutations in sporadic and familial human congenital hydrocephalus. Mol Genet Genomic Med 2019; 7:e892. [PMID: 31393094 PMCID: PMC6732308 DOI: 10.1002/mgg3.892] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/15/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Congenital hydrocephalus (CH) is a highly morbid disease that features enlarged brain ventricles and impaired cerebrospinal fluid homeostasis. Although early linkage or targeted sequencing studies in large multigenerational families have localized several genes for CH, the etiology of most CH cases remains unclear. Recent advances in whole exome sequencing (WES) have identified five new bona fide CH genes, implicating impaired regulation of neural stem cell fate in CH pathogenesis. Nonetheless, in the majority of CH cases, the pathological etiology remains unknown, suggesting more genes await discovery. METHODS WES of family members of a sporadic and familial form of severe L1CAM mutation-negative CH associated with aqueductal stenosis was performed. Rare genetic variants were analyzed, prioritized, and validated. De novo copy number variants (CNVs) were identified using the XHMM algorithm and validated using qPCR. Xenopus oocyte experiments were performed to access mutation impact on protein function and expression. RESULTS A novel inherited protein-damaging mutation (p.Pro605Leu) in SLC12A6, encoding the K+ -Cl- cotransporter KCC3, was identified in both affected members of multiplex kindred CHYD110. p.Pro605 is conserved in KCC3 orthologs and among all human KCC paralogs. The p.Pro605Leu mutation maps to the ion-transporting domain, and significantly reduces KCC3-dependent K+ transport. A novel de novo CNV (deletion) was identified in SLC12A7, encoding the KCC3 paralog and binding partner KCC4, in another family (CHYD130) with sporadic CH. CONCLUSION These findings identify two novel, related genes associated with CH, and implicate genetically encoded impairments in ion transport for the first time in CH pathogenesis.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Department of GeneticsYale University School of MedicineNew HavenCTUSA
- Laboratory of Human Genetics and GenomicsThe Rockefeller UniversityNew YorkNYUSA
| | - Charuta G. Furey
- Department of GeneticsYale University School of MedicineNew HavenCTUSA
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | - Xue Zeng
- Department of GeneticsYale University School of MedicineNew HavenCTUSA
| | - August Allocco
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | | | - Weilai Dong
- Department of GeneticsYale University School of MedicineNew HavenCTUSA
| | - Jason K. Karimy
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | - Kevin Wang
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | - Shaojie Ma
- Department of GeneticsYale University School of MedicineNew HavenCTUSA
| | - Eric Delpire
- Department of AnesthesiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Kristopher T. Kahle
- Department of GeneticsYale University School of MedicineNew HavenCTUSA
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
- Department of Cellular & Molecular PhysiologyYale University School of MedicineNew HavenCTUSA
- NIH‐Yale Centers for Mendelian Genomics, Yale School of MedicineNew HavenCTUSA
| |
Collapse
|
28
|
Hardy D, Bill RM, Rothnie AJ, Jawhari A. Stabilization of Human Multidrug Resistance Protein 4 (MRP4/ABCC4) Using Novel Solubilization Agents. SLAS DISCOVERY 2019; 24:1009-1017. [PMID: 31381456 PMCID: PMC6873219 DOI: 10.1177/2472555219867074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Membrane proteins (MPs) are important drug discovery targets for a wide range of diseases. However, elucidating the structure and function of native MP is notoriously challenging as their original structure has to be maintained once removed from the lipid bilayer. Conventionally, detergents have been used to solubilize MP with varying degrees of success concerning MP stability. To try to address this, new, more stabilizing agents have been developed, such as calixarene-based detergents and styrene-maleic acid (SMA) copolymer. Calixarene-based detergents exhibit enhanced solubilizing and stabilizing properties compared with conventional detergents, whereas SMA is able to extract MPs with their surrounding lipids, forming a nanodisc structure. Here we report a comparative study using classical detergents, calixarene-based detergents, and SMA to assess the solubilization and stabilization of the human ABC transporter MRP4 (multidrug resistance protein 4/ABCC4). We show that both SMA and calixarene-based detergents have a higher solubility efficiency (at least 80%) than conventional detergents, and show striking overstabilization features of MRP4 (up to 70 °C) with at least 30 °C stability improvement in comparison with the best conventional detergents. These solubilizing agents were successfully used to purify aggregate-free, homogenous and stable MRP4, with sevenfold higher yield for C4C7 calixarene detergent in comparison with SMA. This work paves the way to MRP4 structural and functional investigations and illustrates once more the high value of using calixarene-based detergent or SMA as versatile and efficient tools to study MP, and eventually enable drug discovery of challenging and highly druggable targets.
Collapse
Affiliation(s)
- David Hardy
- CALIXAR, Lyon, France.,Life & Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Roslyn M Bill
- Life & Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Alice J Rothnie
- Life & Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | | |
Collapse
|
29
|
Tillman L, Zhang J. Crossing the Chloride Channel: The Current and Potential Therapeutic Value of the Neuronal K +-Cl - Cotransporter KCC2. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8941046. [PMID: 31240228 PMCID: PMC6556333 DOI: 10.1155/2019/8941046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Abstract
Chloride (Cl-) homeostasis is an essential process involved in neuronal signalling and cell survival. Inadequate regulation of intracellular Cl- interferes with synaptic signalling and is implicated in several neurological diseases. The main inhibitory neurotransmitter of the central nervous system is γ-aminobutyric acid (GABA). GABA hyperpolarises the membrane potential by activating Cl- permeable GABAA receptor channels (GABAAR). This process is reliant on Cl- extruder K+-Cl- cotransporter 2 (KCC2), which generates the neuron's inward, hyperpolarising Cl- gradient. KCC2 is encoded by the fifth member of the solute carrier 12 family (SLC12A5) and has remained a poorly understood component in the development and severity of many neurological diseases for many years. Recent advancements in next-generation sequencing and specific gene targeting, however, have indicated that loss of KCC2 activity is involved in a number of diseases including epilepsy and schizophrenia. It has also been implicated in neuropathic pain following spinal cord injury. Any variant of SLC12A5 that negatively regulates the transporter's expression may, therefore, be implicated in neurological disease. A recent whole exome study has discovered several causative mutations in patients with epilepsy. Here, we discuss the implications of KCC2 in neurological disease and consider the evolving evidence for KCC2's potential as a therapeutic target.
Collapse
Affiliation(s)
- Luke Tillman
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| |
Collapse
|
30
|
Dauvergne J, Desuzinges EM, Faugier C, Igonet S, Soulié M, Grousson E, Cornut D, Bonneté F, Durand G, Dejean E, Jawhari A. Glycosylated Amphiphilic Calixarene‐Based Detergent for Functional Stabilization of Native Membrane Proteins. ChemistrySelect 2019. [DOI: 10.1002/slct.201901220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Elodie Mandon Desuzinges
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| | - Clarisse Faugier
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| | - Sébastien Igonet
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| | - Marine Soulié
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Emilie Grousson
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Damien Cornut
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Françoise Bonneté
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Current address: Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique 13 rue Pierre et Marie Curie 75005 Paris France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Grégory Durand
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Emmanuel Dejean
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| | - Anass Jawhari
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| |
Collapse
|
31
|
Therapeutic Monoclonal Antibodies to Complex Membrane Protein Targets: Antigen Generation and Antibody Discovery Strategies. BioDrugs 2019; 32:339-355. [PMID: 29934752 DOI: 10.1007/s40259-018-0289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell surface membrane proteins comprise a wide array of structurally and functionally diverse proteins involved in a variety of important physiological and homeostatic processes. Complex integral membrane proteins, which are embedded in the lipid bilayer by multiple transmembrane-spanning helices, are represented by families of proteins that are important target classes for drug discovery. Such protein families include G-protein-coupled receptors, ion channels and transporters. Although these targets have typically been the domain of small-molecule drugs, the exquisite specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. Nevertheless, the isolation of antibodies with desired pharmacological functions has proved difficult because of technical challenges in preparing membrane protein antigens for antibody drug discovery. In this review, we describe recent progress in defining strategies for the generation of membrane protein antigens. We also describe antibody-isolation strategies that identify antibodies that bind the membrane protein and modulate protein function.
Collapse
|
32
|
Pathogenic potential of human SLC12A5 variants causing KCC2 dysfunction. Brain Res 2019; 1710:1-7. [DOI: 10.1016/j.brainres.2018.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/21/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
|
33
|
Côme E, Heubl M, Schwartz EJ, Poncer JC, Lévi S. Reciprocal Regulation of KCC2 Trafficking and Synaptic Activity. Front Cell Neurosci 2019; 13:48. [PMID: 30842727 PMCID: PMC6391895 DOI: 10.3389/fncel.2019.00048] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter receptors in the adult central nervous system (CNS) are type A γ-aminobutyric acid receptors (GABAARs) and glycine receptors (GlyRs). Synaptic responses mediated by GlyR and GABAAR display a hyperpolarizing shift during development. This shift relies mainly on the developmental up-regulation of the K+-Cl- co-transporter KCC2 responsible for the extrusion of Cl-. In mature neurons, altered KCC2 function-mainly through increased endocytosis-leads to the re-emergence of depolarizing GABAergic and glycinergic signaling, which promotes hyperexcitability and pathological activities. Identifying signaling pathways and molecular partners that control KCC2 surface stability thus represents a key step in the development of novel therapeutic strategies. Here, we present our current knowledge on the cellular and molecular mechanisms governing the plasma membrane turnover rate of the transporter under resting conditions and in response to synaptic activity. We also discuss the notion that KCC2 lateral diffusion is one of the first parameters modulating the transporter membrane stability, allowing for rapid adaptation of Cl- transport to changes in neuronal activity.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Martin Heubl
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Eric J Schwartz
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
34
|
Abstract
Substance P (SP) is a highly conserved member of the tachykinin peptide family that is widely expressed throughout the animal kingdom. The numerous members of the tachykinin peptide family are involved in a multitude of neuronal signaling pathways, mediating sensations and emotional responses (Steinhoff et al. in Physiol Rev 94:265–301, 2014). In contrast to receptors for classical transmitters, such as glutamate (Parsons et al. in Handb Exp Pharmacol 249–303, 2005), only a minority of neurons in certain brain areas express neurokinin receptors (NKRs) (Mantyh in J Clin Psychiatry 63:6–10, 2002). SP is also expressed by a variety of non-neuronal cell types such as microglia, as well as immune cells (Mashaghi et al. in Cell Mol Life Sci 73:4249–4264, 2016). SP is an 11-amino acid neuropeptide that preferentially activates the neurokinin-1 receptor (NK1R). It transmits nociceptive signals via primary afferent fibers to spinal and brainstem second-order neurons (Cao et al. in Nature 392:390–394, 1998). Compounds that inhibit SP’s action are being investigated as potential drugs to relieve pain. More recently, SP and NKR have gained attention for their role in complex psychiatric processes. It is a key goal in the field of pain research to understand mechanisms involved in the transition between acute pain and chronic pain. The influence of emotional and cognitive inputs and feedbacks from different brain areas makes pain not only a perception but an experience (Zieglgänsberger et al. in CNS Spectr 10:298–308, 2005; Trenkwaldner et al. Sleep Med 31:78–85, 2017). This review focuses on functional neuronal plasticity in spinal dorsal horn neurons as a major relay for nociceptive information.
Collapse
|
35
|
Cordshagen A, Busch W, Winklhofer M, Nothwang HG, Hartmann AM. Phosphoregulation of the intracellular termini of K +-Cl - cotransporter 2 (KCC2) enables flexible control of its activity. J Biol Chem 2018; 293:16984-16993. [PMID: 30201606 DOI: 10.1074/jbc.ra118.004349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
The pivotal role of K+-Cl- cotransporter 2 (KCC2) in inhibitory neurotransmission and severe human diseases fosters interest in understanding posttranslational regulatory mechanisms such as (de)phosphorylation. Here, the regulatory role of the five bona fide phosphosites Ser31, Thr34, Ser932, Thr999, and Thr1008 was investigated by the use of alanine and aspartate mutants. Tl+-based flux analyses in HEK-293 cells demonstrated increased transport activity for S932D (mimicking phosphorylation) and T1008A (mimicking dephosphorylation), albeit to a different extent. Increased activity was due to changes in intrinsic activity, as it was not caused by increased cell-surface abundance. Substitutions of Ser31, Thr34, or Thr999 had no effect. Additionally, we show that the indirect actions of the known KCC2 activators staurosporine and N-ethylmaleimide (NEM) involved multiple phosphosites. S31D, T34A, S932A/D, T999A, or T1008A/D abrogated staurosporine mediated stimulation, and S31A, T34D, or S932D abolished NEM-mediated stimulation. This demonstrates for the first time differential effects of staurosporine and NEM on KCC2. In addition, the staurosporine-mediated effects involved both KCC2 phosphorylation and dephosphorylation with Ser932 and Thr1008 being bona fide target sites. In summary, our data reveal a complex phosphoregulation of KCC2 that provides the transporter with a toolbox for graded activity and integration of different signaling pathways.
Collapse
Affiliation(s)
- Antje Cordshagen
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences
| | - Wiebke Busch
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences IBU, and.,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Hans Gerd Nothwang
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences.,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Anna-Maria Hartmann
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences, .,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
36
|
Igonet S, Raingeval C, Cecon E, Pučić-Baković M, Lauc G, Cala O, Baranowski M, Perez J, Jockers R, Krimm I, Jawhari A. Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor. Sci Rep 2018; 8:8142. [PMID: 29802269 PMCID: PMC5970182 DOI: 10.1038/s41598-018-26113-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Structural studies of integral membrane proteins have been limited by the intrinsic conformational flexibility and the need to stabilize the proteins in solution. Stabilization by mutagenesis was very successful for structural biology of G protein-coupled receptors (GPCRs). However, it requires heavy protein engineering and may introduce structural deviations. Here we describe the use of specific calixarenes-based detergents for native GPCR stabilization. Wild type, full length human adenosine A2A receptor was used to exemplify the approach. We could stabilize native, glycosylated, non-aggregated and homogenous A2AR that maintained its ligand binding capacity. The benefit of the preparation for fragment screening, using the Saturation-Transfer Difference nuclear magnetic resonance (STD-NMR) experiment is reported. The binding of the agonist adenosine and the antagonist caffeine were observed and competition experiments with CGS-21680 and ZM241385 were performed, demonstrating the feasibility of the STD-based fragment screening on the native A2A receptor. Interestingly, adenosine was shown to bind a second binding site in the presence of the agonist CGS-21680 which corroborates published results obtained with molecular dynamics simulation. Fragment-like compounds identified using STD-NMR showed antagonistic effects on A2AR in the cAMP cellular assay. Taken together, our study shows that stabilization of native GPCRs represents an attractive approach for STD-based fragment screening and drug design.
Collapse
Affiliation(s)
| | - Claire Raingeval
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Gordan Lauc
- GENOS, Borongajska cesta 83h, 10000, Zagreb, Croatia
| | - Olivier Cala
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Maciej Baranowski
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France
| | - Javier Perez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Krimm
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Anass Jawhari
- CALIXAR, 60 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
37
|
Ali Rodriguez R, Joya C, Hines RM. Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders. Front Mol Neurosci 2018; 11:132. [PMID: 29740280 PMCID: PMC5928253 DOI: 10.3389/fnmol.2018.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The term neurodevelopmental disorder (NDD) is an umbrella term used to group together a heterogeneous class of disorders characterized by disruption in cognition, emotion, and behavior, early in the developmental timescale. These disorders are heterogeneous, yet they share common behavioral symptomatology as well as overlapping genetic contributors, including proteins involved in the formation, specialization, and function of synaptic connections. Advances may arise from bridging the current knowledge on synapse related factors indicated from both human studies in NDD populations, and in animal models. Mounting evidence has shown a link to inhibitory synapse formation, specialization, and function among Autism, Angelman, Rett and Dravet syndromes. Inhibitory signaling is diverse, with numerous subtypes of inhibitory interneurons, phasic and tonic modes of inhibition, and the molecular and subcellular diversity of GABAA receptors. We discuss common ribs of inhibitory synapse dysfunction in the umbrella of NDD, highlighting alterations in the developmental switch to inhibitory GABA, dysregulation of neuronal activity patterns by parvalbumin-positive interneurons, and impaired tonic inhibition. Increasing our basic understanding of inhibitory synapses, and their role in NDDs is likely to produce significant therapeutic advances in behavioral symptom alleviation for interrelated NDDs.
Collapse
Affiliation(s)
- Rachel Ali Rodriguez
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Christina Joya
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rochelle M Hines
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
38
|
Hardy D, Desuzinges Mandon E, Rothnie AJ, Jawhari A. The yin and yang of solubilization and stabilization for wild-type and full-length membrane protein. Methods 2018; 147:118-125. [PMID: 29477816 DOI: 10.1016/j.ymeth.2018.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 11/16/2022] Open
Abstract
Membrane proteins (MP) are stable in their native lipid environment. To enable structural and functional investigations, MP need to be extracted from the membrane. This is a critical step that represents the main obstacle for MP biochemistry and structural biology. General guidelines and rules for membrane protein solubilization remain difficult to establish. This review aims to provide the reader with a comprehensive overview of the general concepts of MP solubilization and stabilization as well as recent advances in detergents innovation. Understanding how solubilization and stabilization are intimately linked is key to facilitate MP isolation toward fundamental structural and functional research as well as drug discovery applications. How to manage the tour de force of destabilizing the lipid bilayer and stabilizing MP at the same time is the holy grail of successful isolation and investigation of such a delicate and fascinating class of proteins.
Collapse
Affiliation(s)
- David Hardy
- CALIXAR, 60 Avenue Rockefeller, 69008 Lyon, France; Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Alice J Rothnie
- Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|