1
|
Halama A, Zaghlool S, Thareja G, Kader S, Al Muftah W, Mook-Kanamori M, Sarwath H, Mohamoud YA, Stephan N, Ameling S, Pucic Baković M, Krumsiek J, Prehn C, Adamski J, Schwenk JM, Friedrich N, Völker U, Wuhrer M, Lauc G, Najafi-Shoushtari SH, Malek JA, Graumann J, Mook-Kanamori D, Schmidt F, Suhre K. A roadmap to the molecular human linking multiomics with population traits and diabetes subtypes. Nat Commun 2024; 15:7111. [PMID: 39160153 PMCID: PMC11333501 DOI: 10.1038/s41467-024-51134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations. Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays "The Molecular Human". We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data. Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to "The Molecular Human" ( http://comics.metabolomix.com ), providing interactive data exploration and hypotheses generation possibilities.
Collapse
Affiliation(s)
- Anna Halama
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Shaza Zaghlool
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Gaurav Thareja
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Sara Kader
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Wadha Al Muftah
- Qatar Genome Program, Qatar Foundation, Qatar Science and Technology Park, Innovation Center, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | | | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | | | - Nisha Stephan
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Sabine Ameling
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Nele Friedrich
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - S Hani Najafi-Shoushtari
- MicroRNA Core Laboratory, Division of Research, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Joel A Malek
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
- Genomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Johannes Graumann
- Institute of Translational Proteomics, Department of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Dennis Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Tabata S, Yamashita Y, Inai Y, Morita S, Kosako H, Takagi T, Shide K, Manabe S, Matsuoka TA, Shimoda K, Sonoki T, Ihara Y, Tamura S. C-Mannosyl tryptophan is a novel biomarker for thrombocytosis of myeloproliferative neoplasms. Sci Rep 2024; 14:18858. [PMID: 39143127 PMCID: PMC11324734 DOI: 10.1038/s41598-024-69496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
C-Mannosyl tryptophan (CMW), a unique glycosylated amino acid, is considered to be produced by degradation of C-mannosylated proteins in living organism. Although protein C-mannosylation is involved in the folding and secretion of substrate proteins, the pathophysiological function in the hematological system is still unclear. This study aimed to assess CMW in the human hematological disorders. The serum CMW levels of 94 healthy Japanese workers were quantified using hydrophilic interaction liquid chromatography. Platelet count was positively correlated with serum CMW levels. The clinical significance of CMW in thrombocytosis of myeloproliferative neoplasms (T-MPN) including essential thrombocythemia (ET) were investigated. The serum CMW levels of the 34 patients with T-MPN who presented with thrombocytosis were significantly higher than those of the 52 patients with control who had other hematological disorders. In patients with T-MPN, serum CMW levels were inversely correlated with anemia, which was related to myelofibrosis (MF). Bone marrow biopsy samples were obtained from 18 patients with ET, and serum CMW levels were simultaneously measured. Twelve patients with bone marrow fibrosis had significantly higher CMW levels than 6 patients without bone marrow fibrosis. Collectively, these results suggested that CMW could be a novel biomarker to predict MF progression in T-MPN.
Collapse
Affiliation(s)
- Shotaro Tabata
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Shuhei Morita
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Hideki Kosako
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Tomoyuki Takagi
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
- Wakayama City Medical Association Seijinbyo Center, Wakayama, Japan
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shino Manabe
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Taka-Aki Matsuoka
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan.
| | - Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
3
|
Yeo WJ, Surapaneni AL, Hasson DC, Schmidt IM, Sekula P, Köttgen A, Eckardt KU, Rebholz CM, Yu B, Waikar SS, Rhee EP, Schrauben SJ, Feldman HI, Vasan RS, Kimmel PL, Coresh J, Grams ME, Schlosser P. Serum and Urine Metabolites and Kidney Function. J Am Soc Nephrol 2024; 35:00001751-990000000-00343. [PMID: 38844075 PMCID: PMC11387034 DOI: 10.1681/asn.0000000000000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Key Points We provide an atlas of cross-sectional and longitudinal serum and urine metabolite associations with eGFR and urine albumin-creatinine ratio in an older community-based cohort. Metabolic profiling in serum and urine provides distinct and complementary insights into disease. Background Metabolites represent a read-out of cellular processes underlying states of health and disease. Methods We evaluated cross-sectional and longitudinal associations between 1255 serum and 1398 urine known and unknown (denoted with “X” in name) metabolites (Metabolon HD4, 721 detected in both biofluids) and kidney function in 1612 participants of the Atherosclerosis Risk in Communities study. All analyses were adjusted for clinical and demographic covariates, including for baseline eGFR and urine albumin-creatinine ratio (UACR) in longitudinal analyses. Results At visit 5 of the Atherosclerosis Risk in Communities study, the mean age of participants was 76 years (SD 6); 56% were women, mean eGFR was 62 ml/min per 1.73 m2 (SD 20), and median UACR level was 13 mg/g (interquartile range, 25). In cross-sectional analysis, 675 serum and 542 urine metabolites were associated with eGFR (Bonferroni-corrected P < 4.0E-5 for serum analyses and P < 3.6E-5 for urine analyses), including 248 metabolites shared across biofluids. Fewer metabolites (75 serum and 91 urine metabolites, including seven metabolites shared across biofluids) were cross-sectionally associated with albuminuria. Guanidinosuccinate; N2,N2-dimethylguanosine; hydroxy-N6,N6,N6-trimethyllysine; X-13844; and X-25422 were significantly associated with both eGFR and albuminuria. Over a mean follow-up of 6.6 years, serum mannose (hazard ratio [HR], 2.3 [1.6–3.2], P = 2.7E-5) and urine X-12117 (HR, 1.7 [1.3–2.2], P = 1.9E-5) were risk factors of UACR doubling, whereas urine sebacate (HR, 0.86 [0.80–0.92], P = 1.9E-5) was inversely associated. Compared with clinical characteristics alone, including the top five endogenous metabolites in serum and urine associated with longitudinal outcomes improved the outcome prediction (area under the receiver operating characteristic curves for eGFR decline: clinical model=0.79, clinical+metabolites model=0.87, P = 8.1E-6; for UACR doubling: clinical model=0.66, clinical+metabolites model=0.73, P = 2.9E-5). Conclusions Metabolomic profiling in different biofluids provided distinct and potentially complementary insights into the biology and prognosis of kidney diseases.
Collapse
Affiliation(s)
- Wan-Jin Yeo
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
| | - Aditya L. Surapaneni
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
| | - Denise C. Hasson
- Division of Pediatric Critical Care Medicine, Hassenfeld Children's Hospital, NYU Langone Health, New York, New York
| | - Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Peggy Sekula
- Department of Data Driven Medicine, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Department of Data Driven Medicine, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen–Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Eugene P. Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Sarah J. Schrauben
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harold I. Feldman
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramachandran S. Vasan
- School of Public Health, University of Texas Health San Antonio, San Antonio, Texas
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Optimal Aging Institute, Departments of Population Health and Medicine, NYU Langone Health, New York, New York
- Department of Population Health, NYU Langone Medical Center, New York, New York
| | - Morgan E. Grams
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
- Department of Population Health, NYU Langone Medical Center, New York, New York
| | - Pascal Schlosser
- Department of Data Driven Medicine, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Wei X, Zeng M, Li Y, Wang D, Wang J, Liu H. Palladium(II)-Catalyzed Heck Coupling: Direct Stereoselective Synthesis of C-Aryl Glycosides from Nonactivated Glycals and Thianthrenium Salts. Org Lett 2024. [PMID: 38498594 DOI: 10.1021/acs.orglett.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Here, we report an efficient Pd(II)-catalyzed Heck coupling reaction utilizing modular and readily available thianthrenium salts. The tunability and ease of thianthrenium salts facilitated the integration of glycals with drugs, natural products, and peptides. This method allows the incorporation of diverse glycals into structurally varied aglycon components without directing groups or prefunctionalization and provides a practical method for synthesizing C-aryl glycosides, offering a new avenue for the production of complex glycosides with potential applications.
Collapse
Affiliation(s)
- Xinxin Wei
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingjie Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dechuan Wang
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
5
|
Fino NF, Adingwupu OM, Coresh J, Greene T, Haaland B, Shlipak MG, Costa E Silva VT, Kalil R, Mindikoglu AL, Furth SL, Seegmiller JC, Levey AS, Inker LA. Evaluation of novel candidate filtration markers from a global metabolomic discovery for glomerular filtration rate estimation. Kidney Int 2024; 105:582-592. [PMID: 38006943 PMCID: PMC10932836 DOI: 10.1016/j.kint.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Creatinine and cystatin-C are recommended for estimating glomerular filtration rate (eGFR) but accuracy is suboptimal. Here, using untargeted metabolomics data, we sought to identify candidate filtration markers for a new targeted assay using a novel approach based on their maximal joint association with measured GFR (mGFR) and with flexibility to consider their biological properties. We analyzed metabolites measured in seven diverse studies encompasing 2,851 participants on the Metabolon H4 platform that had Pearson correlations with log mGFR and used a stepwise approach to develop models to < -0.5 estimate mGFR with and without inclusion of creatinine that enabled selection of candidate markers. In total, 456 identified metabolites were present in all studies, and 36 had correlations with mGFR < -0.5. A total of 2,225 models were developed that included these metabolites; all with lower root mean square errors and smaller coefficients for demographic variables compared to estimates using untargeted creatinine. Seventeen metabolites were chosen, including 12 new candidate filtration markers. The selected metabolites had strong associations with mGFR and little dependence on demographic factors. Candidate metabolites were identified with maximal joint association with mGFR and minimal dependence on demographic variables across many varied clinical settings. These metabolites are excreted in urine and represent diverse metabolic pathways and tubular handling. Thus, our data can be used to select metabolites for a multi-analyte eGFR determination assay using mass spectrometry that potentially offers better accuracy and is less prone to non-GFR determinants than the current eGFR biomarkers.
Collapse
Affiliation(s)
- Nora F Fino
- Division of Biostatistics, Department of Population Health Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Ogechi M Adingwupu
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Josef Coresh
- Department of Population Health, NYU Langone, New York, New York, USA
| | - Tom Greene
- Division of Biostatistics, Department of Population Health Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Ben Haaland
- Division of Biostatistics, Department of Population Health Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Michael G Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affair Medical Center and University of California, San Francisco, San Francisco, California, USA
| | - Veronica T Costa E Silva
- Serviço de Nefrologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Laboratório de Investigação Médica 16, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Kalil
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ayse L Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA; Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas, USA
| | - Susan L Furth
- Department of Pediatrics, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jesse C Seegmiller
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew S Levey
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Lesley A Inker
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Jiang JJ, Sham TT, Gu XF, Chan CO, Dong NP, Lim WH, Song GF, Li SM, Mok DKW, Ge N. Insights into serum metabolic biomarkers for early detection of incident diabetic kidney disease in Chinese patients with type 2 diabetes by random forest. Aging (Albany NY) 2024; 16:3420-3530. [PMID: 38349886 PMCID: PMC10929832 DOI: 10.18632/aging.205542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD) worldwide. Early detection is critical for the risk stratification and early intervention of progressive DKD. Serum creatinine (sCr) and urine output are used to assess kidney function, but these markers are limited by their delayed changes following kidney pathology, and lacking of both sensitivity and accuracy. Hence, it is essential to illustrate potential diagnostic indicators to enhance the precise prediction of early DKD. A total of 194 Chinese individuals include 30 healthy participants (Stage 0) and 164 incidents with type 2 diabetes (T2D) spanning from DKD's Stage 1a to 4 were recruited and their serums were subjected for untargeted metabolomic analysis. Random forest (RF), a machine learning approach, together with univariate linear regression (ULR) and multivariate linear regression (MvLR) analysis were applied to characterize the features of untargeted metabolites of DKD patients and to identify candidate DKD biomarkers. Our results indicate that 2-(α-D-mannopyranosyl)-L-tryptophan (ADT), succinyladenosine (SAdo), pseudouridine and N,N,N-trimethyl-L-alanyl-L-proline betaine (L-L-TMAP) were associated with the development of DKD, in particular, the latter three that were significantly elevated in Stage 2-4 T2D incidents. Each of the four metabolites in combination with sCr achieves better performance than sCr alone with area under the receiver operating characteristic curve (AUC) of 0.81-0.91 in predicting DKD stages. An average of 3.9 years follow-up study of another cohort including 106 Stage 2-3 patients suggested that "urinary albumin-to-creatinine ratio (UACR) + ADT + SAdo" can be utilized for better prognosis evaluation of early DKD (average AUC = 0.9502) than UACR without sexual difference.
Collapse
Affiliation(s)
- Jian-Jun Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tung-Ting Sham
- The Research Centre for Chinese Medicine Innovation and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiu-Fen Gu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chi-On Chan
- The Research Centre for Chinese Medicine Innovation and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China
| | - Nai-Ping Dong
- The Research Centre for Chinese Medicine Innovation and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei-Han Lim
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Gao-Feng Song
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shun-Min Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Daniel Kam-Wah Mok
- The Research Centre for Chinese Medicine Innovation and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China
| | - Na Ge
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
7
|
Gao S, Sun Y, Chen X, Zhu C, Liu X, Wang W, Gan L, Lu Y, Schaarschmidt F, Herde M, Witte CP, Chen M. Pyrimidine catabolism is required to prevent the accumulation of 5-methyluridine in RNA. Nucleic Acids Res 2023; 51:7451-7464. [PMID: 37334828 PMCID: PMC10415118 DOI: 10.1093/nar/gkad529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
5-Methylated cytosine is a frequent modification in eukaryotic RNA and DNA influencing mRNA stability and gene expression. Here we show that free 5-methylcytidine (5mC) and 5-methyl-2'-deoxycytidine are generated from nucleic acid turnover in Arabidopsis thaliana, and elucidate how these cytidines are degraded, which is unclear in eukaryotes. First CYTIDINE DEAMINASE produces 5-methyluridine (5mU) and thymidine which are subsequently hydrolyzed by NUCLEOSIDE HYDROLASE 1 (NSH1) to thymine and ribose or deoxyribose. Interestingly, far more thymine is generated from RNA than from DNA turnover, and most 5mU is directly released from RNA without a 5mC intermediate, since 5-methylated uridine (m5U) is an abundant RNA modification (m5U/U ∼1%) in Arabidopsis. We show that m5U is introduced mainly by tRNA-SPECIFIC METHYLTRANSFERASE 2A and 2B. Genetic disruption of 5mU degradation in the NSH1 mutant causes m5U to occur in mRNA and results in reduced seedling growth, which is aggravated by external 5mU supplementation, also leading to more m5U in all RNA species. Given the similarities between pyrimidine catabolism in plants, mammals and other eukaryotes, we hypothesize that the removal of 5mU is an important function of pyrimidine degradation in many organisms, which in plants serves to protect RNA from stochastic m5U modification.
Collapse
Affiliation(s)
- Shangyu Gao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Chen
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoye Liu
- Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023, China
| | - Wenlei Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanwu Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Frank Schaarschmidt
- Department of Biostatistics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Wen D, Zheng Z, Surapaneni A, Yu B, Zhou L, Zhou W, Xie D, Shou H, Avila-Pacheco J, Kalim S, He J, Hsu CY, Parsa A, Rao P, Sondheimer J, Townsend R, Waikar SS, Rebholz CM, Denburg MR, Kimmel PL, Vasan RS, Clish CB, Coresh J, Feldman HI, Grams ME, Rhee EP. Metabolite profiling of CKD progression in the chronic renal insufficiency cohort study. JCI Insight 2022; 7:e161696. [PMID: 36048534 PMCID: PMC9714776 DOI: 10.1172/jci.insight.161696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDMetabolomic profiling in individuals with chronic kidney disease (CKD) has the potential to identify novel biomarkers and provide insight into disease pathogenesis.METHODSWe examined the association between blood metabolites and CKD progression, defined as the subsequent development of end-stage renal disease (ESRD) or estimated glomerular filtrate rate (eGFR) halving, in 1,773 participants of the Chronic Renal Insufficiency Cohort (CRIC) study, 962 participants of the African-American Study of Kidney Disease and Hypertension (AASK), and 5,305 participants of the Atherosclerosis Risk in Communities (ARIC) study.RESULTSIn CRIC, more than half of the measured metabolites were associated with CKD progression in minimally adjusted Cox proportional hazards models, but the number and strength of associations were markedly attenuated by serial adjustment for covariates, particularly eGFR. Ten metabolites were significantly associated with CKD progression in fully adjusted models in CRIC; 3 of these metabolites were also significant in fully adjusted models in AASK and ARIC, highlighting potential markers of glomerular filtration (pseudouridine), histamine metabolism (methylimidazoleacetate), and azotemia (homocitrulline). Our findings also highlight N-acetylserine as a potential marker of kidney tubular function, with significant associations with CKD progression observed in CRIC and ARIC.CONCLUSIONOur findings demonstrate the application of metabolomics to identify potential biomarkers and causal pathways in CKD progression.FUNDINGThis study was supported by the NIH (U01 DK106981, U01 DK106982, U01 DK085689, R01 DK108803, and R01 DK124399).
Collapse
Affiliation(s)
- Donghai Wen
- Nephrology Division and
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Sciences Center at Houston School of Public Health, Houston, Texas, USA
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wen Zhou
- Nephrology Division and
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dawei Xie
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California San Francisco School of Medicine, San Francisco, California, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Afshin Parsa
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Panduranga Rao
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James Sondheimer
- Division of Nephrology and Hypertension, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Raymond Townsend
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sushrut S. Waikar
- Section of Nephrology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle R. Denburg
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pediatric Nephrology, Children’s Hospital of Philadelphia, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Ramachandran S. Vasan
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Harold I. Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, New York University, New York, New York, USA
| | - Eugene P. Rhee
- Nephrology Division and
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
9
|
Lucio-Gutiérrez JR, Cordero-Pérez P, Farías-Navarro IC, Tijerina-Marquez R, Sánchez-Martínez C, Ávila-Velázquez JL, García-Hernández PA, Náñez-Terreros H, Coello-Bonilla J, Pérez-Trujillo M, Parella T, Torres-González L, Waksman-Minsky NH, Saucedo AL. Using nuclear magnetic resonance urine metabolomics to develop a prediction model of early stages of renal disease in subjects with type 2 diabetes. J Pharm Biomed Anal 2022; 219:114885. [DOI: 10.1016/j.jpba.2022.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
10
|
Zhang W, Cui Y, Zhang J. Multi metabolomics-based analysis of application of Astragalus membranaceus in the treatment of hyperuricemia. Front Pharmacol 2022; 13:948939. [PMID: 35935868 PMCID: PMC9355468 DOI: 10.3389/fphar.2022.948939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperuricemia (HUA) is a common metabolic disease that is an independent risk factor for comorbidities such as hypertension, chronic kidney disease, and coronary artery disease. The prevalence of HUA has increased over the last several decades with improved living standards and increased lifespans. Metabolites are considered the most direct reflection of individual physiological and pathological conditions, and represent attractive candidates to provide deep insights into disease phenotypes. Metabolomics, a technique used to profile metabolites in biofluids and tissues, is a powerful tool for identification of novel biomarkers, and can be used to provide valuable insights into the etiopathogenesis of metabolic diseases and to evaluate the efficacy of drugs. In this study, multi metabolomics-based analysis of the blood, urine, and feces of rats with HUA showed that HUA significantly altered metabolite profiles. Astragalus membranaceus (AM) and benbromomalone significantly mitigated these changes in blood and feces, but not in urine. Some crucial metabolic pathways including lipid metabolism, lipid signaling, hormones synthesis, unsaturated fatty acid (UFAs) absorption, and tryptophan metabolism, were seriously disrupted in HUA rats. In addition, AM administration exerted better treatment effects on HUA than benbromomalone. Furthermore, additional supplementation with UFAs and tryptophan may also induce therapeutic effects against HUA.
Collapse
Affiliation(s)
- Wenwen Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yifang Cui
- The School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang,
| |
Collapse
|
11
|
Tian H, Ni Z, Lam SM, Jiang W, Li F, Du J, Wang Y, Shui G. Precise Metabolomics Reveals a Diversity of Aging-Associated Metabolic Features. SMALL METHODS 2022; 6:e2200130. [PMID: 35527334 DOI: 10.1002/smtd.202200130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Mass spectrometry-based metabolomics has emerged as a powerful technique for biomedical research, although technical issues with its analytical precision and structural characterization remain. Herein, a robust non-targeted strategy for accurate quantitation and precise profiling of metabolomes is developed and applied to investigate plasma metabolic features associated with human aging. A comprehensive set of isotope-labeled standards (ISs) covering major metabolic pathways is incorporated to quantify polar metabolites. Matching rules to select ISs for calibration follow a primary criterion of minimal coefficients of variations (COVs). If minimal COVs between specific ISs for a particular metabolite fall within 5% window, a further selection of ISs is conducted based on structural similarities and proximity in retention time. The introduction and refined selection of appropriate ISs for quantitation reduces the COVs of 480 identified metabolites in quality control samples from 14.3% to 9.8% and facilitates identification of additional metabolite. Finally, the precise metabolomics approach reveals perturbations in a diverse array of metabolic pathways across aging that principally implicate steroid metabolism, amino acid metabolism, lipid metabolism, and purine metabolism, which allows the authors to draw correlates to the pathology of various age-related diseases. These findings provide clues for the prevention and treatment of these age-related diseases.
Collapse
Affiliation(s)
- He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Ni
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, 213022, China
| | - Wenxi Jiang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Fengjuan Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yuan Wang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Mutter S, Valo E, Aittomäki V, Nybo K, Raivonen L, Thorn LM, Forsblom C, Sandholm N, Würtz P, Groop PH. Urinary metabolite profiling and risk of progression of diabetic nephropathy in 2670 individuals with type 1 diabetes. Diabetologia 2022; 65:140-149. [PMID: 34686904 PMCID: PMC8660744 DOI: 10.1007/s00125-021-05584-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS This prospective, observational study examines associations between 51 urinary metabolites and risk of progression of diabetic nephropathy in individuals with type 1 diabetes by employing an automated NMR metabolomics technique suitable for large-scale urine sample collections. METHODS We collected 24-h urine samples for 2670 individuals with type 1 diabetes from the Finnish Diabetic Nephropathy study and measured metabolite concentrations by NMR. Individuals were followed up for 9.0 ± 5.0 years until their first sign of progression of diabetic nephropathy, end-stage kidney disease or study end. Cox regressions were performed on the entire study population (overall progression), on 1999 individuals with normoalbuminuria and 347 individuals with macroalbuminuria at baseline. RESULTS Seven urinary metabolites were associated with overall progression after adjustment for baseline albuminuria and chronic kidney disease stage (p < 8 × 10-4): leucine (HR 1.47 [95% CI 1.30, 1.66] per 1-SD creatinine-scaled metabolite concentration), valine (1.38 [1.22, 1.56]), isoleucine (1.33 [1.18, 1.50]), pseudouridine (1.25 [1.11, 1.42]), threonine (1.27 [1.11, 1.46]) and citrate (0.84 [0.75, 0.93]). 2-Hydroxyisobutyrate was associated with overall progression (1.30 [1.16, 1.45]) and also progression from normoalbuminuria (1.56 [1.25, 1.95]). Six amino acids and pyroglutamate were associated with progression from macroalbuminuria. CONCLUSIONS/INTERPRETATION Branched-chain amino acids and other urinary metabolites were associated with the progression of diabetic nephropathy on top of baseline albuminuria and chronic kidney disease. We found differences in associations for overall progression and progression from normo- and macroalbuminuria. These novel discoveries illustrate the utility of analysing urinary metabolites in entire population cohorts.
Collapse
Affiliation(s)
- Stefan Mutter
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Lena M Thorn
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Cui H, Shu S, Li Y, Yan X, Chen X, Chen Z, Hu Y, Chang Y, Hu Z, Wang X, Song J. Plasma Metabolites-Based Prediction in Cardiac Surgery-Associated Acute Kidney Injury. J Am Heart Assoc 2021; 10:e021825. [PMID: 34719239 PMCID: PMC8751958 DOI: 10.1161/jaha.121.021825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Cardiac surgery–associated acute kidney injury (CSA‐AKI) is a common postoperative complication following cardiac surgery. Currently, there are no reliable methods for the early prediction of CSA‐AKI in hospitalized patients. This study developed and evaluated the diagnostic use of metabolomics‐based biomarkers in patients with CSA‐AKI. Methods and Results A total of 214 individuals (122 patients with acute kidney injury [AKI], 92 patients without AKI as controls) were enrolled in this study. Plasma samples were analyzed by liquid chromatography tandem mass spectrometry using untargeted and targeted metabolomic approaches. Time‐dependent effects of selected metabolites were investigated in an AKI swine model. Multiple machine learning algorithms were used to identify plasma metabolites positively associated with CSA‐AKI. Metabolomic analyses from plasma samples taken within 24 hours following cardiac surgery were useful for distinguishing patients with AKI from controls without AKI. Gluconic acid, fumaric acid, and pseudouridine were significantly upregulated in patients with AKI. A random forest model constructed with selected clinical parameters and metabolites exhibited excellent discriminative ability (area under curve, 0.939; 95% CI, 0.879–0.998). In the AKI swine model, plasma levels of the 3 discriminating metabolites increased in a time‐dependent manner (R2, 0.480–0.945). Use of this AKI predictive model was then confirmed in the validation cohort (area under curve, 0.972; 95% CI, 0.947–0.996). The predictive model remained robust when tested in a subset of patients with early‐stage AKI in the validation cohort (area under curve, 0.943; 95% CI, 0.883–1.000). Conclusions High‐resolution metabolomics is sufficiently powerful for developing novel biomarkers. Plasma levels of 3 metabolites were useful for the early identification of CSA‐AKI.
Collapse
Affiliation(s)
- Hao Cui
- The Cardiomyopathy Research Group State Key Laboratory of Cardiovascular Disease Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Songren Shu
- The Cardiomyopathy Research Group State Key Laboratory of Cardiovascular Disease Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yuan Li
- Department of Cardiovascular Surgery Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xin Yan
- The Cardiomyopathy Research Group State Key Laboratory of Cardiovascular Disease Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xiao Chen
- The Cardiomyopathy Research Group State Key Laboratory of Cardiovascular Disease Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Zujun Chen
- Surgical Intensive Care Unit Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yuxuan Hu
- Capital Normal University High School Beijing China
| | - Yuan Chang
- The Cardiomyopathy Research Group State Key Laboratory of Cardiovascular Disease Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Zhenliang Hu
- The Cardiomyopathy Research Group State Key Laboratory of Cardiovascular Disease Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xin Wang
- Department of Cardiovascular Surgery Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China.,Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials Center for Cardiovascular Experimental Study and Evaluation Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jiangping Song
- The Cardiomyopathy Research Group State Key Laboratory of Cardiovascular Disease Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
14
|
Bajaj JS, Garcia-Tsao G, Reddy KR, O’Leary JG, Vargas HE, Lai JC, Kamath PS, Tandon P, Subramanian RM, Thuluvath P, Fagan A, Sehrawat T, de la Rosa Rodriguez R, Thacker LR, Wong F. Admission Urinary and Serum Metabolites Predict Renal Outcomes in Hospitalized Patients With Cirrhosis. Hepatology 2021; 74:2699-2713. [PMID: 34002868 PMCID: PMC9338693 DOI: 10.1002/hep.31907] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Acute kidney injury (AKI) has a poor prognosis in cirrhosis. Given the variability of creatinine, the prediction of AKI and dialysis by other markers is needed. The aim of this study is to determine the role of serum and urine metabolomics in the prediction of AKI and dialysis in an inpatient cirrhosis cohort. APPROACH AND RESULTS Inpatients with cirrhosis from 11 North American Consortium of End-stage Liver Disease centers who provided admission serum/urine when they were AKI and dialysis-free were included. Analysis of covariance adjusted for demographics, infection, and cirrhosis severity was performed to identify metabolites that differed among patients (1) who developed AKI or not; (2) required dialysis or not; and/pr (3) within AKI subgroups who needed dialysis or not. We performed random forest and AUC analyses to identify specific metabolite(s) associated with outcomes. Logistic regression with clinical variables with/without metabolites was performed. A total of 602 patients gave serum (218 developed AKI, 80 needed dialysis) and 435 gave urine (164 developed AKI, 61 needed dialysis). For AKI prediction, clinical factor-adjusted AUC was 0.91 for serum and 0.88 for urine. Major metabolites such as uremic toxins (2,3-dihydroxy-5-methylthio-4-pentenoic acid [DMTPA], N2N2dimethylguanosine, uridine/pseudouridine) and tryptophan/tyrosine metabolites (kynunerate, 8-methoxykyunerate, quinolinate) were higher in patients who developed AKI. For dialysis prediction, clinical factor-adjusted AUC was 0.93 for serum and 0.91 for urine. Similar metabolites as AKI were altered here. For dialysis prediction in those with AKI, the AUC was 0.81 and 0.79 for serum/urine. Lower branched-chain amino-acid (BCAA) metabolites but higher cysteine, tryptophan, glutamate, and DMTPA were seen in patients with AKI needing dialysis. Serum/urine metabolites were additive to clinical variables for all outcomes. CONCLUSIONS Specific admission urinary and serum metabolites were significantly additive to clinical variables to predict AKI development and dialysis initiation in inpatients with cirrhosis. These observations can potentially facilitate earlier initiation of renoprotective measures.
Collapse
Affiliation(s)
- Jasmohan S. Bajaj
- Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | | | | | | | | | | | | | | | | | | | - Andrew Fagan
- Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | | | | | - Leroy R. Thacker
- Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | | |
Collapse
|
15
|
Minakata S, Manabe S, Inai Y, Ikezaki M, Nishitsuji K, Ito Y, Ihara Y. Protein C-Mannosylation and C-Mannosyl Tryptophan in Chemical Biology and Medicine. Molecules 2021; 26:molecules26175258. [PMID: 34500691 PMCID: PMC8433626 DOI: 10.3390/molecules26175258] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.
Collapse
Affiliation(s)
- Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Shino Manabe
- Pharmaceutical Department, The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| |
Collapse
|
16
|
Steinbrenner I, Schultheiss UT, Kotsis F, Schlosser P, Stockmann H, Mohney RP, Schmid M, Oefner PJ, Eckardt KU, Köttgen A, Sekula P. Urine Metabolite Levels, Adverse Kidney Outcomes, and Mortality in CKD Patients: A Metabolome-wide Association Study. Am J Kidney Dis 2021; 78:669-677.e1. [PMID: 33839201 DOI: 10.1053/j.ajkd.2021.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
RATIONALE & OBJECTIVE Mechanisms underlying the variable course of disease progression in patients with chronic kidney disease (CKD) are incompletely understood. The aim of this study was to identify novel biomarkers of adverse kidney outcomes and overall mortality, which may offer insights into pathophysiologic mechanisms. STUDY DESIGN Metabolome-wide association study. SETTING & PARTICIPANTS 5,087 patients with CKD enrolled in the observational German Chronic Kidney Disease Study. EXPOSURES Measurements of 1,487 metabolites in urine. OUTCOMES End points of interest were time to kidney failure (KF), a combined end point of KF and acute kidney injury (KF+AKI), and overall mortality. ANALYTICAL APPROACH Statistical analysis was based on a discovery-replication design (ratio 2:1) and multivariable-adjusted Cox regression models. RESULTS After a median follow-up of 4 years, 362 patients died, 241 experienced KF, and 382 experienced KF+AKI. Overall, we identified 55 urine metabolites whose levels were significantly associated with adverse kidney outcomes and/or mortality. Higher levels of C-glycosyltryptophan were consistently associated with all 3 main end points (hazard ratios of 1.43 [95% CI, 1.27-1.61] for KF, 1.40 [95% CI, 1.27-1.55] for KF+AKI, and 1.47 [95% CI, 1.33-1.63] for death). Metabolites belonging to the phosphatidylcholine pathway showed significant enrichment. Members of this pathway contributed to the improvement of the prediction performance for KF observed when multiple metabolites were added to the well-established Kidney Failure Risk Equation. LIMITATIONS Findings among patients of European ancestry with CKD may not be generalizable to the general population. CONCLUSIONS Our comprehensive screen of the association between urine metabolite levels and adverse kidney outcomes and mortality identifies metabolites that predict KF and represents a valuable resource for future studies of biomarkers of CKD progression.
Collapse
Affiliation(s)
- Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg; Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg; Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg
| | - Helena Stockmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin
| | | | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin; Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen; Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg.
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg.
| | | |
Collapse
|
17
|
John A, Järvå MA, Shah S, Mao R, Chappaz S, Birkinshaw RW, Czabotar PE, Lo AW, Scott NE, Goddard-Borger ED. Yeast- and antibody-based tools for studying tryptophan C-mannosylation. Nat Chem Biol 2021; 17:428-437. [PMID: 33542533 DOI: 10.1038/s41589-020-00727-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Tryptophan C-mannosylation is an unusual co-translational protein modification performed by metazoans and apicomplexan protists. The prevalence and biological functions of this modification are poorly understood, with progress in the field hampered by a dearth of convenient tools for installing and detecting the modification. Here, we engineer a yeast system to produce a diverse array of proteins with and without tryptophan C-mannosylation and interrogate the modification's influence on protein stability and function. This system also enabled mutagenesis studies to identify residues of the glycosyltransferase and its protein substrates that are crucial for catalysis. The collection of modified proteins accrued during this work facilitated the generation and thorough characterization of monoclonal antibodies against tryptophan C-mannosylation. These antibodies empowered proteomic analyses of the brain C-glycome by enriching for peptides possessing tryptophan C-mannosylation. This study revealed many new modification sites on proteins throughout the secretory pathway with both conventional and non-canonical consensus sequences.
Collapse
Affiliation(s)
- Alan John
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Järvå
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Sayali Shah
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephane Chappaz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alvin W Lo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
18
|
Morita S, Inai Y, Minakata S, Kishimoto S, Manabe S, Iwahashi N, Ino K, Ito Y, Akamizu T, Ihara Y. Quantification of serum C-mannosyl tryptophan by novel assay to evaluate renal function and vascular complications in patients with type 2 diabetes. Sci Rep 2021; 11:1946. [PMID: 33479412 PMCID: PMC7820242 DOI: 10.1038/s41598-021-81479-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022] Open
Abstract
C-Mannosyl tryptophan (CMW) is a unique glycosylated amino acid, and a candidate novel biomarker of renal function. In type 2 diabetes (T2D), a combination of metabolites including CMW has recently been the focus of novel biomarkers for the evaluation of renal function and prediction of its decline. However, previous quantification methods for serum CMW have several limitations. We recently established a novel assay for quantifying serum CMW. Serum CMW from 99 Japanese patients with T2D was quantified by this assay using hydrophilic interaction liquid chromatography. The serum CMW levels were cross-sectionally characterized in relation to clinical features, including renal function and vascular complications. Serum CMW level was more strongly correlated with serum creatinine and cystatin C levels and with eGFR than with albumin urea level. The ROC curve to detect eGFR < 60 ml/min/1.73 m2 revealed that the cutoff serum CMW level was 337.5 nM (AUC 0.883). Serum CMW levels were higher in patients with a history of macroangiopathy than in those without history. They correlated with ankle-brachial pressure index, whereas cystatin C did not. Serum CMW levels quantified by the novel assay could be useful in evaluation of glomerular filtration of renal function and peripheral arterial disease in T2D.
Collapse
Affiliation(s)
- Shuhei Morita
- First Department of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan.
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Shohei Kishimoto
- First Department of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Shino Manabe
- Pharmaceutical Department & The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takashi Akamizu
- First Department of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan.
| |
Collapse
|
19
|
Sun Y, Zou H, Li X, Xu S, Liu C. Plasma Metabolomics Reveals Metabolic Profiling For Diabetic Retinopathy and Disease Progression. Front Endocrinol (Lausanne) 2021; 12:757088. [PMID: 34777253 PMCID: PMC8589034 DOI: 10.3389/fendo.2021.757088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDS Diabetic retinopathy (DR), the main retinal vascular complication of DM, is the leading cause of visual impairment and blindness among working-age people worldwide. The aim of this study was to investigate the difference of plasma metabolic profiles in patients with DR to better understand the mechanism of this disease and disease progression. METHODS We used ultrahigh-performance liquid Q-Exactive mass spectrometry and multivariate statistical analyses to conduct a comprehensive analysis of plasma metabolites in a population with DR and proliferative DR (PDR). A risk score based on the level of the selected metabolite was established and evaluated using the least absolute shrinkage and selection operator regularization logistic regression (LASSO-LR) based machine learning model. RESULTS 22 differentially expressed metabolites which belonged to different metabolic pathway were identified and confirmed to be associated with the occurrence of DR. A risk score based on the level of the selected metabolite pseudouridine was established and evaluated to strongly associated with the occurrence of DR. Four circulating plasma metabolites (pseudouridine, glutamate, leucylleucine and N-acetyltryptophan) were identified to be differentially expressed between patients with PDR and other patients, and a risk score formula based on these plasma metabolites was developed and assessed to be significantly related to PDR. CONCLUSIONS Our work highlights the possible use of the risk score assessment based on the plasma metabolites not only reveal in the early diagnosis of DR and PDR but also assist in enhancing current therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Yu Sun
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Endocrinology and Metabolism, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Huiling Zou
- Department of Endocrinology and Metabolism, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xingjia Li
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Treatment of Yingbing of State Administration of Traditional Chinese Medicine, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shuhang Xu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Treatment of Yingbing of State Administration of Traditional Chinese Medicine, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Chao Liu, ; Shuhang Xu,
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Treatment of Yingbing of State Administration of Traditional Chinese Medicine, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Chao Liu, ; Shuhang Xu,
| |
Collapse
|
20
|
Dubinnyi MA, Ivanov IA, Rodionova NS, Kovalchuk SI, Kaskova ZM, Petushkov VN. α‐C‐Mannosyltryptophan is a Structural Analog of the Luciferin from Bioluminescent Siberian Earthworm
Henlea sp
. ChemistrySelect 2020. [DOI: 10.1002/slct.202003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maxim A. Dubinnyi
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
| | - Igor A. Ivanov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
| | - Natalia S. Rodionova
- Institute of Biophysics Krasnoyarsk Research Center Siberian Branch Russian Academy of Sciences Akademgorodok 660036 Krasnoyarsk Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
| | - Zinaida M. Kaskova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University 1 Ostrovityanova st. 117997 Moscow Russia
| | - Valentin N. Petushkov
- Institute of Biophysics Krasnoyarsk Research Center Siberian Branch Russian Academy of Sciences Akademgorodok 660036 Krasnoyarsk Russia
| |
Collapse
|
21
|
Monomeric C-mannosyl tryptophan is a degradation product of autophagy in cultured cells. Glycoconj J 2020; 37:635-645. [PMID: 32803368 DOI: 10.1007/s10719-020-09938-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
C-Mannosyl tryptophan (C-Man-Trp) is a unique glycosylated amino acid present in various eukaryotes. The C-Man-Trp structure can be found as a monomeric form or a part of post-translational modifications within polypeptide chains in living organisms. However, the mechanism of how monomeric C-Man-Trp is produced has not been fully investigated. In this study, we assessed levels of cellular C-Man-Trp by ultra performance liquid chromatography with a mass spectrometry assay system, and investigated whether the cellular C-Man-Trp is affected by autophagy induction. The intracellular C-Man-Trp level was significantly increased under serum and/or amino acid starvation in A549, HaCaT, HepG2, NIH3T3, and NRK49F cells. The increase in C-Man-Trp was also observed in NIH3T3 cells treated with rapamycin, an autophagy inducer. The up-regulation of C-Man-Trp caused by starvation was reversed by the inhibition of lysosomal enzymes. We further showed that C-Man-Trp is produced by incubating a synthetic C-mannosylated peptide (C-Man-Trp-Ser-Pro-Trp) or thrombospondin (TSP) in a lysosomal fraction that was prepared from a mouse liver, which provides supporting evidence that C-Man-Trp is a degradation product of the C-mannosylated peptide or protein following lysosome-related proteolysis. Taken together, we propose that the autophagic pathway is a novel pathway that at least partly contributes to intracellular C-Man-Trp production under certain conditions, such as nutrient starvation.
Collapse
|
22
|
Cheng Y, Li Y, Benkowitz P, Lamina C, Köttgen A, Sekula P. The relationship between blood metabolites of the tryptophan pathway and kidney function: a bidirectional Mendelian randomization analysis. Sci Rep 2020; 10:12675. [PMID: 32728058 PMCID: PMC7391729 DOI: 10.1038/s41598-020-69559-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Blood metabolites of the tryptophan pathway were found to be associated with kidney function and disease in observational studies. In order to evaluate causal relationship and direction, we designed a study using a bidirectional Mendelian randomization approach. The analyses were based on published summary statistics with study sizes ranging from 1,960 to 133,413. After correction for multiple testing, results provided no evidence of an effect of metabolites of the tryptophan pathway on estimated glomerular filtration rate (eGFR). Conversely, lower eGFR was related to higher levels of four metabolites: C-glycosyltryptophan (effect estimate = − 0.16, 95% confidence interval [CI] (− 0.22; − 0.1); p = 9.2e−08), kynurenine (effect estimate = − 0.18, 95% CI (− 0.25; − 0.11); p = 1.1e−06), 3-indoxyl sulfate (effect estimate = − 0.25, 95% CI (− 0.4; − 0.11); p = 6.3e−04) and indole-3-lactate (effect estimate = − 0.26, 95% CI (− 0.38; − 0.13); p = 5.4e−05). Our study supports that lower eGFR causes higher blood metabolite levels of the tryptophan pathway including kynurenine, C-glycosyltryptophan, 3-indoxyl sulfate, and indole-3-lactate. These findings aid the notion that metabolites of the tryptophan pathway are a consequence rather than a cause of reduced eGFR. Further research is needed to specifically examine relationships with respect to chronic kidney disease (CKD) progression among patients with existing CKD.
Collapse
Affiliation(s)
- Yurong Cheng
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yong Li
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany
| | - Paula Benkowitz
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany
| | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Köttgen
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany
| | - Peggy Sekula
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany.
| |
Collapse
|
23
|
Chen L, Zhang J, Teh JPY, Cheon BK, Yang Y, Schlundt J, Wang Y, Conway PL. Comparative Blood and Urine Metabolomics Analysis of Healthy Elderly and Young Male Singaporeans. J Proteome Res 2020; 19:3264-3275. [PMID: 32434331 DOI: 10.1021/acs.jproteome.0c00215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Comparative metabolomics analysis of biofluids could provide information about the metabolic alterations in aging. To investigate the signature of multiple metabolic profiles associated with aging in an Asian population, we performed a pilot study in healthy Singaporeans, including 33 elderly and 33 young males. Fasting whole bloods were analyzed by routine hematology; the serum and urine metabolome profiles were obtained using NMR-based nontargeted metabolomics analysis and targeted lipoprotein analysis. Among the 90 identified compounds in serum and urine samples, 32 were significantly different between the two groups. The most obvious age-related metabolic signatures include decreased serum levels of albumin lysyl and essential amino acids and derivatives but increased levels of N-acetyl glycoproteins and several lipids and elevated urine levels of trimethylamine N-oxide, scyllo-inositol, citrate, and ascorbic acid but decreased levels of several amino acids, acetate, etc. Among 112 lipoprotein subfractions, 65 were elevated, and 2 were lower in the elderly group. These significantly age-varying metabolites, especially in the amino acid and fatty acid metabolism pathways, suggest that the regulation of these pathways contributes to the aging process in Chinese Singaporeans. Further multiomics studies including the gut microbiome and intervention studies in a larger cohort are needed to elucidate the possible mechanisms in the aging process.
Collapse
Affiliation(s)
- Liwei Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore.,Nanyang Technological University Food Technology Centre (NAFTEC), Nanyang Technological University, 637459 Singapore
| | - Jingtao Zhang
- Singapore Phenome Centre, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, 636921 Singapore
| | - Jean Pui Yi Teh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore.,Nanyang Technological University Food Technology Centre (NAFTEC), Nanyang Technological University, 637459 Singapore
| | - Bobby K Cheon
- School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, HSS-04-01, 639818 Singapore.,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), 30 Medical Drive, 117609 Singapore
| | - Yifan Yang
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616 Singapore
| | - Joergen Schlundt
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore.,Nanyang Technological University Food Technology Centre (NAFTEC), Nanyang Technological University, 637459 Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, 636921 Singapore
| | - Patricia L Conway
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore.,Nanyang Technological University Food Technology Centre (NAFTEC), Nanyang Technological University, 637459 Singapore.,Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
24
|
Chen M, Witte CP. A Kinase and a Glycosylase Catabolize Pseudouridine in the Peroxisome to Prevent Toxic Pseudouridine Monophosphate Accumulation. THE PLANT CELL 2020; 32:722-739. [PMID: 31907295 PMCID: PMC7054038 DOI: 10.1105/tpc.19.00639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 05/02/2023]
Abstract
Pseudouridine (Ψ) is a frequent nucleoside modification that occurs in both noncoding RNAs and mRNAs. In pseudouridine, C5 of uracil is attached to the Rib via an unusual C-glycosidic bond. This RNA modification is introduced on the RNA by site-specific transglycosylation of uridine (U), a process mediated by pseudouridine synthases. RNA is subject to constant turnover, releasing free pseudouridine, but the metabolic fate of pseudouridine in eukaryotes is unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), pseudouridine is catabolized in the peroxisome by (1) a pseudouridine kinase (PUKI) from the PfkB family that generates 5'-pseudouridine monophosphate (5'-ΨMP) and (2) a ΨMP glycosylase (PUMY) that hydrolyzes ΨMP to uracil and ribose-5-phosphate. Compromising pseudouridine catabolism leads to strong pseudouridine accumulation and increased ΨMP content. ΨMP is toxic, causing delayed germination and growth inhibition, but compromising pseudouridine catabolism does not affect the Ψ/U ratios in RNA. The bipartite peroxisomal PUKI and PUMY are conserved in plants and algae, whereas some fungi and most animals (except mammals) possess a PUMY-PUKI fusion protein, likely in mitochondria. We propose that vacuolar turnover of ribosomal RNA produces most of the pseudouridine pool via 3'-ΨMP, which is imported through the cytosol into the peroxisomes for degradation by PUKI and PUMY, a process involving a toxic 5'-ΨMP intermediate.
Collapse
Affiliation(s)
- Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| |
Collapse
|
25
|
Iwahashi N, Inai Y, Minakata S, Sakurai S, Manabe S, Ito Y, Ino K, Ihara Y. C-Mannosyl tryptophan increases in the plasma of patients with ovarian cancer. Oncol Lett 2019; 19:908-916. [PMID: 31885719 PMCID: PMC6924205 DOI: 10.3892/ol.2019.11161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer survival is poor, in part, because there are no specific biomarkers for early diagnosis. C-Mannosyl tryptophan (CMW) is a structurally unique glycosylated amino acid recently identified as a novel biomarker of renal dysfunction. The present study investigated whether blood CMW is altered in patients with ovarian cancer and whether differences in blood CMW can distinguish benign from malignant ovarian tumors. Plasma samples were obtained from 49 patients with malignant, borderline or benign ovarian tumors as well as from seven age-matched healthy women. CMW was identified and quantified in these samples using ultra-performance liquid chromatography with fluorometry. Plasma CMW was significantly higher in the malignant tumor group than in the borderline and benign tumor groups, and higher in the combined tumor group (malignant, borderline or benign) compared with healthy controls. Receiver operating characteristic curve analysis of plasma CMW distinguished malignant tumors from borderline/benign tumors [area under the curve (AUC)=0.905]. Discrimination performance was greater than that of cancer antigen (CA) 125 (AUC=0.835), and CMW + CA125 combined achieved even greater discrimination (AUC=0.913, 81.8% sensitivity, 87.5% specificity, 93.1% positive predictive value and 70.0% negative predictive value). Plasma CMW differentiates malignant ovarian cancer from borderline or benign ovarian tumors with high accuracy, and performance is further improved by combined CMW and CA125 measurement.
Collapse
Affiliation(s)
- Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Sho Sakurai
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Shino Manabe
- Synthetic Cellular Chemistry Laboratory, RIKEN (The Institute of Physical and Chemical Research), Saitama 351-0198, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN (The Institute of Physical and Chemical Research), Saitama 351-0198, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| |
Collapse
|
26
|
Wang W, Subramanian P, Martinazzoli O, Wu J, Ackermann L. Glycopeptides by Linch‐Pin C−H Activations for Peptide‐Carbohydrate Conjugation by Manganese(I)‐Catalysis. Chemistry 2019; 25:10585-10589. [DOI: 10.1002/chem.201902788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Parthasarathi Subramanian
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Oscar Martinazzoli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
27
|
Sakurai S, Inai Y, Minakata S, Manabe S, Ito Y, Ihara Y. A novel assay for detection and quantification of C-mannosyl tryptophan in normal or diabetic mice. Sci Rep 2019; 9:4675. [PMID: 30886328 PMCID: PMC6423288 DOI: 10.1038/s41598-019-41278-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/04/2019] [Indexed: 01/17/2023] Open
Abstract
C-Mannosyl tryptophan (C-Man-Trp) is a unique molecule in that an α-mannose is connected to the indole C2 carbon atom of a Trp residue via C-glycosidic linkage. Although serum C-Man-Trp may be a novel biomarker of renal function in humans, the biological significance of C-Man-Trp has yet to be fully investigated. In this study, a novel assay system for C-Man-Trp was established using hydrophilic-interaction liquid chromatography, followed by detecting the fluorescence intensity or mass abundance of C-Man-Trp. Using this system, we systematically assessed the amount of free monomeric C-Man-Trp in different tissues of mice. The tissue level of C-Man-Trp was high, especially in the ovaries and uterus. Other organs with high levels of C-Man-Trp included the brain, spleen, lungs, bladder, and testes. The level was low in skeletal muscle. We also investigated whether the tissue level of C-Man-Trp is affected in diabetes. In KK-Ay diabetic mice, the level of urinary C-Man-Trp excretion was increased, and the tissue levels of C-Man-Trp were decreased in the liver but increased in the kidney. These results demonstrate that C-Man-Trp is differentially distributed in numerous tissues and organs in mice, and the levels are altered by disordered carbohydrate metabolism such as diabetes.
Collapse
Affiliation(s)
- Sho Sakurai
- Department of Biochemistry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Shino Manabe
- RIKEN (The Institute of Physical and Chemical Research), Saitama, 351-0198, Japan
| | - Yukishige Ito
- RIKEN (The Institute of Physical and Chemical Research), Saitama, 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, 641-0012, Japan.
| |
Collapse
|
28
|
Tin A, Grams ME. Integrative Omics for Identifying Dysfunctional Pathways in CKD. Kidney Int Rep 2019; 4:194-195. [PMID: 30775616 PMCID: PMC6365393 DOI: 10.1016/j.ekir.2018.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, Clinical Research, Baltimore Maryland, USA
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, Clinical Research, Baltimore Maryland, USA
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Molecular Fingerprints of Iron Parameters among a Population-Based Sample. Nutrients 2018; 10:nu10111800. [PMID: 30463274 PMCID: PMC6266982 DOI: 10.3390/nu10111800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Iron deficiency is the most frequent deficiency disease and parameters of iron metabolism appear to be linked to major metabolic and cardiovascular diseases. We screened a large set of small molecules in plasma for associations with iron status among apparently healthy subjects to elucidate subclinical profiles which may provide a link between iron status and onset of diseases. Based on mass spectrometry and nuclear magnetic resonance spectroscopy we determined 613 plasma metabolites and lipoprotein subfractions among 820 apparently healthy individuals. Associations between ferritin, transferrin, haemoglobin and myoglobin and metabolite levels were tested by sex-specific linear regression analyses controlling for common confounders. Far more significant associations in women (82 out of 102) compared to men became obvious. The majority of the metabolites associated with serum ferritin and haemoglobin in women comprising fatty acid species, branched-chain amino acid catabolites and catabolites of heme. The latter was also obvious among men. Positive associations between serum transferrin and VLDL and IDL particle measures seen in women were observed in men with respect to serum ferritin. We observed a sexual-dimorphic fingerprint of surrogates of iron metabolism which may provide a link for the associations between those parameters and major metabolic and cardiovascular disease.
Collapse
|