1
|
Liu D, Zhao B, Zheng Y, Ou X, Wang S, Zhou Y, Song Y, Xia H, Wei Q, Zhao Y. Characterization of isoniazid resistance and genetic mutations in isoniazid-resistant and rifampicin-susceptible Mycobacterium tuberculosis in China. INFECTIOUS MEDICINE 2024; 3:100129. [PMID: 39314806 PMCID: PMC11417578 DOI: 10.1016/j.imj.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Background Patients with tuberculosis resistant to isoniazid but susceptible to rifampicin (Hr-Rs TB) remain a neglected demographic, despite a high disease burden and poor outcomes of these patients. The aim of this study was to investigate the characteristics of isoniazid-resistance-related mutations in Mycobacterium tuberculosis and resistance rates to drugs included in WHO-recommended regimens for Hr-Rs patients. Methods Mycobacterium tuberculosis isolates (n = 4922) obtained from national tuberculosis drug-resistance surveillance were subjected to whole-genome sequencing to identify Hr-Rs strains. The minimal inhibitory concentrations (MICs) were established for the Hr-Rs strains to determine the isoniazid resistance levels. We also identified drug-resistance-associated mutations for five drugs (fluoroquinolones, ethambutol, pyrazinamide, streptomycin, and amikacin) in the Hr-Rs strains. Results Of the 4922 strains, 384 (7.8 %) were Hr-Rs. The subculture of seven strains failed, so 377 (98.2 %) strains underwent phenotypic MIC testing. Among the 384 genotypic Hr-Rs strains, 242 (63.0 %) contained the katG Ser315Thr substitution; 115 (29.9 %) contained the -15C>T in the promoter region of the fabG1 gene; and 16 (4.2 %) contained Ser315Asn in the katG gene. Of the 239 strains with the Ser315Thr substitution, 229 (95.8 %) had MIC ≥ 2 µg/mL, and of the 114 strains with the -15C>T mutation, 103 (90.4 %) had 0.25 µg/mL ≤ MIC ≤ 1 µg/mL. The genotypic resistance rates were 0.8 % (3/384) for pyrazinamide, 2.3 % (9/384) for ethambutol and fluoroquinolones; 39.6 % (152/384) of the strains were resistant to streptomycin, but only 0.5 % (2/384) of the strains were resistant to amikacin. Conclusion Ser315Thr in katG was the predominant mutation conferring the Hr-Rs phenotype, followed by the fabG1 -15C>T mutation. The combination of rifampicin, pyrazinamide, ethambutol, and levofloxacin should be effective in the treatment of patients with Hr-Rs tuberculosis because the resistance rates for these drugs in China are low.
Collapse
Affiliation(s)
- Dongxin Liu
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yang Zheng
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xichao Ou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuanyuan Song
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - YanLin Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
2
|
Sultana M, Alam MM, Mistri SK, Mostafa Kamal SM, Ahsan CR, Yasmin M. Multi-drug resistant gene mutation analysis in Mycobacterium tuberculosis by molecular techniques. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:459-469. [PMID: 39267928 PMCID: PMC11389769 DOI: 10.18502/ijm.v16i4.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background and Objectives Rifampicin (RIF) and isoniazid (INH), two most potent antibiotics, are prescribed to cure tuberculosis. Mycobacterium tuberculosis, the causative agent of multidrug-resistant tuberculosis (MDR-TB), is resistant to these first-line drugs. Here, two molecular techniques were demonstrated such as PCR sequencing-based and GeneXpert assay for rapidly identifying MDR-TB. Materials and Methods Pulmonary samples (sputum) were collected from 55 MDR-TB suspected patients from the National Tuberculosis Reference Laboratory (NTRL), Dhaka where the research work was partially accomplished and continued in the department of Microbiology, University of Dhaka, Bangladesh. We strived for sequencing technique as well as GeneXpert assay to identify mutations in rpoB and katG genes in MTB strains and sputum directly. Culture-based drug susceptibility testing (DST) was performed to measure the efficacy of the molecular methods employed. Results When analyzed, rpoB gene mutations at codons 531 (54.54%), 526 (14.54%), and 516 (10.91%) were found by sequencing in 80% of the samples. Nucleotide substitution at katG315 (AGC→ACC) was spotted in 16 (76.19%) out of 21 samples. When comparing the sequencing results with DST, sensitivity and specificity were investigated to determine drug-resistance (rifampicin-resistance were 98 and 100% whereas isoniazid-resistance were 94 and 100% respectively). Additionally, as a point of comparison with DST, only 85.45% of RIF mono-resistant TB cases were accurately evaluated by the GeneXpert assay. Conclusion This research supports the adoption of PCR sequencing approach as an efficient tool in detecting MDR-TB, counting the higher sensitivity and specificity as well as the short period to produce the results.
Collapse
Affiliation(s)
- Monika Sultana
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | | | | | - S M Mostafa Kamal
- National Tuberculosis Reference Laboratory (NTRL), Dhaka-1207, Bangladesh
| | | | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
3
|
Gausi K, Ignatius EH, De Jager V, Upton C, Kim S, McKhann A, Moran L, Wiesner L, von Groote-Bidlingmaier F, Marzinek P, Vanker N, Yvetot J, Pierre S, Rosenkranz SL, Swindells S, Diacon AH, Nuermberger EL, Denti P, Dooley KE. High-Dose Isoniazid Lacks EARLY Bactericidal Activity against Isoniazid-resistant Tuberculosis Mediated by katG Mutations: A Randomized Phase II Clinical Trial. Am J Respir Crit Care Med 2024; 210:343-351. [PMID: 38564365 PMCID: PMC11348975 DOI: 10.1164/rccm.202311-2004oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Rationale: Observational studies suggest that high-dose isoniazid may be efficacious in treating multidrug-resistant tuberculosis. However, its activity against Mycobacterium tuberculosis (M.tb) with katG mutations (which typically confer high-level resistance) is not established. Objectives: To characterize the early bactericidal activity (EBA) of high-dose isoniazid in patients with tuberculosis caused by katG-mutated M.tb. Methods: A5312 was a phase IIA randomized, open-label trial. Participants with tuberculosis caused by katG-mutated M.tb were randomized to receive 15 or 20 mg/kg isoniazid daily for 7 days. Daily sputum samples were collected for quantitative culture. Intensive pharmacokinetic sampling was performed on Day 6. Data were pooled across all A5312 participants for analysis (drug-sensitive, inhA-mutated, and katG-mutated M.tb). EBA was determined using nonlinear mixed-effects modeling. Measurements and Main Results: Of 80 treated participants, 21 had katG-mutated M.tb. Isoniazid pharmacokinetics were best described by a two-compartment model with an effect of NAT2 acetylator phenotype on clearance. Model-derived maximum concentration and area under the concentration-time curve in the 15 and 20 mg/kg groups were 15.0 and 22.1 mg/L and 57.6 and 76.8 mg ⋅ h/L, respectively. Isoniazid bacterial kill was described using an effect compartment and a sigmoidal maximum efficacy relationship. Isoniazid potency against katG-mutated M.tb was approximately 10-fold lower than in inhA-mutated M.tb. The highest dose of 20 mg/kg did not demonstrate measurable EBA, except against a subset of slow NAT2 acetylators (who experienced the highest concentrations). There were no grade 3 or higher drug-related adverse events. Conclusions: This study found negligible bactericidal activity of high-dose isoniazid (15-20 mg/kg) in the majority of participants with tuberculosis caused by katG-mutated M.tb. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).
Collapse
Affiliation(s)
- Kamunkhwala Gausi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Elisa H. Ignatius
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - Soyeon Kim
- Frontier Science Foundation, Brookline, Massachusetts
| | - Ashley McKhann
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Laura Moran
- Social & Scientific Systems, a DLH Company, Silver Spring, Maryland
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | - Naadira Vanker
- Social & Scientific Systems, a DLH Company, Silver Spring, Maryland
| | - Joseph Yvetot
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; and
| | | | | | - Susan Swindells
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; and
| | | | - Eric L. Nuermberger
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E. Dooley
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
4
|
Sharma MK, Stobart M, Akochy PM, Adam H, Janella D, Rabb M, Alawa M, Sekirov I, Tyrrell GJ, Soualhine H. Evaluation of Whole Genome Sequencing-Based Predictions of Antimicrobial Resistance to TB First Line Agents: A Lesson from 5 Years of Data. Int J Mol Sci 2024; 25:6245. [PMID: 38892433 PMCID: PMC11172968 DOI: 10.3390/ijms25116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Phenotypic susceptibility testing of the Mycobacterium tuberculosis complex (MTBC) isolate requires culture growth, which can delay rapid detection of resistant cases. Whole genome sequencing (WGS) and data analysis pipelines can assist in predicting resistance to antimicrobials used in the treatment of tuberculosis (TB). This study compared phenotypic susceptibility testing results and WGS-based predictions of antimicrobial resistance (AMR) to four first-line antimicrobials-isoniazid, rifampin, ethambutol, and pyrazinamide-for MTBC isolates tested between the years 2018-2022. For this 5-year retrospective analysis, the WGS sensitivity for predicting resistance for isoniazid, rifampin, ethambutol, and pyrazinamide using Mykrobe was 86.7%, 100.0%, 100.0%, and 47.8%, respectively, and the specificity was 99.4%, 99.5%, 98.7%, and 99.9%, respectively. The predictive values improved slightly using Mykrobe corrections applied using TB Profiler, i.e., the WGS sensitivity for isoniazid, rifampin, ethambutol, and pyrazinamide was 92.31%, 100%, 100%, and 57.78%, respectively, and the specificity was 99.63%. 99.45%, 98.93%, and 99.93%, respectively. The utilization of WGS-based testing addresses concerns regarding test turnaround time and enables analysis for MTBC member identification, antimicrobial resistance prediction, detection of mixed cultures, and strain genotyping, all through a single laboratory test. WGS enables rapid resistance detection compared to traditional phenotypic susceptibility testing methods using the WHO TB mutation catalog, providing an insight into lesser-known mutations, which should be added to prediction databases as high-confidence mutations are recognized. The WGS-based methods can support TB elimination efforts in Canada and globally by ensuring the early start of appropriate treatment, rapidly limiting the spread of TB outbreaks.
Collapse
Affiliation(s)
- Meenu Kaushal Sharma
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada (M.S.)
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Michael Stobart
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada (M.S.)
| | - Pierre-Marie Akochy
- Laboratoire de Santé Publique du Québec-Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Heather Adam
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Diagnostic Services, Shared Health, Winnipeg, MB R3C 3H8, Canada
| | - Debra Janella
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada (M.S.)
| | - Melissa Rabb
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada (M.S.)
| | - Mohey Alawa
- Regina Qu’Appelle Health Region, Regina, SK S4T 1A5, Canada;
| | - Inna Sekirov
- Public Health Laboratory, B.C. Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada;
| | - Gregory J. Tyrrell
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2J2, Canada
- Alberta Precision Laboratories Public Health, Edmonton, AB T6G 2J2, Canada
| | - Hafid Soualhine
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada (M.S.)
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
5
|
Berida TI, Adekunle YA, Dada-Adegbola H, Kdimy A, Roy S, Sarker SD. Plant antibacterials: The challenges and opportunities. Heliyon 2024; 10:e31145. [PMID: 38803958 PMCID: PMC11128932 DOI: 10.1016/j.heliyon.2024.e31145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Nature possesses an inexhaustible reservoir of agents that could serve as alternatives to combat the growing threat of antimicrobial resistance (AMR). While some of the most effective drugs for treating bacterial infections originate from natural sources, they have predominantly been derived from fungal and bacterial species. However, a substantial body of literature is available on the promising antibacterial properties of plant-derived compounds. In this comprehensive review, we address the major challenges associated with the discovery and development of plant-derived antimicrobial compounds, which have acted as obstacles preventing their clinical use. These challenges encompass limited sourcing, the risk of agent rediscovery, suboptimal drug metabolism, and pharmacokinetics (DMPK) properties, as well as a lack of knowledge regarding molecular targets and mechanisms of action, among other pertinent issues. Our review underscores the significance of these challenges and their implications in the quest for the discovery and development of effective plant-derived antimicrobial agents. Through a critical examination of the current state of research, we give valuable insights that will advance our understanding of these classes of compounds, offering potential solutions to the global crisis of AMR. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Tomayo I. Berida
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Yemi A. Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayoub Kdimy
- LS3MN2E, CERNE2D, Faculty of Science, Mohammed V University in Rabat, Rabat, 10056, Morocco
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| |
Collapse
|
6
|
Kim KS. Editorial: Combinational therapy and nanotechnologies in combating pathogenic microbes and antibiotic resistance. Front Pharmacol 2024; 15:1406043. [PMID: 38774210 PMCID: PMC11106493 DOI: 10.3389/fphar.2024.1406043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Affiliation(s)
- Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Bhanushali A, Atre S, Nair P, Thandaseery GA, Shah S, Kuruwa S, Zade A, Nikam C, Gomare M, Chatterjee A. Whole-genome sequencing of clinical isolates from tuberculosis patients in India: real-world data indicates a high proportion of pre-XDR cases. Microbiol Spectr 2024; 12:e0277023. [PMID: 38597637 PMCID: PMC11064594 DOI: 10.1128/spectrum.02770-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Treatment decisions for tuberculosis (TB) in the absence of full drug-susceptibility data can result in amplifying resistance and may compromise treatment outcomes. Genomics of Mycobacterium tuberculosis (M.tb) from clinical samples enables detection of drug resistance to multiple drugs. We performed whole-genome sequencing (WGS) for 600 clinical samples from patients with tuberculosis to identify the drug-resistance profile and mutation spectrum. We documented the reasons reported by clinicians for referral. WGS identified a high proportion (51%) of pre-extensively drug-resistant (pre-XDR) cases followed by multidrug-resistant tuberculosis (MDR-TB) (15.5%). This correlates with the primary reason for referral, as non-response to the first-line treatment (67%) and treatment failure or rifampicin resistance (14%). Multivariate analysis indicated that all young age groups (P < 0.05), male gender (P < 0.05), and Beijing strain (P < 0.01) were significant independent predictors of MDR-TB or MDR-TB+ [pre-extensively drug-resistant tuberculosis (XDR-TB) and XDR-TB]. Ser315Thr (72.5%) in the inhA gene and Ser450Leu in the rpoB gene (65.5%) were the most prevalent mutations, as were resistance-conferring mutations to pyrazinamide (41%) and streptomycin (61.33%). Mutations outside the rifampicin resistance-determining region (RRDR), Ile491Phe and Val170Phe, were seen in 1.3% of cases; disputed mutations in rpoB (Asp435Tyr, His445Asn, His445Leu, and Leu430Pro) were seen in 6% of cases, and mutations to newer drugs such as bedaquiline and linezolid in 1.0% and 7.5% of cases, respectively. This study on clinical samples highlights that there is a high proportion of pre-XDR cases and emerging resistance to newer drugs; ongoing transmission of these strains can cause serious threat to public health; and whole-genome sequencing can effectively identify and support precision medicine for TB. IMPORTANCE The current study is based on real-world data on the TB drug-resistance profile by whole-genome sequencing of 600 clinical samples from patients with TB in India. This study indicates the clinicians' reasons for sending samples for WGS, which is for difficult-to-treat cases and/or relapse and treatment failure. The study reports a significant proportion of cases with pre-XDR-TB strains that warrant policy makers' attention. It reflects the current iterative nature of the diagnostic tests under programmatic conditions that leads to delays in appropriate diagnosis and empirical treatment. India had an estimated burden of 2.95 million TB cases in 2020 and 135,000 multidrug-resistant cases. However, WGS profiles of M.tb from India remains disproportionately poorly represented. This study adds a significant body of data on the mutation profiles seen in M.tb isolated from patients with TB in India, mutations outside the RRDR, disputed mutations, and resistance-conferring mutations to newer drugs such as bedaquiline and linezolid.
Collapse
Affiliation(s)
| | - Sachin Atre
- Dr. D.Y. Patil Medical College Hospital and Research Centre, Pune, India
| | - Preethi Nair
- HaystackAnalytics Pvt. Ltd., IIT Bombay, Mumbai, India
| | | | - Sanchi Shah
- HaystackAnalytics Pvt. Ltd., IIT Bombay, Mumbai, India
| | | | - Amrutraj Zade
- HaystackAnalytics Pvt. Ltd., IIT Bombay, Mumbai, India
| | | | | | | |
Collapse
|
8
|
Shao Z, Tam KKG, Achalla VPK, Woon ECY, Mason AJ, Chow SF, Yam WC, Lam JKW. Synergistic combination of antimicrobial peptide and isoniazid as inhalable dry powder formulation against multi-drug resistant tuberculosis. Int J Pharm 2024; 654:123960. [PMID: 38447778 DOI: 10.1016/j.ijpharm.2024.123960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has posed a serious threat to global public health, and antimicrobial peptides (AMPs) have emerged to be promising candidates to tackle this deadly infectious disease. Previous study has suggested that two AMPs, namely D-LAK120-A and D-LAK120-HP13, can potentiate the effect of isoniazid (INH) against mycobacteria. In this study, the strategy of combining INH and D-LAK peptide as a dry powder formulation for inhalation was explored. The antibacterial effect of INH and D-LAK combination was first evaluated on three MDR clinical isolates of Mycobacteria tuberculosis (Mtb). The minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indexes (FICIs) were determined. The combination was synergistic against Mtb with FICIs ranged from 0.25 to 0.38. The INH and D-LAK peptide at 2:1 mole ratio (equivalent to 1: 10 mass ratio) was identified to be optimal. This ratio was adopted for the preparation of dry powder formulation for pulmonary delivery, with mannitol used as bulking excipient. Spherical particles with mass median aerodynamic diameter (MMAD) of around 5 µm were produced by spray drying. The aerosol performance of the spray dried powder was moderate, as evaluated by the Next Generation Impactor (NGI), with emitted fraction and fine particle fraction of above 70 % and 45 %, respectively. The circular dichroism spectra revealed that both D-LAK peptides retained their secondary structure after spray drying, and the antibacterial effect of the combination against the MDR Mtb clinical isolates was successfully preserved. The combination was found to be effective against MDR Mtb isolates with KatG or InhA mutations. Overall, the synergistic combination of INH with D-LAK peptide formulated as inhaled dry powder offers a new therapeutic approach against MDR-TB.
Collapse
Affiliation(s)
- Zitong Shao
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; UCL School of Pharmacy, University College London, United Kingdom
| | - Kingsley King-Gee Tam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - V P K Achalla
- UCL School of Pharmacy, University College London, United Kingdom
| | - Esther C Y Woon
- UCL School of Pharmacy, University College London, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Wing Cheong Yam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; UCL School of Pharmacy, University College London, United Kingdom; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Bermúdez-Hernández GA, Pérez-Martínez D, Ortiz-León MC, Muñiz-Salazar R, Licona-Cassani C, Zenteno-Cuevas R. Mutational Dynamics Related to Antibiotic Resistance in M. tuberculosis Isolates from Serial Samples of Patients with Tuberculosis and Type 2 Diabetes Mellitus. Microorganisms 2024; 12:324. [PMID: 38399727 PMCID: PMC10892438 DOI: 10.3390/microorganisms12020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic variation in tuberculosis is influenced by the host environment, patients with comorbidity, and tuberculosis-type 2 diabetes mellitus (TB-T2DM) and implies a higher risk of treatment failure and development of drug resistance. Considering the above, this study aimed to evaluate the influence of T2DM on the dynamic of polymorphisms related to antibiotic resistance in TB. Fifty individuals with TB-T2DM and TB were initially characterized, and serial isolates of 29 of these individuals were recovered on day 0 (diagnosis), 30, and 60. Genomes were sequenced, variants related to phylogeny and drug resistance analyzed, and mutation rates calculated and compared between groups. Lineage X was predominant. At day 0 (collection), almost all isolates from the TB group were sensitive, apart from four isolates from the TB-T2DM group showing the mutation katG S315T, from which one isolate had the mutations rpoB S450L, gyrA A90G, and gyrA D94G. This pattern was observed in a second isolate at day 30. The results provide a first overview of the dynamics of mutations in resistance genes from individuals with TB-T2DM, describing an early development of resistance to isoniazid and a rapid evolution of resistance to other drugs. Although preliminary, these results help to explain the increased risk of drug resistance in individuals with TB and T2DM.
Collapse
Affiliation(s)
- Gustavo A. Bermúdez-Hernández
- Biomedical Sciences Doctoral Program, Institute of Health Sciences, University of Veracruz, Xalapa 91190, Veracruz, Mexico;
| | - Damián Pérez-Martínez
- Institute of Public Health, University of Veracruz, Xalapa 91190, Veracruz, Mexico; (D.P.-M.); (M.C.O.-L.)
| | - Maria Cristina Ortiz-León
- Institute of Public Health, University of Veracruz, Xalapa 91190, Veracruz, Mexico; (D.P.-M.); (M.C.O.-L.)
| | - Raquel Muñiz-Salazar
- School of Health Sciences, Autonomous University of Baja California, Ensenada 22860, Baja California, Mexico;
| | - Cuauhtemoc Licona-Cassani
- Monterrey Institute of Technology, School of Engineering and Sciences, Monterrey 64700, Nuevo León, Mexico;
| | - Roberto Zenteno-Cuevas
- Institute of Public Health, University of Veracruz, Xalapa 91190, Veracruz, Mexico; (D.P.-M.); (M.C.O.-L.)
| |
Collapse
|
10
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
11
|
Chen X, Sechi LA, Molicotti P. Evaluation of mycobacteria infection prevalence and optimization of the identification process in North Sardinia, Italy. Microbiol Spectr 2024; 12:e0317923. [PMID: 38059624 PMCID: PMC10783066 DOI: 10.1128/spectrum.03179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Mycobacterial infection is a major threat to public health worldwide. Accurate identification of infected species and drug resistance detection are critical factors in treatment. We focused on shortening the turn-around time of identifying mycobacteria species and antibiotic resistance tests.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- SC Microbiologia, AOU Sassari, Sassari, Italy
| | - Paola Molicotti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- SC Microbiologia, AOU Sassari, Sassari, Italy
| |
Collapse
|
12
|
Zhou M, Liu AM, Yang XB, Guan CP, Zhang YA, Wang MS, Chen YL. The efficacy and safety of high-dose isoniazid-containing therapy for multidrug-resistant tuberculosis: a systematic review and meta-analysis. Front Pharmacol 2024; 14:1331371. [PMID: 38259285 PMCID: PMC10800833 DOI: 10.3389/fphar.2023.1331371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives: Accumulating evidence are available on the efficacy of high-dose isoniazid (INH) for multidrug-resistant tuberculosis (MDR-TB) treatment. We aimed to perform a systematic review and meta-analysis to compare clinical efficacy and safety outcomes of high-dose INH- containing therapy against other regimes. Methods: We searched the following databases PubMed, Embase, Scopus, Web of Science, CINAHL, the Cochrane Library, and ClinicalTrials.gov. We considered and included any studies comparing treatment success, treatment unsuccess, or adverse events in patients with MDR-TB treated with high-dose INH (>300 mg/day or >5 mg/kg/day). Results: Of a total of 3,749 citations screened, 19 studies were included, accounting for 5,103 subjects, the risk of bias was low in all studies. The pooled treatment success, death, and adverse events of high-dose INH-containing therapy was 76.5% (95% CI: 70.9%-81.8%; I2: 92.03%), 7.1% (95% CI: 5.3%-9.1%; I2: 73.75%), and 61.1% (95% CI: 43.0%-77.8%; I2: 98.23%), respectively. The high-dose INH administration is associated with significantly higher treatment success (RR: 1.13, 95% CI: 1.04-1.22; p < 0.01) and a lower risk of death (RR: 0.45, 95% CI: 0.32-0.63; p < 0.01). However, in terms of other outcomes (such as adverse events, and culture conversion rate), no difference was observed between high-dose INH and other treatment options (all p > 0.05). In addition, no publication bias was observed. Conclusion: In MDR-TB patients, high-dose INH administration is associated with a favorable outcome and acceptable adverse-event profile. Systematic review registration: identifier CRD42023438080.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Laboratory Medicine, Chest Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, China
| | - Ai-Mei Liu
- Department of Infectious Diseases, Chest Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, China
| | - Xiao-Bing Yang
- Department of Laboratory Medicine, Chest Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, China
| | - Cui-Ping Guan
- Department of Lab Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, China
| | - Yan-An Zhang
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, China
| | - Mao-Shui Wang
- Department of Lab Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, China
| | - Ya-Li Chen
- Department of Lab Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, China
| |
Collapse
|
13
|
Pinhata JMW, Ferrazoli L, Mendes FDF, Gonçalves MG, Rabello MCDS, Ghisi KT, Simonsen V, Cavalin RF, Lindoso AABP, de Oliveira RS. A descriptive study on isoniazid resistance-associated mutations, clustering and treatment outcomes of drug-resistant tuberculosis in a high burden country. Eur J Clin Microbiol Infect Dis 2024; 43:73-85. [PMID: 37943394 DOI: 10.1007/s10096-023-04693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE To describe katG and inhA mutations, clinical characteristics, treatment outcomes and clustering of drug-resistant tuberculosis (TB) in the State of São Paulo, southeast Brazil. METHODS Mycobacterium tuberculosis isolates from patients diagnosed with drug-resistant TB were screened for mutations in katG and inhA genes by line probe assay and Sanger sequencing, and typed by IS6110-restriction fragment-length polymorphism for clustering assessment. Clinical, epidemiological and demographic data were obtained from surveillance information systems for TB. RESULTS Among the 298 isolates studied, 127 (42.6%) were isoniazid-monoresistant, 36 (12.1%) polydrug-resistant, 93 (31.2%) MDR, 16 (5.4%) pre-extensively drug-resistant (pre-XDR), 9 (3%) extensively drug-resistant (XDR) and 17 (5.7%) susceptible after isoniazid retesting. The frequency of katG 315 mutations alone was higher in MDR isolates, while inhA promoter mutations alone were more common in isoniazid-monoresistant isolates. Twenty-six isolates phenotypically resistant to isoniazid had no mutations either in katG or inhA genes. The isolates with inhA mutations were found more frequently in clusters (75%) when compared to the isolates with katG 315 mutations (59.8%, p = 0.04). In our population, being 35-64 years old, presenting MDR-, pre-XDR- or XDR-TB and being a retreatment case were associated with unfavourable TB treatment outcomes. CONCLUSION We found that katG and inhA mutations were not equally distributed between isoniazid-monoresistant and MDR isolates. In our population, clustering was higher for isolates with inhA mutations. Finally, unfavourable TB outcomes were associated with specific factors.
Collapse
Affiliation(s)
- Juliana Maira Watanabe Pinhata
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil.
| | - Lucilaine Ferrazoli
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | - Flávia de Freitas Mendes
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | - Maria Gisele Gonçalves
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | | | - Kelen Teixeira Ghisi
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | - Vera Simonsen
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | | | | | - Rosângela Siqueira de Oliveira
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
14
|
Lale Ngema S, Dookie N, Perumal R, Nandlal L, Naicker N, Peter Letsoalo M, O'Donnell M, Khan A, Padayatchi N, Naidoo K. Isoniazid resistance-conferring mutations are associated with highly variable phenotypic resistance. J Clin Tuberc Other Mycobact Dis 2023; 33:100387. [PMID: 37554582 PMCID: PMC10405055 DOI: 10.1016/j.jctube.2023.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Background High-dose isoniazid is recommended in the 9-12 months short-course regimen for multidrug-resistant tuberculosis with inhA mutation. However, there is insufficient evidence to support the assumption of genotypic-phenotypic concordance. This study aimed to identify the genetic mutations associated with high-level phenotypic isoniazid resistance. Methods Clinical isolates from patients with drug-resistant tuberculosis were profiled by whole-genome sequencing and subjected to minimum inhibitory concentration (MIC) testing using MGIT based-method. MICs were performed in concentration ranges based on the mutation present: isolates with no isoniazid resistance-conferring mutations and H37Rv, 0.016-0.256 µg/ml; inhA, 0.256-4.0 µg/ml, katG 1.0-16.0 µg/ml; and inhA + katG, 4.0-64.0 µg/ml. Isolates demonstrating resistance at the upper limit of the concentration range were tested up to the maximum of 64.0 µg/ml. Bootstrap of the mean MICs was performed to increase the robustness of the estimates and an overlap index was used to compare the distributions of the MICs for each mutation profile. Results A total of 52 clinical isolates were included in this analysis. Bootstrap MIC means for inhA, katG and inhA + katG were 33.64 (95% CI, 9.47, 56.90), 6.79 (4.45, 9.70) and 52.34 (42.750, 61.66) µg/ml, respectively. There was high overlap between inhA and inhA + katG mutations (eta = 0.45) but not with inhA and katG (eta = 0.19). Furthermore, katG showed poor overlap with inhA + katG mutations (eta = 0.09). Unexpectedly, 4/8 (50.0%) of all InhA mutants demonstrated high-level resistance, while 20/24 (83.3%) of katG mutants demonstrated moderate-level resistance. Conclusions InhA mutations demonstrated unexpectedly high MICs and showed high overlap with inhA + katG. Contrary to the common belief that katG mutants are associated with high-level resistance, this mutation primarily showed moderate-level resistance.
Collapse
Affiliation(s)
- Senamile Lale Ngema
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nikita Naicker
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Marothi Peter Letsoalo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Max O'Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, & Department of Epidemiology, Columbia University Medical Center, New York City, NY, United States
| | - Azraa Khan
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Lempens P, Van Deun A, Aung KJM, Hossain MA, Behruznia M, Decroo T, Rigouts L, de Jong BC, Meehan CJ. Borderline rpoB mutations transmit at the same rate as common rpoB mutations in a tuberculosis cohort in Bangladesh. Microb Genom 2023; 9:001109. [PMID: 37750750 PMCID: PMC10569737 DOI: 10.1099/mgen.0.001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
The spread of multidrug-resistant tuberculosis (MDR-TB) is a growing problem in many countries worldwide. Resistance to one of the primary first-line drugs, rifampicin, is caused by mutations in the Mycobacterium tuberculosis rpoB gene. So-called borderline rpoB mutations confer low-level resistance, in contrast to more common rpoB mutations which confer high-level resistance. While some borderline mutations show lower fitness in vitro than common mutations, their in vivo fitness is currently unknown. We used a dataset of 394 whole genome sequenced MDR-TB isolates from Bangladesh, representing around 44 % of notified MDR-TB cases over 6 years, to look at differences in transmission clustering between isolates with borderline rpoB mutations and those with common rpoB mutations. We found a relatively low percentage of transmission clustering in the dataset (34.8 %) but no difference in clustering between different types of rpoB mutations. Compensatory mutations in rpoA, rpoB, and rpoC were associated with higher levels of transmission clustering as were lineages two, three, and four relative to lineage one. Young people as well as patients with high sputum smear positive TB were more likely to be in a transmission cluster. Our findings show that although borderline rpoB mutations have lower in vitro growth potential this does not translate into lower transmission potential or in vivo fitness. Proper detection of these mutations is crucial to ensure they do not go unnoticed and spread MDR-TB within communities.
Collapse
Affiliation(s)
- Pauline Lempens
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | - Tom Decroo
- Unit of HIV and TB, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Bouke C. de Jong
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
16
|
Hall MB, Lima L, Coin LJM, Iqbal Z. Drug resistance prediction for Mycobacterium tuberculosis with reference graphs. Microb Genom 2023; 9:mgen001081. [PMID: 37552534 PMCID: PMC10483414 DOI: 10.1099/mgen.0.001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023] Open
Abstract
Tuberculosis is a global pandemic disease with a rising burden of antimicrobial resistance. As a result, the World Health Organization (WHO) has a goal of enabling universal access to drug susceptibility testing (DST). Given the slowness of and infrastructure requirements for phenotypic DST, whole-genome sequencing, followed by genotype-based prediction of DST, now provides a route to achieving this. Since a central component of genotypic DST is to detect the presence of any known resistance-causing mutations, a natural approach is to use a reference graph that allows encoding of known variation. We have developed DrPRG (Drug resistance Prediction with Reference Graphs) using the bacterial reference graph method Pandora. First, we outline the construction of a Mycobacterium tuberculosis drug resistance reference graph. The graph is built from a global dataset of isolates with varying drug susceptibility profiles, thus capturing common and rare resistance- and susceptible-associated haplotypes. We benchmark DrPRG against the existing graph-based tool Mykrobe and the haplotype-based approach of TBProfiler using 44 709 and 138 publicly available Illumina and Nanopore samples with associated phenotypes. We find that DrPRG has significantly improved sensitivity and specificity for some drugs compared to these tools, with no significant decreases. It uses significantly less computational memory than both tools, and provides significantly faster runtimes, except when runtime is compared to Mykrobe with Nanopore data. We discover and discuss novel insights into resistance-conferring variation for M. tuberculosis - including deletion of genes katG and pncA - and suggest mutations that may warrant reclassification as associated with resistance.
Collapse
Affiliation(s)
- Michael B. Hall
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Leandro Lima
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Lachlan J. M. Coin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Zamin Iqbal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| |
Collapse
|
17
|
Iruedo JO, Pather MK. Time-to-Treatment Initiation in a Decentralised Community-Care Model of Drug-Resistant Tuberculosis Management in the OR Tambo District Municipality of South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6423. [PMID: 37510655 PMCID: PMC10379855 DOI: 10.3390/ijerph20146423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Drug-resistant tuberculosis (DR-TB) continues to challenge global efforts toward eradicating and having a tuberculosis-free world. Considering the high early mortality, especially among HIV-infected individuals, early diagnosis and prompt initiation of effective treatment are needed to significantly reduce mortality and halt transmission of DR-TB in the community. AIM This study aims to assess the effectiveness of a community DR-TB care model with the specific objective of determining the Time-to-treatment initiation of DR-TB among patients in the OR Tambo district municipality. METHODS A prospective cohort study of patients with DR-TB was conducted in the OR Tambo district municipality of Eastern Cape Province, South Africa. Patients were enrolled as they presented for treatment initiation at the decentralised facilities following a diagnosis of DR-TB and compared with a centralised site. RESULTS A total of 454 DR-TB patients from six facilities between 2018 and 2020 were included in the analysis. The mean age was 37.54 (SD = 14.94) years. There were slightly more males (56.2%) than females (43.8%). Most of the patients were aged 18-44 years (67.5%), without income (82.3%). Results showed that slightly over thirteen percent (13.4%) of patients initiated treatment the same day they were diagnosed with DR-TB, while 36.3% were on the time-to-treatment target of being initiated within 5 days. However, about a quarter (25.8%) of patients failed to initiate treatment two weeks after diagnosis. Time-to-treatment initiation (TTTI) varied according to the decentralised sites, with progressive improvement with each successive year between 2018 and 2021. No demographic factor was significantly associated with TTTI. CONCLUSION Despite rapid diagnosis, only 36% of patients were initiated on treatment promptly. Operational challenges remained, and services needed to be reorganised to maximise the exceptional potentials that a decentralised community DR-TB care model brings.
Collapse
Affiliation(s)
- Joshua Oise Iruedo
- Division Family Medicine and Primary Care, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Michael K Pather
- Division Family Medicine and Primary Care, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
18
|
Faye LM, Hosu MC, Oostvogels S, Dippenaar A, Warren RM, Sineke N, Vasaikar S, Apalata T. The Detection of Mutations and Genotyping of Drug-Resistant Mycobacterium tuberculosis Strains Isolated from Patients in the Rural Eastern Cape Province. Infect Dis Rep 2023; 15:403-416. [PMID: 37489395 PMCID: PMC10366782 DOI: 10.3390/idr15040041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) is still a major public health concern in South Africa. Mutations in M. tuberculosis can cause varying levels of phenotypic resistance to anti-TB medications. There have been no prior studies on gene mutations and the genotyping of DR-TB in the rural Eastern Cape Province; hence, we aimed to identify DR-TB mutations, genetic diversity, and allocated lineages among patients in this area. Using Xpert® MTB/RIF, we assessed the rifampin resistance of sputum samples collected from 1157 patients suspected of having tuberculosis. GenoType MTBDR plus VER 2.0 was used for the detection of mutations causing resistance to anti-TB medications. The next step was to spoligotype 441 isolates. The most prevalent rifampin resistance-conferring mutations were in rpoB codon S531L in INH-resistant strains; the katG gene at codon S315TB and the inhA gene at codon C-15TB had the most mutations; 54.5% and 24.7%, respectively. In addition, 24.6% of strains showed mutations in both the rpoB and inhA genes, while 69.9% of strains showed mutations in both the katG and rpoB genes. Heteroresistance was seen in 17.9% of all cases in the study. According to spoligotyping analysis, Beijing families predominated. Investigation of the evolutionary lineages of M. tuberculosis isolates can be carried out using the information provided by the study's diversity of mutations. In locations wherein these mutations have been discovered, decision-making regarding the standardization of treatment regimens or individualized treatment may be aided by the detection frequency of rpoB, katG, and inhA mutations in various study areas.
Collapse
Affiliation(s)
- Lindiwe M Faye
- Department of Laboratory Medicine and Pathology, Walter Sisulu University, Mthatha 5099, South Africa
- National Health Laboratory Services (NHLS), Mthatha 5099, South Africa
| | - Mojisola C Hosu
- Department of Laboratory Medicine and Pathology, Walter Sisulu University, Mthatha 5099, South Africa
- National Health Laboratory Services (NHLS), Mthatha 5099, South Africa
| | - Selien Oostvogels
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, BE-2000 Antwerp, Belgium
| | - Anzaan Dippenaar
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, BE-2000 Antwerp, Belgium
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council, Parowvallei, Cape Town 7505, South Africa
- Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Ncomeka Sineke
- Department of Laboratory Medicine and Pathology, Walter Sisulu University, Mthatha 5099, South Africa
- National Health Laboratory Services (NHLS), Mthatha 5099, South Africa
| | - Sandeep Vasaikar
- Department of Laboratory Medicine and Pathology, Walter Sisulu University, Mthatha 5099, South Africa
- National Health Laboratory Services (NHLS), Mthatha 5099, South Africa
| | - Teke Apalata
- Department of Laboratory Medicine and Pathology, Walter Sisulu University, Mthatha 5099, South Africa
- National Health Laboratory Services (NHLS), Mthatha 5099, South Africa
| |
Collapse
|
19
|
Snobre J, Villellas MC, Coeck N, Mulders W, Tzfadia O, de Jong BC, Andries K, Rigouts L. Bedaquiline- and clofazimine- selected Mycobacterium tuberculosis mutants: further insights on resistance driven largely by Rv0678. Sci Rep 2023; 13:10444. [PMID: 37369740 DOI: 10.1038/s41598-023-36955-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Drug-resistant tuberculosis is a serious global health threat. Bedaquiline (BDQ) is a relatively new core drug, targeting the respiratory chain in Mycobacterium tuberculosis (Mtb). While mutations in the BDQ target gene, atpE, are rare in clinical isolates, mutations in the Rv0678 gene, a transcriptional repressor regulating the efflux pump MmpS5-MmpL5, are increasingly observed, and have been linked to worse treatment outcomes. Nevertheless, underlying mechanisms of (cross)-resistance remain incompletely resolved. Our study aims to distinguish resistance associated variants from other polymorphisms, by assessing the in vitro onset of mutations under drug pressure, combined with their impact on minimum inhibitory concentrations (MICs) and on protein stability. For this purpose, isolates were exposed in vitro to sub-lethal concentrations of BDQ or clofazimine (CFZ). Selected colonies had BDQ- and CFZ-MICs determined on 7H10 and 7H11 agar. Sanger sequencing and additional Deeplex Myc-TB and whole genome sequencing (WGS) for a subset of isolates were used to search for mutations in Rv0678, atpE and pepQ. In silico characterization of relevant mutations was performed using computational tools. We found that colonies that grew on BDQ medium had mutations in Rv0678, atpE or pepQ, while CFZ-exposed isolates presented mutations in Rv0678 and pepQ, but none in atpE. Twenty-eight Rv0678 mutations had previously been described among in vitro selected mutants or in patients' isolates, while 85 were new. Mutations were scattered across the Rv0678 gene without apparent hotspot. While most Rv0678 mutations led to an increased BDQ- and/or CFZ-MIC, only a part of them surpassed the critical concentration (69.1% for BDQ and 87.9% for CFZ). Among the mutations leading to elevated MICs for BDQ and CFZ, we report a synonymous Val1Val mutation in the Rv0678 start codon. Finally, in silico characterization of Rv0678 mutations suggests that especially the C46R mutant may render Rv0678 less stable.
Collapse
Affiliation(s)
- J Snobre
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Internal Medicine Department, UZ Brussel, Brussels, Belgium
- Doctoral School of Life Sciences & Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - M C Villellas
- Department of Infectious Diseases, Janssen Pharmaceutica, Beerse, Belgium
| | - N Coeck
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - W Mulders
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - O Tzfadia
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - B C de Jong
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - K Andries
- Department of Infectious Diseases, Janssen Pharmaceutica, Beerse, Belgium
| | - L Rigouts
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
20
|
Ranjan KP, Ranjan N, Kumar N. Molecular Characterization of katG and inhA Mutations by Genotype MTBDRplus Line Probe Assay To Guide Isoniazid and Ethionamide Use for Drug-Resistant Tuberculosis. Cureus 2023; 15:e37136. [PMID: 37153291 PMCID: PMC10159795 DOI: 10.7759/cureus.37136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Drug-resistant tuberculosis (TB) continues to be a global health threat in all its forms. Significant resistance has been observed against isoniazid (INH), one of the most important therapeutic options for treating TB. Molecular testing methods such as line probe assay (LPA) provide rapid diagnosis and early management. Mutations in different genes can be detected, which indicate INH and ethionamide (ETH) drug resistance. We aimed to determine the frequency of these mutations in katG and inhA genes by LPA to guide INH and ETH use for drug-resistant TB. Materials and methods Two consecutive sputum samples were collected from each patient, followed by decontamination by N‑acetyl‑L‑cysteine and sodium hydroxide method. LPA was performed on the decontaminated samples by GenoType MTBDRplus, and the strips were analyzed. Results Out of the 3,398 smear-positive samples tested by LPA, valid results were found in 3,085 (90.79%) samples. Of the 3,085 samples, INH resistance was seen in 295 samples (9.56%), of which mono INH resistance was in 204 samples, and 91 were multidrug resistant. katG S315T was the most common mutation responsible for high-level INH resistance. At the same time, inhA c15t was the most common mutation associated with low-level INH resistance and ETH cross-resistance. The average turnaround time for the processing and reporting of samples was five days. Conclusions The high burden of INH resistance is alarming and can be a major obstacle to TB elimination. Although molecular methods have reduced the reporting time leading to early management of the patients still, a large knowledge gap persists.
Collapse
|
21
|
Wang S, Ge S, Sobkowiak B, Wang L, Grandjean L, Colijn C, Elliott LT. Genome-Wide Association with Uncertainty in the Genetic Similarity Matrix. J Comput Biol 2023; 30:189-203. [PMID: 36374242 DOI: 10.1089/cmb.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genome-wide association studies (GWASs) are often confounded by population stratification and structure. Linear mixed models (LMMs) are a powerful class of methods for uncovering genetic effects, while controlling for such confounding. LMMs include random effects for a genetic similarity matrix, and they assume that a true genetic similarity matrix is known. However, uncertainty about the phylogenetic structure of a study population may degrade the quality of LMM results. This may happen in bacterial studies in which the number of samples or loci is small, or in studies with low-quality genotyping. In this study, we develop methods for linear mixed models in which the genetic similarity matrix is unknown and is derived from Markov chain Monte Carlo estimates of the phylogeny. We apply our model to a GWAS of multidrug resistance in tuberculosis, and illustrate our methods on simulated data.
Collapse
Affiliation(s)
- Shijia Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Shufei Ge
- Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China
| | | | - Liangliang Wang
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| | - Louis Grandjean
- Department of Infectious Diseases, University College London, London, United Kingdom
| | - Caroline Colijn
- Department of Mathematics and Simon Fraser University, Burnaby, Canada
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
22
|
Ashton PM, Cha J, Anscombe C, Thuong NTT, Thwaites GE, Walker TM. Distribution and origins of Mycobacterium tuberculosis L4 in Southeast Asia. Microb Genom 2023; 9:mgen000955. [PMID: 36729036 PMCID: PMC9997747 DOI: 10.1099/mgen.0.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/21/2022] [Indexed: 02/03/2023] Open
Abstract
Molecular and genomic studies have revealed that Mycobacterium tuberculosis Lineage 4 (L4, Euro-American lineage) emerged in Europe before becoming distributed around the globe by trade routes, colonial migration and other historical connections. Although L4 accounts for tens or hundreds of thousands of tuberculosis (TB) cases in multiple Southeast Asian countries, phylogeographical studies have either focused on a single country or just included Southeast Asia as part of a global analysis. Therefore, we interrogated public genomic data to investigate the historical patterns underlying the distribution of L4 in Southeast Asia and surrounding countries. We downloaded 6037 genomes associated with 29 published studies, focusing on global analyses of L4 and Asian studies of M. tuberculosis. We identified 2256 L4 genomes including 968 from Asia. We show that 81 % of L4 in Thailand, 51 % of L4 in Vietnam and 9 % of L4 in Indonesia belong to sub-lineages of L4 that are rarely seen outside East and Southeast Asia (L4.2.2, L4.4.2 and L4.5). These sub-lineages have spread between East and Southeast Asian countries, with no recent European ancestor. Although there is considerable uncertainty about the exact direction and order of intra-Asian M. tuberculosis dispersal, due to differing sampling frames between countries, our analysis suggests that China may be the intermediate location between Europe and Southeast Asia for two of the three predominantly East and Southeast Asian L4 sub-lineages (L4.2.2 and L4.5). This new perspective on L4 in Southeast Asia raises the possibility of investigating host population-specific evolution and highlights the need for more structured sampling from Southeast Asian countries to provide more certainty of the historical and current routes of dispersal.
Collapse
Affiliation(s)
- Philip M. Ashton
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jaeyoon Cha
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Catherine Anscombe
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nguyen T. T. Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Timothy M. Walker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Dale K, Globan M, Horan K, Sherry N, Ballard S, Tay EL, Bittmann S, Meagher N, Price DJ, Howden BP, Williamson DA, Denholm J. Whole genome sequencing for tuberculosis in Victoria, Australia: A genomic implementation study from 2017 to 2020. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 28:100556. [PMID: 36034164 PMCID: PMC9405109 DOI: 10.1016/j.lanwpc.2022.100556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background Whole genome sequencing (WGS) is increasingly used by tuberculosis (TB) programs to monitor Mycobacterium tuberculosis (Mtb) transmission. We aimed to characterise the molecular epidemiology of TB and Mtb transmission in the low-incidence setting of Victoria, Australia, and assess the utility of WGS. Methods WGS was performed on all first Mtb isolates from TB cases from 2017 to 2020. Potential clusters (≤12 single nucleotide polymorphisms [SNPs]) were investigated for epidemiological links. Transmission events in highly-related (≤5 SNPs) clusters were classified as likely or possible, based on the presence or absence of an epidemiological link, respectively. Case characteristics and transmission settings (as defined by case relationship) were summarised. Poisson regression was used to examine associations with secondary case number. Findings Of 1844 TB cases, 1276 (69.2%) had sequenced isolates, with 182 (14.2%) in 54 highly-related clusters, 2-40 cases in size. Following investigation, 140 cases (11.0% of sequenced) were classified as resulting from likely/possible local-transmission, including 82 (6.4%) for which transmission was likely. Common identified transmission settings were social/religious (26.4%), household (22.9%) and family living in different households (7.1%), but many were uncertain (41.4%). While household transmission featured in many clusters (n = 24), clusters were generally smaller (median = 3 cases) than the fewer that included transmission in social/religious settings (n = 12, median = 7.5 cases). Sputum-smear-positivity was associated with higher secondary case numbers. Interpretation WGS results suggest Mtb transmission commonly occurs outside the household in our low-incidence setting. Further work is required to optimise the use of WGS in public health management of TB. Funding The Victorian Tuberculosis Program receives block funding for activities including case management and contact tracing from the Victorian Department of Health. No specific funding for this report was received by manuscript authors or the Victorian Tuberculosis Program, and the funders had no role in the study design, data collection, data analysis, interpretation or report writing.
Collapse
Affiliation(s)
- Katie Dale
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Norelle Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ee Laine Tay
- Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Public Health Division, Department of Health, Victoria, Australia
| | - Simone Bittmann
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Niamh Meagher
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - David J. Price
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Justin Denholm
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Whole-Genome Sequencing for Resistance Prediction and Transmission Analysis of Mycobacterium tuberculosis Complex Strains from Namibia. Microbiol Spectr 2022; 10:e0158622. [PMID: 36165641 PMCID: PMC9603870 DOI: 10.1128/spectrum.01586-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Namibia is among 30 countries with a high burden of tuberculosis (TB), with an estimated incidence of 460 per 100,000 population and around 800 new multidrug-resistant (MDR) TB cases per year. Still, data on the transmission and evolution of drug-resistant Mycobacterium tuberculosis complex (Mtbc) strains are not available. Whole-genome sequencing data of 136 rifampicin-resistant (RIFr) Mtbc strains obtained from 2016 to 2018 were used for phylogenetic classification, resistance prediction, and cluster analysis and linked with phenotypic drug susceptibility testing (pDST) data. Roughly 50% of the strains investigated were resistant to all first-line drugs. Furthermore, 13% of the MDR Mtbc strains were already pre-extensively drug resistant (pre-XDR). The cluster rates were high, at 74.6% among MDR and 85% among pre-XDR strains. A significant proportion of strains had borderline resistance-conferring mutations, e.g., inhA promoter mutations or rpoB L430P. Accordingly, 25% of the RIFr strains tested susceptible by pDST. Finally, we determined a potentially new bedaquiline resistance mutation (Rv0678 D88G) occurring in two independent clusters. High rates of resistance to first-line drugs in line with emerging pre-XDR and likely bedaquiline resistance linked with the ongoing recent transmission of MDR Mtbc clones underline the urgent need for the implementation of interventions that allow rapid diagnostics to break MDR TB transmission chains in the country. A borderline RIFr mutation in the dominant outbreak strain causing discrepancies between phenotypic and genotypic resistance testing results may require breakpoint adjustments but also may allow individualized regimens with high-dose treatment. IMPORTANCE The transmission of drug-resistant tuberculosis (TB) is a major problem for global TB control. Using genome sequencing, we showed that 13% of the multidrug-resistant (MDR) M. tuberculosis complex strains from Namibia are already pre-extensively drug resistant (pre-XDR), which is substantial in an African setting. Our data also indicate that the ongoing transmission of MDR and pre-XDR strains contributes significantly to the problem. In contrast to other settings with higher rates of drug resistance, we found a high proportion of strains having so-called borderline low-level resistance mutations, e.g., inhA promoter mutations or rpoB L430P. This led to the misclassification of 25% of the rifampicin-resistant strains as susceptible by phenotypic drug susceptibility testing. This observation potentially allows individualized regimens with high-dose treatment as a potential option for patients with few treatment options. We also found a potentially new bedaquiline resistance mutation in rv0678.
Collapse
|
25
|
Stanley S, Liu Q, Fortune SM. Mycobacterium tuberculosis functional genetic diversity, altered drug sensitivity, and precision medicine. Front Cell Infect Microbiol 2022; 12:1007958. [PMID: 36262182 PMCID: PMC9574059 DOI: 10.3389/fcimb.2022.1007958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
In the face of the unrelenting global burden of tuberculosis (TB), antibiotics remain our most effective tools to save lives and control the spread of Mycobacterium tuberculosis (Mtb). However, we confront a dual challenge in our use of antibiotics: simplifying and shortening the TB drug regimen while also limiting the emergence and propagation of antibiotic resistance. This task is now more feasible due to the increasing availability of bacterial genomic data at or near the point of care. These resources create an opportunity to envision how integration of bacterial genetic determinants of antibiotic response into treatment algorithms might transform TB care. Historically, Mtb drug resistance studies focused on mutations in genes encoding antibiotic targets and the resulting increases in the minimal inhibitory concentrations (MICs) above a breakpoint value. But recent progress in elucidating the effects of functional genetic diversity in Mtb has revealed various genetic loci that are associated with drug phenotypes such as low-level MIC increases and tolerance which predict the development of resistance and treatment failure. As a result, we are now poised to advance precision medicine approaches in TB treatment. By incorporating information regarding Mtb genetic characteristics into the development of drug regimens, clinical care which tailors antibiotic treatment to maximize the likelihood of success has come into reach.
Collapse
Affiliation(s)
| | | | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
26
|
Getahun M, Blumberg HM, Ameni G, Beyene D, Kempker RR. Minimum inhibitory concentrations of rifampin and isoniazid among multidrug and isoniazid resistant Mycobacterium tuberculosis in Ethiopia. PLoS One 2022; 17:e0274426. [PMID: 36099255 PMCID: PMC9469996 DOI: 10.1371/journal.pone.0274426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Traditionally, single critical concentrations of drugs are utilized for Mycobacterium tuberculosis (Mtb) drug susceptibility testing (DST); however, the level of drug resistance can impact treatment choices and outcomes. Mutations at the katG gene are the major genetic mutations in multidrug resistant (MDR) Mtb and usually associated with high level resistance. We assessed the minimum inhibitory concentrations (MICs) of MDR or rifampin resistant (RR) and isoniazid (INH) resistant Mtb isolates to determine the quantification of drug resistance among key anti-tuberculosis drugs. Methods The study was conducted on stored Mtb isolates collected as part of a national drug resistance survey in Ethiopia. MIC values were determined using Sensititre™ MYCOTB plates. A line probe assay (MTBDRplus) was also performed to identify genetic determinants of resistance for all isolates. Results MIC testing was performed on 74 Mtb isolates including 46 MDR, 2 RR and 26 INH phenotypically resistant isolates as determined by the Löwenstein Jensen (LJ) method. Four (15%) INH resistant Mtb isolates were detected as borderline rifampin resistance (MIC = 1 μg/ml) using MYCOTB MIC plates and no rifampin resistance mutations were detected by LPA. Among the 48 MDR/RR TB cases, 9 (19%) were rifabutin susceptible (MIC was between ≤0.25 and 0.5μg/ml). Additionally, the MIC for isoniazid was between 2–4 μg/ml (moderate resistance) for 58% of MDR TB isolates and 95.6% (n = 25) of the isolates had mutations at the katG gene. Conclusion Our findings suggest a role for rifabutin treatment in a subset of RR TB patients, thus potentially preserving an important drug class. The high proportion of moderate level INH resistant among MDR Mtb isolates indicates the potential benefit of high dose isoniazid treatment in a high proportion of katG gene harboring MDR Mtb isolates.
Collapse
Affiliation(s)
- Muluwork Getahun
- TB and HIV Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail:
| | - Henry M. Blumberg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Russell R. Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
27
|
Gausi K, Chirehwa M, Ignatius EH, Court R, Sun X, Moran L, Hafner R, Wiesner L, Rosenkranz SL, de Jager V, de Vries N, Harding J, Gumbo T, Swindells S, Diacon A, Dooley KE, McIlleron H, Denti P. Pharmacokinetics of standard versus high-dose isoniazid for treatment of multidrug-resistant tuberculosis. J Antimicrob Chemother 2022; 77:2489-2499. [PMID: 35678468 PMCID: PMC10146925 DOI: 10.1093/jac/dkac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The WHO-endorsed shorter-course regimen for MDR-TB includes high-dose isoniazid. The pharmacokinetics of high-dose isoniazid within MDR-TB regimens has not been well described. OBJECTIVES To characterize isoniazid pharmacokinetics at 5-15 mg/kg as monotherapy or as part of the MDR-TB treatment regimen. METHODS We used non-linear mixed-effects modelling to evaluate the combined data from INHindsight, a 7 day early bactericidal activity study with isoniazid monotherapy, and PODRtb, an observational study of patients on MDR-TB treatment including terizidone, pyrazinamide, moxifloxacin, kanamycin, ethionamide and/or isoniazid. RESULTS A total of 58 and 103 participants from the INHindsight and PODRtb studies, respectively, were included in the analysis. A two-compartment model with hepatic elimination best described the data. N-acetyltransferase 2 (NAT2) genotype caused multi-modal clearance, and saturable first-pass was observed beyond 10 mg/kg dosing. Saturable isoniazid kinetics predicted an increased exposure of approximately 50% beyond linearity at 20 mg/kg dosing. Participants treated with the MDR-TB regimen had a 65.6% lower AUC compared with participants on monotherapy. Ethionamide co-administration was associated with a 29% increase in isoniazid AUC. CONCLUSIONS Markedly lower isoniazid exposures were observed in participants on combination MDR-TB treatment compared with monotherapy. Isoniazid displays saturable kinetics at doses >10 mg/kg. The safety implications of these phenomena remain unclear.
Collapse
Affiliation(s)
- Kamunkhwala Gausi
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | | | - Richard Court
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Xin Sun
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Laura Moran
- Social & Scientific Systems, a DLH Company, Silver Spring, MD, USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Susan Swindells
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Al Mahrouqi S, Gadalla A, Al Azri S, Al-Hamidhi S, Al-Jardani A, Balkhair A, Al-fahdi A, Al Balushi L, Al Zadjali S, Al Marhoubi AMN, Babiker HA. Drug resistant Mycobacterium tuberculosis in Oman: resistance-conferring mutations and lineage diversity. PeerJ 2022; 10:e13645. [PMID: 35919400 PMCID: PMC9339217 DOI: 10.7717/peerj.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Background The Sultanate of Oman is country a low TB-incidence, with less than seven cases per 105 population detected in 2020. Recent years have witnessed a persistence in TB cases, with sustained incidence rate among expatriates and limited reduction among Omanis. This pattern suggests transmission from the migrant population. The present study examined the genetic profile and drug resistance-conferring mutations in Mycobacterium tuberculosis collected from Omanis and expatriates to recognise possible causes of disease transmission. Methods We examined M. tuberculosis cultured positive samples, collected from Omanis (n = 1,344) and expatriates (n = 1,203) between 2009 and 2018. These isolates had a known in vitro susceptibility profile to first line anti-TB, Streptomycin (SM), Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) and Pyrazinamide (PZA). The diversity of the isolates was assessed by spacer oligo-typing (spoligotyping). Drug resistance-conferring mutations resulted from full-length sequence of nine genes (katG, inhA, ahpc, rpoB, rpsL, rrs, embB, embC, pncA) and their phenotypic relationship were analysed. Results In total, 341/2192 (13.4%), M. tuberculosis strains showed resistance to any drug, comprising mono-resistance (MR) (242, 71%), poly-resistance (PR) (40, 11.7%) and multi-drug resistance (MDR) (59, 17.3%). The overall rate of resistance among Omanis and expatriates was similar; however, MDR and PZAR were significantly higher among Omanis, while INHR was greater among expatriates. Mutations rpsL K43R and rpoB S450L were linked to Streptomycin (SMR) and Rifampicin resistance (RIFR) respectively. Whereas, katG S315T and inhA -C15T/G-17T were associated with Isoniazid resistance (INHR). The resistance patterns (mono-resistant, poly-resistant and MDR) and drug resistance-conferring mutations were found in different spoligo-lineages. rpsL K43R, katG S315T and rpoB S450L mutations were significantly higher in Beijing strains. Conclusions Diverse drug resistant M. tuberculosis strains exist in Oman, with drug resistance-conferring mutations widespread in multiple spoligo-lineages, indicative of a large resistance reservoir. Beijing's M. tuberculosis lineage was associated with MDR, and multiple drug resistance-conferring mutations, favouring the hypothesis of migration as a possible source of resistant lineages in Oman.
Collapse
Affiliation(s)
- Sara Al Mahrouqi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | - Amal Gadalla
- Division of Population Medicine, School of Medicine, College of Biomedical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Saleh Al Azri
- Central Public Health Laboratories, MOH, Muscat, Oman
| | - Salama Al-Hamidhi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | | | - Abdullah Balkhair
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | - Amira Al-fahdi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | | | | | | | - Hamza A. Babiker
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Detection of Isoniazid and Rifampin Resistance in Mycobacterium tuberculosis Clinical Isolates from Sputum Samples by High-Resolution Melting Analysis. Curr Microbiol 2022; 79:257. [PMID: 35852629 DOI: 10.1007/s00284-022-02960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
The effective management of multidrug-resistant tuberculosis (MDR-TB) and the need for rapid and accurate screening of rifampin (RIF) and isoniazid (INH)-resistant Mycobacterium tuberculosis (Mtb) isolates are the most fundamental and difficult challenges facing the global TB control. The present study aimed to compare the diagnostic accuracy of high-resolution melting-curve analysis (HRMA) in comparison to multiplex allele-specific PCR (MAS-PCR) and xpert MTB/RIF as well as the conventional drug-susceptibility test (DST) and gene sequencing for the detection of INH and RIF resistance in the Mtb isolates. In the present study, a total of 431 Mtb isolates including 11 MDR (%2.55), 7 INH resistance (%1.62), two RIF resistance (%0.46), and 411 sensitive isolates were phenotypically confirmed. HRMA assay identified katG gene mutations and the mabA-inhA promoter region in 15 of 18 INH-resistant samples and rpoB gene mutations were successfully evaluated in 11 out of 13 RIF-resistant samples. The sensitivity and specificity of the HRMA method were 83.3% and 98.8% for INH and 84.6% and 99% for RIF, respectively. The most common mutation in RIF-resistance-determining region (RRDR) occurred at codon 531 (TCG → TTG)(84.6%) and then at codon 513 (CAA → GTA)(7.6%) and 526 (CAC → TAC) (7.6%), which resulted in the amino-acid changes. Also, 88.8% of INH-resistant samples had mutations in the katG gene and the mabA-inhA promoter region, of which the highest mutation occurred at codon 315 (AGC → ACC) of the katG gene. In conclusion, all these results indicated that the sensitivity and specificity of the HRM method were increased when the katG gene and the mabA-inhA promoter region were used as a target.
Collapse
|
30
|
Bermudez-Hernández GA, Pérez-Martínez DE, Madrazo-Moya CF, Cancino-Muñoz I, Comas I, Zenteno-Cuevas R. Whole genome sequencing analysis to evaluate the influence of T2DM on polymorphisms associated with drug resistance in M. tuberculosis. BMC Genomics 2022; 23:465. [PMID: 35751020 PMCID: PMC9229755 DOI: 10.1186/s12864-022-08709-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) has been associated with treatment failure, and the development of drug resistance in tuberculosis (TB). Also, whole-genome sequencing has provided a better understanding and allowed the growth of knowledge about polymorphisms in genes associated with drug resistance. Considering the above, this study analyzes genome sequences to evaluate the influence of type 2 diabetes mellitus in the development of mutations related to tuberculosis drug resistance. M. tuberculosis isolates from individuals with (n = 74), and without (n = 74) type 2 diabetes mellitus was recovered from online repositories, and further analyzed. Results The results showed the presence of 431 SNPs with similar proportions between diabetics, and non-diabetics individuals (48% vs. 52%), but with no significant relationship. A greater number of mutations associated with rifampicin resistance was observed in the T2DM-TB individuals (23.2% vs. 16%), and the exclusive presence of rpoBQ432L, rpoBQ432P, rpoBS441L, and rpoBH445L variants. While these variants are not private to T2DM-TB cases they are globally rare highlighting a potential role of T2DM. The phylogenetic analysis showed 12 sublineages, being 4.1.1.3, and 4.1.2.1 the most prevalent in T2DM-TB individuals but not differing from those most prevalent in their geographic location. Four clonal complexes were found, however, no significant relationship with T2DM was observed. Samples size and potential sampling biases prevented us to look for significant associations. Conclusions The occurrence of globally rare rifampicin variants identified only in isolates from individuals with T2DM could be due to the hyperglycemic environment within the host. Therefore, further studies about the dynamics of SNPs’ generation associated with antibiotic resistance in patients with diabetes mellitus are necessary. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08709-z.
Collapse
Affiliation(s)
| | | | | | - Irving Cancino-Muñoz
- Biomedical Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER of Epidemiology and Public Health, Madrid, Spain
| | - Iñaki Comas
- Biomedical Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER of Epidemiology and Public Health, Madrid, Spain
| | - Roberto Zenteno-Cuevas
- Public Health Institute, University of Veracruz, Av. Luis Castelazo Ayala S/N, Col. Industrial Ánimas. Xalapa, A.P. 57, Veracruz, 91190, México. .,Multidisciplinary Network of Tuberculosis Research, Veracruz, Mexico.
| |
Collapse
|
31
|
Anand P, Akhter Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212:474-494. [PMID: 35613677 DOI: 10.1016/j.ijbiomac.2022.05.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Energy metabolism is a universal process occurring in all life forms. In Mycobacterium tuberculosis (Mtb), energy production is carried out in two possible ways, oxidative phosphorylation (OxPhos) and substrate-level phosphorylation. Mtb is an obligate aerobic bacterium, making it dependent on OxPhos for ATP synthesis and growth. Mtb inhabits varied micro-niches during the infection cycle, outside and within the host cells, which alters its primary metabolic pathways during the pathogenesis. In this review, we discuss cellular respiration in the context of the mechanism and structural importance of the proteins and enzyme complexes involved. These protein-protein complexes have been proven to be essential for Mtb virulence as they aid the bacteria's survival during aerobic and hypoxic conditions. ATP synthase, a crucial component of the electron transport chain, has been in the limelight, as a prominent drug target against tuberculosis. Likewise, in this review, we have explored other protein-protein complexes of the OxPhos pathway, their functional essentiality, and their mechanism in Mtb's diverse lifecycle. The review summarises crucial target proteins and reported inhibitors of the electron transport chain pathway of Mtb.
Collapse
Affiliation(s)
- Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
32
|
Ngabonziza JCS, Rigouts L, Torrea G, Decroo T, Kamanzi E, Lempens P, Rucogoza A, Habimana YM, Laenen L, Niyigena BE, Uwizeye C, Ushizimpumu B, Mulders W, Ivan E, Tzfadia O, Muvunyi CM, Migambi P, Andre E, Mazarati JB, Affolabi D, Umubyeyi AN, Nsanzimana S, Portaels F, Gasana M, de Jong BC, Meehan CJ. Multidrug-resistant tuberculosis control in Rwanda overcomes a successful clone that causes most disease over a quarter century. J Clin Tuberc Other Mycobact Dis 2022; 27:100299. [PMID: 35146133 PMCID: PMC8802117 DOI: 10.1016/j.jctube.2022.100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SUMMARY BACKGROUND Multidrug-resistant (MDR) tuberculosis (TB) poses an important challenge in TB management and control. Rifampicin resistance (RR) is a solid surrogate marker of MDR-TB. We investigated the RR-TB clustering rates, bacterial population dynamics to infer transmission dynamics, and the impact of changes to patient management on these dynamics over 27 years in Rwanda. METHODS We analysed whole genome sequences of a longitudinal collection of nationwide RR-TB isolates. The collection covered three important periods: before programmatic management of MDR-TB (PMDT; 1991-2005), the early PMDT phase (2006-2013), in which rifampicin drug-susceptibility testing (DST) was offered to retreatment patients only, and the consolidated phase (2014-2018), in which all bacteriologically confirmed TB patients had rifampicin DST done mostly via Xpert MTB/RIF assay. We constructed clusters based on a 5 SNP cut-off and resistance conferring SNPs. We used Bayesian modelling for dating and population size estimations, TransPhylo to estimate the number of secondary cases infected by each patient, and multivariable logistic regression to assess predictors of being infected by the dominant clone. RESULTS Of 308 baseline RR-TB isolates considered for transmission analysis, the clustering analysis grouped 259 (84.1%) isolates into 13 clusters. Within these clusters, a single dominant clone was discovered containing 213 isolates (82.2% of clustered and 69.1% of all RR-TB), which we named the "Rwanda Rifampicin-Resistant clone" (R3clone). R3clone isolates belonged to Ugandan sub-lineage 4.6.1.2 and its rifampicin and isoniazid resistance were conferred by the Ser450Leu mutation in rpoB and Ser315Thr in katG genes, respectively. All R3clone isolates had Pro481Thr, a putative compensatory mutation in the rpoC gene that likely restored its fitness. The R3clone was estimated to first arise in 1987 and its population size increased exponentially through the 1990s', reaching maximum size (∼84%) in early 2000 s', with a declining trend since 2014. Indeed, the highest proportion of R3clone (129/157; 82·2%, 95%CI: 75·3-87·8%) occurred between 2000 and 13, declining to 64·4% (95%CI: 55·1-73·0%) from 2014 onward. We showed that patients with R3clone detected after an unsuccessful category 2 treatment were more likely to generate secondary cases than patients with R3clone detected after an unsuccessful category 1 treatment regimen. CONCLUSIONS RR-TB in Rwanda is largely transmitted. Xpert MTB/RIF assay as first diagnostic test avoids unnecessary rounds of rifampicin-based TB treatment, thus preventing ongoing transmission of the dominant R3clone. As PMDT was intensified and all TB patients accessed rifampicin-resistance testing, the nationwide R3clone burden declined. To our knowledge, our findings provide the first evidence supporting the impact of universal DST on the transmission of RR-TB.
Collapse
Affiliation(s)
- Jean Claude S. Ngabonziza
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gabriela Torrea
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tom Decroo
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Research Foundation Flanders, Brussels, Belgium
| | - Eliane Kamanzi
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Pauline Lempens
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Aniceth Rucogoza
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Yves M. Habimana
- Tuberculosis and Other Respiratory Diseases Division, Institute of HIV/AIDS Disease Prevention and Control, Rwanda Biomedical Center, Kigali, Rwanda
| | - Lies Laenen
- Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Belamo E. Niyigena
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Cécile Uwizeye
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bertin Ushizimpumu
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Wim Mulders
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Emil Ivan
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Oren Tzfadia
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Claude Mambo Muvunyi
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | - Emmanuel Andre
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, Leuven, Belgium
| | | | | | | | | | - Françoise Portaels
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michel Gasana
- Tuberculosis and Other Respiratory Diseases Division, Institute of HIV/AIDS Disease Prevention and Control, Rwanda Biomedical Center, Kigali, Rwanda
| | - Bouke C. de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- School of Chemistry and Biosciences, University of Bradford, UK
| |
Collapse
|
33
|
Use of Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Complex Drug Resistance from Early Positive Liquid Cultures. Microbiol Spectr 2022; 10:e0251621. [PMID: 35311541 PMCID: PMC9045259 DOI: 10.1128/spectrum.02516-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our objective was to evaluate the performance of whole-genome sequencing (WGS) from early positive liquid cultures for predicting Mycobacterium tuberculosis complex (MTBC) drug resistance. Clinical isolates were obtained from tuberculosis patients at Shanghai Pulmonary Hospital (SPH). Antimicrobial susceptibility testing (AST) was performed, and WGS from early Bactec mycobacterial growth indicator tube (MGIT) 960-positive liquid cultures was performed to predict the drug resistance using the TB-Profiler informatics platform. A total of 182 clinical isolates were enrolled in this study. Using phenotypic AST as the gold standard, the overall sensitivity and specificity for WGS were, respectively, 97.1% (89.8 to 99.6%) and 90.4% (83.4 to 95.1%) for rifampin, 91.0% (82.4 to 96.3%) and 95.2% (89.1 to 98.4%) for isoniazid, 100.0% (89.4 to 100.0%) and 87.3% (80.8 to 92.1%) for ethambutol, 96.6% (88.3 to 99.6%) and 61.8% (52.6 to 70.4%) for streptomycin, 86.8% (71.9 to 95.6%) and 95.8% (91.2 to 98.5%) for moxifloxacin, 86.5% (71.2 to 91.5%) and 95.2% (90.3 to 98.0%) for ofloxacin, 100.0% (54.1 to 100.0%) and 67.6% (60.2 to 74.5%) for amikacin, 100.0% (63.1 to 100.0%) and 67.2% (59.7 to 74.2%) for kanamycin, 62.5% (24.5 to 91.5%) and 88.5% (82.8 to 92.8%) for ethionamide, 33.3% (4.3 to 77.7%) and 98.3% (95.1 to 99.7%) for para-aminosalicylic acid, and 0.0% (0.0 to 12.3%) and 100.0% (97.6 to 100.0%) for cycloserine. The concordances of WGS-based AST and phenotypic AST were as follows: rifampin (92.9%), isoniazid (93.4%), ethambutol (89.6%), streptomycin (73.1%), moxifloxacin (94.0%), ofloxacin (93.4%), amikacin (68.7%), kanamycin (68.7%), ethionamide (87.4%), para-aminosalicylic acid (96.2%) and cycloserine (84.6%). We conclude that WGS could be a promising approach to predict MTBC resistance from early positive liquid cultures. IMPORTANCE In this study, we used whole-genome sequencing (WGS) from early positive liquid (MGIT) cultures instead of solid cultures to predict drug resistance of 182 Mycobacterium tuberculosis complex (MTBC) clinical isolates to predict drug resistance using the TB-Profiler informatics platform. Our study indicates that WGS may be a promising method for predicting MTBC resistance using early positive liquid cultures.
Collapse
|
34
|
Barozi V, Musyoka TM, Sheik Amamuddy O, Tastan Bishop Ö. Deciphering Isoniazid Drug Resistance Mechanisms on Dimeric Mycobacterium tuberculosis KatG via Post-molecular Dynamics Analyses Including Combined Dynamic Residue Network Metrics. ACS OMEGA 2022; 7:13313-13332. [PMID: 35474779 PMCID: PMC9025985 DOI: 10.1021/acsomega.2c01036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 05/12/2023]
Abstract
Resistance mutations in Mycobacterium tuberculosis (Mtb) catalase peroxidase protein (KatG), an essential enzyme in isoniazid (INH) activation, reduce the sensitivity of Mtb to first-line drugs, hence presenting challenges in tuberculosis (TB) management. Thus, understanding the mutational imposed resistance mechanisms remains of utmost importance in the quest to reduce the TB burden. Herein, effects of 11 high confidence mutations in the KatG structure and residue network communication patterns were determined using extensive computational approaches. Combined traditional post-molecular dynamics analysis and comparative essential dynamics revealed that the mutant proteins have significant loop flexibility around the heme binding pocket and enhanced asymmetric protomer behavior with respect to wild-type (WT) protein. Heme contact analysis between WT and mutant proteins identified a reduction to no contact between heme and residue His270, a covalent bond vital for the heme-enabled KatG catalytic activity. Betweenness centrality calculations showed large hub ensembles with new hubs especially around the binding cavity and expanded to the dimerization domain via interface in the mutant systems, providing possible compensatory allosteric communication paths for the active site as a result of the mutations which may destabilize the heme binding pocket and the loops in its vicinity. Additionally, an interesting observation came from Eigencentrality hubs, most of which are located in the C-terminal domain, indicating relevance of the domain in the protease functionality. Overall, our results provide insight toward the mechanisms involved in KatG-INH resistance in addition to identifying key regions in the enzyme functionality, which can be used for future drug design.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| | - Thommas Mutemi Musyoka
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| | - Olivier Sheik Amamuddy
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| |
Collapse
|
35
|
Bakhtiyariniya P, Khosravi AD, Hashemzadeh M, Savari M. Detection and characterization of mutations in genes related to isoniazid resistance in Mycobacterium tuberculosis clinical isolates from Iran. Mol Biol Rep 2022; 49:6135-6143. [PMID: 35366177 PMCID: PMC8976162 DOI: 10.1007/s11033-022-07404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND The global rise in drug-resistant Mycobacterium tuberculosis (M.tb), and especially the significant prevalence of isoniazid (INH)-resistance constitute a significant challenge to global health. Therefore, the present study aimed to investigate mutations in prevalent gene loci-involved in INH-resistance phenotype-among M.tb clinical isolates from southwestern Iran. METHODS Drug susceptibility testing (DST) was performed using the conventional proportional method on confirmed 6620 M.tb clinical isolates, and in total, 15 INH-resistant and 18 INH-susceptible isolates were included in the study. Fragments of six genetic loci most related to INH-resistance (katG, inhA promoter, furA, kasA, ndh, oxyR-ahpC intergenic region) were PCR-amplified and sequenced. Mutations were explored by pairwise alignment with the M.tb H37Rv genome. RESULTS The analysis of gene loci revealed 13 distinct mutations in INH-resistant isolates. 60% (n = 9) of the INH-resistant isolates had mutations in katG, with codon 315 predominately (53.3%, n = 8). Mutation at InhA - 15 was found in 20% (n = 3) of resistant isolates. 26.7% (n = 4) of the INH-resistant isolates had kasA mutations, of which G269S substitution was the most common (20%, n = 3). The percentage of mutations in furA, oxyR-ahpC and ndh was 6.7% (n = 1), 46.7% (n = 7), and 20% (n = 3), respectively. Of the mutations detected in ndh and oxyR-ahpC, 5 were also observed in INH-susceptible isolates. This study revealed seven novel mutations, four of which were exclusively in resistant isolates. CONCLUSIONS This study supports the usefulness of katG and inhA mutations as a predictive molecular marker for INH resistance. Co-detection of katG S315 and inhA-15 mutations identified 73.3% (11 out of 15 isolates) of INH-resistant isolates.
Collapse
Affiliation(s)
- Pejman Bakhtiyariniya
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Iranian Study Group on Microbial Drug Resistance, Tehran, Iran.
| | - Mohammad Hashemzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Li J, Ouyang J, Yuan J, Li T, Luo M, Wang J, Chen Y. Establishment and evaluation of an overlap extension polymerase chain reaction technique for rapid and efficient detection of drug-resistance in Mycobacterium tuberculosis. Infect Dis Poverty 2022; 11:31. [PMID: 35321759 PMCID: PMC8942611 DOI: 10.1186/s40249-022-00953-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid and accurate detection of drug resistance in Mycobacterium tuberculosis is critical for effective control of tuberculosis (TB). Herein, we established a novel, low cost strategy having high accuracy and speed for the detection of M. tuberculosis drug resistance, using gene splicing by overlap extension PCR (SOE PCR). METHODS The SOE PCR assay and Sanger sequencing are designed and constructed to detect mutations of rpoB, embB, katG, and inhA promoter, which have been considered as the major contributors to rifampicin (RFP), isoniazid (INH), and ethambutol (EMB) resistance in M. tuberculosis. One hundred and eight M. tuberculosis isolates came from mycobacterial cultures of TB cases at Chongqing Public Health Medical Center in China from December 2018 to April 2019, of which 56 isolates were tested with the GeneXpert MTB/RIF assay. Performance evaluation of the SOE PCR technique was compared with traditional mycobacterial culture and drug susceptibility testing (DST) or GeneXpert MTB/RIF among these isolates. Kappa identity test was used to analyze the consistency of the different diagnostic methods. RESULTS We found that the mutations of S531L, S315T and M306V were most prevalent for RFP, INH and EMB resistance, respectively, in the 108 M. tuberculosis isolates. Compared with phenotypic DST, the sensitivity and specificity of the SOE PCR assay for resistance detection were 100.00% and 88.00% for RFP, 94.64% and 94.23% for INH, and 68.97% and 79.75% for EMB, respectively. Compared with the GeneXpert MTB/RIF, the SOE PCR method was completely consistent with results of the GeneXpert MTB/RIF, with a concordance of 100% for resistance to RFP. CONCLUSIONS In present study, a novel SOE PCR diagnostic method was successfully developed for the accurate detection of M. tuberculosis drug resistance. Our results using this method have a high consistency with that of traditional phenotypic DST or GeneXpert MTB/RIF, and SOE PCR testing in clinical isolates can also be conducted rapidly and simultaneously for detection of drug resistance to RFP, EMB, and INH.
Collapse
Affiliation(s)
- Jungang Li
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Yuan
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Shapingba District, 109 Baoyu Road, Chongqing, 400036, China
| | - Tongxin Li
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Ming Luo
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Wang
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China. .,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China. .,Division of Infectious Diseases, Chongqing Public Health Medical Center, Shapingba District, 109 Baoyu Road, Chongqing, 400036, China.
| |
Collapse
|
37
|
Netikul T, Thawornwattana Y, Mahasirimongkol S, Yanai H, Maung HMW, Chongsuvivatwong V, Palittapongarnpim P. Whole-genome single nucleotide variant phylogenetic analysis of Mycobacterium tuberculosis Lineage 1 in endemic regions of Asia and Africa. Sci Rep 2022; 12:1565. [PMID: 35091638 PMCID: PMC8799649 DOI: 10.1038/s41598-022-05524-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) lineage 1 (L1) contributes considerably to the disease morbidity. While whole genome sequencing (WGS) is increasingly used for studying Mtb, our understanding of genetic diversity of L1 remains limited. Using phylogenetic analysis of WGS data from endemic range in Asia and Africa, we provide an improved genotyping scheme for L1. Mapping deletion patterns of the 68 direct variable repeats (DVRs) in the CRISPR region of the genome onto the phylogeny provided supporting evidence that the CRISPR region evolves primarily by deletion, and hinted at a possible Southeast Asian origin of L1. Both phylogeny and DVR patterns clarified some relationships between different spoligotypes, and highlighted the limited resolution of spoligotyping. We identified a diverse repertoire of drug resistance mutations. Altogether, this study demonstrates the usefulness of WGS data for understanding the genetic diversity of L1, with implications for public health surveillance and TB control. It also highlights the need for more WGS studies in high-burden but underexplored regions.
Collapse
Affiliation(s)
- Thidarat Netikul
- Faculty of Medicine, Siam University, Phet Kasem Road, Bangkok, Thailand
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Yuttapong Thawornwattana
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Hideki Yanai
- Fukujuji Hospital and Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, 204-8533, Japan
| | - Htet Myat Win Maung
- National TB Control Programme, Department of Public Health, Ministry of Health and Sports, Naypyitaw, 15011, Myanmar
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Had Yai, 90110, Thailand
| | | | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand.
- National Science and Technology Development Agency, Pathumthani, Thailand.
| |
Collapse
|
38
|
Bhattacharjee A, Sarma S, Sen T, Singh AK. Alterations in molecular response of Mycobacterium tuberculosis against anti-tuberculosis drugs. Mol Biol Rep 2022; 49:3987-4002. [PMID: 35066765 DOI: 10.1007/s11033-021-07095-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, has plagued humans since the early middle-ages. More than one million deaths are recorded annually due to TB, even in present times. These deaths are primarily attributed to the constant appearance of resistant TB strains. Even with the advent of new therapeutics and diagnostics techniques, tuberculosis remains challenging to control due to resistant M. tuberculosis strains. Aided by various molecular changes, these strains adapt to stress created by anti-tuberculosis drugs. MATERIALS AND METHODS The review thus is an overview of ongoing research in the genome and transcriptome of antibiotic-resistant TB. It explores omics-based research to identify mutation and utilization of differential gene expression. CONCLUSIONS This study shows several mutations distinctive in the first- and second-line drug-resistant M. tuberculosis strains. It also explores the expressional differences of genes involved in the fundamental process of the cells and how they help in drug resistance. With the development of transcriptomics-based studies, a new insight has developed to inquire about gene expression changes in drug resistance. This information on expressional pattern changes can be utilized to design the basic platform of anti-TB treatments and therapeutic approaches. These novel insights can be instrumental in disease diagnosis and global containment of resistant TB.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
39
|
Inducible knockdown of Mycobacterium smegmatis MSMEG_2975 (glyoxalase II) affected bacterial growth, antibiotic susceptibility, biofilm, and transcriptome. Arch Microbiol 2021; 204:97. [DOI: 10.1007/s00203-021-02652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
|
40
|
Structure-Based Virtual Screening of Benzaldehyde Thiosemicarbazone Derivatives against DNA Gyrase B of Mycobacterium tuberculosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6140378. [PMID: 34938343 PMCID: PMC8687812 DOI: 10.1155/2021/6140378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Emergence of antibiotic-resistant Mycobacterium tuberculosis (M. tuberculosis) restricts the availability of drugs for the treatment of tuberculosis, which leads to the increased morbidity and mortality of the disease worldwide. There are many intrinsic and extrinsic factors that have been reported for the resistance mechanism. To overcome such mechanisms, chemically synthesized benzaldehyde thiosemicarbazone derivatives were screened against M. tuberculosis to find potential inhibitor for tuberculosis. Such filtering process resulted in compound 13, compound 21, and compound 20 as the best binding energy compounds against DNA gyrase B, an important protein in the replication process. The ADMET prediction has shown the oral bioavailability of the novel compounds.
Collapse
|
41
|
Design and Synthesis of Highly Active Antimycobacterial Mutual Esters of 2-(2-Isonicotinoylhydrazineylidene)propanoic Acid. Pharmaceuticals (Basel) 2021; 14:ph14121302. [PMID: 34959704 PMCID: PMC8703412 DOI: 10.3390/ph14121302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
The combination of two active scaffolds into one molecule represents a proven approach in drug design to overcome microbial drug resistance. We designed and synthesized more lipophilic esters of 2-(2-isonicotinoylhydrazineylidene)propanoic acid, obtained from antitubercular drug isoniazid, with various alcohols, phenols and thiols, including several drugs, using carbodiimide-mediated coupling. Nineteen new esters were evaluated as potential antimycobacterial agents against drug-sensitive Mycobacterium tuberculosis (Mtb.) H37Rv, Mycobacterium avium and Mycobacterium kansasii. Selected derivatives were also tested for inhibition of multidrug-resistant (MDR) Mtb., and their mechanism of action was investigated. The esters exhibited high activity against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.125 μM), M. kansasii, M. avium as well as MDR strains (MIC from 0.25, 32 and 8 µM, respectively). The most active mutual derivatives were derived from 4-chloro/phenoxy-phenols, triclosan, quinolin-8-ol, naphthols and terpene alcohols. The experiments identified enoyl-acyl carrier protein reductase (InhA), and thus mycobacterial cell wall biosynthesis, as the main target of the molecules that are activated by KatG, but for some compounds can also be expected adjunctive mechanism(s). Generally, the mutual esters have also avoided cytotoxicity and are promising hits for the discovery of antimycobacterial drugs with improved properties compared to parent isoniazid.
Collapse
|
42
|
Cu-Fe Prussian blue analog nanocube with intrinsic oxidase mimetic behaviour for the non-invasive colorimetric detection of Isoniazid in human urine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Khurana P, Saigal K, Ghosh A. Drug resistance pattern and mutation pattern in pediatric tuberculosis: Study from north India. Indian J Tuberc 2021; 68:481-484. [PMID: 34752317 DOI: 10.1016/j.ijtb.2021.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB are serious threats to global TB control. Molecular tests like GenoType MTBDRplus has revolutionized MDR-TB diagnosis by rapid detection of resistance, leading to early and appropriate management of DR-TB. Information about common mutations imparting resistance to RIF and INH, helps in understanding the disease epidemiology in various regions. The study was conducted to determine the genetic mutation in drug resistant tuberculosis in children less than 12 years with pulmonary or extrapulmonary tuberculosis. MATERIALS/METHODS Retrospective analysis was done over a period of 54 months from January 2015 to June 2019 to study the resistance pattern and mutations present in DR-TB in children less than 12 years with suspected pulmonary or extrapulmonary tuberculosis using Hain's GenoType MTBDRplus VER 2.0. RESULTS Over a period of 54 months, samples from 3461 patients with suspected TB were received for MGIT culture, out of which, 347 were positive for Mycobacterium tuberculosis. 250 of these 347 isolated were tested for drug resistance by Hain's GenoType MTBDRplus VER 2.0.61.1% were sensitive to isoniazid and rifampicin while 15.2% were DR-TB (38 out of 250). Out of these 38, 22 were MDR TB, 13 were isoniazid monoresistant (34.2%) and 3 were rifampicin monoresistant. The most common genotypic resistance for rifampicin was absence of rpoB WT8 band and presence of rpoB MUT 3 band (88%). 84.6% of the INH monoresistant isolates showed high level isoniazid resistant. All these isolates showed presence of katG MUT 1 band. On comparing Hain's GenoType MTBDRplus VER 2.0 with Xpert MTB/Rif Assay, most common mutation for rifampicin resistance at S531L which can be detected by Xpert MTB/Rif Assay (probe E). However, two cases with rifampicin resistance had mutation in codon region 509-513 and 513-519 which could be missed by Xpert MTB/Rif Assay. CONCLUSIONS We cannot solely rely on Xpert MTB/Rif Assay for detection of drug resistance due to the risk of missing the isoniazid monoresistance. GenoType MTBDRplus has revolutionized MDR-TB diagnosis by substantially reducing turn around time and leading to early management of DR-TB cases.
Collapse
Affiliation(s)
- Prerna Khurana
- Department of Clinical Microbiology and Infectious Diseases, Chacha Nehru Bal Chikitsalaya, Delhi, India
| | - Karnika Saigal
- Department of Clinical Microbiology and Infectious Diseases, Chacha Nehru Bal Chikitsalaya, Delhi, India.
| | - Arnab Ghosh
- Department of Clinical Microbiology and Infectious Diseases, Chacha Nehru Bal Chikitsalaya, Delhi, India
| |
Collapse
|
44
|
Analysis of the application of a gene chip method for detecting Mycobacterium tuberculosis drug resistance in clinical specimens: a retrospective study. Sci Rep 2021; 11:17951. [PMID: 34504243 PMCID: PMC8429459 DOI: 10.1038/s41598-021-97559-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Most Mycobacterium tuberculosis (Mtb) resistant to rifampicin (RIF) has mutations in the rpoB gene, while most Mtb resistant to isoniazid (INH) has mutations in the katG gene or inhA promoter. We used gene chip technology to detect mutations in these genes to determine the resistance of Mtb to RIF and INH. A total of 4148 clinical specimens with sputum smear positivity for acid-fast bacilli (AFB) were detected. Then, taking the results of the drug sensitivity test (DST) as the reference standard, the detection efficiency of sputum samples from different grades of positive smears was compared in detail. We found that the sensitivity of the gene chip method for detecting sputum samples with a grade ≥ AFB 2 + was higher than that of sputum samples with a grade ≤ AFB 1 + (P < 0.05). When the grade of the sample was ≤ AFB 1 +, the sensitivity of the gene chip method was 72.6% for RIF, 67.3% for INH, and 60.0% for MDR-TB. When the grade of the sample was ≥ AFB 2 +, the sensitivity of the gene chip method was 84.5% for RIF, 78.2% for INH, and 73.9% for MDR-TB. The results show that gene chip technology can be directly used to diagnose drug-resistant tuberculosis in clinical specimens, and the diagnostic efficiency for the detection of sputum specimens with a grade ≥ AFB 2 + is better than that of other sputum specimens.
Collapse
|
45
|
Gausi K, Ignatius EH, Sun X, Kim S, Moran L, Wiesner L, von Groote-Bidlingmaier F, Hafner R, Donahue K, Vanker N, Rosenkranz SL, Swindells S, Diacon AH, Nuermberger EL, Dooley KE, Denti P. A Semi-Mechanistic Model of the Bactericidal Activity of High-Dose Isoniazid Against Multi-Drug-Resistant Tuberculosis: Results from a Randomized Clinical Trial. Am J Respir Crit Care Med 2021; 204:1327-1335. [PMID: 34403326 DOI: 10.1164/rccm.202103-0534oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE There is accumulating evidence that higher-than-standard doses of isoniazid are effective against low-to-intermediate-level isoniazid-resistant strains of Mycobacterium tuberculosis, but the optimal dose remains unknown. OBJECTIVE Characterizing the association between isoniazid pharmacokinetics (standard or high-dose) and early bactericidal activity against M. tuberculosis (drug-sensitive and inhA-mutated) and N-acetyltransferase 2 status. METHODS ACTG A5312/INHindsight is 7-day early bactericidal activity study with isoniazid at normal dose (5 mg/kg) for patients with drug-sensitive bacteria and 5, 10, and 15 mg/kg doses for patients with inhA mutants. Participants with pulmonary TB received daily isoniazid monotherapy and collected sputum daily. Colony-forming units (CFU) on solid culture and time-to-positivity (TTP) in liquid culture were jointly analyzed using nonlinear mixed-effects modeling. RESULTS Fifty-nine adults were included in this analysis. Decline in sputum CFU was described by a one-compartment model, while an exponential bacterial growth model was used to interpret TTP data. The model found bacterial kill is modulated by isoniazid concentration using an effect compartment and a sigmoidal Emax relationship. The model predicted lower potency but similar maximum-kill of isoniazid against inhA-mutated isolates compared to drug-sensitive. Based on simulations from the PK/PD model, to achieve a drop in bacterial load comparable to 5mg/kg against drug-sensitive TB, 10- and 15-mg/kg doses are necessary against inhA-mutated isolates in slow and intermediate N-acetyltransferase 2 acetylators, respectively. Fast acetylators underperformed even at 15 mg/kg. CONCLUSIONS Dosing of isoniazid based on N-acetyltransferase 2 acetylator status may help patients attain effective exposures against inhA-mutated isolates while mitigating toxicity risks associated with higher doses. Clinical trial registration available at www.clinicaltrials.gov, ID: NCT01936831.
Collapse
Affiliation(s)
- Kamunkhwala Gausi
- University of Cape Town Faculty of Health Sciences, 63726, Observatory, Western Cape, South Africa
| | | | - Xin Sun
- Harvard University T H Chan School of Public Health, 1857, Boston, Massachusetts, United States
| | - Soyeon Kim
- Frontier Science Foundation, 2402, Brookline, Massachusetts, United States
| | - Laura Moran
- Social & Scientific Systems Inc, 43740, Silver Spring, Maryland, United States
| | - Lubbe Wiesner
- University of Cape Town Faculty of Health Sciences, 63726, Observatory, Western Cape, South Africa
| | | | - Richard Hafner
- National Institutes of Health, Division of AIDS, Bethesda, Maryland, United States
| | - Kathleen Donahue
- Frontier Science and Technology Research Foundation, 2402, Boston, Massachusetts, United States
| | - Naadira Vanker
- TASK Applied Science and Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Susan L Rosenkranz
- Harvard University T H Chan School of Public Health, 1857, Boston, Massachusetts, United States.,Frontier Science and Technology Research Foundation, 2402, Boston, Massachusetts, United States
| | - Susan Swindells
- University of Nebraska Medical Center, 12284, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Andreas H Diacon
- TASK Applied Science and Stellenbosch University, Cape Town, Western Cape, South Africa
| | | | - Kelly E Dooley
- Johns Hopkins University, Medicine, Baltimore, Maryland, United States
| | - Paolo Denti
- University of Cape Town Faculty of Health Sciences, 63726, Observatory, Western Cape, South Africa;
| | | |
Collapse
|
46
|
Sundararajan S, Muniyan R. Latent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosis. Mol Biol Rep 2021; 48:6181-6196. [PMID: 34351540 DOI: 10.1007/s11033-021-06611-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) remains a prominent health concern worldwide. Besides extensive research and vaccinations available, attempts to control the pandemic are cumbersome due to the complex physiology of Mycobacterium tuberculosis (Mtb). Alongside the emergence of drug-resistant TB, latent TB has worsened the condition. The tubercle bacilli are unusually behaved and successful with its strategies to modulate genes to evade host immune system and persist within macrophages. Under latent/unfavorable conditions, Mtb conceals itself from immune system and modulates its genes. Among many intracellular modulated genes, important are those involved in cell entry, fatty acid degradation, mycolic acid synthesis, phagosome acidification inhibition, inhibition of phagosome-lysosome complex and chaperon protein modulation. Though the study on these genes date back to early times of TB, an insight on their inter-relation within and to newly evolved genes are still required. This review focuses on the findings and discussions on these genes, possible mechanism, credibility as target for novel drugs and repurposed drugs and their interaction that enables Mtb in survival, pathogenesis, resistance and latency.
Collapse
Affiliation(s)
- Sadhana Sundararajan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
47
|
TREASURE: Text Mining Algorithm Based on Affinity Analysis and Set Intersection to Find the Action of Tuberculosis Drugs against Other Pathogens. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tuberculosis (TB) is one of the top causes of death in the world. Though TB is known as the world’s most infectious killer, it can be treated with a combination of TB drugs. Some of these drugs can be active against other infective agents, in addition to TB. We propose a framework called TREASURE (Text mining algoRithm basEd on Affinity analysis and Set intersection to find the action of tUberculosis dRugs against other pathogEns), which particularly focuses on the extraction of various drug–pathogen relationships in eight different TB drugs, namely pyrazinamide, moxifloxacin, ethambutol, isoniazid, rifampicin, linezolid, streptomycin and amikacin. More than 1500 research papers from PubMed are collected for each drug. The data collected for this purpose are first preprocessed, and various relation records are generated for each drug using affinity analysis. These records are then filtered based on the maximum co-occurrence value and set intersection property to obtain the required inferences. The inferences produced by this framework can help the medical researchers in finding cures for other bacterial diseases. Additionally, the analysis presented in this model can be utilized by the medical experts in their disease and drug experiments.
Collapse
|
48
|
Correlating genetic mutations with isoniazid phenotypic levels of resistance in Mycobacterium tuberculosis isolates from patients with drug-resistant tuberculosis in a high burden setting. Eur J Clin Microbiol Infect Dis 2021; 40:2551-2561. [PMID: 34297229 DOI: 10.1007/s10096-021-04316-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
We analysed mutations in katG, inhA and rpoB genes, and isoniazid phenotypic resistance levels in Mycobacterium tuberculosis isolates from drug-resistant TB patients from São Paulo state, Brazil. Isolates resistant to the critical concentration of isoniazid in MGIT (0.1 µg/mL) were screened for mutations in katG 315 codon, inhA promoter region and rpoB RRDR by MTBDRplus assay and subjected to determination of isoniazid resistance levels by MGIT 960. Discordances were resolved by Sanger sequencing. Among the 203 isolates studied, 109 (54%) were isoniazid-monoresistant, 47 (23%) MDR, 29 (14%) polydrug-resistant, 12 (6%) pre-XDR and 6 (3%) XDR. MTBDRplus detected isoniazid mutations in 75% (153/203) of the isolates. Sequencing of the entire katG and inhA genes revealed mutations in 18/50 wild-type isolates by MTBDRplus (10 with novel mutations), resulting in a total of 32/203 (16%) isolates with no mutations detected. 81/83 (98%) isolates with katG 315 mutations alone had intermediate resistance. Of the 66 isolates with inhA C-15T mutation alone, 51 (77%) showed low-level, 14 (21%) intermediate and 1 (2%) high-level resistance. 5/6 (83%) isolates with mutations in both katG and inhA had high-level resistance. Inferred mutations corresponded to 22% (16/73) of all mutations found in rpoB. Mutations detected in katG regions other than codon 315 in this study might be potential new isoniazid resistance markers and could explain phenotypic resistance in some isolates without katG and inhA classic mutations. In our setting, 16% of isoniazid-resistant isolates, some with high-level resistance, presented no mutations either in katG or inhA.
Collapse
|
49
|
Norouzi F, Moghim S, Farzaneh S, Fazeli H, Salehi M, Nasr Esfahani B. Significance of the coexistence of non-codon 315 katG, inhA, and oxyR-ahpC intergenic gene mutations among isoniazid-resistant and multidrug-resistant isolates of Mycobacterium tuberculosis: a report of novel mutations. Pathog Glob Health 2021; 116:22-29. [PMID: 34086544 DOI: 10.1080/20477724.2021.1928870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Tuberculosis (TB) is a global threat due to the emergence and spread of drug-resistant Mycobacterium tuberculosis (MTB). Isoniazid (INH) is the main antibiotic used for prevention and treatment of TB. Evidence shows that accumulated mutations can produce INH resistant (INHR) strains, resulting in the progression of multidrug-resistant (MDR) TB. Since point mutations in katG gene, inhA gene, and oxyR-ahpC region correlated with the INH resistance, in this study, we aimed to identify mutations in these three genes in INHR and MDR clinical isolates of MTB by Sanger DNA sequencing analysis. Thirty-three out of 438 isolates were resistant, including 66.7% INHR and 30.3% MDR isolates. In the katG gene, 68.2% INHR isolates had non-synonymous point mutations, mainly R463L (63.6%), and non-synonymous point mutation KatG L587P was seen in one of the MDR isolate. A novel silent substitution L649L was identified in the inhA gene of the MDR isolates. The oxyR-ahpC intergenic region g-88a common mutations (63.6%) in INHR and two distinct novel mutations were found at positions -76 and -77 of the oxyR-ahpC intergenic region. The coexistence of katG non-codon 315 with oxyR-ahpC intergenic region mutations was highly frequent in INHR 59.1% and MDR isolates 70%. Since mutations of all three genes 95.5% lead to the detection of INHR, they might be useful for molecular detection. Our results indicated the continuous evolution and region-specific prevalence of INH resistance. Overall, identification of new mutations in INH resistance can improve the available strategies for diagnosis and control of TB.
Collapse
Affiliation(s)
- Fatemeh Norouzi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - ShimaSadat Farzaneh
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Salehi
- Regional Tuberculosis Reference Laboratories in Isfahan, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Jouet A, Gaudin C, Badalato N, Allix-Béguec C, Duthoy S, Ferré A, Diels M, Laurent Y, Contreras S, Feuerriegel S, Niemann S, André E, Kaswa MK, Tagliani E, Cabibbe A, Mathys V, Cirillo D, de Jong BC, Rigouts L, Supply P. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J 2021; 57:13993003.02338-2020. [PMID: 32943401 PMCID: PMC8174722 DOI: 10.1183/13993003.02338-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole-genome sequencing (WGS) typically requires culture. Here, we evaluated the Deeplex Myc-TB targeted deep-sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum. With MTBC DNA tests, the limit of detection was 100–1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1–99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and a specificity of 97.4%. 56 out of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol and ethionamide, and low-level rifampicin or isoniazid resistance mutations, all notoriously prone to phenotypic testing variability. Only two out of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and a specificity of 98.5/97.2/95.3%, respectively. Most residual discordances involved gene deletions/indels and 3–12% heteroresistant calls undetected by WGS analysis or natural pyrazinamide resistance of globally rare “Mycobacterium canettii” strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14 902 out of 19 422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free. Deeplex Myc-TB may enable fast, tailored tuberculosis treatment. The novel Deeplex Myc-TB molecular assay shows a high degree of accuracy for extensive prediction of susceptibility and resistance to 13 anti-tuberculous drugs, directly achievable without culture, which may enable fast, tailored tuberculosis treatmenthttps://bit.ly/3bAvcAt
Collapse
Affiliation(s)
- Agathe Jouet
- GenoScreen, Lille, France.,These authors contributed equally to this work
| | - Cyril Gaudin
- GenoScreen, Lille, France.,These authors contributed equally to this work
| | | | | | | | | | - Maren Diels
- BCCM/ITM, Mycobacteria Collection, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Emmanuel André
- Laboratory of Clinical Bacteriology and Mycology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Michel K Kaswa
- National Tuberculosis Program, Kinshasa, Democratic Republic of the Congo
| | - Elisa Tagliani
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Cabibbe
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vanessa Mathys
- Unit Bacterial Diseases Service, Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Daniela Cirillo
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bouke C de Jong
- Mycobacteriology Unit, Dept of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Dept of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Dept of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Philip Supply
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL (Center for Infection and Immunity of Lille), Lille, France
| |
Collapse
|