1
|
Farag MA, Baky MH, Kühnhold H, Kriege EA, Kunzmann A, Alseekh S, Al-Hammady MA, Ezz S, Fernie AR, Westphal H, Stuhr M. Effects of thermal and UV stress on the polar and non-polar metabolome of photosymbiotic jellyfish and sea anemones. MARINE POLLUTION BULLETIN 2024; 208:116983. [PMID: 39357368 DOI: 10.1016/j.marpolbul.2024.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Recently, the impacts of climate change, notably ocean warming and solar ultraviolet radiation, have led to significant stress and mortality in cnidarians. The objective of this study is to decode the metabolic responses of sea anemones Entacmaea quadricolor and upside-down jellyfish Cassiopea andromeda upon exposure to thermal and ultraviolet stress. Gas chromatography-mass spectrometry and ultraperformance liquid chromatography coupled with high-resolution mass spectrometry targeting polar and non-polar metabolites were applied. In total, 72 polar and 242 lipophilic metabolites were detected in jellyfish and sea anemones, respectively. Amino acids are the major metabolite class in jellyfish, and triacylglycerides are the predominant lipids in jellyfish and anemones. Exposure to stressors led to metabolic alterations, marked by elevated amino acids in jellyfish and increased amino acids and sugar alcohols in sea anemones at 34 °C and after four days of ultraviolet radiation. Non-polar metabolome analysis indicated distinct responses to ultraviolet radiation and thermal stress in both species.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Kasr El Aini St., P.B. 11562, Egypt.
| | - Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Holger Kühnhold
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Elisa A Kriege
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Sara Ezz
- Pharmacuetical Biology Department, German University in Cairo, GUC, New Cairo, Egypt
| | | | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Department of Geosciences, University of Bremen, 28359 Bremen, Germany
| | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| |
Collapse
|
2
|
Jefferson T, Henley EM, Erwin PM, Lager C, Perry R, Chernikhova D, Powell-Palm MJ, Ushijima B, Hagedorn M. Evaluating the coral microbiome during cryopreservation. Cryobiology 2024; 117:104960. [PMID: 39187231 DOI: 10.1016/j.cryobiol.2024.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Coral reefs are threatened by various local and global stressors, including elevated ocean temperatures due to anthropogenic climate change. Coral cryopreservation could help secure the diversity of threatened corals. Recently, isochoric vitrification was used to demonstrate that coral fragments lived to 24 hr post-thaw; however, in this study, they were stressed post-thaw. The microbial portion of the coral holobiont has been shown to affect host fitness and the impact of cryopreservation treatment on coral microbiomes is unknown. Therefore, we examined the coral-associated bacterial communities pre- and post-cryopreservation treatments, with a view towards informing potential future stress reduction strategies. We characterized the microbiome of the Hawaiian finger coral, Porites compressa in the wild and at seven steps during the isochoric vitrification process. We observed significant changes in microbiome composition, including: 1) the natural wild microbiomes of P. compressa were dominated by Endozoicomonadaceae (76.5 % relative abundance) and consistent between samples, independent of collection location across Kāne'ohe Bay; 2) Endozoicomonadaceae were reduced to <6.9 % in captivity, and further reduced to <0.5 % relative abundance after isochoric vitrification; and 3) Vibrionaceae dominated communities post-thaw (58.5-74.7 % abundance). Thus, the capture and cryopreservation processes, are implicated as possible causal agents of dysbiosis characterized by the loss of putatively beneficial symbionts (Endozoicomonadaceae) and overgrowth of potential pathogens (Vibrionaceae). Offsetting these changes with probiotic restoration treatments may alleviate cryopreservation stress and improve post-thaw husbandry.
Collapse
Affiliation(s)
- Tori Jefferson
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA
| | - E Michael Henley
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA
| | - Patrick M Erwin
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA; Center for Marine Science, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - Claire Lager
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA
| | - Riley Perry
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA
| | - Darya Chernikhova
- Environment and Natural Resources Program, Faculty of Life Sciences, University of Iceland, Reykjavík, Iceland
| | - Matthew J Powell-Palm
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Blake Ushijima
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA
| | - Mary Hagedorn
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA.
| |
Collapse
|
3
|
Lima LFO, Alker AT, Morris MM, Edwards RA, de Putron SJ, Dinsdale EA. Pre-Bleaching Coral Microbiome Is Enriched in Beneficial Taxa and Functions. Microorganisms 2024; 12:1005. [PMID: 38792833 PMCID: PMC11123844 DOI: 10.3390/microorganisms12051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coral reef health is tightly connected to the coral holobiont, which is the association between the coral animal and a diverse microbiome functioning as a unit. The coral holobiont depends on key services such as nitrogen and sulfur cycling mediated by the associated bacteria. However, these microbial services may be impaired in response to environmental changes, such as thermal stress. A perturbed microbiome may lead to coral bleaching and disease outbreaks, which have caused an unprecedented loss in coral cover worldwide, particularly correlated to a warming ocean. The response mechanisms of the coral holobiont under high temperatures are not completely understood, but the associated microbial community is a potential source of acquired heat-tolerance. Here we investigate the effects of increased temperature on the taxonomic and functional profiles of coral surface mucous layer (SML) microbiomes in relationship to coral-algal physiology. We used shotgun metagenomics in an experimental setting to understand the dynamics of microbial taxa and genes in the SML microbiome of the coral Pseudodiploria strigosa under heat treatment. The metagenomes of corals exposed to heat showed high similarity at the level of bacterial genera and functional genes related to nitrogen and sulfur metabolism and stress response. The coral SML microbiome responded to heat with an increase in the relative abundance of taxa with probiotic potential, and functional genes for nitrogen and sulfur acquisition. Coral-algal physiology significantly explained the variation in the microbiome at taxonomic and functional levels. These consistent and specific microbial taxa and gene functions that significantly increased in proportional abundance in corals exposed to heat are potentially beneficial to coral health and thermal resistance.
Collapse
Affiliation(s)
- Laís F. O. Lima
- Marine Biology, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- San Diego State University, San Diego, CA 92182, USA
| | - Amanda T. Alker
- Innovative Genomics Institute, University of California, Berkeley, SA 5045, USA;
| | - Megan M. Morris
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Robert A. Edwards
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| | | | - Elizabeth A. Dinsdale
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
4
|
Castillo KD, Bove CB, Hughes AM, Powell ME, Ries JB, Davies SW. Gene expression plasticity facilitates acclimatization of a long-lived Caribbean coral across divergent reef environments. Sci Rep 2024; 14:7859. [PMID: 38570591 PMCID: PMC10991280 DOI: 10.1038/s41598-024-57319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Local adaptation can increase fitness under stable environmental conditions. However, in rapidly changing environments, compensatory mechanisms enabled through plasticity may better promote fitness. Climate change is causing devastating impacts on coral reefs globally and understanding the potential for adaptive and plastic responses is critical for reef management. We conducted a four-year, three-way reciprocal transplant of the Caribbean coral Siderastrea siderea across forereef, backreef, and nearshore populations in Belize to investigate the potential for environmental specialization versus plasticity in this species. Corals maintained high survival within forereef and backreef environments, but transplantation to nearshore environments resulted in high mortality, suggesting that nearshore environments present strong environmental selection. Only forereef-sourced corals demonstrated evidence of environmental specialization, exhibiting the highest growth in the forereef. Gene expression profiling 3.5 years post-transplantation revealed that transplanted coral hosts exhibited profiles more similar to other corals in the same reef environment, regardless of their source location, suggesting that transcriptome plasticity facilitates acclimatization to environmental change in S. siderea. In contrast, algal symbiont (Cladocopium goreaui) gene expression showcased functional variation between source locations that was maintained post-transplantation. Our findings suggest limited acclimatory capacity of some S. siderea populations under strong environmental selection and highlight the potential limits of coral physiological plasticity in reef restoration.
Collapse
Affiliation(s)
- Karl D Castillo
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Colleen B Bove
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| | | | - Maya E Powell
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Ries
- Department of Marine and Environmental Sciences, Marine Sciences Center, Northeastern University, Nahant, MA, USA
| | - Sarah W Davies
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Sannassy Pilly S, Roche RC, Richardson LE, Turner JR. Depth variation in benthic community response to repeated marine heatwaves on remote Central Indian Ocean reefs. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231246. [PMID: 38545610 PMCID: PMC10966399 DOI: 10.1098/rsos.231246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024]
Abstract
Coral reefs are increasingly impacted by climate-induced warming events. However, there is limited empirical evidence on the variation in the response of shallow coral reef communities to thermal stress across depths. Here, we assess depth-dependent changes in coral reef benthic communities following successive marine heatwaves from 2015 to 2017 across a 5-25 m depth gradient in the remote Chagos Archipelago, Central Indian Ocean. Our analyses show an overall decline in hard and soft coral cover and an increase in crustose coralline algae, sponge and reef pavement following successive marine heatwaves on the remote reef system. Our findings indicate that the changes in benthic communities in response to elevated seawater temperatures varied across depths. We found greater changes in benthic group cover at shallow depths (5-15 m) compared with deeper zones (15-25 m). The loss of hard coral cover was better predicted by initial thermal stress, while the loss of soft coral was associated with repeated thermal stress following successive warming events. Our study shows that benthic communities extending to 25 m depth were impacted by successive marine heatwaves, supporting concerns about the resilience of shallow coral reef communities to increasingly severe climate-driven warming events.
Collapse
Affiliation(s)
| | - Ronan C. Roche
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| | | | - John R. Turner
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| |
Collapse
|
6
|
Cheng M, Luo Y, Yu XL, Huang LT, Lian JS, Huang H. Effects of elevated temperature and copper exposure on the physiological state of the coral Galaxea fascicularis. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106218. [PMID: 38039737 DOI: 10.1016/j.marenvres.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023]
Abstract
The co-occurrence of elevated seawater temperature and local stressors (heavy metal contamination) affects the ecophysiology of phototrophic species, and represents a risk to the environmental quality of coral reefs. Therefore, we investigated the effects of both Cu alone and Cu in combination with elevated temperature (ET) on the physiology of the coral Galaxea fascicularis, and measured the parameters related to the photo-physiology and oxidative state. G.fascicularis is one of the dominant coral species in the South China Sea which exhibits strong adaptability to environmental stress. We exposed the common coral species G.fascicularis to a series of environmentally relevant concentrations of Cu at 29 °C (normal temperature, NT) and 32 °C (elevated temperature, ET) for 96 h. Single polyps were used in the experiments, which reduced individual variability when compared to the coral colonies. The results suggested that: i) Cu or ET had significant negative effects on the actual operating ability of photosystem Ⅱ (PSII), but not on the maximal chlorophyll fluorescence in darkness (Fv/Fm). ii) Symbiodiniaceae density was significantly reduced by high Cu concentrations, for Cu-NT and Cu-ET, a high concentration of Cu (40 μg/L) significantly impacted Symbiodiniaceae density, causing a 75.4% and 81.0% decrease, respectively. iii) the content of malondialdehyde (MDA) in coral tissues increased significantly under Cu-ET. iv) a certain range of copper concentration (25-30 μg/L) increased the pigment content of the Symbiodiniacea. Our results indicated that the combined stressors of Cu and ET made the coral tissue sloughed, caused the coral tissue damaged by lipid oxidation, reduced the photosynthetic capacity of the Symbiodiniacea, and led to the excretion of Symbiodiniacea.
Collapse
Affiliation(s)
- Meng Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Lei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Tao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Sheng Lian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
7
|
Morais J, Tebbett SB, Morais RA, Bellwood DR. Hot spots of bleaching in massive Porites coral colonies. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106276. [PMID: 38016301 DOI: 10.1016/j.marenvres.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Coral bleaching events have become more frequent and severe due to ocean warming. While the large-scale impacts of bleaching events are well-known, there is growing recognition of the importance of small-scale spatial variation in bleaching and survival probability of individual coral colonies. By quantifying bleaching in 108 massive Porites colonies spread across Lizard Island, Great Barrier Reef, during the 2016 bleaching event, we investigated how hydrodynamic exposure levels and colony size contribute to local variability in bleaching prevalence and extent. Our results revealed that exposed locations were the least impacted by bleaching, while lagoonal areas exhibited the highest prevalence of bleaching and colony-level bleaching extents. Such patterns of bleaching could be due to prolonged exposure to warm water in the lagoon. These findings highlight the importance of considering location-specific factors when assessing coral health and emphasize the vulnerability of corals in lagoonal habitats to rapid and/or prolonged elevated temperatures.
Collapse
Affiliation(s)
- Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia; Paris Sciences et Lettres Université, École Pratique des Hautes Études, EPHE-UPVD-CNRS, USR 3278 CRIOBE, University of Perpignan, 66860, Perpignan, France
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
8
|
Fu J, Zhou J, Zhou J, Zhang Y, Liu L. Competitive effects of the macroalga Caulerpa taxifolia on key physiological processes in the scleractinian coral Turbinaria peltata under thermal stress. PeerJ 2023; 11:e16646. [PMID: 38107563 PMCID: PMC10725675 DOI: 10.7717/peerj.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
An increased abundance of macroalgae has been observed in coral reefs damaged by climate change and local environmental stressors. Macroalgae have a sublethal effect on corals that includes the inhibition of their growth, development, and reproduction. Thus, this study explored the effects of the macroalga, Caulerpa taxifolia, on the massive coral, Turbinaria peltata, under thermal stress. We compared the responses of the corals' water-meditated interaction with algae (the co-occurrence group) and those in direct contact with algae at two temperatures. The results show that after co-culturing with C. taxifolia for 28 days, the density content of the dinoflagellate endosymbionts was significantly influenced by the presence of C. taxifolia at ambient temperature (27 °C), from 1.3 × 106 cells cm-2 in control group to 0.95 × 106 cells cm-2 in the co-occurrence group and to 0.89 × 106 cells cm-2 in the direct contact group. The chlorophyll a concentration only differed significantly between the control and the direct contact group at 27 °C. The protein content of T. peltata decreased by 37.2% in the co-occurrence group and 49.0% in the direct contact group compared to the control group. Meanwhile, the growth rate of T. peltata decreased by 57.7% in the co-occurrence group and 65.5% in the direct contact group compared to the control group. The activity of the antioxidant enzymes significantly increased, and there was a stronger effect of direct coral contact with C. taxifolia than the co-occurrence group. At 30 °C, the endosymbiont density, chlorophyll a content, and growth rate of T. peltata significantly decreased compared to the control temperature; the same pattern was seen in the increase in antioxidant enzyme activity. Additionally, when the coral was co-cultured with macroalgae at 30 °C, there was no significant decrease in the density or chlorophyll a content of the endosymbiont compared to the control. However, the interaction of macroalgae and elevated temperature was evident in the feeding rate, protein content, superoxide dismutase (SOD), and catalase (CAT) activity compared to the control group. The direct contact of the coral with macroalga had a greater impact than water-meditated interactions. Hence, the competition between coral and macroalga may be more intense under thermal stress.
Collapse
Affiliation(s)
- JianRong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - JiaLi Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - YanPing Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Montaño-Salazar S, Quintanilla E, Sánchez JA. Microbial shifts associated to ENSO-derived thermal anomalies reveal coral acclimation at holobiont level. Sci Rep 2023; 13:22049. [PMID: 38087002 PMCID: PMC10716379 DOI: 10.1038/s41598-023-49049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
The coral microbiome conforms a proxy to study effects of changing environmental conditions. However, scarce information exists regarding microbiome dynamics and host acclimation in response to environmental changes associated to global-scale disturbances. We assessed El Niño Southern Oscillation (ENSO)-derived thermal anomalies shifts in the bacterial microbiome of Pacifigorgia cairnsi (Gorgoniidae: Octocorallia) from the remote island of Malpelo in the Tropical Eastern Pacific. Malpelo is a hot spot of biodiversity and lacks direct coastal anthropogenic impacts. We evaluated the community composition and predicted functional profiles of the microbiome during 2015, 2017 and 2018, including different phases of ENSO cycle. The bacterial community diversity and composition between the warming and cooling phase were similar, but differed from the neutral phase. Relative abundances of different microbiome core members such as Endozoicomonas and Mycoplasma mainly drove these differences. An acclimated coral holobiont is suggested not just to warm but also to cold stress by embracing similar microbiome shifts and functional redundancy that allow maintaining coral's viability under thermal stress. Responses of the microbiome of unperturbed sea fans such as P. cairnsi in Malpelo could be acting as an extended phenotype facilitating the acclimation at the holobiont level.
Collapse
Affiliation(s)
- Sandra Montaño-Salazar
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Elena Quintanilla
- Department of Soil and Water Sciences, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32610, USA.
| | - Juan A Sánchez
- Laboratory of Marine Molecular Biology (BIOMMAR), Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
10
|
Canesi M, Douville E, Montagna P, Taviani M, Stolarski J, Bordier L, Dapoigny A, Coulibaly GEH, Simon AC, Agelou M, Fin J, Metzl N, Iwankow G, Allemand D, Planes S, Moulin C, Lombard F, Bourdin G, Troublé R, Agostini S, Banaigs B, Boissin E, Boss E, Bowler C, de Vargas C, Flores M, Forcioli D, Furla P, Gilson E, Galand PE, Pesant S, Sunagawa S, Thomas OP, Vega Thurber R, Voolstra CR, Wincker P, Zoccola D, Reynaud S. Differences in carbonate chemistry up-regulation of long-lived reef-building corals. Sci Rep 2023; 13:11589. [PMID: 37463961 DOI: 10.1038/s41598-023-37598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.
Collapse
Affiliation(s)
- Marine Canesi
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France.
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco.
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Paolo Montagna
- Institute of Polar Sciences (ISP), CNR, Via Gobetti 101, 40129, Bologna, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Marco Taviani
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- Institute of Marine Sciences (ISMAR), CNR, Via Gobetti 101, 40129, Bologna, Italy
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, 00818, Warsaw, Poland
| | - Louise Bordier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Arnaud Dapoigny
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Gninwoyo Eric Hermann Coulibaly
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | | | | | - Jonathan Fin
- Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, 75005, Paris, France
| | - Nicolas Metzl
- Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, 75005, Paris, France
| | - Guillaume Iwankow
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
| | - Serge Planes
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | | | - Fabien Lombard
- Institut de la Mer de Villefranche Sur Mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, 06230, Villefranche-sur-Mer, France
| | | | | | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | - Emilie Boissin
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Sorbonne Université, 29680, Roscoff, France
| | - Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Didier Forcioli
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
- Institute for Research on Cancer and Aging (IRCAN), Nice, France
| | - Paola Furla
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
- Institute for Research on Cancer and Aging (IRCAN), Nice, France
| | - Eric Gilson
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
- Institute for Research on Cancer and Aging (IRCAN), Nice, France
- Department of Medical Genetics, CHU, Nice, France
| | - Pierre E Galand
- CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Sorbonne Université, 66650, Banyuls sur Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, 97331, USA
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
| |
Collapse
|
11
|
Thirukanthan CS, Azra MN, Lananan F, Sara’ G, Grinfelde I, Rudovica V, Vincevica-Gaile Z, Burlakovs J. The Evolution of Coral Reef under Changing Climate: A Scientometric Review. Animals (Basel) 2023; 13:ani13050949. [PMID: 36899805 PMCID: PMC10000160 DOI: 10.3390/ani13050949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
In this scientometric review, we employ the Web of Science Core Collection to assess current publications and research trends regarding coral reefs in relation to climate change. Thirty-seven keywords for climate change and seven keywords for coral reefs were used in the analysis of 7743 articles on coral reefs and climate change. The field entered an accelerated uptrend phase in 2016, and it is anticipated that this phase will last for the next 5 to 10 years of research publication and citation. The United States and Australia have produced the greatest number of publications in this field. A cluster (i.e., focused issue) analysis showed that coral bleaching dominated the literature from 2000 to 2010, ocean acidification from 2010 to 2020, and sea-level rise, as well as the central Red Sea (Africa/Asia), in 2021. Three different types of keywords appear in the analysis based on which are the (i) most recent (2021), (ii) most influential (highly cited), and (iii) mostly used (frequently used keywords in the article) in the field. The Great Barrier Reef, which is found in the waters of Australia, is thought to be the subject of current coral reef and climate change research. Interestingly, climate-induced temperature changes in "ocean warming" and "sea surface temperature" are the most recent significant and dominant keywords in the coral reef and climate change area.
Collapse
Affiliation(s)
- Chandra Segaran Thirukanthan
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang 83352, Indonesia
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Gianluca Sara’
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo, 90133 Palermo, Italy
| | - Inga Grinfelde
- Laboratory of Forest and Water Resources, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Vite Rudovica
- Department of Analytical Chemistry, University of Latvia, LV-1004 Riga, Latvia
| | | | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 31-261 Krakow, Poland
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| |
Collapse
|
12
|
Palacio-Castro AM, Smith TB, Brandtneris V, Snyder GA, van Hooidonk R, Maté JL, Manzello D, Glynn PW, Fong P, Baker AC. Increased dominance of heat-tolerant symbionts creates resilient coral reefs in near-term ocean warming. Proc Natl Acad Sci U S A 2023; 120:e2202388120. [PMID: 36780524 PMCID: PMC9974440 DOI: 10.1073/pnas.2202388120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/07/2022] [Indexed: 02/15/2023] Open
Abstract
Climate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves. Higher heat resistance in later bleaching events was detected in the dominant framework-building genus, Pocillopora, while other coral taxa exhibited similar susceptibility across events. Genetic analyses of Pocillopora spp. colonies and their algal symbionts (2014 to 2016) revealed that one of two Pocillopora lineages present in the region (Pocillopora "type 1") increased its association with thermotolerant algal symbionts (Durusdinium glynnii) during the 2015 to 2016 heat stress event. This lineage experienced lower bleaching and mortality compared with Pocillopora "type 3", which did not acquire D. glynnii. Under projected thermal stress, ETP reefs may be able to preserve high coral cover through the 2060s or later, mainly composed of Pocillopora colonies that associate with D. glynnii. However, although the low-diversity, high-cover reefs of the ETP could illustrate a potential functional state for some future reefs, this state may only be temporary unless global greenhouse gas emissions and resultant global warming are curtailed.
Collapse
Affiliation(s)
- Ana M. Palacio-Castro
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL33149
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL33149
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, Miami, FL33149
| | - Tyler B. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, VI 00802
| | | | - Grace A. Snyder
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL33149
| | - Ruben van Hooidonk
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL33149
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, Miami, FL33149
| | - Juan L. Maté
- Smithsonian Tropical Research Institute, Balboa, Ancon0843-03092, Panama
| | - Derek Manzello
- Coral Reef Watch, Center for Satellite Applications and Research, Satellite Oceanography & Climatology Division, U.S. National Oceanic and Atmospheric Administration, MD20740
| | - Peter W. Glynn
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL33149
| | - Peggy Fong
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA90095
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL33149
| |
Collapse
|
13
|
Srednick G, Davis K, Edmunds PJ. Asynchrony in coral community structure contributes to reef-scale community stability. Sci Rep 2023; 13:2314. [PMID: 36759628 PMCID: PMC9911750 DOI: 10.1038/s41598-023-28482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Many aspects of global ecosystem degradation are well known, but the ecological implications of variation in these effects over scales of kilometers and years have not been widely considered. On tropical coral reefs, kilometer-scale variation in environmental conditions promotes a spatial mosaic of coral communities in which spatial insurance effects could enhance community stability. To evaluate whether these effects are important on coral reefs, we explored variation over 2006-2019 in coral community structure and environmental conditions in Moorea, French Polynesia. We studied coral community structure at a single site with fringing, back reef, and fore reef habitats, and used this system to explore associations among community asynchrony, asynchrony of environmental conditions, and community stability. Coral community structure varied asynchronously among habitats, and variation among habitats in the daily range in seawater temperature suggested it could be a factor contributing to the variation in coral community structure. Wave forced seawater flow connected the habitats and facilitated larval exchange among them, but this effect differed in strength among years, and accentuated periodic connectivity among habitats at 1-7 year intervals. At this site, connected habitats harboring taxonomically similar coral assemblages and exhibiting asynchronous population dynamics can provide insurance against extirpation, and may promote community stability. If these effects apply at larger spatial scale, then among-habitat community asynchrony is likely to play an important role in determining reef-wide coral community resilience.
Collapse
Affiliation(s)
- G Srednick
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| | - K Davis
- Department of Civil & Environmental Engineering and Earth System Science, University of California, Irvine, USA
| | - P J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA, 91330-8303, USA
| |
Collapse
|
14
|
Förderer EM, Rödder D, Langer MR. Global diversity patterns of larger benthic foraminifera under future climate change. GLOBAL CHANGE BIOLOGY 2023; 29:969-981. [PMID: 36413112 DOI: 10.1111/gcb.16535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/21/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Global warming threatens the viability of tropical coral reefs and associated marine calcifiers, including symbiont-bearing larger benthic foraminifera (LBF). The impacts of current climate change on LBF are debated because they were particularly diverse and abundant during past warm periods. Studies on the responses of selected LBF species to changing environmental conditions reveal varying results. Based on a comprehensive review of the scientific literature on LBF species occurrences, we applied species distribution modeling using Maxent to estimate present-day and future species richness patterns on a global scale for the time periods 2040-2050 and 2090-2100. For our future projections, we focus on Representative Concentration Pathway 6.0 from the Intergovernmental Panel on Climate Change, which projects mean surface temperature changes of +2.2°C by the year 2100. Our results suggest that species richness in the Central Indo-Pacific is two to three times higher than in the Bahamian ecoregion, which we have identified as the present-day center of LBF diversity in the Atlantic. Our future predictions project a dramatic temperature-driven decline in low-latitude species richness and an increasing widening bimodal latitudinal pattern of species diversity. While the central Indo-Pacific, now the stronghold of LBF diversity, is expected to be most pushed outside of the currently realized niches of most species, refugia may be largely preserved in the Atlantic. LBF species will face large-scale non-analogous climatic conditions compared to currently realized climate space in the near future, as reflected in the extensive areas of extrapolation, particularly in the Indo-Pacific. Our study supports hypotheses that species richness and biogeographic patterns of LBF will fundamentally change under future climate conditions, possibly initiating a faunal turnover by the late 21st century.
Collapse
Affiliation(s)
| | - Dennis Rödder
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | |
Collapse
|
15
|
Bartelet HA, Barnes ML, Cumming GS. Microeconomic adaptation to severe climate disturbances on Australian coral reefs. AMBIO 2023; 52:285-299. [PMID: 36324023 PMCID: PMC9629752 DOI: 10.1007/s13280-022-01798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are increasingly affected by climate-induced disturbances that are magnified by increasing ocean temperatures. Loss of coral reefs strongly affects people whose livelihoods and wellbeing depend on the ecosystem services reefs provide. Yet the effects of coral loss and the capacity of people and businesses to adapt to it are poorly understood, particularly in the private sector. To address this gap, we surveyed about half (57 of 109) of Australian reef tourism operators to understand how they were affected by and responded to severe impacts from bleaching and cyclones. Reef restoration and spatial diversification were the primary responses to severe bleaching impacts, while for cyclone-impacts coping measures and product diversification were more important. Restoration responses were strongly linked to the severity of impacts. Our findings provide empirical support for the importance of response diversity, spatial heterogeneity, and learning for social-ecological resilience.
Collapse
Affiliation(s)
- Henry A. Bartelet
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811 Australia
| | - Michele L. Barnes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811 Australia
| | - Graeme S. Cumming
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811 Australia
| |
Collapse
|
16
|
Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics. Nat Commun 2023; 14:25. [PMID: 36609386 PMCID: PMC9822911 DOI: 10.1038/s41467-022-35550-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
The severity of marine heatwaves (MHWs) that are increasingly impacting ocean ecosystems, including vulnerable coral reefs, has primarily been assessed using remotely sensed sea-surface temperatures (SSTs), without information relevant to heating across ecosystem depths. Here, using a rare combination of SST, high-resolution in-situ temperatures, and sea level anomalies observed over 15 years near Moorea, French Polynesia, we document subsurface MHWs that have been paradoxical in comparison to SST metrics and associated with unexpected coral bleaching across depths. Variations in the depth range and severity of MHWs was driven by mesoscale (10s to 100s of km) eddies that altered sea levels and thermocline depths and decreased (2007, 2017 and 2019) or increased (2012, 2015, 2016) internal-wave cooling. Pronounced eddy-induced reductions in internal waves during early 2019 contributed to a prolonged subsurface MHW and unexpectedly severe coral bleaching, with subsequent mortality offsetting almost a decade of coral recovery. Variability in mesoscale eddy fields, and thus thermocline depths, is expected to increase with climate change, which, along with strengthening and deepening stratification, could increase the occurrence of subsurface MHWs over ecosystems historically insulated from surface ocean heating by the cooling effects of internal waves.
Collapse
|
17
|
De K, Nanajkar M, Mote S, Ingole B. Reef on the edge: resilience failure of marginal patch coral reefs in Eastern Arabian Sea under recurrent coral bleaching, coral diseases, and local stressors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7288-7302. [PMID: 36031676 DOI: 10.1007/s11356-022-22651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Marked by strong El Niño-Southern Oscillation (ENSO) effects during 2014-2016, global coral reefs underwent mass bleaching. Here, we conducted a comprehensive (2014-2019) study, coinciding with the 2014-16 ENSO, to investigate the response and resilience potential of marginal coral communities to the combined impact of recurrent thermal anomalies and multiple anthropogenic stressors before, during, and after the mass bleaching episodes. Our result unveiled that thermal-stress-driven back-to-back annual coral bleaching episodes caused coral mortality and significantly decimated coral cover, primarily in 2015 and 2016. Subsequent benthic regime shifts toward macroalgal and algal turf colonization, followed by an increase in coral disease prevalence and recruitment failure was observed after the recurrent bleaching episodes. Algal cover increased from 21% in 2014 to 52.90% in 2019, and a subsequent increase in coral disease occurrence was observed from 16% in 2015 to 29% in 2019. The cascading negative effect of multiple stressors magnified coral loss and decreased the coral cover significantly from 45% in 2014 to 20% in 2019. The corals in the intensive recreational diving activity sites showed higher disease prevalence, concurring with high mechanical coral damage. The present study demonstrates that consecutive thermal bleaching episodes combined with local stressors can cause declines in coral cover and promote an undesirable regime shift to algal dominance in marginal coral reef habitats within a short duration. These results are of particular interest given that marginal reefs were traditionally perceived as resilient reef habitats due to their higher survival threshold to environmental changes. The present study indicates that mitigation of local stressors by effective management strategies, in conjunction with globally coordinated efforts to ameliorate climate change, can protect these unique coral reefs.
Collapse
Affiliation(s)
- Kalyan De
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403002, India.
| | - Mandar Nanajkar
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403002, India
| | - Sambhaji Mote
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403002, India
| | - Baban Ingole
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403002, India
| |
Collapse
|
18
|
Honeycutt RN, Holbrook SJ, Brooks AJ, Schmitt RJ. Farmerfish gardens help buffer stony corals against marine heat waves. PLoS One 2023; 18:e0282572. [PMID: 36888598 PMCID: PMC9994727 DOI: 10.1371/journal.pone.0282572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
With marine heat waves increasing in intensity and frequency due to climate change, it is important to understand how thermal disturbances will alter coral reef ecosystems since stony corals are highly susceptible to mortality from thermally-induced, mass bleaching events. In Moorea, French Polynesia, we evaluated the response and fate of coral following a major thermal stress event in 2019 that caused a substantial amount of branching coral (predominantly Pocillopora) to bleach and die. We investigated whether Pocillopora colonies that occurred within territorial gardens protected by the farmerfish Stegastes nigricans were less susceptible to or survived bleaching better than Pocillopora on adjacent, undefended substrate. Bleaching prevalence (proportion of the sampled colonies affected) and severity (proportion of a colony's tissue that bleached), which were quantified for >1,100 colonies shortly after they bleached, did not differ between colonies within or outside of defended gardens. By contrast, the fates of 399 focal colonies followed for one year revealed that a bleached coral within a garden was a third less likely to suffer complete colony death and about twice as likely to recover to its pre-bleaching cover of living tissue compared to Pocillopora outside of a farmerfish garden. Our findings indicate that while residing in a farmerfish garden may not reduce the bleaching susceptibility of a coral to thermal stress, it does help buffer a bleached coral against severe outcomes. This oasis effect of farmerfish gardens, where survival and recovery of thermally-damaged corals are enhanced, is another mechanism that helps explain why large Pocillopora colonies are disproportionately more abundant in farmerfish territories than elsewhere in the lagoons of Moorea, despite gardens being relatively uncommon. As such, some farmerfishes may have an increasingly important role in maintaining the resilience of branching corals as the frequency and intensity of marine heat waves continue to increase.
Collapse
Affiliation(s)
- Randi N Honeycutt
- Coastal Research Center, Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Sally J Holbrook
- Coastal Research Center, Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Andrew J Brooks
- Coastal Research Center, Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Russell J Schmitt
- Coastal Research Center, Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
19
|
Elma E, Gullström M, Yahya SAS, Jouffray JB, East HK, Nyström M. Post-bleaching alterations in coral reef communities. MARINE POLLUTION BULLETIN 2023; 186:114479. [PMID: 36549237 DOI: 10.1016/j.marpolbul.2022.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
We explored the extent of post-bleaching impacts, caused by the 2014-2016 El Niño Southern Oscillation (ENSO) event, on benthic community structure (BCS) and herbivores (fish and sea urchins) on seven fringing reefs, with differing protection levels, in Zanzibar, Tanzania. Results showed post-bleaching alterations in BCS, with up to 68 % coral mortality and up to 48 % increase in turf algae cover in all reef sites. Herbivorous fish biomass increased after bleaching and was correlated with turf algae increase in some reefs, while the opposite was found for sea urchin densities, with significant declines and complete absence. The severity of the impact varied across individual reefs, with larger impact on the protected reefs, compared to the unprotected reefs. Our study provides a highly relevant reference point to guide future research and contributes to our understanding of post-bleaching impacts, trends, and evaluation of coral reef health and resilience in the region.
Collapse
Affiliation(s)
- Eylem Elma
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - Martin Gullström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Saleh A S Yahya
- Institute of Marine Sciences, University of Dar es Salaam, Zanzibar, Tanzania
| | | | - Holly K East
- Department of Geography and Environmental Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Magnus Nyström
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Marzonie MR, Bay LK, Bourne DG, Hoey AS, Matthews S, Nielsen JJV, Harrison HB. The effects of marine heatwaves on acute heat tolerance in corals. GLOBAL CHANGE BIOLOGY 2023; 29:404-416. [PMID: 36285622 PMCID: PMC10092175 DOI: 10.1111/gcb.16473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 05/19/2023]
Abstract
Scleractinian coral populations are increasingly exposed to conditions above their upper thermal limits due to marine heatwaves, contributing to global declines of coral reef ecosystem health. However, historic mass bleaching events indicate there is considerable inter- and intra-specific variation in thermal tolerance whereby species, individual coral colonies and populations show differential susceptibility to exposure to elevated temperatures. Despite this, we lack a clear understanding of how heat tolerance varies across large contemporary and historical environmental gradients, or the selective pressures that underpin this variation. Here we conducted standardised acute heat stress experiments to identify variation in heat tolerance among species and isolated reefs spanning a large environmental gradient across the Coral Sea Marine Park. We quantified the photochemical yield (Fv /Fm ) of coral samples in three coral species, Acropora cf humilis, Pocillopora meandrina, and Pocillopora verrucosa, following exposure to four temperature treatments (local ambient temperatures, and + 3°C, +6°C and + 9°C above local maximum monthly mean). We quantified the temperature at which Fv /Fm decreased by 50% (termed ED50) and used derived values to directly compare acute heat tolerance across reefs and species. The ED50 for Acropora was 0.4-0.7°C lower than either Pocillopora species, with a 0.3°C difference between the two Pocillopora species. We also recorded 0.9°C to 1.9°C phenotypic variation in heat tolerance among reefs within species, indicating spatial heterogeneity in heat tolerance across broad environmental gradients. Acute heat tolerance had a strong positive relationship to mild heatwave exposure over the past 35 years (since 1986) but was negatively related to recent severe heatwaves (2016-2020). Phenotypic variation associated with mild thermal history in local environments provides supportive evidence that marine heatwaves are selecting for tolerant individuals and populations; however, this adaptive potential may be compromised by the exposure to recent severe heatwaves.
Collapse
Affiliation(s)
- Magena R. Marzonie
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| | - David G. Bourne
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Andrew S. Hoey
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Samuel Matthews
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Josephine J. V. Nielsen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Hugo B. Harrison
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| |
Collapse
|
21
|
Uthicke S, Robson B, Doyle JR, Logan M, Pratchett MS, Lamare M. Developing an effective marine eDNA monitoring: eDNA detection at pre-outbreak densities of corallivorous seastar (Acanthaster cf. solaris). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158143. [PMID: 35995149 DOI: 10.1016/j.scitotenv.2022.158143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Outbreaks of the corallivorous Crown-of-Thorns Seastar (CoTS) Acanthaster cf. solaris contribute significantly to coral reef loss. Control of outbreaks is hampered because standard monitoring techniques do not detect outbreaks at early (low density) stages, thus preventing early intervention. We previously demonstrated that eDNA monitoring can detect CoTS at intermediate densities. Here, we test whether detection probability can be improved by (i) targeted site selection or collection at specific times and (ii) moving from an average eDNA copy number approach (based on the limit of quantification) to a presence/absence approach (based on the limit of detection). Using a dataset collected over three years and multiple reef sites, we demonstrated that adding water residence age, sea surface level and temperature into generalized linear models explained low amounts of variance of eDNA copy numbers. Site specific CoTS density, by contrast, was a significant predictor for eDNA copy numbers. Bayesian multi-scale occupancy modelling of the presence/absence data demonstrated that the probability of sample capture (θ) on most reefs with intermediate or high CoTS densities was >0.8. Thus, confirming CoTS presence on these reefs would only require 2-3 samples. Sample capture decreased with decreasing CoTS density. Collecting ten filters was sufficient to reliably (based on the lower 95 % Credibility Interval) detect CoTS below nominal outbreak levels (3 Ind. ha-1). Copy number-based estimates may be more relevant to quantify CoTS at higher densities. Although water residence age did contribute little to our models, sites with higher residence times may serve as sentinel sites accumulating eDNA. The approach based on presence or absence of eDNA facilitates eDNA monitoring to detect CoTS densities below outbreak thresholds and we continue to further develop this method for quantification.
Collapse
Affiliation(s)
- Sven Uthicke
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, QLD 4810, Australia.
| | - Barbara Robson
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, QLD 4810, Australia
| | - Jason R Doyle
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, QLD 4810, Australia
| | - Murray Logan
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, QLD 4810, Australia
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
22
|
Arora M, De K, Ray Chaudhury N, Nanajkar M, Chauhan P, Pateriya B. Climate Change Induced Thermal Stress Caused Recurrent Coral Bleaching over Gulf of Kachchh and Malvan Marine Sanctuary, West Coast of India. CLIMATE CHANGE IN ASIA AND AFRICA - EXAMINING THE BIOPHYSICAL AND SOCIAL CONSEQUENCES, AND SOCIETY'S RESPONSES 2022. [DOI: 10.5772/intechopen.96806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Coral reefs are one of the most sensitive, productive, and invaluable biological resources on the earth. However, coral reefs are facing unprecedented stress due to ongoing climate changes and intensified anthropogenic disturbances globally. Elevated Sea Surface Temperature (SST) has emerged as the most imminent threat to the thermos-sensitive reef-building corals. The 2010–2014-2016 El Niño Southern Oscillation (ENSO) caused prolonged marine heat waves (MHWs) that led to the most widespread coral bleaching and mortality in the tropical Indi-Pacific regions. Coral bleaching prediction is vital for the management of the reef biodiversity, ecosystem functioning, and services. Recent decades, satellite remote sensing has emerged as a convenient tool for large-scale coral reef monitoring programs. As thermal stress is a critical physical attribute for coral bleaching hence, the present study examines the effectiveness of the elevated SSTs as a proxy to predict coral bleaching in shallow water marginal reefs. Advanced Very High-Resolution Radiometer (AVHRR) satellite data from the NOAA Coral Reef Watch’s (CRW) platform has been used for this study. Coral bleaching indices like Bleaching Threshold (BT), Positive SST Anomaly (PA), and Degree Heating Weeks (DHW) are computed to analyze the thermal stress on the coral reefs. The computed thermal stress from satellite-derived SST data over regions concurrence with the mass coral bleaching (MCB) events. This study concludes that in the last decades (2010 to 2019) the coral cover around these regions has dramatically declined due to higher SST, which indicates that the thermal stress induced recurrent bleaching events attributed to the coral loss.
Collapse
|
23
|
Danylchuk AJ, Griffin LP, Ahrens R, Allen MS, Boucek RE, Brownscombe JW, Casselberry GA, Danylchuk SC, Filous A, Goldberg TL, Perez AU, Rehage JS, Santos RO, Shenker J, Wilson JK, Adams AJ, Cooke SJ. Cascading effects of climate change on recreational marine flats fishes and fisheries. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 106:381-416. [PMID: 36118617 PMCID: PMC9465673 DOI: 10.1007/s10641-022-01333-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.
Collapse
Affiliation(s)
- Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Lucas P. Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Robert Ahrens
- Fisheries Research and Monitoring Division, NOAA Pacific Islands Fisheries Science Center, 1845 Wasp Blvd., Bldg 176, Honolulu, HI 96818 USA
| | - Micheal S. Allen
- Nature Coast Biological Station, School of Forest, Fisheries and Geomatics Sciences, The University of Florida, 552 First Street, Cedar Key, FL 32625 USA
| | - Ross E. Boucek
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Jacob W. Brownscombe
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Grace A. Casselberry
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Sascha Clark Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
- Keep Fish Wet, 11 Kingman Road, Amherst, MA 01002 USA
| | - Alex Filous
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706 USA
| | - Addiel U. Perez
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Jennifer S. Rehage
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Rolando O. Santos
- Department of Biological Sciences, Florida International University, Miami, FL 33181 USA
| | - Jonathan Shenker
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32904 USA
| | - JoEllen K. Wilson
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Aaron J. Adams
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Florida Atlantic University Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - Steven J. Cooke
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
24
|
de Souza MR, Caruso C, Ruiz-Jones L, Drury C, Gates R, Toonen RJ. Community composition of coral-associated Symbiodiniaceae differs across fine-scale environmental gradients in Kāne'ohe Bay. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212042. [PMID: 36117869 PMCID: PMC9459668 DOI: 10.1098/rsos.212042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/12/2022] [Indexed: 06/04/2023]
Abstract
The survival of most reef-building corals is dependent upon a symbiosis between the coral and the community of Symbiodiniaceae. Montipora capitata, one of the main reef-building coral species in Hawai'i, is known to host a diversity of symbionts, but it remains unclear how they change spatially and whether environmental factors drive those changes. Here, we surveyed the Symbiodiniaceae community in 600 M. capitata colonies from 30 sites across Kāne'ohe Bay and tested for host specificity and environmental gradients driving spatial patterns of algal symbiont distribution. We found that the Symbiodiniaceae community differed markedly across sites, with M. capitata in the most open-ocean (northern) site hosting few or none of the genus Durusdinium, whereas individuals at other sites had a mix of Durusdinium and Cladocopium. Our study shows that the algal symbiont community composition responds to fine-scale differences in environmental gradients; depth and temperature variability were the most significant predictor of Symbiodiniaceae community, although environmental factors measured in the study explained only about 20% of observed variation. Identifying and mapping Symbiodiniaceae community distribution at multiple scales is an important step in advancing our understanding of algal symbiont diversity, distribution and evolution and the potential responses of corals to future environmental change.
Collapse
Affiliation(s)
- Mariana Rocha de Souza
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Carlo Caruso
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Lupita Ruiz-Jones
- Chaminade University of Honolulu, 3140 Waialae Ave, Honolulu, HI 96816, USA
| | - Crawford Drury
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Ruth Gates
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| |
Collapse
|
25
|
de Carvalho RT, Rocha GM, Karez CS, da Gama Bahia R, Pereira RC, Bastos AC, Salgado LT. Global assessment of coralline algae mineralogy points to high vulnerability of Southwestern Atlantic reefs and rhodolith beds to ocean acidification. Sci Rep 2022; 12:9589. [PMID: 35688967 PMCID: PMC9187768 DOI: 10.1038/s41598-022-13731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
Coralline algae constitute one of the main groups of highly vulnerable calcified benthic organisms to ocean acidification. Although damaging effects of seawater acidification on the coralline algae skeleton have been widely demonstrated, the susceptibility to dissolution varies according to the Mg2+ in the calcite lattice. Even though the Southwest Atlantic Ocean exhibits the world's largest rhodolith beds, which occupies 20,902 km2, there is no information regarding the coralline algae species mineralogy in this area. Here, we provide mineralogical data of twenty-four coralline algae species, examine the similarity in taxonomic groups, spatial occurrence and the vulnerability of these algae to seawater acidification. Mineralogy revealed that coralline algae skeletons were mainly composed of high-Mg calcite (> 70%) with minor presence of aragonite (< 30%) and dolomite (< 3%). There were no similarities between the skeletal mineralogy of taxonomic groups and sampling regions. Remarkably, the mean Mg-substitution of encrusting coralline algae from the Brazilian Shelf was 46.3% higher than global average. Because of the higher mean Mg-substitution in calcite compared with worldwide coralline algae, these algae from Southwest Atlantic Ocean would be highly susceptible to dissolution caused by the expected near-future ocean acidification and will compromise CaCO3 net production across the Brazilian Shelf.
Collapse
Affiliation(s)
- Rodrigo Tomazetto de Carvalho
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-030, Brazil
| | - Gustavo Miranda Rocha
- Instituto de Biofísica Carlos Chagas Filho, CCS-Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Claudia Santiago Karez
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-030, Brazil
| | - Ricardo da Gama Bahia
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-030, Brazil
| | - Renato Crespo Pereira
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-030, Brazil
| | - Alex Cardoso Bastos
- Departamento de Ecologia e Recursos Naturais, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitória, ES, CEP 29055-460, Brazil
| | - Leonardo Tavares Salgado
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-030, Brazil.
| |
Collapse
|
26
|
Synergistic Effect of Elevated Temperature and Light Stresses on Physiology of Pocillopora acuta from Different Environments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing levels of greenhouse gases lead to ocean warming, which affects a range of marine organisms. Corals live in a narrow temperature range and become stressed when the temperatures change. Bleaching occurs when the temperature exceeds the coral’s threshold, and can be severe when this is combined with other stressors such as light. In order to understand how temperature and light affect corals in their physiological responses and photosynthetic performance, Pocillopora acuta from Maiton Island (MT) and Panwa Cape (PW), representing different environments, were investigated. The results show that light and temperature had by regime different effects on Symbiodiniaceae photosynthesis and the coral growth rate. There was a synergistic effect of elevated temperature and light on photosynthesis, as observed in the photochemical efficiency and pigment contents, suggesting photo-damage. A higher growth rate in Panwa corals was observed in control, and while elevated temperature reduced coral growth. Elevated temperature affected the Panwa coral less, suggesting that corals from this regime might be able to recover when the temperature returns to normal. This information is important for predicting the coral responses to elevated temperature especially in the summer, as regards the possibility of coral bleaching.
Collapse
|
27
|
Jury CP, Boeing BM, Trapido-Rosenthal H, Gates RD, Toonen RJ. Nitric oxide production rather than oxidative stress and cell death is associated with the onset of coral bleaching in Pocillopora acuta. PeerJ 2022; 10:e13321. [PMID: 35669951 PMCID: PMC9166681 DOI: 10.7717/peerj.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/01/2022] [Indexed: 01/13/2023] Open
Abstract
Elevated seawater temperatures associated with climate change lead to coral bleaching. While the ultimate causes of bleaching are well understood, the proximate physiological mechanisms underlying the bleaching response are not as well defined. Here we measured nitric oxide synthase activity, oxidative stress, and cell death in algal symbionts (Symbiodinaceae) freshly isolated from the reef-building coral Pocillopora acuta collected in the field under natural non-bleaching conditions and from corals experimentally exposed to elevated temperatures. Nitric oxide synthase activity in the algal symbionts was >3 orders of magnitude higher than that of the host and increased dramatically with increasing temperature and time of exposure (up to 72 h), consistent with the onset of bleaching for these corals. Oxidative stress and cell death among the algal symbionts were highest in coral holobionts exposed to intermediate as opposed to maximal temperatures, suggesting that these mechanisms are not proximal triggers for bleaching in this species. Our results point to nitric oxide production by the algal symbionts, rather than symbiont dysfunction, as a more important driver of coral bleaching under acute thermal stress in this coral.
Collapse
Affiliation(s)
| | - Brian M. Boeing
- Hawaiʻi Institute of Marine Biology, Kāneʻohe, HI, United States
| | | | - Ruth D. Gates
- Hawaiʻi Institute of Marine Biology, Kāneʻohe, HI, United States
| | - Robert J. Toonen
- Hawaiʻi Institute of Marine Biology, Kāneʻohe, HI, United States
| |
Collapse
|
28
|
Culling corallivores improves short-term coral recovery under bleaching scenarios. Nat Commun 2022; 13:2520. [PMID: 35534497 PMCID: PMC9085818 DOI: 10.1038/s41467-022-30213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
Management of coral predators, corallivores, is recommended to improve coral cover on tropical coral reefs under projected increasing levels of accumulated thermal stress, but whether corallivore management can improve coral cover, which is necessary for large-scale operationalisation, remains equivocal. Here, using a multispecies ecosystem model, we investigate intensive management of an invertebrate corallivore, the Crown-of-Thorns Starfish (Acanthaster cf. solaris), and show that culling could improve coral cover at sub-reef spatial scales, but efficacy varied substantially within and among reefs. Simulated thermal stress events attenuated management-derived coral cover improvements and was dependent on the level of accumulated thermal stress, the thermal sensitivity of coral communities and the rate of corallivore recruitment at fine spatial scales. Corallivore management was most effective when accumulated thermal stress was low, coral communities were less sensitive to heat stress and in areas of high corallivore recruitment success. Our analysis informs how to manage a pest species to promote coral cover under future thermal stress events. This study uses multispecies modelling to show that the management of a coral predator, the crown-of-thorns starfish, could help corals recover following bleaching events. They show that management was most effective when heat stress severity for corals was low to moderate, when corals had lower heat sensitivity and when the recruitment rate of starfish was high.
Collapse
|
29
|
Banc-Prandi G, Evensen NR, Barshis DJ, Perna G, Moussa Omar Y, Fine M. Assessment of temperature optimum signatures of corals at both latitudinal extremes of the Red Sea. CONSERVATION PHYSIOLOGY 2022; 10:coac002. [PMID: 35492414 PMCID: PMC9040280 DOI: 10.1093/conphys/coac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 02/16/2022] [Indexed: 05/11/2023]
Abstract
Rising ocean temperatures are pushing reef-building corals beyond their temperature optima (Topt ), resulting in reduced physiological performances and increased risk of bleaching. Identifying refugia with thermally resistant corals and understanding their thermal adaptation strategy is therefore urgent to guide conservation actions. The Gulf of Aqaba (GoA, northern Red Sea) is considered a climate refuge, hosting corals that may originate from populations selected for thermal resistance in the warmer waters of the Gulf of Tadjoura (GoT, entrance to the Red Sea and 2000 km south of the GoA). To better understand the thermal adaptation strategy of GoA corals, we compared the temperature optima (Topt ) of six common reef-building coral species from the GoA and the GoT by measuring oxygen production and consumption rates as well as photophysiological performance (i.e. chlorophyll fluorescence) in response to a short heat stress. Most species displayed similar Topt between the two locations, highlighting an exceptional continuity in their respective physiological performances across such a large latitudinal range, supporting the GoA refuge theory. Stylophora pistillata showed a significantly lower Topt in the GoA, which may suggest an ongoing population-level selection (i.e. adaptation) to the cooler waters of the GoA and subsequent loss of thermal resistance. Interestingly, all Topt were significantly above the local maximum monthly mean seawater temperatures in the GoA (27.1°C) and close or below in the GoT (30.9°C), indicating that GoA corals, unlike those in the GoT, may survive ocean warming in the next few decades. Finally, Acropora muricata and Porites lobata displayed higher photophysiological performance than most species, which may translate to dominance in local reef communities under future thermal scenarios. Overall, this study is the first to compare the Topt of common reef-building coral species over such a latitudinal range and provides insights into their thermal adaptation in the Red Sea.
Collapse
Affiliation(s)
- Guilhem Banc-Prandi
- Corresponding author: The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel. Tel: +33 7 86 94 72 76.
| | - Nicolas R Evensen
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Gabriela Perna
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Youssouf Moussa Omar
- Center for Studies and Scientific Research of Djibouti, Route de l’Aéroport, BP 1000, Djibouti
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel
| |
Collapse
|
30
|
Wu Y, Fallon SJ, Cantin NE, Lough JM. Assessing multiproxy approaches (Sr/Ca, U/Ca, Li/Mg, and B/Mg) to reconstruct sea surface temperature from coral skeletons throughout the Great Barrier Reef. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147393. [PMID: 33964784 DOI: 10.1016/j.scitotenv.2021.147393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Due to the increasing concerns of global warming and short instrumental records of sea surface temperature (SST), coral-based proxies, such as δ18O, Sr/Ca, U/Ca, and Li/Mg have been developed and applied to reconstruct SST in paleoclimate studies. However, these proxies are not universally applicable in different environments, because they are affected by coral physiology and various environmental factors. In this study, seven long-lived Porites corals were collected from the southern sector of the Great Barrier Reef (GBR) off the coast of Gladstone and the central sector of the GBR within the Whitsunday Islands in 2017 and 2018. Coral sites were selected to cover a wide latitudinal range with different annual temperature ranges. Century-long geochemical records (Li/Ca, B/Ca, Mg/Ca, Sr/Ca, and U/Ca) were generated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at weekly resolution. This study has tested the robustness of two traditional temperature proxies (Sr/Ca and U/Ca), a recently developed temperature proxy (Li/Mg), and an additional potential temperature proxy (B/Mg). U/Ca was found to be the most robust and stable temperature proxy for corals from the GBR over long-term timescales. Sr/Ca is a close second, however due to the lower response of Sr fractionation per 1 °C, it is more sensitive to analytical methods and less sensitive to annual SST changes than U/Ca. Li/Mg and B/Mg have clearer periodicity compared to Li/Ca and B/Ca. Both Li/Mg and B/Mg are strongly correlated with SST, which is due to the cancellation of temperature-independent commonality. Empirical calibrations established from this multi-proxy approach increase the certainty of temperature reconstruction when a single proxy does not perform well. These site- and colony-specific SST calibrations also provide an opportunity to revisit the universal multi-trace element calibration of sea surface temperatures (UMTECS) model, which does not require the knowledge of local SST for calibration.
Collapse
Affiliation(s)
- Yang Wu
- Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, ACT 2601, Australia.
| | - Stewart J Fallon
- Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, ACT 2601, Australia
| | - Neal E Cantin
- Australian Institute of Marine Science, PMB No 3, Townsville MC, Qld 4810, Australia
| | - Janice M Lough
- Australian Institute of Marine Science, PMB No 3, Townsville MC, Qld 4810, Australia
| |
Collapse
|
31
|
Gajdzik L, DeCarlo TM, Aylagas E, Coker DJ, Green AL, Majoris JE, Saderne VF, Carvalho S, Berumen ML. A portfolio of climate-tailored approaches to advance the design of marine protected areas in the Red Sea. GLOBAL CHANGE BIOLOGY 2021; 27:3956-3968. [PMID: 34021662 PMCID: PMC8453993 DOI: 10.1111/gcb.15719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 05/04/2023]
Abstract
Intensified coastal development is compromising the health and functioning of marine ecosystems. A key example of this is the Red Sea, a biodiversity hotspot subjected to increasing local human pressures. While some marine-protected areas (MPAs) were placed to alleviate these stressors, it is unclear whether these MPAs are managed or enforced, thus providing limited protection. Yet, most importantly, MPAs in the Red Sea were not designed using climate considerations, likely diminishing their effectiveness against global stressors. Here, we propose to tailor the design of MPAs in the Red Sea by integrating approaches to enhance climate change mitigation and adaptation. First, including coral bleaching susceptibility could produce a more resilient network of MPAs by safeguarding reefs from different thermal regions that vary in spatiotemporal bleaching responses, reducing the risk that all protected reefs will bleach simultaneously. Second, preserving the basin-wide genetic connectivity patterns that are assisted by mesoscale eddies could further ensure recovery of sensitive populations and maintain species potential to adapt to environmental changes. Finally, protecting mangrove forests in the northern and southern Red Sea that act as major carbon sinks could help offset greenhouse gas emissions. If implemented with multinational cooperation and concerted effort among stakeholders, our portfolio of climate-tailored approaches may help build a network of MPAs in the Red Sea that protects more effectively its coastal resources against escalating coastal development and climate instability. Beyond the Red Sea, we anticipate this study to serve as an example of how to improve the utility of tropical MPAs as climate-informed conservation tools.
Collapse
Affiliation(s)
- Laura Gajdzik
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Present address:
Division of Aquatic ResourcesDepartment of Land and Natural ResourcesState of HawaiʻiHonoluluHI96813USA
| | - Thomas M. DeCarlo
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Present address:
College of Natural and Computational SciencesHawaiʻi Pacific UniversityHonoluluHI96813USA
| | - Eva Aylagas
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Darren J. Coker
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Alison L. Green
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - John E. Majoris
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vincent F. Saderne
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Susana Carvalho
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Michael L. Berumen
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
32
|
Auer SK, Agreda E, Chen AH, Irshad M, Solowey J. Late-stage pregnancy reduces upper thermal tolerance in a live-bearing fish. J Therm Biol 2021; 99:103022. [PMID: 34420649 DOI: 10.1016/j.jtherbio.2021.103022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Upper thermal limits are considered a key determinant of a population's ability to persist in the face of extreme heat events. However, these limits differ considerably among individuals within a population, and the mechanisms underlying this differential sensitivity are not well understood. Upper thermal tolerance in aquatic ectotherms is thought to be determined by a mismatch between oxygen supply and the increased metabolic demands associated with warmer waters. As such, tolerance is expected to decline during reproduction given the heightened oxygen demand for gamete production and maintenance. Among live-bearing species, upper thermal tolerance of reproductive adults may decline even further after fertilization due to the cost of meeting the increasing oxygen demands of developing embryos. We examined the upper thermal tolerance of live-bearing female Trinidadian guppies at different stages of reproduction and found that critical thermal maximum was similar during the egg yolking and early embryos stage but then declined by almost 0.5 °C during late pregnancy when oxygen demands are the greatest. These results are consistent with the hypothesis that oxygen limitation sets thermal limits and show that reproduction is associated with a decline in upper thermal tolerance.
Collapse
|
33
|
Flores F, Marques JA, Uthicke S, Fisher R, Patel F, Kaserzon S, Negri AP. Combined effects of climate change and the herbicide diuron on the coral Acropora millepora. MARINE POLLUTION BULLETIN 2021; 169:112582. [PMID: 34119962 DOI: 10.1016/j.marpolbul.2021.112582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The Great Barrier Reef (GBR) is threatened by climate change and local pressures, including contaminants in nearshore habitats. This study investigated the combined effects of a GBR-relevant contaminant, the herbicide diuron, under current and two future climate scenarios on the coral Acropora millepora. All physiological responses tested (effective quantum yield (ΔF/Fm'), photosynthesis, calcification rate) were negatively affected with increasing concentrations of diuron. Interactive effects between diuron and climate were observed for all responses; however, climate had no significant effect on ΔF/Fm' or calcification rates. Photosynthesis was negatively affected as the climate scenarios were adjusted from ambient (28.1 °C, pCO2 = 397 ppm) to RCP8.5 2050 (29.1 °C, pCO2 = 680 ppm) and 2100 (30.2 °C, pCO2 = 858 ppm) with EC50 values declining from 19.4 to 10.6 and 2.6 μg L-1 diuron in turn. These results highlight the likelihood that water quality guideline values may need to be adjusted as the climate changes.
Collapse
Affiliation(s)
- Florita Flores
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Joseane A Marques
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, RS, Brazil
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Rebecca Fisher
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA 6009, Australia.
| | - Frances Patel
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| |
Collapse
|
34
|
Howells EJ, Abrego D, Liew YJ, Burt JA, Meyer E, Aranda M. Enhancing the heat tolerance of reef-building corals to future warming. SCIENCE ADVANCES 2021; 7:7/34/eabg6070. [PMID: 34417178 PMCID: PMC8378819 DOI: 10.1126/sciadv.abg6070] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/01/2021] [Indexed: 05/19/2023]
Abstract
Reef-building corals thriving in extreme thermal environments may provide genetic variation that can assist the evolution of populations to rapid climate warming. However, the feasibility and scale of genetic improvements remain untested despite ongoing population declines from recurrent thermal stress events. Here, we show that corals from the hottest reefs in the world transfer sufficient heat tolerance to a naïve population sufficient to withstand end-of-century warming projections. Heat survival increased up to 84% when naïve mothers were selectively bred with fathers from the hottest reefs because of strong heritable genetic effects. We identified genomic loci associated with tolerance variation that were enriched for heat shock proteins, oxidative stress, and immune functions. Unexpectedly, several coral families exhibited survival rates and genomic associations deviating from origin predictions, including a few naïve purebreds with exceptionally high heat tolerance. Our findings highlight previously uncharacterized enhanced and intrinsic potential of coral populations to adapt to climate warming.
Collapse
Affiliation(s)
- Emily J Howells
- Water Research Center and Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - David Abrego
- Department of Natural Science and Public Health, Zayed University, Abu Dhabi, United Arab Emirates
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Yi Jin Liew
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - John A Burt
- Water Research Center and Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Manuel Aranda
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Carlson RR, Evans LJ, Foo SA, Grady BW, Li J, Seeley M, Xu Y, Asner GP. Synergistic benefits of conserving land-sea ecosystems. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
36
|
Uthicke S, Patel F, Petrik C, Watson SA, Karelitz SE, Lamare MD. Cross-generational response of a tropical sea urchin to global change and a selection event in a 43-month mesocosm study. GLOBAL CHANGE BIOLOGY 2021; 27:3448-3462. [PMID: 33901341 DOI: 10.1111/gcb.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Long-term experimental investigations of transgenerational plasticity (TGP) and transgenerational acclimatization to global change are sparse in marine invertebrates. Here, we test the effect of ocean warming and acidification over a 25-month period of Echinometra sp. A sea urchins whose parents were acclimatized at ambient or one of two near-future (projected mid and end of the 21st century) climate scenarios for 18 months. Several parameters linked to performance exhibited strong effects of future ocean conditions at 9 months of age. The Ambient-Ambient group (A-A, both F0 and F1 at ambient conditions) was significantly larger (21%) and faster in righting response (31%) compared to other groups. A second set of contrasts revealed near-future scenarios caused significant negative parental carryover effects. Respiration at 9 months was depressed by 59% when parents were from near-future climate conditions, and righting response was slowed by 28%. At 10 months, a selective pathogenic mortality event led to significantly higher survival rates of A-A urchins. Differences in size and respiration measured prior to the mortality were absent after the event, while a negative parental effect on righting (29% reduction) remained. The capacity to spawn at the end of the experiment was higher in individuals with ambient parents (50%) compared to other groups (21%) suggesting persistent parental effects. Obtaining different results at different points in time illustrates the importance of longer term and multigeneration studies to investigate effects of climate change. Given some animals in all groups survived the pathogenic event and that effects on physiology (but not behavior) among groups were eliminated after the mortality, we suggest that similar events could constitute selective sweeps, allowing genetic adaptation. However, given the observed negative parental effects and reduced potential for population replenishment, it remains to be determined if selection would be sufficiently rapid to rescue this species from climate change effects.
Collapse
Affiliation(s)
- Sven Uthicke
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Frances Patel
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Chelsea Petrik
- Australian Institute of Marine Science, Townsville, Qld, Australia
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research and Restoration, Sarasota, FL, USA
| | - Sue-Ann Watson
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Sam E Karelitz
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Miles D Lamare
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Wong KH, Goodbody-Gringley G, de Putron SJ, Becker DM, Chequer A, Putnam HM. Brooded coral offspring physiology depends on the combined effects of parental press and pulse thermal history. GLOBAL CHANGE BIOLOGY 2021; 27:3179-3195. [PMID: 33914388 DOI: 10.1111/gcb.15629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Reef-building corals respond to the temporal integration of both pulse events (i.e., heat waves) and press thermal history (i.e., local environment) via physiological changes, with ecological consequences. We used a "press-pulse-press" experimental framework to expose the brooding coral Porites astreoides to various thermal histories to understand the physiological response of temporal dynamics within and across generations. We collected adult colonies from two reefs (outer Rim reef and inner Patch reef) in Bermuda with naturally contrasting thermal regimes as our initial "press" scenario, followed by a 21-day ex situ "pulse" thermal stress of 30.4°C during larval brooding, and a "press" year-long adult reciprocal transplant between the original sites. Higher endosymbiont density and holobiont protein was found in corals originating from the lower thermal variability site (Rim) compared to the higher thermal variability site (Patch). The thermal pulse event drove significant declines in photosynthesis, endosymbiont density, and chlorophyll a, with bleaching phenotype convergence for adults from both histories. Following the reciprocal transplant, photosynthesis was higher in previously heated corals, indicating recovery from the thermal pulse. The effect of origin (initial press) modulated the response to transplant site for endosymbiont density and chlorophyll a, suggesting contrasting acclimation strategies. Higher respiration and photosynthetic rates were found in corals originating from the Rim site, indicating greater energy available for reproduction, supported by larger larvae released from Rim corals post-transplantation. Notably, parental exposure to the pulse thermal event resulted in increased offspring plasticity when parents were transplanted to foreign sites, highlighting the legacy of the pulse event and the importance of the environment during recovery in contributing to cross-generational or developmental plasticity. Together, these findings provide novel insight into the role of historical disturbance events in driving differential outcomes within and across generations, which is of critical importance in forecasting reef futures.
Collapse
Affiliation(s)
- Kevin H Wong
- Department of Biology, University of Rhode Island, Kingston, RI, USA
| | - Gretchen Goodbody-Gringley
- Bermuda Institute of Ocean Sciences, St. George's, Bermuda
- Central Caribbean Marine Institute, Little Cayman Island, Cayman Islands
| | | | - Danielle M Becker
- Department of Biology, University of Rhode Island, Kingston, RI, USA
| | - Alex Chequer
- Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Hollie M Putnam
- Department of Biology, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
38
|
Potential local adaptation of corals at acidified and warmed Nikko Bay, Palau. Sci Rep 2021; 11:11192. [PMID: 34045589 PMCID: PMC8159998 DOI: 10.1038/s41598-021-90614-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Ocean warming and acidification caused by increases of atmospheric carbon dioxide are now thought to be major threats to coral reefs on a global scale. Here we evaluated the environmental conditions and benthic community structures in semi-closed Nikko Bay at the inner reef area in Palau, which has high pCO2 and seawater temperature conditions with high zooxanthellate coral coverage. Nikko Bay is a highly sheltered system with organisms showing low connectivity with surrounding environments, making this bay a unique site for evaluating adaptation and acclimatization responses of organisms to warmed and acidified environments. Seawater pCO2/Ωarag showed strong gradation ranging from 380 to 982 µatm (Ωarag: 1.79-3.66), and benthic coverage, including soft corals and turf algae, changed along with Ωarag while hard coral coverage did not change. In contrast to previous studies, net calcification was maintained in Nikko Bay even under very low mean Ωarag (2.44). Reciprocal transplantation of the dominant coral Porites cylindrica showed that the calcification rate of corals from Nikko Bay did not change when transplanted to a reference site, while calcification of reference site corals decreased when transplanted to Nikko Bay. Corals transplanted out of their origin sites also showed the highest interactive respiration (R) and lower gross photosynthesis (Pg) to respiration (Pg:R), indicating higher energy acquirement of corals at their origin site. The results of this study give important insights about the potential local acclimatization and adaptation capacity of corals to different environmental conditions including pCO2 and temperature.
Collapse
|
39
|
Brunner CA, Uthicke S, Ricardo GF, Hoogenboom MO, Negri AP. Climate change doubles sedimentation-induced coral recruit mortality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:143897. [PMID: 33454467 DOI: 10.1016/j.scitotenv.2020.143897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Coral reef replenishment is threatened by global climate change and local water-quality degradation, including smothering of coral recruits by sediments generated by anthropogenic activities. Here we show that the ability of Acropora millepora recruits to remove sediments diminishes under future climate conditions, leading to increased mortality. Recruits raised under future climate scenarios for fourteen weeks (highest treatment: +1.2 °C, pCO2: 950 ppm) showed twofold higher mortality following repeated sediment deposition (50% lethal sediment concentration LC50: 14-24 mg cm-2) compared to recruits raised under current climate conditions (LC50: 37-51 mg cm-2), depending on recruit age at the time of sedimentation. Older and larger recruits were more resistant to sedimentation and only ten-week-old recruits grown under current climate conditions survived sediment loads possible during dredging operations. This demonstrates that water-quality guidelines for managing sediment concentrations will need to be climate-adjusted to protect future coral recruitment.
Collapse
Affiliation(s)
- Christopher A Brunner
- James Cook University School of Marine and Tropical Biology, Townsville, Queensland, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia; Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Gerard F Ricardo
- Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Mia O Hoogenboom
- James Cook University School of Marine and Tropical Biology, Townsville, Queensland, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia.
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| |
Collapse
|
40
|
Zhang Y, Yang Q, Ling J, Long L, Huang H, Yin J, Wu M, Tang X, Lin X, Zhang Y, Dong J. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. BMC Microbiol 2021; 21:130. [PMID: 33910503 PMCID: PMC8082877 DOI: 10.1186/s12866-021-02167-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background The coral microbiome plays a key role in host health by being involved in energy metabolism, nutrient cycling, and immune system formation. Inoculating coral with beneficial bacterial consortia may enhance the ability of this host to cope with complex and changing marine environments. In this study, the coral Pocillopora damicornis was inoculated with a beneficial microorganisms for corals (BMC) consortium to investigate how the coral host and its associated microbial community would respond. Results High-throughput 16S rRNA gene sequencing revealed no significant differences in bacterial community α-diversity. However, the bacterial community structure differed significantly between the BMC and placebo groups at the end of the experiment. Addition of the BMC consortium significantly increased the relative abundance of potentially beneficial bacteria, including the genera Mameliella and Endozoicomonas. Energy reserves and calcification rates of the coral host were also improved by the addition of the BMC consortium. Co-occurrence network analysis indicated that inoculation of coral with the exogenous BMC consortium improved the physiological status of the host by shifting the coral-associated microbial community structure. Conclusions Manipulating the coral-associated microbial community may enhance the physiology of coral in normal aquarium conditions (no stress applied), which may hypothetically contribute to resilience and resistance in this host. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02167-5.
Collapse
Affiliation(s)
- Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Meilin Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanying Zhang
- Ocean school, Yantai University, Yantai, 264005, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China. .,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
41
|
Condie SA, Anthony KRN, Babcock RC, Baird ME, Beeden R, Fletcher CS, Gorton R, Harrison D, Hobday AJ, Plagányi ÉE, Westcott DA. Large-scale interventions may delay decline of the Great Barrier Reef. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201296. [PMID: 34007456 PMCID: PMC8080001 DOI: 10.1098/rsos.201296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/31/2021] [Indexed: 05/31/2023]
Abstract
On the iconic Great Barrier Reef (GBR), the cumulative impacts of tropical cyclones, marine heatwaves and regular outbreaks of coral-eating crown-of-thorns starfish (CoTS) have severely depleted coral cover. Climate change will further exacerbate this situation over the coming decades unless effective interventions are implemented. Evaluating the efficacy of alternative interventions in a complex system experiencing major cumulative impacts can only be achieved through a systems modelling approach. We have evaluated combinations of interventions using a coral reef meta-community model. The model consisted of a dynamic network of 3753 reefs supporting communities of corals and CoTS connected through ocean larval dispersal, and exposed to changing regimes of tropical cyclones, flood plumes, marine heatwaves and ocean acidification. Interventions included reducing flood plume impacts, expanding control of CoTS populations, stabilizing coral rubble, managing solar radiation and introducing heat-tolerant coral strains. Without intervention, all climate scenarios resulted in precipitous declines in GBR coral cover over the next 50 years. The most effective strategies in delaying decline were combinations that protected coral from both predation (CoTS control) and thermal stress (solar radiation management) deployed at large scale. Successful implementation could expand opportunities for climate action, natural adaptation and socioeconomic adjustment by at least one to two decades.
Collapse
Affiliation(s)
- Scott A. Condie
- CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Kenneth R. N. Anthony
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Russ C. Babcock
- CSIRO Oceans and Atmosphere, Brisbane, Queensland, Australia
| | - Mark E. Baird
- CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
| | - Roger Beeden
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | | | - Rebecca Gorton
- CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
| | - Daniel Harrison
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Marine Studies Centre, School of Geosciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Alistair J. Hobday
- CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Éva E. Plagányi
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Oceans and Atmosphere, Brisbane, Queensland, Australia
| | | |
Collapse
|
42
|
Ranjbar Jafarabadi A, Dashtbozorg M, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. Chlorinated paraffins (SCCPs and MCCPs) in corals and water-SPM-sediment system in the Persian Gulf, Iran: A potential global threat for coral reefs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116531. [PMID: 33581638 DOI: 10.1016/j.envpol.2021.116531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Swift degradation of the coral reef ecosystems urges the need to identify the reef decline drivers. Due to their widespread use, bioaccumulative and toxic characteristics, chlorinated organic compounds, such as chlorinated paraffins (CPs), are regarded as specific pollutants of concern. Yet little is known about the occurrence of CPs in the coral reef ecosystems. This study focuses on the short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs). Their distribution and congener pattern were investigated in the water-SPM-sediment system and in the corals of the Larak coral reef for the first time. Chlorinated paraffins were detected in all the coral species. Their total loadings ranged from 42.1 to 178 ng g-1 dw in coral tissue, from 6.0 to 144 ng g-1dw in the skeleton, and from 55.0 to 240 ng g-1dw in zooxanthellae. Soft corals were found to accumulate more CPs than Scleractinian corals. Zooxanthellae and mucus accumulated more CPs than tissue and skeleton. In most cases, congener group patterns were dominated by C13 (for SCCPs) and C17 (MCCPs) groups, respectively. The congener patterns of CPs altered to some extent between mucus and the remaining coral compartments. High loadings of CPs were detected in the skeleton of the bleached corals. Moreover, a significant negative correlation between the levels of CPs and the symbiodinium density was observed.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mehdi Dashtbozorg
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
43
|
Roth F, RAdecker N, Carvalho S, Duarte CM, Saderne V, Anton A, Silva L, Calleja ML, MorÁn XAG, Voolstra CR, Kürten B, Jones BH, Wild C. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology 2020; 102:e03226. [PMID: 33067806 PMCID: PMC7900985 DOI: 10.1002/ecy.3226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022]
Abstract
Shifts from coral to algal dominance are expected to increase in tropical coral reefs as a result of anthropogenic disturbances. The consequences for key ecosystem functions such as primary productivity, calcification, and nutrient recycling are poorly understood, particularly under changing environmental conditions. We used a novel in situ incubation approach to compare functions of coral‐ and algae‐dominated communities in the central Red Sea bimonthly over an entire year. In situ gross and net community primary productivity, calcification, dissolved organic carbon fluxes, dissolved inorganic nitrogen fluxes, and their respective activation energies were quantified to describe the effects of seasonal changes. Overall, coral‐dominated communities exhibited 30% lower net productivity and 10 times higher calcification than algae‐dominated communities. Estimated activation energies indicated a higher thermal sensitivity of coral‐dominated communities. In these communities, net productivity and calcification were negatively correlated with temperature (>40% and >65% reduction, respectively, with +5°C increase from winter to summer), whereas carbon losses via respiration and dissolved organic carbon release more than doubled at higher temperatures. In contrast, algae‐dominated communities doubled net productivity in summer, while calcification and dissolved organic carbon fluxes were unaffected. These results suggest pronounced changes in community functioning associated with coral‐algal phase shifts. Algae‐dominated communities may outcompete coral‐dominated communities because of their higher productivity and carbon retention to support fast biomass accumulation while compromising the formation of important reef framework structures. Higher temperatures likely amplify these functional differences, indicating a high vulnerability of ecosystem functions of coral‐dominated communities to temperatures even below coral bleaching thresholds. Our results suggest that ocean warming may not only cause but also amplify coral–algal phase shifts in coral reefs.
Collapse
Affiliation(s)
- Florian Roth
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Baltic Sea Centre, Stockholm University, Stockholm, 10691, Sweden.,Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, Helsinki, 00014, Finland
| | - Nils RAdecker
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, 78457, Germany.,Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Susana Carvalho
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Vincent Saderne
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Andrea Anton
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Luis Silva
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Maria Ll Calleja
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Mainz, 55128, Germany
| | - XosÉ Anxelu G MorÁn
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Benjamin Kürten
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Project Management Jülich, Jülich Research Centre GmbH, Rostock, 52425, Germany
| | - Burton H Jones
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Christian Wild
- Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
44
|
Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun 2020; 11:6097. [PMID: 33293528 PMCID: PMC7723047 DOI: 10.1038/s41467-020-19169-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/17/2020] [Indexed: 11/08/2022] Open
Abstract
Prospects for coral persistence through increasingly frequent and extended heatwaves seem bleak. Coral recovery from bleaching is only known to occur after temperatures return to normal, and mitigation of local stressors does not appear to augment coral survival. Capitalizing on a natural experiment in the equatorial Pacific, we track individual coral colonies at sites spanning a gradient of local anthropogenic disturbance through a tropical heatwave of unprecedented duration. Unexpectedly, some corals survived the event by recovering from bleaching while still at elevated temperatures. These corals initially had heat-sensitive algal symbiont communities, endured bleaching, and then recovered through proliferation of heat-tolerant symbionts. This pathway to survival only occurred in the absence of strong local stressors. In contrast, corals in highly disturbed areas were already dominated by heat-tolerant symbionts, and despite initially resisting bleaching, these corals had no survival advantage in one species and 3.3 times lower survival in the other. These unanticipated connections between disturbance, coral symbioses and heat stress resilience reveal multiple pathways to coral survival through future prolonged heatwaves.
Collapse
|
45
|
DeCarlo TM. The past century of coral bleaching in the Saudi Arabian central Red Sea. PeerJ 2020; 8:e10200. [PMID: 33150088 PMCID: PMC7587059 DOI: 10.7717/peerj.10200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/26/2020] [Indexed: 11/20/2022] Open
Abstract
Accurate knowledge of the spatial and temporal patterns of coral bleaching is essential both for understanding how coral reef ecosystems are changing today and forecasting their future states. Yet, in many regions of the world, the history of bleaching is poorly known, especially prior to the late 20th century. Here, I use the information preserved within skeleton cores of long-lived Porites corals to reconstruct the past century of bleaching events in the Saudi Arabian central Red Sea. In these cores, skeletal "stress bands"-indicative of past bleaching-captured known bleaching events that occurred in 1998 and 2010, but also revealed evidence of previously unknown bleaching events in 1931, 1978, and 1982. However, these earlier events affected a significantly lesser proportion of corals than 1998 and 2010. Therefore, coral bleaching may have occurred in the central Red Sea earlier than previously recognized, but the frequency and severity of bleaching events since 1998 on nearshore reefs is unprecedented over the past century. Conversely, corals living on mid- to outer-shelf reefs have not been equally susceptible to bleaching as their nearshore counterparts, which was evident in that stress bands were five times more prevalent nearshore. Whether this pattern of susceptible nearshore reefs and resistant outer-shelf reefs continues in the future remains a key question in forecasting coral reef futures in this region.
Collapse
Affiliation(s)
- Thomas M DeCarlo
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,College of Natural and Computational Sciences, Hawaii Pacific University, Honolulu, HI, United States of America
| |
Collapse
|
46
|
Pancrazi I, Ahmed H, Cerrano C, Montefalcone M. Synergic effect of global thermal anomalies and local dredging activities on coral reefs of the Maldives. MARINE POLLUTION BULLETIN 2020; 160:111585. [PMID: 32911112 DOI: 10.1016/j.marpolbul.2020.111585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
We investigated possible synergic effects on coral reefs of the local land reclamation activities in the Himmafushi Island (North Malè atoll, Maldives) and the global bleaching event that affected the Maldives in 2016. A BACI (Before-After Control-Impact) sampling design was adopted to contrast effects of dredging activities before and after the occurrence of both dredging and bleaching. The Reef Check protocol, a standardised and worldwide survey method, was applied to collect data through underwater visual surveys on corals, macro-zoobenthos, and fish communities. The bleaching in 2016 hit all the reefs investigated, but only in the reefs around Himmafushi (i.e., the impact sites) the live hard coral reduced significantly its cover and the sand deposited on reefs showed a fourfold increase. Substrate indicators (i.e., coral community and abiotic components) turned out to be more effective than macro-zoobenthos and fish in this short-term environmental impact study.
Collapse
Affiliation(s)
- Irene Pancrazi
- DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genoa, Italy.
| | - Hassan Ahmed
- Save the Beach Maldives, address Boakeyo Goalhi, K. Villingili, Maldives
| | - Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Monica Montefalcone
- DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| |
Collapse
|
47
|
Quimpo TJR, Requilme JNC, Gomez EJ, Sayco SLG, Tolentino MPS, Cabaitan PC. Low coral bleaching prevalence at the Bolinao-Anda Reef Complex, northwestern Philippines during the 2016 thermal stress event. MARINE POLLUTION BULLETIN 2020; 160:111567. [PMID: 32891963 DOI: 10.1016/j.marpolbul.2020.111567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Here, we examined the coral bleaching responses during the 2016 thermal stress event and post-bleaching changes in coral communities in the heavily disturbed reefs of the Bolinao-Anda Reef Complex (BARC), northwestern Philippines. Less than 25% of colonies bleached, with 77% attributed to five genera (Dipsastrea, Porites, Fungia, Seriatopora, and Montipora). Coral bleaching prevalence was associated with site location, coral composition, and coral abundance, suggesting that small-scale variation (<20 km) in coral communities (taxa and density) influences spatial variation in coral bleaching prevalence. There was no noticeable change in coral composition and cover two years after the bleaching event as exposure to chronic disturbance likely selected for the dominance of stress tolerant coral taxa and communities. Results show that the 2016 thermal stress event caused coral bleaching but with low prevalence at the BARC, which suggests that disturbed reefs may provide spatial refuge to coral communities from thermal stress.
Collapse
Affiliation(s)
- Timothy Joseph R Quimpo
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Jeremiah Noelle C Requilme
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Elizabeth J Gomez
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Sherry Lyn G Sayco
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Mark Paulo S Tolentino
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Patrick C Cabaitan
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines.
| |
Collapse
|
48
|
Yu X, Yu K, Huang W, Liang J, Qin Z, Chen B, Yao Q, Liao Z. Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139319. [PMID: 32446076 DOI: 10.1016/j.scitotenv.2020.139319] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Field ecological observations indicate that scleractinian coral exposed to early thermal stress are likely to develop higher tolerance to subsequent heat stress. The causes of this phenomenon, however, remain enigmatic. To unravel the mechanisms underlying the increased heat tolerance, we applied different thermal treatments to the scleractinian coral Acropora pruinosa and studied the resulting differences in appearance, physiological index, Symbiodiniaceae and bacterial communities, and transcriptome response. We found that early heat stress improved the thermal tolerance of the coral holobiont. After thermal acclimation, the community structure and symbiotic bacterial diversity in the microbiota were reorganized, whereas those of Symbiodiniaceae remained stable. RNA-seq analysis revealed that the downregulated coral host genes were mainly involved in pathways relating to metabolism, particularly the nitrogen metabolism pathway. This indicates that thermal acclimation led to decrease in the metabolism level in the coral host, which might be a self-protection mechanism. We suggest that thermal acclimation may increase scleractinian coral thermal tolerance by slowing host metabolism, altering the dominant bacterial population, and increasing bacterial diversity. This study offers new insights into the adaptive potential of scleractinian coral to heat stress from global warming.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), China.
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
49
|
Anthony KRN, Helmstedt KJ, Bay LK, Fidelman P, Hussey KE, Lundgren P, Mead D, McLeod IM, Mumby PJ, Newlands M, Schaffelke B, Wilson KA, Hardisty PE. Interventions to help coral reefs under global change-A complex decision challenge. PLoS One 2020; 15:e0236399. [PMID: 32845878 PMCID: PMC7449401 DOI: 10.1371/journal.pone.0236399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Climate change is impacting coral reefs now. Recent pan-tropical bleaching events driven by unprecedented global heat waves have shifted the playing field for coral reef management and policy. While best-practice conventional management remains essential, it may no longer be enough to sustain coral reefs under continued climate change. Nor will climate change mitigation be sufficient on its own. Committed warming and projected reef decline means solutions must involve a portfolio of mitigation, best-practice conventional management and coordinated restoration and adaptation measures involving new and perhaps radical interventions, including local and regional cooling and shading, assisted coral evolution, assisted gene flow, and measures to support and enhance coral recruitment. We propose that proactive research and development to expand the reef management toolbox fast but safely, combined with expedient trialling of promising interventions is now urgently needed, whatever emissions trajectory the world follows. We discuss the challenges and opportunities of embracing new interventions in a race against time, including their risks and uncertainties. Ultimately, solutions to the climate challenge for coral reefs will require consideration of what society wants, what can be achieved technically and economically, and what opportunities we have for action in a rapidly closing window. Finding solutions that work for coral reefs and people will require exceptional levels of coordination of science, management and policy, and open engagement with society. It will also require compromise, because reefs will change under climate change despite our best interventions. We argue that being clear about society's priorities, and understanding both the opportunities and risks that come with an expanded toolset, can help us make the most of a challenging situation. We offer a conceptual model to help reef managers frame decision problems and objectives, and to guide effective strategy choices in the face of complexity and uncertainty.
Collapse
Affiliation(s)
- Kenneth R. N. Anthony
- Australian Institute of Marine Science, QLD, Australia
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Kate J. Helmstedt
- ARC Centre of Excellence in Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, QLD, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, QLD, Australia
| | - Pedro Fidelman
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | - Karen E. Hussey
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | | | - David Mead
- Australian Institute of Marine Science, QLD, Australia
| | | | - Peter J. Mumby
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | | | | | - Kerrie A. Wilson
- ARC Centre of Excellence for Environmental Decisions, The University of Queensland, QLD, Australia
| | | |
Collapse
|
50
|
Evans RD, Wilson SK, Fisher R, Ryan NM, Babcock R, Blakeway D, Bond T, Dorji P, Dufois F, Fearns P, Lowe RJ, Stoddart J, Thomson DP. Early recovery dynamics of turbid coral reefs after recurring bleaching events. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110666. [PMID: 32510431 DOI: 10.1016/j.jenvman.2020.110666] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
The worlds' coral reefs are declining due to the combined effects of natural disturbances and anthropogenic pressures including thermal coral bleaching associated with global climate change. Nearshore corals are receiving increased anthropogenic stress from coastal development and nutrient run-off. Considering forecast increases in global temperatures, greater understanding of drivers of recovery on nearshore coral reefs following widespread bleaching events is required to inform management of local stressors. The west Pilbara coral reefs, with cross-shelf turbidity gradients coupled with a large nearby dredging program and recent history of repeated coral bleaching due to heat stress, represent an opportune location to study recovery from multiple disturbances. Mean coral cover at west Pilbara reefs was monitored from 2009 to 2018 and declined from 45% in 2009 to 5% in 2014 following three heat waves. Recruitment and juvenile abundance of corals were monitored from 2014 to 2018 and were combined with biological and physical data to identify which variables enhanced or hindered early-stage coral recovery of all hard corals and separately for the acroporids, the genera principally responsible for recovery in the short-term (<7 years). From 2014 to 2018, coral cover increased from 5 to 10% but recovery varied widely among sites (0-13%). Hard coral cover typically recovered most at shallower sites that had higher abundance of herbivorous fish, less macroalgae, and lower turbidity. Similarly, acroporid corals recovered most at sites with lower turbidity and macroalgal cover. Juvenile acroporid densities were a good indicator of recovery at least two years after they were recorded. However, recruitment to settlement tiles was not a good predictor of total coral or acroporid recovery. This study shows that coral recovery can be slower in areas of high turbidity and the rate may be reduced by local pressures, such as dredging. Management should focus on improving or maintaining local water quality to increase the likelihood of coral recovery under climate stress. Further, in turbid environments, juvenile coral density predicts early coral recovery better than recruits on tiles and may be a more cost-effective technique for monitoring recovery potential.
Collapse
Affiliation(s)
- Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia.
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Rebecca Fisher
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Nicole M Ryan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Russ Babcock
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | | | - Todd Bond
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Passang Dorji
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Francois Dufois
- IFREMER, DYNECO/DHYSED, ZI Pointe du Diable, 29280, Plouzané, France
| | - Peter Fearns
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Ryan J Lowe
- School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Jim Stoddart
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; MScience Pty Ltd, Perth, WA, Australia
| | - Damian P Thomson
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| |
Collapse
|