1
|
Mao Y, Hong K, Li L, Nam IK, Kim SH, Choe SK. Mitochondrial Fission Is Involved in Heat Resistance in Zebrafish. Zebrafish 2024; 21:320-328. [PMID: 39007173 DOI: 10.1089/zeb.2024.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Global warming and extreme weather events pose a significant threat to global biodiversity, with rising water temperatures exerting a profound influence on fish conservation and fishery development. In this study, we used zebrafish as a model organism to explore the impact of a heat acclimation period on their survival rates. The results demonstrated that a 2-month heat acclimation period almost completely mitigated heat stress-induced mortality in zebrafish. Subsequent analysis of the surviving zebrafish revealed a predominance of hepatic mitochondria in a fission state. Remarkably, a short-term fasting regimen, which induced hepatic mitochondrial fission, mirrored the outcomes of the protective effect of heat acclimation and augmented animal survival under heat stress. Conversely, treatment with a mitochondrial fission inhibitor within the fasting group attenuated the elevated survival rate. Furthermore, zebrafish embryos subjected to brief heat acclimation also exhibited increased heat resistance, a trait diminished by a chemical intervention inhibiting mitochondrial fission. This suggests a shared mechanism for heat resistance between embryos and adult zebrafish. These findings underscore the potential use of inducing mitochondrial fission to enhance heat resistance in zebrafish, offering promise for fish biodiversity conservation in the face of global warming.
Collapse
Affiliation(s)
- Yousheng Mao
- Department of Medicine, Graduate School, Wonkwang University, Iksan, Republic of Korea
| | - KwangHeum Hong
- Department of Medicine, Graduate School, Wonkwang University, Iksan, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University, Iksan, Republic of Korea
| | - Li Li
- Department of Medicine, Graduate School, Wonkwang University, Iksan, Republic of Korea
| | - In-Koo Nam
- Sarcopenia Total Solution Center, Wonkwang University, Iksan, Republic of Korea
| | - Seok-Hyung Kim
- Sarcopenia Total Solution Center, Wonkwang University, Iksan, Republic of Korea
| | - Seong-Kyu Choe
- Department of Medicine, Graduate School, Wonkwang University, Iksan, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University, Iksan, Republic of Korea
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Institute of Wonkwang Medical Science, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
2
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
3
|
Ye S, Zhang M, Tang SCW, Li B, Chen W. PGC1-α in diabetic kidney disease: unraveling renoprotection and molecular mechanisms. Mol Biol Rep 2024; 51:304. [PMID: 38361088 DOI: 10.1007/s11033-024-09232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
Mitochondrial dysfunction represents a pivotal aspect of the pathogenesis and progression of diabetic kidney disease (DKD). Central to the orchestration of mitochondrial biogenesis is the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α), a master regulator with a profound impact on mitochondrial function. In the context of DKD, PGC1-α exhibits significant downregulation within intrinsic renal cells, precipitating a cascade of deleterious events. This includes a reduction in mitochondrial biogenesis, heightened levels of mitochondrial oxidative stress, perturbed mitochondrial dynamics, and dysregulated mitophagy. Concurrently, structural and functional abnormalities within the mitochondrial network ensue. In stark contrast, the sustained expression of PGC1-α emerges as a beacon of hope in maintaining mitochondrial homeostasis within intrinsic renal cells, ultimately demonstrating an impressive renoprotective potential in animal models afflicted with DKD. This comprehensive review aims to delve into the recent advancements in our understanding of the renoprotective properties wielded by PGC1-α. Specifically, it elucidates the potential molecular mechanisms underlying PGC1-α's protective effects within renal tubular epithelial cells, podocytes, glomerular endothelial cells, and mesangial cells in the context of DKD. By shedding light on these intricate mechanisms, we aspire to provide valuable insights that may pave the way for innovative therapeutic interventions in the management of DKD.
Collapse
Affiliation(s)
- Siyang Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, People's Republic of China
| | - Meng Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, People's Republic of China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Bin Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, People's Republic of China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, People's Republic of China.
| |
Collapse
|
4
|
Zhu X, Deng Z, Cao Y, Zhou Z, Sun W, Liu C, Fan S, Yin XX. Resveratrol prevents Drp1-mediated mitochondrial fission in the diabetic kidney through the PDE4D/PKA pathway. Phytother Res 2023; 37:5916-5931. [PMID: 37767771 DOI: 10.1002/ptr.8004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/30/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
To explore the role of PDE4D in diabetic nephropathy (DN) and investigate whether resveratrol protects against DN via inhibiting PDE4D. Diabetic db/db mouse and glomerular mesangial cell line (GMCs) were used to investigate the role of PDE4D and the protective effect of resveratrol on renal fibrosis under high glucose (HG) environment. Resveratrol alleviated the progress of DN via inhibiting mitochondrial fragmentation and restoring the expression of PDE4D, PKA, phosphorylated Drp1-Ser637 and Drp1 in kidney of db/db mice. In HG-exposed GMCs, resveratrol treatment decreased the expression of PDE4D, increased PKA level, and inhibited Drp1-mediated mitochondrial fission. In contrast, PDE4D over-expression blunted the inhibitory effects of resveratrol on Drp1 expression and mitochondrial fission. Moreover, PKA inhibitor H89 blunted the effects of resveratrol on phosphorylated Drp1-Ser637 expression and mitochondrial fission in HG-treated GMCs. Inhibition of mitochondrial fission with Drp1 inhibitor Mdivi-1 alleviated mitochondrial dysfunction in GMCs under HG. These findings indicate PDE4D plays an important role in the process of DN. Resveratrol attenuates the development of DN by preventing mitochondrial fission through inhibiting PDE4D, which regulates the expression of phosphorylated Drp1-Ser637 directly.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zongli Deng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yanjuan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zihui Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wen Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chang Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Siwen Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Baek J, Lee YH, Jeong HY, Lee SY. Mitochondrial quality control and its emerging role in the pathogenesis of diabetic kidney disease. Kidney Res Clin Pract 2023; 42:546-560. [PMID: 37448292 PMCID: PMC10565453 DOI: 10.23876/j.krcp.22.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 07/15/2023] Open
Abstract
Most eukaryotic cells have mitochondrial networks that can change in shape, distribution, and size depending on cellular metabolic demands and environments. Mitochondrial quality control is critical for various mitochondrial functions including energy production, redox homeostasis, intracellular calcium handling, cell differentiation, proliferation, and cell death. Quality control mechanisms within mitochondria consist of antioxidant defenses, protein quality control, DNA damage repair systems, mitochondrial fusion and fission, mitophagy, and mitochondrial biogenesis. Defects in mitochondrial quality control and disruption of mitochondrial homeostasis are common characteristics of various kidney cell types under hyperglycemic conditions. Such defects contribute to diabetes-induced pathologies in renal tubular cells, podocytes, endothelial cells, and immune cells. In this review, we focus on the roles of mitochondrial quality control in diabetic kidney disease pathogenesis and discuss current research evidence and future directions.
Collapse
Affiliation(s)
- Jihyun Baek
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Hye Yun Jeong
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
6
|
Wu R, Huang S, Xie JF, Wen NL, Wen M, Zhong SE. CircRNA SCAR Improves High-Glucose-Induced Mitochondrial Dysfunction and Permeability Damage in Retinal Microvascular Endothelial Cells. Horm Metab Res 2023; 55:555-562. [PMID: 37399835 DOI: 10.1055/a-2108-9820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
This study was designed to assess the role and mechanism of circRNA SCAR in human retinal microvascular endothelial cells (hRMVECs) treated with high glucose. Quantitative real-time polymerase chain reaction (qRT-PCR) and cell counting kit 8 (CCK-8) were used to detect the effects of different concentrations of glucose on circRNA SCAR expression and cell proliferation in hRMVECs. Cell viability, levels of oxygen species (ROS), malondialdehyde (MDA) and adenosine triphosphate (ATP), as well as activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in the transfected hRMVECs in each group were detected using CCK-8 and their corresponding detection kits. Changes in mtDNA copy number in high-glucose-induced hRMVECs were observed by qRT-PCR. Additionally, western blot was applied to detect effect of overexpressing circRNA SCAR on the expression levels of mitochondrial function-related proteins (Drp1 and Fis1) and cell permeability-related proteins (claudin-5, occludin and ZO-1) in hRMVECs under high-glucose concentration. According to experimental results, high glucose significantly downregulated circRNA SCAR expression and inhibited cell proliferation in hRMVECs. Instead, overexpression of this circRNA SCAR promoted cell proliferation, reduced levels of ROS, MDA and ATP, and increased SOD and CAT activities in hRMVECs under high-glucose concentration. Also, circRNA SCAR overexpression reversed the high-glucose-induced decrease in mtDNA copy number as well as, high-glucose-induced upregulation of Drp1 and Fis1 protein expression and downregulation of claudin-5, occludin and ZO-1 protein expression in hRMVECs. In summary, circRNA SCAR promotes the proliferation of hRMVECs under high-glucose concentration, alleviates oxidative stress induced by high glucose, and improves mitochondrial function and permeability damage.
Collapse
Affiliation(s)
- Rong Wu
- Jishou University Medical College, Jishou, China
| | - Sheng Huang
- Department of Ophthalmology, TongRen Municipal People's Hospital, Tongren, China
| | - Jin-Feng Xie
- Jishou University Medical College, Jishou, China
| | - Nian-Lian Wen
- Department of Ophthalmology, TongRen Municipal People's Hospital, Tongren, China
| | - Min Wen
- Zunyi Medical University, Zunyi, China
| | - Su-E Zhong
- Department of Ophthalmology, TongRen Municipal People's Hospital, Tongren, China
| |
Collapse
|
7
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
8
|
Ahmad M, Abramovich I, Agranovich B, Nemirovski A, Gottlieb E, Hinden L, Tam J. Kidney Proximal Tubule GLUT2-More than Meets the Eye. Cells 2022; 12:cells12010094. [PMID: 36611887 PMCID: PMC9818791 DOI: 10.3390/cells12010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Tubulopathy plays a central role in the pathophysiology of diabetic kidney disease (DKD). Under diabetic conditions, the kidney proximal tubule cells (KPTCs) are exposed to an extensive amount of nutrients, most notably glucose; these nutrients deteriorate KPTCs function and promote the development and progression of DKD. Recently, the facilitative glucose transporter 2 (GLUT2) in KPTCs has emerged as a central regulator in the pathogenesis of DKD. This has been demonstrated by identifying its specific role in enhancing glucose reabsorption and glucotoxicity, and by deciphering its effect in regulating the expression of the sodium-glucose transporter 2 (SGLT2) in KPTCs. Moreover, reduction/deletion of KPTC-GLUT2 has been recently found to ameliorate DKD, raising the plausible idea of considering it as a therapeutic target against DKD. However, the underlying molecular mechanisms by which GLUT2 exerts its deleterious effects in KPTCs remain vague. Herein, we review the current findings on the proximal tubule GLUT2 biology and function under physiologic conditions, and its involvement in the pathophysiology of DKD. Furthermore, we shed new light on its cellular regulation during diabetic conditions.
Collapse
Affiliation(s)
- Majdoleen Ahmad
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Bella Agranovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| |
Collapse
|
9
|
Yao L, Liang X, Qiao Y, Chen B, Wang P, Liu Z. Mitochondrial dysfunction in diabetic tubulopathy. Metabolism 2022; 131:155195. [PMID: 35358497 DOI: 10.1016/j.metabol.2022.155195] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
Abstract
Diabetic kidney disease (DKD) is a devastating microvascular complication associated with diabetes mellitus. Recently, the major focus of glomerular lesions of DKD has partly shifted to diabetic tubulopathy because of renal insufficiency and prognosis of patients is closely related to tubular atrophy and interstitial fibrosis. Indeed, the proximal tubule enriching in mitochondria for its high energy demand and dependence on aerobic metabolism has given us pause to focus primarily on the mitochondria-centric view of early diabetic tubulopathy. Multiple studies suggest that diabetes condition directly damages renal tubules, resulting in mitochondria dysfunction, including decreased bioenergetics, overproduction of mitochondrial reactive oxygen species (mtROSs), defective mitophagy and dynamics disturbances, which in turn trigger a series of metabolic abnormalities. However, the precise mechanism underlying mitochondrial dysfunction of renal tubules is still in its infancy. Understanding tubulointerstitial's pathobiology would facilitate the search for new biomarkers of DKD. In this Review, we summarize the current literature and postulate that the potential effects of mitochondrial dysfunction may accelerate initiation of early-stage diabetic tubulopathy, as well as their potential therapeutic strategies.
Collapse
Affiliation(s)
- Lan Yao
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xianhui Liang
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjin Qiao
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Bohan Chen
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Pei Wang
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhangsuo Liu
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
10
|
Račková L, Csekes E. Redox aspects of cytotoxicity and anti-neuroinflammatory profile of chloroquine and hydroxychloroquine in serum-starved BV-2 microglia. Toxicol Appl Pharmacol 2022; 447:116084. [PMID: 35618033 DOI: 10.1016/j.taap.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have long been used worldwide to treat and prevent human malarias. However, these 4-aminoquinolines have also shown promising potential in treating chronic illnesses with an inflammatory component, including neurological diseases. Given the current demand for serum avoidance during pharmacological testing and modeling of some pathologies, we compared cytotoxicities of CQ and HCQ in both serum-deprived and -fed murine BV-2 microglia. Furthermore, we assessed the anti-neuroinflammatory potential of both compounds in serum-deprived cells. Under both conditions, CQ showed higher cytotoxicity than HCQ. However, the comparable MTT-assay-derived data measured under different serum conditions were associated with disparate cytotoxic mechanisms of CQ and HCQ. In particular, under serum starvation, CQ mildly enhanced secondary ROS, mitochondrial hyperpolarization, and decreased phagocytosis. However, CQ promoted G1 phase cell cycle arrest and mitochondrial depolarization in serum-fed cells. Under both conditions, CQ fostered early apoptosis. Additionally, we confirmed that both compounds could exert anti-inflammatory effects in microglia through interference with MAPK signaling under nutrient-deprivation-related stress. Nevertheless, unlike HCQ, CQ is more likely to exaggerate intracellular prooxidant processes in activated starved microglia, which are inefficiently buffered by Nrf2/HO-1 signaling pathway activation. These outcomes also show HCQ as a promising anti-neuroinflammatory drug devoid of CQ-mediated cytotoxicity.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Erika Csekes
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
11
|
Saad R, Tadmor H, Ertracht O, Nakhoul N, Nakhoul F, Evgeny F, Atar S. The Molecular Effects of SGLT2i Empagliflozin on the Autophagy Pathway in Diabetes Mellitus Type 2 and Its Complications. J Diabetes Res 2022; 2022:8337823. [PMID: 36313818 PMCID: PMC9605841 DOI: 10.1155/2022/8337823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), especially hyperglycemia, is associated with increased glucose cell toxicity and oxidative stress that can lead to irreversible damage in the kidney such as diabetic nephropathy (DN). Autophagy plays a key role in the degradation of damaged intracellular proteins in order to maintain intracellular homeostasis and cell integrity. The disturbance of autophagy is involved in the pathogenesis of diabetic nephropathy. We aim to investigate the molecular effect of sodium-glucose transporter 2 inhibitor (SGLT2i) on the expression of ATG5 and its downstream collaborator LC3-II in diabetic nice model. Material and Methods. We used eight weeks old male mice: twenty C57BL/6 wild type (C57BL/6), twenty BTBR ob/ob (DM), and twenty BTBR ob/ob that were treated with empagliflozin (DM+EMPA), FDA approved SGLT2i. Lysate from murine renal cortex was analyzed by Western blot and immunohistochemistry. ATG5, LC3B, and fibronectin expression were analyzed in murine kidney tissues. All mice were sacrificed 13 weeks after the beginning of the experiment. RESULTS Histological and Western blot analyses reveal decrease ATG5, LC3-II, and fibronectin levels at renal specimens taken from DM mice. EMPA treatment reduced T2DM mice body weight and blood glucose and increased urine glucose. Further, it upregulated all of the abovementioned proteins. CONCLUSIONS Hyperglycemia reduces LC3-II and ATG5 protein levels which contribute to deficiencies in the autophagy process, with development and progression of DN. SGLT2i significantly reduces progression of DN and onset of end-stage renal disease in T2DM patients, probably through its effect on autophagy.
Collapse
Affiliation(s)
- Ranin Saad
- Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Israel
| | - Hagar Tadmor
- Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Israel
| | - Offir Ertracht
- Cardiovascular Laboratory, Medical Research Institute, Galilee Medical Center, Nahariya, Israel
| | | | - Farid Nakhoul
- Cardiovascular Laboratory, Medical Research Institute, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Farber Evgeny
- Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Israel
| | - Shaul Atar
- Cardiovascular Laboratory, Medical Research Institute, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- The Cardiology Department, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
12
|
Li R, She D, Ye Z, Fang P, Zong G, Zhao Y, Hu K, Zhang L, Lei S, Zhang K, Xue Y. Glucagon-Like Peptide 1 Receptor Agonist Improves Renal Tubular Damage in Mice with Diabetic Kidney Disease. Diabetes Metab Syndr Obes 2022; 15:1331-1345. [PMID: 35519661 PMCID: PMC9064072 DOI: 10.2147/dmso.s353717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE This study aims to investigate the renal protective effect of glucagon-like peptide 1 receptor agonist (GLP-1RA) on improving renal tubular damage in diabetic kidney disease (DKD) and to explore the potential mechanism of GLP-1RA on renal tubular protection. METHODS Long-acting GLP-1RA was used to treat DKD mice for 12 weeks. The label-free quantitative proteomic analysis of renal proteins was conducted to explore the differentially expressed proteins (DEPs) in the renal tissues of the control, DKD and GLP-1RA groups. The DEPs and markers of renal tubular injury were verified by qPCR in vivo and in vitro. The expression of glucagon-likepeptide-1 receptor (GLP-1R) in renal tubules was determined by immunofluorescence staining. RESULTS GLP-1RA treatment significantly improved the tubular damages in kidney tissues of DKD mice and mTEC cells stimulated by high glucose (HG). Proteomics analysis revealed that 30 proteins in kidney tissue were differentially expressed among three groups. Seminal vesicle secretory protein 6 (SVS6) was the most differentially expressed protein in kidney tissues among three groups of mice. The expression changes of Svs6 mRNA in vitro and in vivo detected by qPCR were consistent with the results of proteomic analysis. Furthermore, reduction of Svs6 expression by SVS6 siRNA could attenuate HG-stimulated tubular injury in mTEC cells. Immunofluorescence staining also found that GLP-1R was widely expressed in renal tubules in vitro and in vivo. CONCLUSION GLP-1RA significantly improved renal tubular damage in DKD mice. SVS6 may be a potential therapeutic target for GLP-1RA in the treatment of DKD.
Collapse
Affiliation(s)
- Ran Li
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Dunmin She
- Department of Endocrinology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, 225001, People’s Republic of China
| | - Zhengqin Ye
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Ping Fang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Guannan Zong
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Yong Zhao
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Kerong Hu
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Liya Zhang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Sha Lei
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Keqin Zhang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Ying Xue
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
- Correspondence: Ying Xue; Keqin Zhang, Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065, People’s Republic of China, Tel +86-021-66111061, Email ;
| |
Collapse
|
13
|
Sánchez‐Navarro A, Martínez‐Rojas MÁ, Caldiño‐Bohn RI, Pérez‐Villalva R, Zambrano E, Castro‐Rodríguez DC, Bobadilla NA. Early triggers of moderately high-fat diet-induced kidney damage. Physiol Rep 2021; 9:e14937. [PMID: 34291592 PMCID: PMC8295594 DOI: 10.14814/phy2.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Most of the obesity murine models inducing renal injury use calorie-enriched foods, where fat represents 60% of the total caloric supply, however, this strategy doubles the standard proportion of fat ingestion in obese patients. Therefore, it is crucial to study the impact of a high-fat intake on kidney physiology that resembles common obesity in humans to understand the trigger mechanisms of the long-term consequences of overweight and obesity. In this study, we analyzed whether chronic feeding with a moderately high fat diet (MHFD) representing 45% of total calories, may induce kidney function and structural injury compared to C57BL/6 mice fed a control diet. After 14 weeks, MHFD induced significant mice obesity. At the functional level, obese mice showed signs of kidney injury characterized by increased albuminuria/creatinine ratio and higher excretion of urinary biomarkers of kidney damage. While, at the structural level, glomerular hypertrophy was observed. Although, we did not detect renal fibrosis, the obese mice exhibited a significant elevation of Tgfb1 mRNA levels. Kidney damage caused by the exposure to MHFD was associated with greater oxidative stress, renal inflammation, higher endoplasmic reticulum (ER)-stress, and disruption of mitochondrial dynamics. In summary, our data demonstrate that obesity induced by a milder fat content diet is enough to establish renal injury, where oxidative stress, inflammation, ER-stress, and mitochondrial damage take relevance, pointing out the importance of opportune interventions to avoid the long-term consequences associated with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Sánchez‐Navarro
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Miguel Ángel Martínez‐Rojas
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Rebecca I. Caldiño‐Bohn
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Rosalba Pérez‐Villalva
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Elena Zambrano
- Department of Biology of ReproductionInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Diana C. Castro‐Rodríguez
- Department of Biology of ReproductionInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
- CONACyT‐CátedrasMexico CityMexico
| | - Norma A. Bobadilla
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| |
Collapse
|
14
|
Kim K, Lee EY. Excessively Enlarged Mitochondria in the Kidneys of Diabetic Nephropathy. Antioxidants (Basel) 2021; 10:antiox10050741. [PMID: 34067150 PMCID: PMC8151708 DOI: 10.3390/antiox10050741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the most serious complication of diabetes and a leading cause of kidney failure and mortality in patients with diabetes. However, the exact pathogenic mechanisms involved are poorly understood. Impaired mitochondrial function and accumulation of damaged mitochondria due to increased imbalance in mitochondrial dynamics are known to be involved in the development and progression of DN. Accumulating evidence suggests that aberrant mitochondrial fission is involved in the progression of DN. Conversely, studies linking excessively enlarged mitochondria to DN pathogenesis are emerging. In this review, we summarize the current concepts of imbalanced mitochondrial dynamics and their molecular aspects in various experimental models of DN. We discuss the recent evidence of enlarged mitochondria in the kidneys of DN and examine the possibility of a therapeutic application targeting mitochondrial dynamics in DN.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
- Correspondence: (K.K.); (E.-Y.L.); Tel.: +82-41-413-5024 (K.K.); +82-41-570-3684 (E.-Y.L.); Fax: +82-41-413-5006 (K.K. & E.-Y.L.)
| | - Eun-Young Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (K.K.); (E.-Y.L.); Tel.: +82-41-413-5024 (K.K.); +82-41-570-3684 (E.-Y.L.); Fax: +82-41-413-5006 (K.K. & E.-Y.L.)
| |
Collapse
|
15
|
Wang F, Weng Z, Lyu Y, Bao Y, Liu J, Zhang Y, Sui X, Fang Y, Tang X, Shen X. Wheat germ-derived peptide ADWGGPLPH abolishes high glucose-induced oxidative stress via modulation of the PKCζ/AMPK/NOX4 pathway. Food Funct 2021; 11:6843-6854. [PMID: 32662486 DOI: 10.1039/d0fo01229g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study explores the antioxidative effect of a specific wheat germ-derived peptide on high glucose-induced oxidative stress in vascular smooth muscle cells (VSMCs) and the underlying mechanisms. The peptide ADWGGPLPH was identified by LC-MS/MS. The effects of this peptide on the production of ROS and the expression of oxidative stress signaling proteins in VSMCs were determined. STZ-induced mice were utilized to confirm the anti-oxidative and anti-diabetic cardiovascular disease effects of this peptide in vivo. The results showed that ADWGGPLPH significantly prevented high glucose-induced cell proliferation, decreased intracellular ROS generation, stimulated AMPK activity, inhibited the PKCζ, AKT and Erk1/2 phosphorylation, and suppressed NOX4 protein expression. In addition, ADWGGPLPH enhanced the antioxidant abilities and attenuated inflammatory cytokine generation in STZ-induced diabetic mice. Therefore, ADWGGPLPH prevents high glucose-induced oxidative stress in VSMCs by modulating the PKCζ/AMPK/NOX4 pathway.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Juncheng Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Yu Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| |
Collapse
|
16
|
Critical Role for AMPK in Metabolic Disease-Induced Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21217994. [PMID: 33121167 PMCID: PMC7663488 DOI: 10.3390/ijms21217994] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is prevalent in 9.1% of the global population and is a significant public health problem associated with increased morbidity and mortality. CKD is associated with highly prevalent physiological and metabolic disturbances such as hypertension, obesity, insulin resistance, cardiovascular disease, and aging, which are also risk factors for CKD pathogenesis and progression. Podocytes and proximal tubular cells of the kidney strongly express AMP-activated protein kinase (AMPK). AMPK plays essential roles in glucose and lipid metabolism, cell survival, growth, and inflammation. Thus, metabolic disease-induced renal diseases like obesity-related and diabetic chronic kidney disease demonstrate dysregulated AMPK in the kidney. Activating AMPK ameliorates the pathological and phenotypical features of both diseases. As a metabolic sensor, AMPK regulates active tubular transport and helps renal cells to survive low energy states. AMPK also exerts a key role in mitochondrial homeostasis and is known to regulate autophagy in mammalian cells. While the nutrient-sensing role of AMPK is critical in determining the fate of renal cells, the role of AMPK in kidney autophagy and mitochondrial quality control leading to pathology in metabolic disease-related CKD is not very clear and needs further investigation. This review highlights the crucial role of AMPK in renal cell dysfunction associated with metabolic diseases and aims to expand therapeutic strategies by understanding the molecular and cellular processes underlying CKD.
Collapse
|
17
|
Kang JM, Lee HS, Kim J, Yang DH, Jeong HY, Lee YH, Kim DJ, Park SH, Sung M, Kim J, An HJ, Lee SH, Lee SY. Beneficial Effect of Chloroquine and Amodiaquine on Type 1 Diabetic Tubulopathy by Attenuating Mitochondrial Nox4 and Endoplasmic Reticulum Stress. J Korean Med Sci 2020; 35:e305. [PMID: 32924342 PMCID: PMC7490204 DOI: 10.3346/jkms.2020.35.e305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Oxidative stress induced by chronic hyperglycemia is recognized as a significant mechanistic contributor to the development of diabetic kidney disease (DKD). Nonphagocytic nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in many cell types and in the kidney tissue of diabetic animals. We designed this study to explore the therapeutic potential of chloroquine (CQ) and amodiaquine (AQ) for inhibiting mitochondrial Nox4 and diabetic tubular injury. METHODS Human renal proximal tubular epithelial cells (hRPTCs) were cultured in high-glucose media (30 mM D-glucose), and diabetes was induced with streptozotocin (STZ, 50 mg/kg i.p. for 5 days) in male C57BL/6J mice. CQ and AQ were administered to the mice via intraperitoneal injection for 14 weeks. RESULTS CQ and AQ inhibited mitochondrial Nox4 and increased mitochondrial mass in hRPTCs under high-glucose conditions. Reduced mitochondrial ROS production after treatment with the drugs resulted in decreased endoplasmic reticulum (ER) stress, suppressed inflammatory protein expression and reduced cell apoptosis in hRPTCs under high-glucose conditions. Notably, CQ and AQ treatment diminished Nox4 activation and ER stress in the kidneys of STZ-induced diabetic mice. In addition, we observed attenuated inflammatory protein expression and albuminuria in STZ-induced diabetic mice after CQ and AQ treatment. CONCLUSION We substantiated the protective actions of CQ and AQ in diabetic tubulopathy associated with reduced mitochondrial Nox4 activation and ER stress alleviation. Further studies exploring the roles of mitochondrial Nox4 in the pathogenesis of DKD could suggest new therapeutic targets for patients with DKD.
Collapse
Affiliation(s)
- Jun Mo Kang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyun Seob Lee
- Genomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Junghyun Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong Ho Yang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hye Yun Jeong
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yu Ho Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong Jin Kim
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Seon Hwa Park
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - MinJi Sung
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jaehee Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyun Ju An
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sang Ho Lee
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea.
| | - So Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
| |
Collapse
|
18
|
Vitte J, Michel M, Mezouar S, Diallo AB, Boumaza A, Mege JL, Desnues B. Immune Modulation as a Therapeutic Option During the SARS-CoV-2 Outbreak: The Case for Antimalarial Aminoquinolines. Front Immunol 2020; 11:2159. [PMID: 32983179 PMCID: PMC7484884 DOI: 10.3389/fimmu.2020.02159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
The rapid spread, severity, and lack of specific treatment for COVID-19 resulted in hasty drug repurposing. Conceptually, trials of antivirals were well-accepted, but twentieth century antimalarials sparked an impassioned global debate. Notwithstanding, antiviral and immunomodulatory effects of aminoquinolines have been investigated in vitro, in vivo and in clinical trials for more than 30 years. We review the mechanisms of action of (hydroxy)chloroquine on immune cells and networks and discuss promises and pitfalls in the fight against SARS-CoV-2, the agent of the COVID-19 outbreak.
Collapse
Affiliation(s)
- Joana Vitte
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Moïse Michel
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Soraya Mezouar
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Aïssatou Bailo Diallo
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Asma Boumaza
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
19
|
Mubagwa K. Cardiac effects and toxicity of chloroquine: a short update. Int J Antimicrob Agents 2020; 56:106057. [PMID: 32565195 PMCID: PMC7303034 DOI: 10.1016/j.ijantimicag.2020.106057] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
There is currently increased interest in the use of the antimalarial drugs chloroquine and hydroxychloroquine for the treatment of other diseases, including cancer and viral infections such as coronavirus disease 2019 (COVID-19). However, the risk of cardiotoxic effects tends to limit their use. In this review, the effects of these drugs on the electrical and mechanical activities of the heart as well as on remodelling of cardiac tissue are presented and the underlying molecular and cellular mechanisms are discussed. The drugs can have proarrhythmic as well as antiarrhythmic actions resulting from their inhibition of ion channels, including voltage-dependent Na+ and Ca2+ channels, background and voltage-dependent K+ channels, and pacemaker channels. The drugs also exert a vagolytic effect due at least in part to a muscarinic receptor antagonist action. They also interfere with normal autophagy flux, an effect that could aggravate ischaemia/reperfusion injury or post-infarct remodelling. Most of the toxic effects occur at high concentrations, following prolonged drug administration or in the context of drug associations.
Collapse
Affiliation(s)
- Kanigula Mubagwa
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR Congo.
| |
Collapse
|
20
|
DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Clin Sci (Lond) 2020; 134:677-694. [PMID: 32167139 DOI: 10.1042/cs20200005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Excessive mitochondrial fission has been identified as the central pathogenesis of diabetic kidney disease (DKD), but the precise mechanisms remain unclear. Disulfide-bond A oxidoreductase-like protein (DsbA-L) is highly expressed in mitochondria in tubular cells of the kidney, but its pathophysiological role in DKD is unknown. Our bioinformatics analysis showed that tubular DsbA-L mRNA levels were positively associated with eGFR but negatively associated with Scr and 24h-proteinuria in CKD patients. Furthermore, the genes that were coexpressed with DsbA-L were mainly enriched in mitochondria and were involved in oxidative phosphorylation. In vivo, knockout of DsbA-L exacerbated diabetic mice tubular cell mitochondrial fragmentation, oxidative stress and renal damage. In vitro, we found that DsbA-L was localized in the mitochondria of HK-2 cells. High glucose (HG, 30 mM) treatment decreased DsbA-L expression followed by increased mitochondrial ROS (mtROS) generation and mitochondrial fragmentation. In addition, DsbA-L knockdown exacerbated these abnormalities, but this effect was reversed by overexpression of DsbA-L. Mechanistically, under HG conditions, knockdown DsbA-L expression accentuated JNK phosphorylation in HK-2 cells. Furthermore, administration of a JNK inhibitor (SP600125) or the mtROS scavenger MitoQ significantly attenuated JNK activation and subsequent mitochondrial fragmentation in DsbA-L-knockdown HK-2 cells. Additionally, the down-regulation of DsbA-L also amplified the gene and protein expression of mitochondrial fission factor (MFF) via the JNK pathway, enhancing its ability to recruit DRP1 to mitochondria. Taken together, these results link DsbA-L to alterations in mitochondrial dynamics during tubular injury in the pathogenesis of DKD and unveil a novel mechanism by which DsbA-L modifies mtROS/JNK/MFF-related mitochondrial fission.
Collapse
|
21
|
刘 刚, 门 运, 童 旭, 王 雪, 胡 淼, 姜 牧, 孙 志, 董 淑. [Role of mitochondrial fusion and fission in protective effects of dexmedetomidine against cerebral ischemia/reperfusion injury in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:463-468. [PMID: 32895131 PMCID: PMC7225099 DOI: 10.12122/j.issn.1673-4254.2020.04.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the protective effects of dexmedetomidine (DEX) against cerebral ischemia/reperfusion (I/R) injury in mice and its relation with mitochondrial fusion and fission. METHODS Male ICR mice were randomly divided into sham-operated group, I/R group, I/R+DEX group and I/R+DEX+dorsomorphin group. Mouse models of cerebral I/R injury were established by modified thread occlusion of the middle cerebral artery. DEX (50 μg/kg) was injected intraperitoneally at 30 min before cerebral ischemia, which lasted for 1 h followed by reperfusion for 24 h. The neurobehavioral deficits of the mice were evaluated based on Longa's scores. The volume of cerebral infarction was detected by TTC staining. The changes in mitochondrial morphology of the brain cells were observed with transmission electron microscopy. Western blotting was performed to detect the expressions of phosphorylated AMP-activated protein kinase (p-AMPK), mitochondrial fusion protein (Mfn2) and mitochondrial fission protein (p-Drp1) in the brain tissues. RESULTS DEX pretreatment significantly reduced the neurobehavioral score and the percent volume of cerebral infarction in mice with cerebral I/R injury. Treatment with dorsomorphin (an AMPK inhibitor) in addition to DEX significantly increased the neurobehavioral score and the percent volume of cerebral infarction in the mouse models. Transmission electron microscopy showed that DEX obviously reduced mitochondrial damage caused by cerebral I/R injury and restored mitochondrial morphology of the brain cells, and such effects were abolished by dorsomorphin treatment. Western blotting showed that DEX pretreatment significantly increased the expressions of p-AMPK and Mfn2 protein and decreased the expression of p-Drp1 protein in the brain tissue of the mice, and these changes were also reversed by dorsomorphin treatment. CONCLUSIONS Preconditioning with DEX produces protective effects against cerebral I/R injury in mice possibly by activating AMPK signaling to regulate mitochondrial fusion and fission in the brain cells.
Collapse
Affiliation(s)
- 刚 刘
- 蚌埠医学院第一附属医院麻醉科, 安徽 蚌埠 233030Department of Anesthesiology, First Affiliated Hospital, Bengbu Medical College, Bengbu 233030, China
| | - 运政 门
- 蚌埠医学院药学院药理学教研室, 安徽 蚌埠 233030Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 旭辉 童
- 蚌埠医学院药学院药理学教研室, 安徽 蚌埠 233030Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 雪如 王
- 蚌埠医学院药学院药理学教研室, 安徽 蚌埠 233030Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 淼 胡
- 蚌埠医学院药学院药理学教研室, 安徽 蚌埠 233030Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 牧君 姜
- 蚌埠医学院药学院药理学教研室, 安徽 蚌埠 233030Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 志鹏 孙
- 蚌埠医学院药学院2018级本科, 安徽 蚌埠 233030Grade 2018, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 淑英 董
- 蚌埠医学院药学院药理学教研室, 安徽 蚌埠 233030Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
22
|
Zhang Q, Tsuji-Hosokawa A, Willson C, Watanabe M, Si R, Lai N, Wang Z, Yuan JXJ, Wang J, Makino A. Chloroquine differentially modulates coronary vasodilation in control and diabetic mice. Br J Pharmacol 2020; 177:314-327. [PMID: 31503328 DOI: 10.1111/bph.14864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Chloroquine is a traditional medicine to treat malaria. There is increasing evidence that chloroquine not only induces phagocytosis but regulates vascular tone. Few reports investigating the effect of chloroquine on vascular responsiveness of coronary arteries have been made. In this study, we examined how chloroquine affected endothelium-dependent relaxation in coronary arteries under normal and diabetic conditions. EXPERIMENTAL APPROACH We isolated coronary arteries from mice and examined endothelium-dependent relaxation (EDR). Human coronary endothelial cells and mouse coronary endothelial cells isolated from control and diabetic mouse (TALLYHO/Jng [TH] mice, a spontaneous type 2 diabetic mouse model) were used for the molecular biological or cytosolic NO and Ca2+ measurements. KEY RESULTS Chloroquine inhibited endothelium-derived NO-dependent relaxation but had negligible effect on endothelium-derived hyperpolarization (EDH)-dependent relaxation in coronary arteries of control mice. Chloroquine significantly decreased NO production in control human coronary endothelial cells partly by phosphorylating eNOSThr495 (an inhibitory phosphorylation site of eNOS) and attenuating the rise of cytosolic Ca2+ concentration after stimulation. EDR was significantly inhibited in diabetic mice in comparison to control mice. Interestingly, chloroquine enhanced EDR in diabetic coronary arteries by, specifically, increasing EDH-dependent relaxation due partly to its augmenting effect on gap junction activity in diabetic mouse coronary endothelial cells. CONCLUSIONS AND IMPLICATIONS These data indicate that chloroquine affects vascular relaxation differently under normal and diabetic conditions. Therefore, the patients' health condition such as coronary macrovascular or microvascular disease, with or without diabetes, must be taken account into the consideration when selecting chloroquine for the treatment of malaria.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Physiology, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Conor Willson
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Makiko Watanabe
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Rui Si
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Ning Lai
- Department of Medicine, University of California, San Diego, La Jolla, California.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziyi Wang
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Medicine, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Jian Wang
- Department of Medicine, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Physiology, The University of Arizona, Tucson, Arizona.,Department of Medicine, The University of Arizona, Tucson, Arizona
| |
Collapse
|
23
|
Yang DH, Lee SY. Diabetic kidney disease: seven questions. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2020. [DOI: 10.5124/jkma.2020.63.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dong Ho Yang
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
24
|
Zheng Z, Xiang S, Wang Y, Dong Y, Li Z, Xiang Y, Bian Y, Feng B, Yang B, Weng X. NR4A1 promotes TNF‑α‑induced chondrocyte death and migration injury via activating the AMPK/Drp1/mitochondrial fission pathway. Int J Mol Med 2019; 45:151-161. [PMID: 31746366 PMCID: PMC6889925 DOI: 10.3892/ijmm.2019.4398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptor subfamily 4 group A member 1 (NR4A1)-induced chondrocyte death plays a critical role in the development of osteoarthritis through poorly defined mechanisms. The present study aimed to investigate the role of NR4A1 in regulating chondrocyte death in response to tumor necrosis factor-α (TNF-α) and cycloheximide (CHX) treatment, with a focus on mitochondrial fission and the AMP-activated protein kinase (AMPK) signaling pathway. The results demonstrated that NR4A1 was significantly upregulated in TNF-α and CHX exposed chondrocytes. Increased NR4A1 triggered mitochondrial fission via the AMPK/dynamin-related protein 1 (Drp1) pathway, resulting in mitochondrial dysfunction, and mitochondrial permeability transition pore (mPTP) opening-related cell death. Furthermore, excessive mitochondrial fission impaired chondrocyte migration through imbalance of F-actin homeo-stasis. Inhibiting NR4A1 attenuated TNF-α and CHX-induced mitochondrial fission and, thus, reduced mitochondrial dysfunction in chondrocytes, mPTP opening-related cell death and migration injury. Altogether, the present data confirmed that mitochondrial fission was involved in NR4A1-mediated chondrocyte injury via regulation of mitochondrial dysfunction, mPTP opening-induced cell death and F-actin-related migratory inhibition.
Collapse
Affiliation(s)
- Zhibo Zheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shuai Xiang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yingjie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yulei Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zeng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yongbo Xiang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yanyan Bian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Bin Feng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Bo Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
25
|
Mitochondrial Structural Changes in the Pathogenesis of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8091363. [PMID: 31480638 PMCID: PMC6780143 DOI: 10.3390/jcm8091363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
At the core of proper mitochondrial functionality is the maintenance of its structure and morphology. Physical changes in mitochondrial structure alter metabolic pathways inside mitochondria, affect mitochondrial turnover, disturb mitochondrial dynamics, and promote mitochondrial fragmentation, ultimately triggering apoptosis. In high glucose condition, increased mitochondrial fragmentation contributes to apoptotic death in retinal vascular and Müller cells. Although alterations in mitochondrial morphology have been detected in several diabetic tissues, it remains to be established in the vascular cells of the diabetic retina. From a mechanistic standpoint, our current work supports the notion that increased expression of fission genes and decreased expression of fusion genes are involved in promoting excessive mitochondrial fragmentation. While mechanistic insights are only beginning to reveal how high glucose alters mitochondrial morphology, the consequences are clearly seen as release of cytochrome c from fragmented mitochondria triggers apoptosis. Current findings raise the prospect of targeting excessive mitochondrial fragmentation as a potential therapeutic strategy for treatment of diabetic retinopathy. While biochemical and epigenetic changes have been reported to be associated with mitochondrial dysfunction, this review focuses on alterations in mitochondrial morphology, and their impact on mitochondrial function and pathogenesis of diabetic retinopathy.
Collapse
|
26
|
Lee YH, Kim SH, Kang JM, Heo JH, Kim DJ, Park SH, Sung M, Kim J, Oh J, Yang DH, Lee SH, Lee SY. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am J Physiol Renal Physiol 2019; 317:F767-F780. [PMID: 31390268 DOI: 10.1152/ajprenal.00565.2018] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We examined the effects of empagliflozin, a selective inhibitor of Na+-glucose cotransporter 2, on mitochondrial quality control and autophagy in renal tubular cells in a diabetic environment in vivo and in vitro. Human renal proximal tubular cells (hRPTCs) were incubated under high-glucose conditions. Diabetes was induced with streptozotocin in male C57BL/6J mice. Improvements in mitochondrial biogenesis and balanced fusion-fission protein expression were noted in hRPTCs after treatment with empagliflozin in high-glucose media. Empagliflozin also increased autophagic activities in renal tubular cells in the high-glucose environment, which was accompanied with mammalian target of rapamycin inhibition. Moreover, reduced mitochondrial reactive oxygen species production and decreased apoptotic and fibrotic protein expression were observed in hRPTCs after treatment with empagliflozin, even in the hyperglycemic circumstance. Importantly, empagliflozin restored AMP-activated protein kinase-α phosphorylation and normalized levels of AMP-to-ATP ratios in hRPTCs subjected to a high-glucose environment, which suggests the way that empagliflozin is involved in mitochondrial quality control. Empagliflozin effectively suppressed Na+-glucose cotransporter 2 expression and ameliorated renal morphological changes in the kidneys of streptozotocin-induced diabetic mice. Electron microscopy analysis showed that mitochondrial fragmentation was decreased and 8-hydroxy-2'-deoxyguanosine content was low in renal tubular cells of empagliflozin treatment groups compared with those of the diabetic control group. We suggest one mechanism related to the renoprotective actions of empagliflozin, which reverse mitochondrial dynamics and autophagy.
Collapse
Affiliation(s)
- Yu Ho Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang Hoon Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jun Mo Kang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jin Hyung Heo
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Dong-Jin Kim
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - Seon Hwa Park
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - MinJi Sung
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jaehee Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jisu Oh
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Dong Ho Yang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang Ho Lee
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
27
|
Liu J, Yan W, Zhao X, Jia Q, Wang J, Zhang H, Liu C, He K, Sun Z. Sirt3 attenuates post-infarction cardiac injury via inhibiting mitochondrial fission and normalization of AMPK-Drp1 pathways. Cell Signal 2018; 53:1-13. [PMID: 30219671 DOI: 10.1016/j.cellsig.2018.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/15/2023]
Abstract
Mitochondrial damage is involved in the pathogenesis of post-infarction cardiac injury. However, the upstream regulators of mitochondrial damage have not yet been identified. The aim of our study is to explore the role of Sirt3 in post-infarction cardiac injury with a particular focus on mitochondrial fission and AMPK-Drp1 pathways. Our results indicated that Sirt3 was downregulated in the progression of post-infarction cardiac injury. Overexpression of Sirt3 attenuated cardiac fibrosis, sustained myocardial function, inhibited the inflammatory response, and reduced cardiomyocyte death. Functional studies illustrated that chronic post-infarction cardiac injury was characterized by increased mitochondrial fission, which triggered mitochondrial oxidative stress, metabolic disorders, mitochondrial potential reduction and caspase-9 apoptosis in cardiomyocytes. However, Sirt3 overexpression attenuated mitochondrial fission and thus preserved mitochondrial homeostasis and cardiomyocyte viability. Furthermore, our results confirmed that Sirt3 repressed mitochondrial fission via normalizing AMPK-Drp1 pathways. Inhibition of AMPK activity re-activated Drp1 and thus abrogated the inhibitory effect of Sirt3 on mitochondrial fission. Altogether, our results indicate that Sirt3 enhancement could be an effective approach to retard the development of post-infarction cardiac injury via disrupting mitochondrial fission and normalizing the AMPK-Drp1 axis.
Collapse
Affiliation(s)
- Jixuan Liu
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Yan
- Department of Geriatric Medicine, The First Affiliated Hospital of Soochow University, Soochow 215000, China
| | - Xiaojing Zhao
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China
| | - Qian Jia
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China
| | - Jinda Wang
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Huawei Zhang
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunlei Liu
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China
| | - Kunlun He
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China.
| | - Zhijun Sun
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|