1
|
Černoša A, Gostinčar C, Holcar M, Kostanjšek R, Lenassi M, Gunde-Cimerman N. The impact of Aureobasidium melanogenum cells and extracellular vesicles on human cell lines. Sci Rep 2025; 15:1413. [PMID: 39789015 PMCID: PMC11718310 DOI: 10.1038/s41598-024-84189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Aureobasidium melanogenum is a black yeast-like fungus that occurs frequently both in nature and in domestic environments. It is becoming increasingly important as an opportunistic pathogen. Nevertheless, its effect on human cells has not yet been studied. In this study, we investigated the effect of A. melanogenum cells and extracellular vesicles (EVs) on human cell lines A549 (human lung cells), HDFa (human dermal fibroblasts), and SH-SY5Y (human neuroblastoma cells). Scanning electron microscopy (SEM) showed no direct interaction between A. melanogenum cells and human cell lines, but there were some changes in HDFa cells. As a possible cause for this change, we tested the cytotoxic effect of EVs from A. melanogenum on the same cell lines. We isolated EVs from the fungus and prepared three different pools: a non-melanin pool (containing mainly EVs), a melanin pool (containing mainly melanin nanoparticles), and a total pool (containing both EVs and melanin nanoparticles). All three pools were characterized and then added to human cell lines to test their cytotoxicity. Unlike in some other fungal opportunistic pathogens, no effects of fungal EVs on human cell viability were observed. Therefore, the opportunistic potential of A. melanogenum remains only partially understood.
Collapse
Affiliation(s)
- Anja Černoša
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
- InnoRenew CoE, Livade 6a, Izola, 6310, Slovenia.
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2025; 62:533-556. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
3
|
Sasikumar J, P P K, Naik B, Das SP. A greener side of health care: Revisiting phytomedicine against the human fungal pathogen Malassezia. Fitoterapia 2024; 179:106243. [PMID: 39389474 DOI: 10.1016/j.fitote.2024.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Malassezia species are commensal fungi residing on the skin and in the gut of humans and animals. Yet, under certain conditions, they become opportunistic pathogens leading to various clinical conditions including dermatological disorders. The emergence of drug resistance and adverse effects associated with conventional antifungal agents has propelled the search for alternative treatments, among which phytomedicine stands out prominently. Phytochemicals, including phenolic acids, flavonoids, and terpenoids, demonstrate potential antifungal activity against Malassezia by inhibiting its growth, adhesion, and biofilm formation. Furthermore, the multifaceted therapeutic properties of phytomedicine (including anti-fungal and, antioxidant properties) contribute to its efficacy in alleviating symptoms associated with Malassezia infections. Despite these promising prospects, several challenges hinder the widespread adoption of phytomedicine in clinical practice mostly since the mechanistic studies and controlled experiments to prove efficacy have not been done. Issues include standardization of herbal extracts, variable bioavailability, and limited clinical evidence. Hence, proper regulatory constraints necessitate comprehensive research endeavors and regulatory frameworks to harness the full therapeutic potential of phytomedicine. In conclusion, while phytomedicine holds immense promise as an alternative or adjunctive therapy against Malassezia, addressing these challenges is imperative to optimize its efficacy and ensure its integration into mainstream medical care. In this review we provide an update on the potential phytomedicines in combating Malassezia-related ailments, emphasizing its diverse chemical constituents and mechanisms of action.
Collapse
Affiliation(s)
- Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Keerthana P P
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
4
|
Tuor M, Stappers MHT, Desgardin A, Ruchti F, Sparber F, Orr SJ, Gow NAR, LeibundGut-Landmann S. Card9 and MyD88 differentially regulate Th17 immunity to the commensal yeast Malassezia in the murine skin. Mucosal Immunol 2024:S1933-0219(24)00112-0. [PMID: 39579986 DOI: 10.1016/j.mucimm.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The fungal community of the skin microbiome is dominated by a single genus, Malassezia. Besides its symbiotic lifestyle at the host interface, this commensal yeast has also been associated with diverse inflammatory skin diseases in humans and pet animals. Stable colonization is maintained by antifungal type 17 immunity. The mechanisms driving Th17 responses to Malassezia remain, however, unclear. Here, we show that the C-type lectin receptors Mincle, Dectin-1, and Dectin-2 recognize conserved patterns in the cell wall of Malassezia and induce dendritic cell activation in vitro, while only Dectin-2 is required for Th17 activation during experimental skin colonization in vivo. In contrast, Toll-like receptor recognition was redundant in this context. Instead, inflammatory IL-1 family cytokines signaling via MyD88 were also implicated in Th17 activation in a T cell-intrinsic manner. Taken together, we characterized the pathways contributing to protective immunity against the most abundant member of the skin mycobiome. This knowledge contributes to the understanding of barrier immunity and its regulation by commensals and is relevant considering how aberrant immune responses are associated with severe skin pathologies.
Collapse
Affiliation(s)
- Meret Tuor
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Mark H T Stappers
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alice Desgardin
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Florian Sparber
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Selinda J Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland; Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
5
|
Liu X, Ling Z, Cheng Y, Wu L, Shao L, Gao J, Lei W, Zhu Z, Ding W, Song Q, Zhao L, Jin G. Oral fungal dysbiosis and systemic immune dysfunction in Chinese patients with schizophrenia. Transl Psychiatry 2024; 14:475. [PMID: 39572530 PMCID: PMC11582559 DOI: 10.1038/s41398-024-03183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Oral microbial dysbiosis contributes to the development of schizophrenia (SZ). While numerous studies have investigated alterations in the oral bacterial microbiota among SZ patients, investigations into the fungal microbiota, another integral component of the oral microbiota, are scarce. In this cross-sectional study, we enrolled 118 Chinese patients with SZ and 97 age-matched healthy controls (HCs) to evaluate the oral fungal microbiota from tongue coating samples using internal transcribed spacer 1 amplicon sequencing and assess host immunity via multiplex immunoassays. Our findings revealed that SZ patients exhibited reduced fungal richness and significant differences in β-diversity compared to HCs. Within the oral fungal communities, we identified two distinct fungal clusters (mycotypes): Candida and Malassezia, with SZ patients showing increased Malassezia and decreased Candida levels. These key functional oral fungi may serve as potential diagnostic biomarkers for SZ. Furthermore, SZ patients displayed signs of immunological dysfunction, characterized by elevated levels of pro-inflammatory cytokines such as IL-6 and TNF-α, and chemokines including MIP-1α and MCP-1. Importantly, Malassezia mycotype correlated positively with peripheral pro-inflammatory cytokines, while Candida mycotype exhibited a negative correlation with these cytokines. In conclusion, we have demonstrated, for the first time, the presence of altered oral fungal communities and systemic immune dysfunction in Chinese SZ patients compared to HCs, providing novel insights into the potential role of oral fungi as biomarkers and the broader implications for understanding SZ pathogenesis.
Collapse
Affiliation(s)
- Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Lingbin Wu
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Li Shao
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Longyou Zhao
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Guolin Jin
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
6
|
Xu J, Zhao Y, Zhou Y, Dai S, Zhu N, Meng Q, Fan S, Zhao W, Yuan X. Fungal Extracellular Vesicle Proteins with Potential in Biological Interaction. Molecules 2024; 29:4012. [PMID: 39274860 PMCID: PMC11396447 DOI: 10.3390/molecules29174012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like structures composed of lipid bilayers, which can be divided into apoptotic bodies, microbubbles and exosomes. They are nanoparticles used for the exchange of information between cells. EVs contains many substances, including protein. With the development of proteomics, we know more about the types and functions of protein in vesicles. The potential functions of proteins in the envelope are mainly discussed, including cell wall construction, fungal virulence transmission, signal transmission and redox reactions, which provides a new perspective for studying the interaction mechanism between fungi and other organisms. The fungal protein markers of EVs are also summarized, which provided an exploration tool for studying the mechanism of vesicles. In addition, the possible role of immune protein in the EVs in the treatment of human diseases is also discussed, which provides new ideas for vaccine development.
Collapse
Affiliation(s)
- Jingyan Xu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yujin Zhao
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yanguang Zhou
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Shijie Dai
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Na Zhu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Qingling Meng
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Sen Fan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Weichun Zhao
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| |
Collapse
|
7
|
Tuor M, Stappers MH, Ruchti F, Desgardin A, Sparber F, Orr SJ, Gow NA, LeibundGut-Landmann S. Card9 and MyD88 differentially regulate Th17 immunity to the commensal yeast Malassezia in the murine skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603211. [PMID: 39071334 PMCID: PMC11275786 DOI: 10.1101/2024.07.12.603211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The fungal community of the skin microbiome is dominated by a single genus, Malassezia. Besides its symbiotic lifestyle at the host interface, this commensal yeast has also been associated with diverse inflammatory skin diseases in humans and pet animals. Stable colonization is maintained by antifungal type 17 immunity. The mechanisms driving Th17 responses to Malassezia remain, however, unclear. Here, we show that the C-type lectin receptors Mincle, Dectin-1, and Dectin-2 recognize conserved patterns in the cell wall of Malassezia and induce dendritic cell activation in vitro, while only Dectin-2 is required for Th17 activation during experimental skin colonization in vivo. In contrast, Toll-like receptor recognition was redundant in this context. Instead, inflammatory IL-1 family cytokines signaling via MyD88 were also implicated in Th17 activation in a T cell-intrinsic manner. Taken together, we characterized the pathways contributing to protective immunity against the most abundant member of the skin mycobiome. This knowledge contributes to the understanding of barrier immunity and its regulation by commensals and is relevant considering how aberrant immune responses are associated with severe skin pathologies.
Collapse
Affiliation(s)
- Meret Tuor
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Mark H.T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Alice Desgardin
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Florian Sparber
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Selinda J. Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
8
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
9
|
Sayson SG, Ashbaugh A, Cushion MT. Extracellular vesicles from Pneumocystis carinii-infected rats impair fungal viability but are dispensable for macrophage functions. Microbiol Spectr 2024; 12:e0365323. [PMID: 38236033 PMCID: PMC10845964 DOI: 10.1128/spectrum.03653-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Pneumocystis spp. are host obligate fungal pathogens that can cause severe pneumonia in mammals and rely heavily on their host for essential nutrients. The lack of a sustainable in vitro culture system poses challenges in understanding their metabolism, and the acquisition of essential nutrients from host lungs remains unexplored. Transmission electron micrographs show that extracellular vesicles (EVs) are found near Pneumocystis spp. within the lung. We hypothesized that EVs transport essential nutrients to the fungi during infection. To investigate this, EVs from P. carinii- and P. murina-infected rodents were biochemically and functionally characterized. These EVs contained host proteins involved in cellular, metabolic, and immune processes as well as proteins with homologs found in other fungal EV proteomes, indicating that Pneumocystis may release EVs. Notably, EV uptake by P. carinii indicated their potential involvement in nutrient acquisition and a possibility for using engineered EVs for efficient therapeutic delivery. However, EVs added to P. carinii in vitro did not show increased growth or viability, implying that additional nutrients or factors are necessary to support their metabolic requirements. Exposure of macrophages to EVs increased proinflammatory cytokine levels but did not affect macrophages' ability to kill or phagocytose P. carinii. These findings provide vital insights into P. carinii and host EV interactions, yet the mechanisms underlying P. carinii's survival in the lung remain uncertain. These studies are the first to isolate, characterize, and functionally assess EVs from Pneumocystis-infected rodents, promising to enhance our understanding of host-pathogen dynamics and therapeutic potential.IMPORTANCEPneumocystis spp. are fungal pathogens that can cause severe pneumonia in mammals, relying heavily on the host for essential nutrients. The absence of an in vitro culture system poses challenges in understanding their metabolism, and the acquisition of vital nutrients from host lungs remains unexplored. Extracellular vesicles (EVs) are found near Pneumocystis spp., and it is hypothesized that these vesicles transport nutrients to the pathogenic fungi. Pneumocystis proteins within the EVs showed homology to other fungal EV proteomes, suggesting that Pneumocystis spp. release EVs. While EVs did not significantly enhance P. carinii growth in vitro, P. carinii displayed active uptake of these vesicles. Moreover, EVs induced proinflammatory cytokine production in macrophages without compromising their ability to combat P. carinii. These findings provide valuable insights into EV dynamics during host-pathogen interactions in Pneumocystis pneumonia. However, the precise underlying mechanisms remain uncertain. This research also raises the potential for engineered EVs in therapeutic applications.
Collapse
Affiliation(s)
- Steven G. Sayson
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Alan Ashbaugh
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Nenciarini S, Amoriello R, Bacci G, Cerasuolo B, Di Paola M, Nardini P, Papini A, Ballerini C, Cavalieri D. Yeast strains isolated from fermented beverage produce extracellular vesicles with anti-inflammatory effects. Sci Rep 2024; 14:730. [PMID: 38184708 PMCID: PMC10771474 DOI: 10.1038/s41598-024-51370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayered particles, containing various biomolecules, including nucleic acids, lipids, and proteins, released by cells from all the domains of life and performing multiple communication functions. Evidence suggests that the interaction between host immune cells and fungal EVs induces modulation of the immune system. Most of the studies on fungal EVs have been conducted in the context of fungal infections; therefore, there is a knowledge gap in what concerns the production of EVs by yeasts in other contexts rather than infection and that may affect human health. In this work, we characterized EVs obtained by Saccharomyces cerevisiae and Pichia fermentans strains isolated from a fermented milk product with probiotic properties. The immunomodulation abilities of EVs produced by these strains have been studied in vitro through immune assays after internalization from human monocyte-derived dendritic cells. Results showed a significant reduction in antigen presentation activity of dendritic cells treated with the fermented milk EVs. The small RNA fraction of EVs contained mainly yeast mRNA sequences, with a few molecular functions enriched in strains of two different species isolated from the fermented milk. Our results suggest that one of the mechanisms behind the anti-inflammatory properties of probiotic foods could be mediated by the interactions of human immune cells with yeast EVs.
Collapse
Affiliation(s)
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | | | - Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
11
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
12
|
Sayson SG, Ashbaugh A, Cushion MT. Extracellular Vesicles from Pneumocystis carinii -Infected Rats Impair Fungal Viability but are Dispensable for Macrophage Functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558454. [PMID: 37786700 PMCID: PMC10541577 DOI: 10.1101/2023.09.19.558454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Pneumocystis spp. are host obligate fungal pathogens that can cause severe pneumonia in mammals and rely heavily on their host for essential nutrients. The lack of a sustainable in vitro culture system poses challenges in understanding their metabolism and the acquisition of essential nutrients from host lungs remains unexplored. Transmission electron micrographs show Extracellular Vesicles (EVs) are found near Pneumocystis spp. within the lung. We hypothesized that EVs transport essential nutrients to the fungi during infection. To investigate this, EVs from P. carinii and P. murina infected rodents were biochemically and functionally characterized. These EVs contained host proteins involved in cellular, metabolic, and immune processes as well as proteins with homologs found in other fungal EV proteomes, indicating Pneumocystis may release EVs. Notably, EV uptake by P. carinii indicated their potential involvement in nutrient acquisition and indicate a possibility for using engineered EVs for efficient therapeutic delivery. However, EVs added to P. carinii in vitro , did not show increased growth or viability, implying that additional nutrients or factors are necessary to support their metabolic requirements. Exposure of macrophages to EVs increased proinflammatory cytokine levels, but did not affect macrophages' ability to kill or phagocytose P. carinii . These findings provide vital insights into P. carinii and host EV interactions, yet the mechanisms underlying P. carinii 's survival in the lung remain uncertain. These studies are the first to isolate, characterize, and functionally assess EVs from Pneumocystis -infected rodents, promising to enhance our understanding of host-pathogen dynamics and therapeutic potential.
Collapse
|
13
|
Liu J, Hu X. Fungal extracellular vesicle-mediated regulation: from virulence factor to clinical application. Front Microbiol 2023; 14:1205477. [PMID: 37779707 PMCID: PMC10540631 DOI: 10.3389/fmicb.2023.1205477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Invasive fungal disease (IFD) poses a significant threat to immunocompromised patients and remains a global challenge due to limited treatment options, high mortality and morbidity rates, and the emergence of drug-resistant strains. Despite advancements in antifungal agents and diagnostic techniques, the lack of effective vaccines, standardized diagnostic tools, and efficient antifungal drugs contributes to the ongoing impact of invasive fungal infections (IFI). Recent studies have highlighted the presence of extracellular vesicles (EVs) released by fungi carrying various components such as enzymes, lipids, nucleic acids, and virulence proteins, which play roles in both physiological and pathological processes. These fungal EVs have been shown to interact with the host immune system during the development of fungal infections whereas their functional role and potential application in patients are not yet fully understood. This review summarizes the current understanding of the biologically relevant findings regarding EV in host-pathogen interaction, and aim to describe our knowledge of the roles of EV as diagnostic tools and vaccine vehicles, offering promising prospects for the treatment of IFI patients.
Collapse
Affiliation(s)
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
14
|
Ullah A, Huang Y, Zhao K, Hua Y, Ullah S, Rahman MU, Wang J, Wang Q, Hu X, Zheng L. Characteristics and potential clinical applications of the extracellular vesicles of human pathogenic Fungi. BMC Microbiol 2023; 23:227. [PMID: 37598156 PMCID: PMC10439556 DOI: 10.1186/s12866-023-02945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.
Collapse
Affiliation(s)
- Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kening Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shafi Ullah
- Department of pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Lai Y, Jiang B, Hou F, Huang X, Ling B, Lu H, Zhong T, Huang J. The emerging role of extracellular vesicles in fungi: a double-edged sword. Front Microbiol 2023; 14:1216895. [PMID: 37533824 PMCID: PMC10390730 DOI: 10.3389/fmicb.2023.1216895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Fungi are eukaryotic microorganisms found in nature, which can invade the human body and cause tissue damage, inflammatory reactions, organ dysfunctions, and diseases. These diseases can severely damage the patient's body systems and functions, leading to a range of clinical symptoms that can be life-threatening. As the incidence of invasive fungal infections has progressively increased in the recent years, a wealth of evidence has confirmed the "double-edged sword" role of fungal extracellular vesicles (EVs) in intercellular communication and pathogen-host interactions. Fungal EVs act as mediators of cellular communication, affecting fungal-host cell interactions, delivering virulence factors, and promoting infection. Fungal EVs can also have an induced protective effect, affecting fungal growth and stimulating adaptive immune responses. By integrating recent studies, we discuss the role of EVs in fungi, providing strong theoretical support for the early prevention and treatment of invasive fungal infections. Finally, we highlight the feasibility of using fungal EVs as drug carriers and in vaccine development.
Collapse
Affiliation(s)
- Yi Lai
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangpeng Hou
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinhong Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongfei Lu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Ugochukwu ICI, Rhimi W, Chebil W, Rizzo A, Tempesta M, Giusiano G, Tábora RFM, Otranto D, Cafarchia C. Part 2: Understanding the role of Malassezia spp. in skin disorders: pathogenesis of Malassezia associated skin infections. Expert Rev Anti Infect Ther 2023; 21:1245-1257. [PMID: 37883035 DOI: 10.1080/14787210.2023.2274500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Malassezia is a major component of the skin microbiome, a lipophilic symbiotic organism of the mammalian skin, which can switch to opportunistic pathogens triggering multiple dermatological disorders in humans and animals. This phenomenon is favored by endogenous and exogenous host predisposing factors, which may switch Malassezia from a commensal to a pathogenic phenotype. AREA COVERED This review summarizes and discusses the most recent literature on the pathogenesis of Malassezia yeasts, which ultimately results in skin disorders with different clinical presentation. A literature search of Malassezia pathogenesis was performed via PubMed and Google scholar (up to May 2023), using the following keywords: Pathogenesis and Malassezia;host risk factors and Malassezia, Malassezia and skin disorders; Malassezia and virulence factors: Malassezia and metabolite production; Immunology and Malassezia. EXPERT OPINION Malassezia yeasts can maintain skin homeostasis being part of the cutaneous mycobiota; however, when the environmental or host conditions change, these yeasts are endowed with a remarkable plasticity and adaptation by modifying their metabolism and thus contributing to the appearance or aggravation of human and animal skin disorders.
Collapse
Affiliation(s)
- Iniobong Chukwuebuka Ikenna Ugochukwu
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Wafa Rhimi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Wissal Chebil
- Laboratory of Medical and Molecular Parasitology-Mycology, Department of Clinical Biology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Antonio Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Gustavo Giusiano
- Departamento de Micología, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, Resistencia, Argentina
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| |
Collapse
|
17
|
Yan D, Li M, Si W, Ni S, Liu X, Chang Y, Guo X, Wang J, Bai J, Chen Y, Jia H, Zhang T, Wu M, Song X, Tian Z, Yu L. Haze Exposure Changes the Skin Fungal Community and Promotes the Growth of Talaromyces Strains. Microbiol Spectr 2023; 11:e0118822. [PMID: 36507683 PMCID: PMC10269824 DOI: 10.1128/spectrum.01188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Haze pollution has been a public health issue. The skin microbiota, as a component of the first line of defense, is disturbed by environmental pollutants, which may have an impact on human health. A total of 74 skin samples from healthy students were collected during haze and nonhaze days in spring and winter. Significant differences of skin fungal community composition between haze and nonhaze days were observed in female and male samples in spring and male samples in winter based on unweighted UniFrac distance analysis. Phylogenetic diversity whole-tree indices and observed features were significantly increased during haze days in male samples in winter compared to nonhaze days, but no significant difference was observed in other groups. Dothideomycetes, Capnodiales, Mycosphaerellaceae, etc. were significantly enriched during nonhaze days, whereas Trichocomaceae, Talaromyces, and Pezizaceae were significantly enriched during haze days. Thus, five Talaromyces strains were isolated, and an in vitro culture experiment revealed that the growth of representative Talaromyces strains was increased at high concentrations of particulate matter, confirming the sequencing results. Furthermore, during haze days, the fungal community assembly was better fitted to a niche-based assembly model than during nonhaze days. Talaromyces enriched during haze days deviated from the neutral assembly process. Our findings provided a comprehensive characterization of the skin fungal community during haze and nonhaze days and elucidated novel insights into how haze exposure influences the skin fungal community. IMPORTANCE Skin fungi play an important role in human health. Particulate matter (PM), the main haze pollutant, has been a public environmental threat. However, few studies have assessed the effects of air pollutants on skin fungi. Here, haze exposure influenced the diversity and composition of the skin fungal community. In an in vitro experiment, a high concentration of PM promoted the growth of Talaromyces strains. The fungal community assembly is better fitted to a niche-based assembly model during haze days. We anticipate that this study may provide new insights on the role of haze exposure disturbing the skin fungal community. It lays the groundwork for further clarifying the association between the changes of the skin fungal community and adverse health outcomes. Our study is the first to report the changes in the skin fungal community during haze and nonhaze days, which expands the understanding of the relationship between haze and skin fungi.
Collapse
Affiliation(s)
- Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Min Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wenhao Si
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Dermatology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Shijun Ni
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yahan Chang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaochan Guo
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jingjing Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie Bai
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuanhang Chen
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Haoyue Jia
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Minna Wu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiangfeng Song
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhongwei Tian
- Department of Dermatology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Corzo Leon DE, Scheynius A, MacCallum DM, Munro CA. Malassezia sympodialis Mala s 1 allergen is a potential KELCH protein that cross reacts with human skin. FEMS Yeast Res 2023; 23:foad028. [PMID: 37188635 PMCID: PMC10281499 DOI: 10.1093/femsyr/foad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
Malassezia are the dominant commensal yeast species of the human skin microbiota and are associated with inflammatory skin diseases, such as atopic eczema (AE). The Mala s 1 allergen of Malassezia sympodialis is a β-propeller protein, inducing both IgE and T-cell reactivity in AE patients. We demonstrate by immuno-electron microscopy that Mala s 1 is mainly located in the M. sympodialis yeast cell wall. An anti-Mala s 1 antibody did not inhibit M. sympodialis growth suggesting Mala s 1 may not be an antifungal target. In silico analysis of the predicted Mala s 1 protein sequence identified a motif indicative of a KELCH protein, a subgroup of β-propeller proteins. To test the hypothesis that antibodies against Mala s 1 cross-react with human skin (KELCH) proteins we examined the binding of the anti-Mala s 1 antibody to human skin explants and visualized binding in the epidermal skin layer. Putative human targets recognized by the anti-Mala s 1 antibody were identified by immunoblotting and proteomics. We propose that Mala s 1 is a KELCH-like β-propeller protein with similarity to human skin proteins. Mala s 1 recognition may trigger cross-reactive responses that contribute to skin diseases associated with M. sympodialis.
Collapse
Affiliation(s)
- Dora E Corzo Leon
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Donna M MacCallum
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Carol A Munro
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
19
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
20
|
Szczepańska M, Blicharz L, Nowaczyk J, Makowska K, Goldust M, Waśkiel-Burnat A, Czuwara J, Samochocki Z, Rudnicka L. The Role of the Cutaneous Mycobiome in Atopic Dermatitis. J Fungi (Basel) 2022; 8:1153. [PMID: 36354920 PMCID: PMC9695942 DOI: 10.3390/jof8111153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/28/2024] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disorder characterized by eczematous lesions, itch, and a significant deterioration in the quality of life. Recently, microbiome dysbiosis has been implicated in the pathogenesis of atopic dermatitis. Changes in the fungal microbiome (also termed mycobiome) appear to be an important factor influencing the clinical picture of this entity. This review summarizes the available insights into the role of the cutaneous mycobiome in atopic dermatitis and the new research possibilities in this field. The prevalence and characteristics of key fungal species, the most important pathogenesis pathways, as well as classic and emerging therapies of fungal dysbiosis and infections complicating atopic dermatitis, are presented.
Collapse
Affiliation(s)
- Milena Szczepańska
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Leszek Blicharz
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Joanna Nowaczyk
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Karolina Makowska
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany
| | - Anna Waśkiel-Burnat
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Zbigniew Samochocki
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| |
Collapse
|
21
|
Valdez AF, Miranda DZ, Guimarães AJ, Nimrichter L, Nosanchuk JD. Pathogenicity & Virulence of Histoplasma capsulatum - a multifaceted organism adapted to intracellular environments. Virulence 2022; 13:1900-1919. [PMID: 36266777 DOI: 10.1080/21505594.2022.2137987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Histoplasmosis is a systemic mycosis caused by the thermally dimorphic fungus Histoplasma capsulatum. Although healthy individuals can develop histoplasmosis, the disease is particularly life-threatening in immunocompromised patients, with a wide range of clinical manifestations depending on the inoculum and virulence of the infecting strain. In this review, we discuss the established virulence factors and pathogenesis traits that make H. capsulatum highly adapted to a wide variety of hosts, including mammals. Understanding and integrating these mechanisms is a key step towards devising new preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro F Valdez
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Daniel Zamith Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Allan Jefferson Guimarães
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia - MIP, Niterói, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
22
|
Michel LV, Gaborski T. Outer membrane vesicles as molecular biomarkers for Gram-negative sepsis: Taking advantage of nature's perfect packages. J Biol Chem 2022; 298:102483. [PMID: 36108741 PMCID: PMC9576880 DOI: 10.1016/j.jbc.2022.102483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/13/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis is an often life-threatening response to infection, occurring when host proinflammatory immune responses become abnormally elevated and dysregulated. To diagnose sepsis, the patient must have a confirmed or predicted infection, as well as other symptoms associated with the pathophysiology of sepsis. However, a recent study found that a specific causal organism could not be determined in the majority (70.1%) of sepsis cases, likely due to aggressive antibiotics or localized infections. The timing of a patient's sepsis diagnosis is often predictive of their clinical outcome, underlining the need for a more definitive molecular diagnostic test. Here, we outline the advantages and challenges to using bacterial outer membrane vesicles (OMVs), nanoscale spherical buds derived from the outer membrane of Gram-negative bacteria, as a diagnostic biomarker for Gram-negative sepsis. Advantages include OMV abundance, their robustness in the presence of antibiotics, and their unique features derived from their parent cell that could allow for differentiation between bacterial species. Challenges include the rigorous purification methods required to isolate OMVs from complex biofluids and the additional need to separate OMVs from similarly sized extracellular vesicles, which can share physical properties with OMVs.
Collapse
Affiliation(s)
- Lea Vacca Michel
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA.
| | - Thomas Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
23
|
Amatuzzi RF, Zamith-Miranda D, Munhoz da Rocha IF, Lucena ACR, de Toledo Martins S, Streit R, Staats CC, Trentin G, Almeida F, Rodrigues ML, Nosanchuk JD, Alves LR. Caspofungin Affects Extracellular Vesicle Production and Cargo in Candida auris. J Fungi (Basel) 2022; 8:990. [PMID: 36294557 PMCID: PMC9605528 DOI: 10.3390/jof8100990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Antifungal resistance has become more frequent, either due to the emergence of naturally resistant species or the development of mechanisms that lead to resistance in previously susceptible species. Among these fungal species of global threat, Candida auris stands out for commonly being highly resistant to antifungal drugs, and some isolates are pan-resistant. The rate of mortality linked to C. auris infections varies from 28% to 78%. In this study, we characterized C. auris extracellular vesicles (EVs) in the presence of caspofungin, an echinocandin, which is the recommended first line antifungal for the treatment of infections due to this emerging pathogen. Furthermore, we also analyzed the protein and RNA content of EVs generated by C. auris cultivated with or without treatment with caspofungin. We observed that caspofungin led to the increased production of EVs, and treatment also altered the type and quantity of RNA molecules and proteins enclosed in the EVs. There were distinct classes of RNAs in the EVs with ncRNAs being the most identified molecules, and tRNA-fragments (tRFs) were abundant in each of the strains studied. We also identified anti-sense RNAs, varying from 21 to 55 nt in length. The differentially abundant mRNAs detected in EVs isolated from yeast subjected to caspofungin treatment were related to translation, nucleosome core and cell wall. The differentially regulated proteins identified in the EVs produced during caspofungin treatment were consistent with the results observed with the RNAs, with the enriched terms being related to translation and cell wall. Our study adds new information on how an echinocandin can affect the EV pathway, which is associated with the yeast cell being able to evade treatment and persist in the host. The ability of C. auris to efficiently alter the composition of EVs may represent a mechanism for the fungus to mitigate the effects of antifungal agents.
Collapse
Affiliation(s)
- Rafaela F. Amatuzzi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Aline C. R. Lucena
- Laboratory for Applied Sciences and Technology in Health, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| | - Sharon de Toledo Martins
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| | - Rodrigo Streit
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
| | - Charley C. Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Marcio L. Rodrigues
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
- Microbiology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lysangela R. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| |
Collapse
|
24
|
Hobi S, Cafarchia C, Romano V, Barrs VR. Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals. J Fungi (Basel) 2022; 8:jof8070708. [PMID: 35887463 PMCID: PMC9324274 DOI: 10.3390/jof8070708] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Malassezia spp. are commensals of the skin, oral/sinonasal cavity, lower respiratory and gastrointestinal tract. Eighteen species have been recovered from humans, other mammals and birds. They can also be isolated from diverse environments, suggesting an evolutionary trajectory of adaption from an ecological niche in plants and soil to the mucocutaneous ecosystem of warm-blooded vertebrates. In humans, dogs and cats, Malassezia-associated dermatological conditions share some commonalities. Otomycosis is common in companion animals but is rare in humans. Systemic infections, which are increasingly reported in humans, have yet to be recognized in animals. Malassezia species have also been identified as pathogenetic contributors to some chronic human diseases. While Malassezia species are host-adapted, some species are zoophilic and can cause fungemia, with outbreaks in neonatal intensive care wards associated with temporary colonization of healthcare worker’s hands from contact with their pets. Although standardization is lacking, susceptibility testing is usually performed using a modified broth microdilution method. Antifungal susceptibility can vary depending on Malassezia species, body location, infection type, disease duration, presence of co-morbidities and immunosuppression. Antifungal resistance mechanisms include biofilm formation, mutations or overexpression of ERG11, overexpression of efflux pumps and gene rearrangements or overexpression in chromosome 4.
Collapse
Affiliation(s)
- Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Valentina Romano
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| |
Collapse
|
25
|
The human fungal pathogen Malassezia and its role in cancer. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Chronic Diseases Associated with Malassezia Yeast. J Fungi (Basel) 2021; 7:jof7100855. [PMID: 34682276 PMCID: PMC8540640 DOI: 10.3390/jof7100855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023] Open
Abstract
Malassezia are a lipid-dependent basidiomycetous yeast of the normal skin microbiome, although Malassezia DNA has been recently detected in other body sites and has been associated with certain chronic human diseases. This new perspective raises many questions. Are these yeasts truly present in the investigated body site or were they contaminated by other body sites, adjacent or not? Does this DNA contamination come from living or dead yeast? If these yeasts are alive, do they belong to the resident mycobiota or are they transient colonizers which are not permanently established within these niches? Finally, are these yeasts associated with certain chronic diseases or not? In an attempt to shed light on this knowledge gap, we critically reviewed the 31 published studies focusing on the association of Malassezia spp. with chronic human diseases, including psoriasis, atopic dermatitis (AD), chronic rhinosinusitis (CRS), asthma, cystic fibrosis (CF), HIV infection, inflammatory bowel disease (IBD), colorectal cancer (CRC), and neurodegenerative diseases.
Collapse
|
27
|
Campos RMS, Jannuzzi GP, Ikeda MAK, de Almeida SR, Ferreira KS. Extracellular Vesicles From Sporothrix brasiliensis Yeast Cells Increases Fungicidal Activity in Macrophages. Mycopathologia 2021; 186:807-818. [PMID: 34498138 DOI: 10.1007/s11046-021-00585-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/10/2021] [Indexed: 12/30/2022]
Abstract
Sporotrichosis is a subcutaneous mycosis and is distributed throughout the world, although most cases belong to endemic regions with a warmer climate such as tropical and subtropical areas. The infection occurs mainly by traumatic inoculation of propagules. Similarly, to other organisms, Sporothrix brasiliensis display many biological features that aid in its ability to infect the host, such as extracellular vesicles, bilayered biological structures that provides communication between host cells and between fungi cells themselves. Recently, research on Sporothrix complex have been focused on finding new molecules and components with potential for therapeutic approaches. Here, we study the relationship among EVs and the host's macrophages as well as their role during infection to assess whether these vesicles are helping the fungi or inducing a protective effect on mice during the infection. We found that after cocultivation with different concentrations of purified yeasts EVs from Sb, J774 macrophages displayed an increased fungicidal activity (Phagocytic Index) resulting in lower colony-forming units the more EVs were added, without jeopardizing the viability of the macrophages. Interleukins IL-6, IL-10, and IL-12 were measured during the infection period, showing elevated levels of IL-12 and IL-6 in a dose-dependent manner, but no significant change for IL-10. We also assessed the expression of important molecules in the immune response, such as MHC class II and the immunoglobulin CD86. Both these molecules were overexpressed in Sb yeasts infected mice. Our results indicate that EVs play a protective role during Sporothrix brasiliensis infections.
Collapse
Affiliation(s)
| | | | | | | | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil.
| |
Collapse
|
28
|
Comparative Molecular and Immunoregulatory Analysis of Extracellular Vesicles from Candida albicans and Candida auris. mSystems 2021; 6:e0082221. [PMID: 34427507 PMCID: PMC8407381 DOI: 10.1128/msystems.00822-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida auris is a recently described multidrug-resistant pathogenic fungus that is increasingly responsible for health care-associated outbreaks across the world. Bloodstream infections of this fungus cause death in up to 70% of cases. Aggravating this scenario, the disease-promoting mechanisms of C. auris are poorly understood. Fungi release extracellular vesicles (EVs) that carry a broad range of molecules, including proteins, lipids, carbohydrates, pigments, and RNA, many of which are virulence factors. Here, we carried out a comparative molecular characterization of C. auris and Candida albicans EVs and evaluated their capacity to modulate effector mechanisms of host immune defense. Using proteomics, lipidomics, and transcriptomics, we found that C. auris released EVs with payloads that were significantly different from those of EVs released by C. albicans. EVs released by C. auris potentiated the adhesion of this yeast to an epithelial cell monolayer, while EVs from C. albicans had no effect. C. albicans EVs primed macrophages for enhanced intracellular yeast killing, whereas C. auris EVs promoted survival of the fungal cells. Moreover, EVs from both C. auris and C. albicans induced the activation of bone marrow-derived dendritic cells. Together, our findings show distinct profiles and properties of EVs released by C. auris and by C. albicans and highlight the potential contribution of C. auris EVs to the pathogenesis of this emerging pathogen. IMPORTANCECandida auris is a recently described multidrug-resistant pathogenic fungus that is responsible for outbreaks across the globe, particularly in the context of nosocomial infections. Its virulence factors and pathogenesis are poorly understood. Here, we tested the hypothesis that extracellular vesicles (EVs) released by C. auris are a disease-promoting factor. We describe the production of EVs by C. auris and compare their biological activities against those of the better-characterized EVs from C. albicans. C. auris EVs have immunoregulatory properties, of which some are opposite those of C. albicans EVs. We also explored the cargo and structural components of those vesicles and found that they are remarkably distinct compared to EVs from C. auris’s phylogenetic relative Candida albicans.
Collapse
|
29
|
Rizzo J, Wong SSW, Gazi AD, Moyrand F, Chaze T, Commere P, Novault S, Matondo M, Péhau‐Arnaudet G, Reis FCG, Vos M, Alves LR, May RC, Nimrichter L, Rodrigues ML, Aimanianda V, Janbon G. Cryptococcus extracellular vesicles properties and their use as vaccine platforms. J Extracell Vesicles 2021; 10:e12129. [PMID: 34377375 PMCID: PMC8329992 DOI: 10.1002/jev2.12129] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Whereas extracellular vesicle (EV) research has become commonplace in different biomedical fields, this field of research is still in its infancy in mycology. Here we provide a robust set of data regarding the structural and compositional aspects of EVs isolated from the fungal pathogenic species Cryptococcus neoformans, C. deneoformans and C. deuterogattii. Using cutting-edge methodological approaches including cryogenic electron microscopy and cryogenic electron tomography, proteomics, and flow cytometry, we revisited cryptococcal EV features and suggest a new EV structural model, in which the vesicular lipid bilayer is covered by mannoprotein-based fibrillar decoration, bearing the capsule polysaccharide as its outer layer. About 10% of the EV population is devoid of fibrillar decoration, adding another aspect to EV diversity. By analysing EV protein cargo from the three species, we characterized the typical Cryptococcus EV proteome. It contains several membrane-bound protein families, including some Tsh proteins bearing a SUR7/PalI motif. The presence of known protective antigens on the surface of Cryptococcus EVs, resembling the morphology of encapsulated virus structures, suggested their potential as a vaccine. Indeed, mice immunized with EVs obtained from an acapsular C. neoformans mutant strain rendered a strong antibody response in mice and significantly prolonged their survival upon C. neoformans infection.
Collapse
Affiliation(s)
- Juliana Rizzo
- Unité Biologie des ARN des Pathogènes FongiquesDépartement de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Sarah Sze Wah Wong
- Unité Mycologie Moléculaire, CNRS UMR2000Département de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Anastasia D. Gazi
- Ultrastructural Bio‐Imaging, UTechS UBI, CNRS UMR 3528Département de Biologie cellulaire et infection, Institut Pasteur, F‐75015ParisFrance
| | - Frédérique Moyrand
- Unité Biologie des ARN des Pathogènes FongiquesDépartement de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Thibault Chaze
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), CNRS UMR 2000Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Pierre‐Henri Commere
- Cytometry and BiomarkersCentre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Sophie Novault
- Cytometry and BiomarkersCentre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), CNRS UMR 2000Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Gérard Péhau‐Arnaudet
- Ultrastructural Bio‐Imaging, UTechS UBI, CNRS UMR 3528Département de Biologie cellulaire et infection, Institut Pasteur, F‐75015ParisFrance
| | - Flavia C. G. Reis
- Instituto Carlos ChagasFundação Oswaldo Cruz (FIOCRUZ)CuritibaBrazil
- Centro de Desenvolvimento Tecnologico em Saude (CDTS‐Fiocruz)São PauloBrazil
| | - Matthijn Vos
- NanoImaging Core FacilityCentre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | | | - Robin C. May
- Institute of Microbiology and Infection and School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Marcio L. Rodrigues
- Instituto Carlos ChagasFundação Oswaldo Cruz (FIOCRUZ)CuritibaBrazil
- Instituto de Microbiologia Paulo de Góes (IMPG)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Vishukumar Aimanianda
- Unité Mycologie Moléculaire, CNRS UMR2000Département de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes FongiquesDépartement de Mycologie, Institut Pasteur, F‐75015ParisFrance
| |
Collapse
|
30
|
Chinnappan M, Harris-Tryon TA. Novel mechanisms of microbial crosstalk with skin innate immunity. Exp Dermatol 2021; 30:1484-1495. [PMID: 34252227 DOI: 10.1111/exd.14429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Skin is an organ with a dynamic ecosystem that harbours pathogenic and commensal microbes, which constantly communicate amongst each other and with the host immune system. Evolutionarily, skin and its microbiota have evolved to remain in homeostasis. However, frequently this homeostatic relationship is disturbed by a variety of factors such as environmental stress, diet, genetic mutations, and the microbiome itself. Commensal microbes also play a major role in the maintenance of microbial homeostasis. In addition to their ability to limit pathogens, many skin commensals such as Staphylococcus epidermidis and Cutibacterium acnes have recently been implicated in disease pathogenesis either by directly modulating the host immune components or by supporting the expansion of other pathogenic microbes. Likewise, opportunistic skin pathogens such as Staphylococcus aureus and Staphylococcus lugdunensis are able to breach the skin and cause disease. Though much has been established about the microbiota's function in skin immunity, we are in a time where newer mechanistic insights rapidly redefine our understanding of the host/microbial interface in the skin. In this review, we provide a concise summary of recent advances in our understanding of the interplay between host defense strategies and the skin microbiota.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tamia A Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
31
|
Extracellular Vesicles in the Fungi Kingdom. Int J Mol Sci 2021; 22:ijms22137221. [PMID: 34281276 PMCID: PMC8269022 DOI: 10.3390/ijms22137221] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous, rounded vesicles released by prokaryotic and eukaryotic cells in their normal and pathophysiological states. These vesicles form a network of intercellular communication as they can transfer cell- and function-specific information (lipids, proteins and nucleic acids) to different cells and thus alter their function. Fungi are not an exception; they also release EVs to the extracellular space. The vesicles can also be retained in the periplasm as periplasmic vesicles (PVs) and the cell wall. Such fungal vesicles play various specific roles in the lives of these organisms. They are involved in creating wall architecture and maintaining its integrity, supporting cell isolation and defence against the environment. In the case of pathogenic strains, they might take part in the interactions with the host and affect the infection outcomes. The economic importance of fungi in manufacturing high-quality nutritional and pharmaceutical products and in remediation is considerable. The analysis of fungal EVs opens new horizons for diagnosing fungal infections and developing vaccines against mycoses and novel applications of nanotherapy and sensors in industrial processes.
Collapse
|
32
|
Abstract
The skin microbiome is an ecosystem comprised of a multitude of microbial species interacting with their surroundings, including other microbes and host epithelial and immune cells. These interactions are the basis of important roles within the skin microbiome that provide benefit to the host, boosting multiple aspects of barrier function, a critical function of this essential organ. However, with reward always comes risk; resident skin microbes function in a context-dependent manner, set on the backdrop of a dynamic host and microbial milieu. Here, we discuss the reward of hosting a microbial ecosystem on the skin, including protection from pathogens and tuning of the skin microenvironment. We also give consideration to how these skin residents, often termed "commensals" can cause disorder, damage, and promote skin disease.
Collapse
Affiliation(s)
- Laurice Flowers
- Department of Dermatology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth A Grice
- Department of Dermatology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Zamith-Miranda D, Peres da Silva R, Couvillion SP, Bredeweg EL, Burnet MC, Coelho C, Camacho E, Nimrichter L, Puccia R, Almeida IC, Casadevall A, Rodrigues ML, Alves LR, Nosanchuk JD, Nakayasu ES. Omics Approaches for Understanding Biogenesis, Composition and Functions of Fungal Extracellular Vesicles. Front Genet 2021; 12:648524. [PMID: 34012462 PMCID: PMC8126698 DOI: 10.3389/fgene.2021.648524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all kingdoms of life. The diverse biogenesis pathways of EVs result in a wide variety of physical properties and functions across different organisms. Fungal EVs were first described in 2007 and different omics approaches have been fundamental to understand their composition, biogenesis, and function. In this review, we discuss the role of omics in elucidating fungal EVs biology. Transcriptomics, proteomics, metabolomics, and lipidomics have each enabled the molecular characterization of fungal EVs, providing evidence that these structures serve a wide array of functions, ranging from key carriers of cell wall biosynthetic machinery to virulence factors. Omics in combination with genetic approaches have been instrumental in determining both biogenesis and cargo loading into EVs. We also discuss how omics technologies are being employed to elucidate the role of EVs in antifungal resistance, disease biomarkers, and their potential use as vaccines. Finally, we review recent advances in analytical technology and multi-omic integration tools, which will help to address key knowledge gaps in EVs biology and translate basic research information into urgently needed clinical applications such as diagnostics, and immuno- and chemotherapies to fungal infections.
Collapse
Affiliation(s)
- Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Erin L. Bredeweg
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Meagan C. Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carolina Coelho
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Marcio L. Rodrigues
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas-FIOCRUZ PR, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lysangela R. Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas-FIOCRUZ PR, Curitiba, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
34
|
Freitas MS, Pessoni AM, Coelho C, Bonato VLD, Rodrigues ML, Casadevall A, Almeida F. Interactions of Extracellular Vesicles from Pathogenic Fungi with Innate Leukocytes. Curr Top Microbiol Immunol 2021; 432:89-120. [DOI: 10.1007/978-3-030-83391-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Garcia-Ceron D, Bleackley MR, Anderson MA. Fungal Extracellular Vesicles in Pathophysiology. Subcell Biochem 2021; 97:151-177. [PMID: 33779917 DOI: 10.1007/978-3-030-67171-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fungal pathogens are a concern in medicine and agriculture that has been exacerbated by the emergence of antifungal-resistant varieties that severely threaten human and animal health, as well as food security. This had led to the search for new and sustainable treatments for fungal diseases. Innovative solutions require a deeper understanding of the interactions between fungal pathogens and their hosts, and the key determinants of fungal virulence. Recently, a link has emerged between the release of extracellular vesicles (EVs) and fungal virulence that may contribute to finding new methods for fungal control. Fungal EVs carry pigments, carbohydrates, protein, nucleic acids and other macromolecules with similar functions as those found in EVs from other organisms, however certain fungal features, such as the fungal cell wall, impact EV release and cargo. Fungal EVs modulate immune responses in the host, have a role in cell-cell communication and transport molecules that function in virulence. Understanding the function of fungal EVs will expand our knowledge of host-pathogen interactions and may provide new and specific targets for antifungal drugs and agrichemicals.
Collapse
|
36
|
Munhoz da Rocha IF, Amatuzzi RF, Lucena ACR, Faoro H, Alves LR. Cross-Kingdom Extracellular Vesicles EV-RNA Communication as a Mechanism for Host-Pathogen Interaction. Front Cell Infect Microbiol 2020; 10:593160. [PMID: 33312966 PMCID: PMC7708329 DOI: 10.3389/fcimb.2020.593160] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
The extracellular vesicle (EVs) traffic has been highlighted as a very important pathway of cellular communication. EVs are produced by prokaryotes and eukaryotes organisms and can carry molecules to help maintain homeostasis, responding to general disbalance, infections, and allowing rapid modulation of the immune system. In the context of infection, EVs from both the host and the pathogen have been identified as playing roles in the recruitment of immunological molecules that can lead to the resolution of the infection or the host’s defeat. Bacterial vesicles RNA cargo play roles in the host cell by regulating gene expression and modulating immune response. In fungi the RNA molecules present in EVs are diverse and participate in communication between the host and pathogenic fungi. Little is known about how cross-kingdom sRNA trafficking occurs, although in recent years, there has been an increase in studies that relate EV participation in sRNA delivery. This review aims to elucidate and update the reader concerning the role of extracellular vesicles, with emphasis in the RNA content. We describe the EVs during infection from the host point-of-view, as well as the bacteria and fungi pathogens producing EVs that help the establishment of the disease.
Collapse
Affiliation(s)
| | - Rafaela Ferreira Amatuzzi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Aline Castro Rodrigues Lucena
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| |
Collapse
|
37
|
Krzyściak P, Bakuła Z, Gniadek A, Garlicki A, Tarnowski M, Wichowski M, Jagielski T. Prevalence of Malassezia species on the skin of HIV-seropositive patients. Sci Rep 2020; 10:17779. [PMID: 33082431 PMCID: PMC7576784 DOI: 10.1038/s41598-020-74133-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
Malassezia is a genus of lipophilic yeasts residing on the skin of warm-blooded animals. The correlation between specific species and their involvement in skin diseases has been well researched. However, only very few studies have investigated the distribution of Malassezia spp. on the healthy skin of patients infected with human immunodeficiency virus (HIV). The purpose of this work was to analyze whether the composition of Malassezia spp. isolated from the skin of the HIV-infected patients differs from that of healthy individuals. The study included a total of 96 subjects, who were divided into two equally sized groups: HIV-seropositive and HIV-seronegative. The specimens were collected from the subjects by swabbing four anatomical sites (face, chest, back, and scalp). Species were identified using phenotype-based methods, and the identification of strains isolated from the HIV-seropositive patients was confirmed by PCR sequencing of the rDNA cluster. Malassezia spp. were isolated from 33 (69%) HIV-seropositive patients and 38 (79%) healthy volunteers. It was found that men were much more likely to have their heads colonized with Malassezia spp. than women. The most prevalent species on the skin of both HIV-seropositive and HIV-seronegative individuals were Malassezia sympodialis, M. globosa, and M. furfur, albeit at different proportions in the two populations. The diversity of Malassezia spp. was the highest on the face of the HIV-seropositive patients (Shannon-Weiner Index H = 1.35) and lowest on the back of the healthy volunteers (H = 0.16). The phenotype- and molecular-based identification methods were congruent at 94.9%. It was observed a tendency that the HIV-seropositive patients had higher CD4+ cell counts, indicating higher colonization with Malassezia spp.
Collapse
Affiliation(s)
- Paweł Krzyściak
- Faculty of Medicine, Chair of Microbiology, Department of Mycology, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland.
| | - Zofia Bakuła
- Faculty of Biology, Institute of Microbiology, Department of Medical Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Agnieszka Gniadek
- Faculty of Health Sciences, Institute of Nursing and Midwifery, Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksander Garlicki
- Faculty of Medicine, Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Mikołaj Tarnowski
- Graduate of Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Michał Wichowski
- Faculty of Biology, Institute of Microbiology, Department of Medical Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Jagielski
- Faculty of Biology, Institute of Microbiology, Department of Medical Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
38
|
Torres M, de Cock H, Celis Ramírez AM. In Vitro or In Vivo Models, the Next Frontier for Unraveling Interactions between Malassezia spp. and Hosts. How Much Do We Know? J Fungi (Basel) 2020; 6:jof6030155. [PMID: 32872112 PMCID: PMC7558575 DOI: 10.3390/jof6030155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host-microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host-microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
| | - Hans de Cock
- Microbiology, Department of Biology, Faculty of Science, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
- Correspondence:
| |
Collapse
|
39
|
Bond R, Morris DO, Guillot J, Bensignor EJ, Robson D, Mason KV, Kano R, Hill PB. Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2020; 31:28-74. [PMID: 31957204 DOI: 10.1111/vde.12809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The genus Malassezia is comprised of a group of lipophilic yeasts that have evolved as skin commensals and opportunistic cutaneous pathogens of a variety of mammals and birds. OBJECTIVES The objective of this document is to provide the veterinary community and other interested parties with current information on the ecology, pathophysiology, diagnosis, treatment and prevention of skin diseases associated with Malassezia yeasts in dogs and cats. METHODS AND MATERIAL The authors served as a Guideline Panel (GP) and reviewed the literature available prior to October 2018. The GP prepared a detailed literature review and made recommendations on selected topics. The World Association of Veterinary Dermatology (WAVD) Clinical Consensus Guideline committee provided guidance and oversight for this process. The document was presented at two international meetings of veterinary dermatology societies and one international mycology workshop; it was made available for comment on the WAVD website for a period of six months. Comments were shared with the GP electronically and responses incorporated into the final document. CONCLUSIONS AND CLINICAL IMPORTANCE There has been a remarkable expansion of knowledge on Malassezia yeasts and their role in animal disease, particularly since the early 1990's. Malassezia dermatitis in dogs and cats has evolved from a disease of obscurity and controversy on its existence, to now being a routine diagnosis in general veterinary practice. Clinical signs are well recognised and diagnostic approaches are well developed. A range of topical and systemic therapies is known to be effective, especially when predisposing factors are identified and corrected.
Collapse
Affiliation(s)
- Ross Bond
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Daniel O Morris
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancy Street, Philadelphia, PA, 19104, USA
| | - Jacques Guillot
- École nationale vétérinaire d'Alfort, BioPôle Alfort, EA 7380 Dynamyc, UPEC, EnvA, Maisons Alfort, Ile-de-France, France
| | | | - David Robson
- Animal Skin and Ear Specialists, Melbourne Veterinary Specialist Centre, 70 Blackburn Road, Glen Waverley, Victoria, 3150, Australia
| | - Kenneth V Mason
- Dermcare-vet PTY LTD, 7 Centenary Road, Slacks Creek, Queensland, 4127, Australia
| | - Rui Kano
- Department of Veterinary Pathobiology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Peter B Hill
- Department of Veterinary Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
40
|
Rhimi W, Theelen B, Boekhout T, Otranto D, Cafarchia C. Malassezia spp. Yeasts of Emerging Concern in Fungemia. Front Cell Infect Microbiol 2020; 10:370. [PMID: 32850475 PMCID: PMC7399178 DOI: 10.3389/fcimb.2020.00370] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
Malassezia spp. are lipid-dependent yeasts, inhabiting the skin and mucosa of humans and animals. They are involved in a variety of skin disorders in humans and animals and may cause bloodstream infections in severely immunocompromised patients. Despite a tremendous increase in scientific knowledge of these yeasts during the last two decades, the epidemiology of Malassezia spp. related to fungemia remains largely underestimated most likely due to the difficulty in the isolation of these yeasts species due to their lipid-dependence. This review summarizes and discusses the most recent literature on Malassezia spp. infection and fungemia, its occurrence, pathogenicity mechanisms, diagnostic methods, in vitro susceptibility testing and therapeutic approaches.
Collapse
Affiliation(s)
- Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Teun Boekhout
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,The Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands.,Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| |
Collapse
|
41
|
Karkowska-Kuleta J, Kulig K, Karnas E, Zuba-Surma E, Woznicka O, Pyza E, Kuleta P, Osyczka A, Rapala-Kozik M, Kozik A. Characteristics of Extracellular Vesicles Released by the Pathogenic Yeast-Like Fungi Candida glabrata, Candida parapsilosis and Candida tropicalis. Cells 2020; 9:cells9071722. [PMID: 32708393 PMCID: PMC7408413 DOI: 10.3390/cells9071722] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Candida spp. yeast-like fungi are opportunistic pathogens in humans and have been recently found to release extracellular vesicles (EVs) that are involved in many vital biological processes in fungal cells. These include communication between microorganisms and host–pathogen interactions during infection. The production of EVs and their content have been significantly characterized in the most common candidal species Candida albicans, including the identification of numerous virulence factors and cytoplasmic proteins in the EV cargo. We have here conducted the isolation and proteomic characterization of EVs produced by the clinically important non-albicans Candida species C. glabrata, C. tropicalis and C. parapsilosis. With the use of ultracentrifugation of the cell-free culture supernatant, the candidal EVs were collected and found to be a heterogeneous population of particles for each species with sizes ranging from 60–280 nm. The proteinaceous contents of these vesicles were analyzed using LC-MS/MS, with particular attention paid to surface-expressed proteins that would come into immediate and direct contact with host cells. We thereby identified 42 extracellular and surface-connected proteins from C. glabrata, 33 from C. parapsilosis, and 34 from C. tropicalis, including membrane-associated transporters, glycoproteins and enzymes involved in the organization of the fungal cell wall, as well as several cytoplasmic proteins, including alcohol dehydrogenase, enolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and pyruvate kinase, for which the vesicular transport is a possible mechanism underlying their non-classical secretion.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
- Correspondence:
| | - Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland; (K.K.); (A.K.)
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (E.K.); (E.Z.-S.)
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (E.K.); (E.Z.-S.)
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (O.W.); (E.P.)
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (O.W.); (E.P.)
| | - Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.K.); (A.O.)
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.K.); (A.O.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland; (K.K.); (A.K.)
| |
Collapse
|
42
|
Rizzo J, Rodrigues ML, Janbon G. Extracellular Vesicles in Fungi: Past, Present, and Future Perspectives. Front Cell Infect Microbiol 2020; 10:346. [PMID: 32760680 PMCID: PMC7373726 DOI: 10.3389/fcimb.2020.00346] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) have garnered much interest in the cell biology and biomedical research fields. Many studies have reported the existence of EVs in all types of living cells, including in fifteen different fungal genera. EVs play diverse biological roles, from the regulation of physiological events and response to specific environmental conditions to the mediation of highly complex interkingdom communications. This review will provide a historical perspective on EVs produced by fungi and an overview of the recent discoveries in the field. We will also review the current knowledge about EV biogenesis and cargo, their role in cell-to-cell interactions, and methods of EV analysis. Finally, we will discuss the perspectives of EVs as vehicles for the delivery of biologically active molecules.
Collapse
Affiliation(s)
- Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| |
Collapse
|
43
|
Zhang Z, Wen K, Zhang C, Laroche F, Wang Z, Zhou Q, Liu Z, Abrahams JP, Zhou X. Extracellular Nanovesicle Enhanced Gene Transfection Using Polyethyleneimine in HEK293T Cells and Zebrafish Embryos. Front Bioeng Biotechnol 2020; 8:448. [PMID: 32596214 PMCID: PMC7300290 DOI: 10.3389/fbioe.2020.00448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/17/2020] [Indexed: 01/24/2023] Open
Abstract
It is a hot topic to improve efficiency and decrease toxicity of gene transfection reagents. The extracellular nanovesicles (EVs) that are released by cells play an important role in intercellular communication and are naturally designed for genetic exchange between cells. Here, we show that the EVs have a large beneficial effect in polyethyleneimine (PEI)-mediated transfection of a GFP-encoding plasmid into HEK293T cells. An improvement of transfection efficiency of ~500% and a decrease in toxicity were observed in a specific concentration range of PEI. The EVs also greatly improved the transfection of the same plasmid into zebrafish embryos. To verify the generality of this gene transfection approach, we also tested the cell viability and gene transfection efficiency using two other plasmids (EpTEN and ELuc) and in another cell line (A549). The measured increase in transfection efficiency makes EV a promising candidate for enhancement of the quality of current PEI-based transfection technique.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Science, China Pharmaceutical University, Nanjing, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kai Wen
- Department of Science, China Pharmaceutical University, Nanjing, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fabrice Laroche
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Zhenglong Wang
- Department of Science, China Pharmaceutical University, Nanjing, China
| | - Qiang Zhou
- Department of Orthopaedics, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Pharmacy, Nankai University, Tianjin, China
| | | | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
44
|
Sparber F, Ruchti F, LeibundGut-Landmann S. Host Immunity to Malassezia in Health and Disease. Front Cell Infect Microbiol 2020; 10:198. [PMID: 32477963 PMCID: PMC7232612 DOI: 10.3389/fcimb.2020.00198] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
The microbiota plays an integral role in shaping physical and functional aspects of the skin. While a healthy microbiota contributes to the maintenance of immune homeostasis, dysbiosis can result in the development of diverse skin pathologies. This dichotomous feature of the skin microbiota holds true not only for bacteria, but also for fungi that colonize the skin. As such, the yeast Malassezia, which is by far the most abundant component of the skin mycobiota, is associated with a variety of skin disorders, of which some can be chronic and severe and have a significant impact on the quality of life of those affected. Understanding the causative relationship between Malassezia and the development of such skin disorders requires in-depth knowledge of the mechanism by which the immune system interacts with and responds to the fungus. In this review, we will discuss recent advances in our understanding of the immune response to Malassezia and how the implicated cells and cytokine pathways prevent uncontrolled fungal growth to maintain commensalism in the mammalian skin. We also review how the antifungal response is currently thought to affect the development and severity of inflammatory disorders of the skin and at distant sites.
Collapse
Affiliation(s)
- Florian Sparber
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Vallhov H, Johansson C, Veerman RE, Scheynius A. Extracellular Vesicles Released From the Skin Commensal Yeast Malassezia sympodialis Activate Human Primary Keratinocytes. Front Cell Infect Microbiol 2020; 10:6. [PMID: 32039038 PMCID: PMC6993562 DOI: 10.3389/fcimb.2020.00006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) released from fungi have been shown to participate in inter-organismal communication and in cross-kingdom modulation of host defense. Malassezia species are the dominant commensal fungal members of the human skin microbiota. We have previously found that Malassezia sympodialis releases EVs. These EVs, designated MalaEx, carry M. sympodialis allergens and induce a different inflammatory cytokine response in peripheral blood mononuclear cells (PBMC) from patients with atopic dermatitis compared to healthy controls. In this study, we explored the host-microbe interaction between MalaEx and human keratinocytes with the hypothesis that MalaEx might be able to activate human keratinocytes to express the intercellular adhesion molecule-1 (ICAM-1, CD54). MalaEx were prepared from M. sympodialis (ATCC 42132) culture supernatants by a combination of centrifugation, filtration and serial ultracentrifugation. The MalaEx showed a size range of 70–580 nm with a mean of 154 nm using nanoparticle tracking analysis. MalaEx were found to induce a significant up-regulation of ICAM-1 expression on primary human keratinocytes isolated from human ex vivo skin (p = 0.026, n = 3), compared to the unstimulated keratinocytes. ICAM-1 is a counter ligand for the leukocyte integrins lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1), of which induced expression on epithelial cells leads to the attraction of immune competent cells. Thus, the capacity of MalaEx to activate keratinocytes with an enhanced ICAM-1 expression indicates an important step in the cutaneous defense against M. sympodialis. How this modulation of host cells by a fungus is balanced between the commensal, pathogenic, or beneficial states on the skin in the interplay with the host needs to be further elucidated.
Collapse
Affiliation(s)
- Helen Vallhov
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Catharina Johansson
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Rosanne E Veerman
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Tiew PY, Mac Aogain M, Ali NABM, Thng KX, Goh K, Lau KJX, Chotirmall SH. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia 2020; 185:207-231. [PMID: 31894501 PMCID: PMC7223441 DOI: 10.1007/s11046-019-00413-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Fungal disease is an increasingly recognised global clinical challenge associated with high mortality. Early diagnosis of fungal infection remains problematic due to the poor sensitivity and specificity of current diagnostic modalities. Advances in sequencing technologies hold promise in addressing these shortcomings and for improved fungal detection and identification. To translate such emerging approaches into mainstream clinical care will require refinement of current sequencing and analytical platforms, ensuring standardisation and consistency through robust clinical benchmarking and its validation across a range of patient populations. In this state-of-the-art review, we discuss current diagnostic and therapeutic challenges associated with fungal disease and provide key examples where the application of sequencing technologies has potential diagnostic application in assessing the human ‘mycobiome’. We assess how ready access to fungal sequencing may be exploited in broadening our insight into host–fungal interaction, providing scope for clinical diagnostics and the translation of emerging mycobiome research into clinical practice.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | | | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Karlyn Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kenny J X Lau
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
47
|
Hadebe S, Brombacher F. Environment and Host-Genetic Determinants in Early Development of Allergic Asthma: Contribution of Fungi. Front Immunol 2019; 10:2696. [PMID: 31824491 PMCID: PMC6879655 DOI: 10.3389/fimmu.2019.02696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Asthma is a chronic debilitating airway disease affecting millions of people worldwide. Although largely thought to be a disease of the first world, it is now clear that it is on the rise in many middle- and lower-income countries. The disease is complex, and its etiology is poorly understood, which explains failure of most treatment strategies. We know that in children, asthma is closely linked to poor lung function in the first 3-years of life, when the lung is still undergoing post-natal alveolarization phase. Epidemiological studies also suggest that environmental factors around that age do play a critical part in the establishment of early wheezing which persists until adulthood. Some of the factors that contribute to early development of asthma in children in Western world are clear, however, in low- to middle-income countries this is likely to differ significantly. The contribution of fungal species in the development of allergic diseases is known in adults and in experimental models. However, it is unclear whether early exposure during perinatal or post-natal lung development influences a protective or promotes allergic asthma. Host immune cells and responses will play a crucial part in early development of allergic asthma. How immune cells and their receptors may recognize fungi and promote allergic asthma or protect by tolerance among other immune mechanisms is not fully understood in this early lung development stage. The aim of this review is to discuss what fungal species are present during early exposure as well as their contribution to the development of allergic responses. We also discuss how the host has evolved to promote tolerance to limit hyper-responsiveness to innocuous fungi, and how host evasion by fungi during early development consequentially results in allergic diseases.
Collapse
Affiliation(s)
- Sabelo Hadebe
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
48
|
Woith E, Fuhrmann G, Melzig MF. Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci 2019; 20:E5695. [PMID: 31739393 PMCID: PMC6888613 DOI: 10.3390/ijms20225695] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
It is known that extracellular vesicles (EVs) are shed from cells of almost every type of cell or organism, showing their ubiquity in all empires of life. EVs are defined as naturally released particles from cells, delimited by a lipid bilayer, and cannot replicate. These nano- to micrometer scaled spheres shuttle a set of bioactive molecules. EVs are of great interest as vehicles for drug targeting and in fundamental biological research, but in vitro culture of animal cells usually achieves only small yields. The exploration of other biological kingdoms promises comprehensive knowledge on EVs broadening the opportunities for basic understanding and therapeutic use. Thus, plants might be sustainable biofactories producing nontoxic and highly specific nanovectors, whereas bacterial and fungal EVs are promising vaccines for the prevention of infectious diseases. Importantly, EVs from different eukaryotic and prokaryotic kingdoms are involved in many processes including host-pathogen interactions, spreading of resistances, and plant diseases. More extensive knowledge of inter-species and interkingdom regulation could provide advantages for preventing and treating pests and pathogens. In this review, we present a comprehensive overview of EVs derived from eukaryota and prokaryota and we discuss how better understanding of their intercommunication role provides opportunities for both fundamental and applied biology.
Collapse
Affiliation(s)
- Eric Woith
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Matthias F. Melzig
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| |
Collapse
|
49
|
Abstract
The release of extracellular vesicles (EVs) by fungi is a fundamental cellular process. EVs carry several biomolecules, including pigments, proteins, enzymes, lipids, nucleic acids, and carbohydrates, and are involved in physiological and pathological processes. EVs may play a pivotal role in the establishment of fungal infections, as they can interact with the host immune system to elicit multiple outcomes. The release of extracellular vesicles (EVs) by fungi is a fundamental cellular process. EVs carry several biomolecules, including pigments, proteins, enzymes, lipids, nucleic acids, and carbohydrates, and are involved in physiological and pathological processes. EVs may play a pivotal role in the establishment of fungal infections, as they can interact with the host immune system to elicit multiple outcomes. It has been observed that, depending on the fungal pathogen, EVs can exacerbate or attenuate fungal infections. The study of the interaction between fungal EVs and the host immune system and understanding of the mechanisms that regulate those interactions might be useful for the development of new adjuvants as well as the improvement of protective immune responses against infectious or noninfectious diseases. In this review, we describe the immunomodulatory properties of EVs produced by pathogenic fungi and discuss their potential as adjuvants for prophylactic or therapeutic strategies.
Collapse
|
50
|
Deciphering Fungal Extracellular Vesicles: From Cell Biology to Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|