1
|
Nemets VV, Vinogradova EP, Zavialov V, Grinevich VP, Budygin EA, Gainetdinov RR. Accumbal Dopamine Responses Are Distinct between Female Rats with Active and Passive Coping Strategies. Biomolecules 2024; 14:1280. [PMID: 39456212 PMCID: PMC11505701 DOI: 10.3390/biom14101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
There is a gap in existing knowledge of stress-triggered neurochemical and behavioral adaptations in females. This study was designed to explore the short-term consequences of a single social defeat (SD) on accumbal dopamine (DA) dynamics and related behaviors in female Wistar rats. During the SD procedure, rats demonstrated different stress-handling strategies, which were defined as active and passive coping. The "active" subjects expressed a significantly higher level of activity directed toward handling stress experience, while the "passive" ones showed an escalated freezing pattern. Remarkably, these opposite behavioral manifestations were negatively correlated. Twenty-four hours following the SD exposure, decreased immobility latency in the Porsolt test and cognitive augmentation in the new object recognition evaluation were evident, along with an increase in electrically evoked mesolimbic DA release in passive coping rats. Rats exhibiting an active pattern of responses showed insignificant changes in immobility and cognitive performance as well as in evoked mesolimbic DA response. Furthermore, the dynamics of the decline and recovery of DA efflux under the depletion protocol were significantly altered in the passive but not active female rats. Taken together, these data suggest that female rats with a passive coping strategy are more susceptible to developing behavioral and neurochemical alterations within 24 h after stress exposure. This observation may represent both maladaptive and protective responses of an organism on a short timescale.
Collapse
Affiliation(s)
- Vsevolod V. Nemets
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Ekaterina P. Vinogradova
- Department of High Neuros Activity, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Vladislav Zavialov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Vladimir P. Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| |
Collapse
|
2
|
Abdullah A, Kumar A, Beg AZ, Chawla A, Kar S, Ganguly S, Khan AU. Peripherally-restricted recurrent infection by engineered E. coli strain modulates hippocampal proteome promoting memory impairments in a rat model. Gene 2024; 933:148969. [PMID: 39341518 DOI: 10.1016/j.gene.2024.148969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Commensal bacteria that breach endothelial barrier has been reported to induce low grade chronic inflammation producing disease symptoms in major peripheral tissues. In this study, we investigated the role of genetically modified cellular invasive form of commensal E. coli K12 (SK3842) in cognitive impairment. Low-grade systemic infection model was developed using recurring peripheral inoculation of live bacteria in Wistar rats. To examine memory parameters, Novel object recognition test and Radial arm maze test were performed. Differential protein expression profiling of rat hippocampus was carried out using LC-MS/MS and subsequently quantified using SWATH. HBA1/2, NEFH, PFN1 and ATP5d were chosen for validation using quantitative RT-PCR. Results showed drastic decline in Recognition memory of the SK3842 infected rats. Reference and Working Memory of the infected group were also significantly reduced in comparison to control group. Proteome analysis using LC-MS/MS coupled with SWATH revealed differential expression of key proteins that are crucial for the maintenance of various neurological functions. Moreover, expression of NEFH and PFN1transcripts were found to be in line with the proteomics data. Protein interaction network of these validated proteins generated by STRING database converged to RhoA protein. Thus, the present study establishes an association between peripheral infection of a hippocampal protein network dysregulation and overall memory decline.
Collapse
Affiliation(s)
- Anam Abdullah
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Anuranjani Kumar
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Zainab Beg
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Anupam Chawla
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sudeshna Kar
- Oncology and Neuroscience Research Laboratory, Artemis Hospital, Sector 51, Gurgaon, Haryana 122001,India
| | - Surajit Ganguly
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| | - Asad U Khan
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Cardinali CAEF, Martins YA, Moraes RCM, Costa AP, Alencar MB, Silber AM, Torrão AS. Exploring the Therapeutic Potential of Benfotiamine in a Sporadic Alzheimer's-Like Disease Rat Model: Insights into Insulin Signaling and Cognitive function. ACS Chem Neurosci 2024; 15:2982-2994. [PMID: 39007352 PMCID: PMC11342302 DOI: 10.1021/acschemneuro.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative process, also considered a metabolic condition due to alterations in glucose metabolism and insulin signaling pathways in the brain, which share similarities with diabetes. This study aimed to investigate the therapeutic effects of benfotiamine (BFT), a vitamin B1 analog, in the early stages of the neurodegenerative process in a sporadic model of Alzheimer's-like disease induced by intracerebroventricular injection of streptozotocin (STZ). Supplementation with 150 mg/kg of BFT for 7 days reversed the cognitive impairment in short- and long-term memories caused by STZ in rodents. We attribute these effects to BFT's ability to modulate glucose transporters type 1 and 3 (GLUT1 and GLUT3) in the hippocampus, inhibit GSK3 activity in the hippocampus, and modulate the insulin signaling in the hippocampus and entorhinal cortex, as well as reduce the activation of apoptotic pathways (BAX) in the hippocampus. Therefore, BFT emerges as a promising and accessible intervention in the initial treatment of conditions similar to AD.
Collapse
Affiliation(s)
- Camila A. E. F. Cardinali
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Yandara A. Martins
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ruan C. M. Moraes
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
- Department
of Psychiatry & Behavioral Neurosciences, The University of Alabama at Birmingham, Birmingham Alabama 35294, United States
| | - Andressa P. Costa
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayke B. Alencar
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ariel M. Silber
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Andrea S. Torrão
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
4
|
Bah TM, Davis CM, Allen EM, Borkar RN, Perez R, Grafe MR, Raber J, Pike MM, Alkayed NJ. Soluble epoxide hydrolase inhibition reverses cognitive dysfunction in a mouse model of metabolic syndrome by modulating inflammation. Prostaglandins Other Lipid Mediat 2024; 173:106850. [PMID: 38735559 PMCID: PMC11218661 DOI: 10.1016/j.prostaglandins.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.
Collapse
Affiliation(s)
- Thierno M Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Catherine M Davis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Elyse M Allen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rohan N Borkar
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Khamies SM, El-Yamany MF, Ibrahim SM. Canagliflozin Mitigated Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer's Disease in Mice: Role of AMPK/SIRT-1 Signaling Pathway in Modulating Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:39. [PMID: 39073453 DOI: 10.1007/s11481-024-10140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Sporadic Alzheimer's disease (SAD) represents a major health concern especially among elderly. Noteworthy, neuroinflammation and oxidative stress are highly implicated in AD pathogenesis resulting in enhanced disease progression. Moreover, most of the available anti-Alzheimer drugs have several adverse effects with variable efficacy, therefore new strategies, including agents with anti-inflammatory and antioxidant effects, are encouraged. Along these lines, canagliflozin (CAN), with its anti-inflammatory and anti-apoptotic activities, presents a promising candidate for AD treatment. Therefore, this study aimed to evaluate the therapeutic potential of CAN via regulation of AMPK/SIRT-1/BDNF/GSK-3β signaling pathway in SAD. SAD model was induced by intracerebroventricular streptozotocin injection (ICV-STZ;3 mg/kg, once), while CAN was administered (10 mg/kg/day, orally) to STZ-treated mice for 21 days. Behavioral tests, novel object recognition (NOR), Y-Maze, and Morris Water Maze (MWM) tests, histopathological examination, total adenosine monophosphate-activated protein kinase (T-AMPK) expression, p-AMPK, and silent information regulator-1 (SIRT-1) were evaluated. Furthermore, brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3β (GSK-3β), acetylcholinesterase (AChE), Tau protein, insulin-degrading enzyme (IDE), nuclear factor erythroid-2 (Nrf-2), interleukin-6 (IL-6), nuclear factor kappa-B-p65 (NFκB-p65), beta-site APP cleaving enzyme 1 (BACE-1), and amyloid beta (Aβ) plaque were assessed. CAN restored STZ-induced cognitive deficits, confirmed by improved behavioral tests and histopathological examination. Besides, CAN halted STZ-induced neurotoxicity through activation of p-AMPK/SIRT-1/BDNF pathway, subsequently reduction of GSK-3β, Tau protein, AChE, NFκB-p65, IL-6, BACE-1, and Aβ plaque associated with increased IDE and Nrf-2. Consequentially, our findings assumed that CAN, via targeting p-AMPK/SIRT-1 pathway, combated neuroinflammation and oxidative stress in STZ-induced AD. Thus, this study highlighted the promising effect of CAN for treating AD.
Collapse
Affiliation(s)
- Sara M Khamies
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Menoufia University, Menoufia, 32511, Egypt
| | - Mohammed F El-Yamany
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Sherehan M Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
6
|
Bömers JP, Holm A, Kazantzi S, Edvinsson L, Mathiesen TI, Haanes KA. Protein kinase C-inhibition reduces critical weight loss and improves functional outcome after experimental subarachnoid haemorrhage. J Stroke Cerebrovasc Dis 2024; 33:107728. [PMID: 38643942 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024] Open
Abstract
OBJECTIVES Subarachnoid haemorrhage (SAH) carries a high burden of morbidity and mortality. One in three patients develop vasospasm, which is associated with Delayed Cerebral Ischemia. The pathophysiology includes vasoconstrictor receptor upregulation in cerebral arteries. The protein kinase C - inhibitor RO-31-7549 reduces the expression of several vasoconstrictor receptors and normalizes cerebral blood flow in experimental SAH but functional and behavioural effects are unknown. This study was undertaken to analyse functional outcomes up to 14 days after experimental SAH. MATERIALS AND METHODS 54 male rats were randomised to experimental SAH or sham, using the pre-chiasmatic, single injection model, and subsequent treatment or vehicle. 42 remained for final analysis. The animals were euthanized on day 14 or when reaching a humane endpoint. The primary endpoint was overall survival, defined as either spontaneous mortality or when reaching a predefined humane endpoint. The secondary outcomes were differences in the rotating pole test, weight, open field test, novel object recognition and qPCR of selected inflammatory markers. RESULTS In the vehicle group 6/15 rats reached the humane endpoint of >20 % weight loss compared to 1/14 in the treatment group. This resulted in a significant reduced risk of early euthanasia due to >20 % weight loss of HR 0.15 (0.03-0.66, p = 0.04). Furthermore, the treatment group did significantly better on the rotating pole test, RR 0.64 (0.47-0.91, p = 0.02). CONCLUSION RO-31-7549 improved outcomes in terms >20 % weight loss and rotating pole performance after experimental SAH and could be investigated.
Collapse
Affiliation(s)
- Jesper P Bömers
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | - Anja Holm
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Spyridoula Kazantzi
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Lars Edvinsson
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tiit I Mathiesen
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristian A Haanes
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Kikuchi S, Iwasaki Y, Yoshioka M, Hino K, Morita SY, Tada R, Uchimura Y, Kubo Y, Kobayashi T, Kinoshita Y, Hayashi M, Furusho Y, Tamiaki H, Ishiyama H, Kuroda M, Udagawa J. Solitary and Synergistic Effects of Different Hydrophilic and Hydrophobic Phospholipid Moieties on Rat Behaviors. Pharmaceutics 2024; 16:762. [PMID: 38931883 PMCID: PMC11207216 DOI: 10.3390/pharmaceutics16060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Glycerophospholipids have hydrophobic and hydrophilic moieties. Previous studies suggest that phospholipids with different moieties have different effects on rodent behavior; however, the relationship between chemical structures and behavioral effects remains unclear. To clarify the functions of phospholipid moieties, we injected male rats with phospholipids with different moieties and conducted behavioral tests. Exploratory activity was reduced by phosphatidylethanolamine (PE)(18:0/22:6) but not PE(18:0/18:0) or PE(18:0/20:4). Conversely, exploratory activity was increased by plasmanyl PE(16:0/22:6), which harbors an alkyl-ether linkage, but not by phosphatidylcholine (PC)(16:0/22:6) or plasmanyl PC(16:0/22:6). Docosahexaenoic acid (DHA)(22:6) and an alkyl-ether linkage in PE were thus postulated to be involved in exploratory activity. Anxiety-like behavior was reduced by plasmenyl PC(18:0/20:4), which harbors a vinyl-ether linkage, but not by PC(18:0/20:4) or plasmanyl PC(18:0/20:4), suggesting the anxiolytic effects of vinyl-ether linkage. The activation of social interaction was suppressed by PE(18:0/18:0), PE(18:0/22:6), PC(16:0/22:6), plasmanyl PE(16:0/22:6), and plasmanyl PC(16:0/22:6) but not by PE(18:0/20:4), plasmenyl PE(18:0/20:4), or plasmanyl PC(18:0/22:6). DHA may suppress social interaction, whereas arachidonic acid(20:4) or a combination of alkyl-ether linkage and stearic acid(18:0) may restore social deficits. Our findings indicate the characteristic effects of different phospholipid moieties on rat behavior, and may help to elucidate patterns between chemical structures and their effects.
Collapse
Affiliation(s)
- Shuhei Kikuchi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yugo Iwasaki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan;
| | - Mina Yoshioka
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Kodai Hino
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Shin-ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Ryu Tada
- Molecular Engineering Institute, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yoshinori Kubo
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Tomoya Kobayashi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Miyazaki, Japan;
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Hiroaki Ishiyama
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Minoru Kuroda
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| |
Collapse
|
8
|
Bhounsule A, Bhatt LK. Protective effect of resveratrol and tannic acid combination on aluminium chloride induced neurotoxicity in rats. Nutr Neurosci 2024; 27:438-450. [PMID: 37144738 DOI: 10.1080/1028415x.2023.2208908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
OBJECTIVE Alzheimer's disease is a progressive neurodegenerative disease and one of the most common causes of dementia. Despite recent advancements, there exists an unmet need for a suitable therapeutic option. This study aimed to evaluate the protective effects of the combination of resveratrol (20 mg/kg/day p.o.) and tannic acid (50 mg/kg/day p.o.) to reduce aluminium trichloride-induced Alzheimer's disease in rats. METHODS Wistar rats weighing 150-200g were administered with aluminium chloride (100 mg/kg/day p.o.) for 90 days to induce neurodegeneration and Alzheimer's disease. Neurobehavioral changes were assessed using novel object recognition test, elevated plus maze test, and Morris water maze test. Histopathological studies were performed using H&E stain and Congo Red stains to check amyloid deposits. Further oxidative stress was measured in brain tissue. RESULTS Aluminium trichloride treated negative control group showed cognitive impairment in the Morris water maze test, novel object recognition test, and elevated plus maze test. Further, the negative control group showed significant oxidative stress, increase amyloid deposits, and severe histological changes. Treatment with the combination of resveratrol and tannic acid showed significant attenuation in cognitive impairment. The oxidative stress markers and amyloid plaque levels were significantly attenuated with the treatment. CONCLUSION The present study indicates the beneficial effects of resveratrol-tannic acid combination in AlCl3 induced neurotoxicity in rats.
Collapse
Affiliation(s)
- Anisha Bhounsule
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
9
|
Basile BM, Waters SJ, Murray EA. What does preferential viewing tell us about the neurobiology of recognition memory? Trends Neurosci 2024; 47:326-337. [PMID: 38582659 PMCID: PMC11096050 DOI: 10.1016/j.tins.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The two tests most widely used in nonhuman primates to assess the neurobiology of recognition memory produce conflicting results. Preferential viewing tests (e.g., visual paired comparison) produce robust impairments following hippocampal lesions, whereas matching tests (e.g., delayed nonmatching-to-sample) often show complete sparing. Here, we review the data, the proposed explanations for this discrepancy, and then critically evaluate those explanations. The most likely explanation is that preferential viewing tests are not a process-pure assessment of recognition memory, but also test elements of novelty-seeking, habituation, and motivation. These confounds likely explain the conflicting results. Thus, we propose that memory researchers should prefer explicit matching tests and readers interested in the neural substrates of recognition memory should give explicit matching tests greater interpretive weight.
Collapse
Affiliation(s)
| | - Spencer J Waters
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA; Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA
| | - Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Dutton A, Patel CD, Taylor SA, Garland CR, Turnbaugh EM, Alers-Velazquez R, Mehrbach J, Nautiyal KM, Leib DA. Asymptomatic neonatal herpes simplex virus infection in mice leads to long-term cognitive impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590596. [PMID: 38712140 PMCID: PMC11071430 DOI: 10.1101/2024.04.22.590596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Neonatal herpes simplex virus (nHSV) is a devastating infection impacting approximately 14,000 newborns globally each year. Infection is associated with high neurologic morbidity and mortality, making early intervention and treatment critical. Clinical outcomes of symptomatic nHSV infections are well-studied, but little is known about the frequency of, or outcomes following, sub-clinical or asymptomatic nHSV. Given the ubiquitous nature of HSV infection and frequency of asymptomatic shedding in adults, subclinical infections are underreported, yet could contribute to long-term neurological damage. To assess potential neurological morbidity associated with subclinical nHSV infection, we developed a low-dose (100 PFU) HSV infection protocol in neonatal C57BL/6 mice. At this dose, HSV DNA was detected in the brain by PCR but was not associated with acute clinical symptoms. However, months after initial inoculation with 100 PFU of HSV, we observed impaired mouse performance on a range of cognitive and memory performance tasks. Memory impairment was induced by infection with either HSV-1 or HSV-2 wild-type viruses, but not by a viral mutant lacking the autophagy-modulating Beclin-binding domain of the neurovirulence gene γ34.5. Retroviral expression of wild type γ34.5 gene led to behavioral pathology in mice, suggesting that γ34.5 expression may be sufficient to cause cognitive impairment. Maternal immunization and HSV-specific antibody treatment prevented offspring from developing neurological sequelae following nHSV-1 infection. Altogether, these results support the idea that subclinical neonatal infections may lead to cognitive decline in adulthood, with possible profound implications for research on human neurodegenerative disorders such as Alzheimer's Disease.
Collapse
|
11
|
Scognamiglio S, Aljohani YM, Olson TT, Forcelli PA, Dezfuli G, Kellar KJ. Restoration of norepinephrine release, cognitive performance, and dendritic spines by amphetamine in aged rat brain. Aging Cell 2024; 23:e14087. [PMID: 38332648 PMCID: PMC11019150 DOI: 10.1111/acel.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Age-related dysfunctions in specific neurotransmitter systems likely play an important role in cognitive decline even in its most subtle forms. Therefore, preservation or improvement of cognition via augmentation of neurotransmission is a potential therapeutic strategy to prevent further cognitive deficits. Here we identified a particular neuronal vulnerability in the aged Fischer 344 rat brain, an animal model of neurocognitive aging. Specifically, we demonstrated a marked impairment in glutamate-stimulated release of norepinephrine (NE) in the hippocampus and cerebral cortex of aged rats, and established that this release was mediated by N-methyl-D-aspartate (NMDA) receptors. Further, we also demonstrated that this decrease in NE release is fully rescued by the psychostimulant drug amphetamine (AMPH). Moreover, we showed that AMPH increases dendritic spine maturation, and importantly shows preclinical efficacy in restoring memory deficits in the aged rat through its actions to potentiate NE neurotransmission at β-adrenergic receptors. Taken together, our results suggest that deficits in glutamate-stimulated release of NE may contribute to and possibly be a determinant of neuronal vulnerability underlying cognitive decline during aging, and that these deficits can be corrected with currently available drugs. Overall these studies suggest that repurposing of psychostimulants for age-associated cognitive deficits is a potential avenue to delay or prevent cognitive decline and/or frank dementia later in life.
Collapse
Affiliation(s)
- Serena Scognamiglio
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Yousef M. Aljohani
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Thao T. Olson
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Patrick A. Forcelli
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Ghazaul Dezfuli
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Kenneth J. Kellar
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| |
Collapse
|
12
|
Cavalier AN, Clayton ZS, Wahl D, Hutton DA, McEntee CM, Seals DR, LaRocca TJ. Protective effects of apigenin on the brain transcriptome with aging. Mech Ageing Dev 2024; 217:111889. [PMID: 38007051 PMCID: PMC10843586 DOI: 10.1016/j.mad.2023.111889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Brain aging is associated with reduced cognitive function that increases the risk for dementia. Apigenin is a bioactive plant compound that inhibits cellular aging processes and could protect against age-related cognitive dysfunction, but its mechanisms of action in the brain have not been comprehensively studied. We characterized brain transcriptome changes in young and old mice treated with apigenin in drinking water. We observed improved learning/memory in old treated mice, and our transcriptome analyses indicated that differentially expressed genes with aging and apigenin were primarily related to immune responses, inflammation, and cytokine regulation. Moreover, we found that genes/transcripts that were increased in old vs. young mice but downregulated with apigenin treatment in old animals were associated with immune activation/inflammation, whereas transcripts that were reduced with aging but increased with apigenin were related neuronal function and signaling. We also found that these transcriptome differences with aging and apigenin treatment were driven in part by glial cells. To follow up on these in vivo transcriptome findings, we studied aged astrocytes in vitro, and we found that apigenin reduced markers of inflammation and cellular senescence in these cells. Collectively, our data suggest that apigenin may protect against age-related cognitive dysfunction by suppressing neuro-inflammatory processes.
Collapse
Affiliation(s)
- Alyssa N Cavalier
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| | - David A Hutton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Cali M McEntee
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
13
|
Frimpong E, Mograss M, Zvionow T, Paez A, Aubertin-Leheudre M, Bherer L, Pepin V, Robertson EM, Dang-Vu TT. Acute evening high-intensity interval training may attenuate the detrimental effects of sleep restriction on long-term declarative memory. Sleep 2023; 46:zsad119. [PMID: 37084788 PMCID: PMC10334486 DOI: 10.1093/sleep/zsad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/05/2023] [Indexed: 04/23/2023] Open
Abstract
Recent evidence shows that a nap and acute exercise synergistically enhanced memory. Additionally, human-based cross-sectional studies and animal experiments suggest that physical exercise may mitigate the cognitive impairments of poor sleep quality and sleep restriction, respectively. We evaluated whether acute exercise may offset sleep restriction's impairment of long-term declarative memory compared to average sleep alone. A total of 92 (82% females) healthy young adults (24.6 ± 4.2 years) were randomly allocated to one of four evening groups: sleep restriction only (S5, 5-6 h/night), average sleep only (S8, 8-9 h/night), high-intensity interval training (HIIT) before restricted sleep (HIITS5), or HIIT before average sleep (HIITS8). Groups either followed a 15-min remote HIIT video or rest period in the evening (7:00 p.m.) prior to encoding 80 face-name pairs. Participants completed an immediate retrieval task in the evening. The next morning a delayed retrieval task was given after their subjectively documented sleep opportunities. Long-term declarative memory performance was assessed with the discriminability index (d') during the recall tasks. While our results showed that the d' of S8 (0.58 ± 1.37) was not significantly different from those of HIITS5 (-0.03 ± 1.64, p = 0.176) and HIITS8 (-0.20 ± 1.28, p = 0.092), there was a difference in d' compared to S5 (-0.35 ± 1.64, p = 0.038) at the delayed retrieval. These results suggest that the acute evening HIIT partially reduced the detrimental effects of sleep restriction on long-term declarative memory.
Collapse
Affiliation(s)
- Emmanuel Frimpong
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
| | - Melodee Mograss
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
- Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
| | - Tehila Zvionow
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Arsenio Paez
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Mylene Aubertin-Leheudre
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
- Département des Sciences de l’activité physique, GRAPA, Université du Québec à Montréal, Montréal, QC, Canada
| | - Louis Bherer
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
- Department of Medicine and Centre de recherche de l’Institut de cardiologie de Montréal, Université de Montréal, QC, Canada
| | - Véronique Pepin
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
- Centre de recherche, CIUSSS du Nord-de l’Île-de-Montréal, Montréal, QC, Canada
| | - Edwin M Robertson
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Thien Thanh Dang-Vu
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
- Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
| |
Collapse
|
14
|
Johnson NH, Kerr NA, de Rivero Vaccari JP, Bramlett HM, Keane RW, Dietrich WD. Genetic predisposition to Alzheimer's disease alters inflammasome activity after traumatic brain injury. Transl Res 2023; 257:66-77. [PMID: 36758791 PMCID: PMC10192027 DOI: 10.1016/j.trsl.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability in the US and a recognized risk factor for the development of Alzheimer's disease (AD). The relationship between these conditions is not completely understood, but the conditions may share additive or synergistic pathological hallmarks that may serve as novel therapeutic targets. Heightened inflammasome signaling plays a critical role in the pathogenesis of central nervous system injury (CNS) and the release of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck from neurons and activated microglia contribute significantly to TBI and AD pathology. This study investigated whether inflammasome signaling after TBI was augmented in AD and whether this signaling pathway impacted biochemical and neuropathological outcomes and overall cognitive function. Five-month-old, 3xTg mice and respective wild type controls were randomized and underwent moderate controlled cortical impact (CCI) injury or served as sham/uninjured controls. Animals were sacrificed at 1 hour, 1 day, or 1 week after TBI to assess acute pathology or at 12 weeks after assessing cognitive function. The ipsilateral cerebral cortex was processed for inflammasome protein expression by immunoblotting. Mice were evaluated for behavior by open field (3 days), novel object recognition (2 weeks), and Morris water maze (6 weeks) testing after TBI. There was a statistically significant increase in the expression of inflammasome signaling proteins Caspase-1, Caspase-8, ASC, and interleukin (IL)-1β after TBI in both wild type and 3xTg animals. At 1-day post injury, significant increases in ASC and IL-1β protein expression were measured in AD TBI mice compared to WT TBI. Behavioral testing showed that injured AD mice had altered cognitive function when compared to injured WT mice. Elevated Aβ was seen in the ipsilateral cortex and hippocampus of sham and injured AD when compared to respective groups at 12 weeks post injury. Moreover, treatment of injured AD mice with IC100, an anti-ASC monoclonal antibody, inhibited the inflammasome, as evidenced by IL-1β reduction in the injured cortex at 1-week post injury. These findings show that the inflammasome response is heightened in mice genetically predisposed to AD and suggests that AD may exacerbate TBI pathology. Thus, dampening inflammasome signaling may offer a novel approach for the treatment of AD and TBI.
Collapse
Affiliation(s)
- Nathan H Johnson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadine A Kerr
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Juan P de Rivero Vaccari
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Helen M Bramlett
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - Robert W Keane
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
15
|
Pajarillo E, Kim S, Digman A, Dutton M, Son DS, Aschner M, Lee E. The role of microglial LRRK2 kinase in manganese-induced inflammatory neurotoxicity via NLRP3 inflammasome and RAB10-mediated autophagy dysfunction. J Biol Chem 2023; 299:104879. [PMID: 37269951 PMCID: PMC10331485 DOI: 10.1016/j.jbc.2023.104879] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
Chronic manganese (Mn) exposure can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1β, and TNF-α in the striatum and midbrain of WT mice, and these effects were more pronounced in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 μM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1β, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was elevated further in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated G2019S-expressing BV2 microglia caused greater toxicity to the cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10 which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Matthew Dutton
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
16
|
Akinrinde A, Adigun K, Mustapha O. Cobalt-induced neuro-behavioural alterations are accompanied by profound Purkinje cell and gut-associated responses in rats. Environ Anal Health Toxicol 2023; 38:e2023010-0. [PMID: 37933104 PMCID: PMC10628406 DOI: 10.5620/eaht.2023010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/21/2023] [Indexed: 11/08/2023] Open
Abstract
Metal ions including cobalt (Co) ions reportedly exhibit neurotoxic and antimicrobial properties. We hypothesized that oral exposure to Co may have implications for gut-dysbiosis with possible alterations of microbiota-gut-brain signaling in the host. In this preliminary study, we sought to examine whether exposure of male Wistar rats to cobalt chloride (CoCl2) at 0, 25, 50 and 100 mg/kg for two weeks affects select neurobehavioural indices, vagus nerve and brain morphology along with evaluation of associated changes in faecal bacterial flora, faecal fatty acids and the morphology of the intestines. CoCl2-exposed rats showed a dose-dependent reduction in hanging latency in the hanging wire (HW) test, reduced tendency to recognize novel objects in a Novel Object recognition (NOR) test, but increased interaction with open arms in the elevated plus maze (EPM) test, compared to controls. There were dose-dependent reductions in total heterotrophic count, coliforms, E. coli, Enterococcal and Lactobacilli counts in the faeces. Administration of CoCl2 at 100 mg/kg evoked the appearance of unsaturated fatty acids including palmitoleic, oleic and linoleic acids in the faeces as detected by gas chromatography-flame ion detection (GD-FID) analysis using fatty acid methyl esters (FAME) standards. Histopathological examination revealed chromatolysis of Purkinje cells in the cerebellum, although no significant lesions were present in the vagus nerve isolated from all the groups. In the intestines, there was moderate to severe infiltration of inflammatory cells into the duodenum, ileum, jejunum and colon while villi erosions were seen prominently in the ileum. These initial findings suggest that short-term exposure to Co can lead to gut-associated changes that may underlie neurotoxicity and alterations in behavior induced by Co.
Collapse
Affiliation(s)
- Akinleye Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Kabirat Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwaseun Mustapha
- Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
17
|
Taheri F, Esmaeilpour K, Sepehri G, Sheibani V, Shekari MA. Amelioration of cognition impairments in the valproic acid-induced animal model of autism by ciproxifan, a histamine H3-receptor antagonist. Behav Pharmacol 2023; 34:179-196. [PMID: 37171458 DOI: 10.1097/fbp.0000000000000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by deficits in social communication and repetitive behavior. Many studies show that the number of cognitive impairmentscan be reduced by antagonists of the histamine H3 receptor (H3R). In this study, the effects of ciproxifan (CPX) (1 and 3 mg/kg, intraperitoneally) on cognitive impairments in rat pups exposed to valproic acid (VPA) (600 mg/kg, intraperitoneally) wereexamined on postnatal day 48-50 (PND 48-50) using marble-burying task (MBT), open field, novel object recognition (NOR), and Passive avoidance tasks. Famotidine (FAM) (10, 20, and 40 mg/kg, intraperitoneally) was also used to determine whether histaminergic neurotransmission exerts its procognitive effects via H2 receptors (H2Rs). Furthermore, a histological investigation was conducted to assess the degree of degeneration of hippocampal neurons. The results revealed that repetitive behaviors increased in VPA-exposed rat offspring in the MBT. In addition, VPA-exposed rat offspring exhibited more anxiety-like behaviors in the open field than saline-treated rats. It was found that VPA-exposed rat offspring showed memory deficits in NOR and Passive avoidance tasks. Our results indicated that 3 mg/kg CPX improved cognitive impairments induced by VPA, while 20 mg/kg FAM attenuated them. We concluded that 3 mg/kg CPX improved VPA-induced cognitive impairments through H3Rs. The histological assessment showed that the number of CA1 neurons decreased in the VPA-exposed rat offspring compared to the saline-exposed rat offspring, but this decrease was not significant. The histological assessment also revealed no significant differences in CA1 neurons in VPA-exposed rat offspring compared to saline-exposed rat offspring. However, CPX3 increased the number of CA1 neurons in the VPA + CPX3 group compared to the VPA + Saline group, but this increase was not significant. This study showed that rats prenatally exposed to VPA exhibit cognitive impairments in the MBT, open field, NOR, and Passive avoidance tests, which are ameliorated by CPX treatment on PND 48-50. In addition, morphological investigations showed that VPA treatment did not lead to neuronal degeneration in the CA1 subfield of the hippocampus in rat pups.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physics and Astronomy Department, University of Waterloo, Waterloo, Ontario, Canada
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi Shekari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Hafycz JM, Strus E, Naidoo NN. Early and late chaperone intervention therapy boosts XBP1s and ADAM10, restores proteostasis, and rescues learning in Alzheimer's Disease mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541973. [PMID: 37292838 PMCID: PMC10245863 DOI: 10.1101/2023.05.23.541973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is pervasive among the aging population. Two distinct phenotypes of AD are deficits in cognition and proteostasis, including chronic activation of the unfolded protein response (UPR) and aberrant Aβ production. It is unknown if restoring proteostasis by reducing chronic and aberrant UPR activation in AD can improve pathology and cognition. Here, we present data using an APP knock-in mouse model of AD and several protein chaperone supplementation paradigms, including a late-stage intervention. We show that supplementing protein chaperones systemically and locally in the hippocampus reduces PERK signaling and increases XBP1s, which is associated with increased ADAM10 and decreased Aβ42. Importantly, chaperone treatment improves cognition which is correlated with increased CREB phosphorylation and BDNF. Together, this data suggests that chaperone treatment restores proteostasis in a mouse model of AD and that this restoration is associated with improved cognition and reduced pathology. One-sentence summary Chaperone therapy in a mouse model of Alzheimer's disease improves cognition by reducing chronic UPR activity.
Collapse
|
19
|
Kljajevic V, Evensmoen HR, Sokołowski D, Pani J, Hansen TI, Håberg AK. Female advantage in verbal learning revisited: a HUNT study. Memory 2023:1-19. [PMID: 37114402 DOI: 10.1080/09658211.2023.2203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The argument for a female advantage in word list learning is often based on partial observations that focus on a single component of the task. Using a large sample (N = 4403) of individuals 13-97 years of age from the general population, we investigated whether this advantage is consistently reflected in learning, recall, and recognition and how other cognitive abilities differentially support word list learning. A robust female advantage was found in all subcomponents of the task. Semantic clustering mediated the effects of short-term and working memory on long-delayed recall and recognition, and serial clustering on short-delayed recall. These indirect effects were moderated by sex, with men benefiting more from reliance on each clustering strategy than women. Auditory attention span mediated the effect of pattern separation on true positives in word recognition, and this effect was stronger in men than in women. Men had better short-term and working memory scores, but lower auditory attention span and were more vulnerable to interference both in delayed recall and recognition. Thus, our data suggest that auditory attention span and interference control (inhibition), rather than short-term or working memory scores, semantic and/or serial clustering on their own, underlie better performance on word list learning in women.
Collapse
Affiliation(s)
- V Kljajevic
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - H R Evensmoen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - D Sokołowski
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - J Pani
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - T I Hansen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - A K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
20
|
Pajarillo E, Kim SH, Digman A, Dutton M, Son DS, Aschner M, Lee E. The role of microglial LRRK2 in manganese-induced inflammatory neurotoxicity via NLRP3 inflammasome and RAB10-mediated autophagy dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535418. [PMID: 37066140 PMCID: PMC10103982 DOI: 10.1101/2023.04.03.535418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Chronic exposure to manganese (Mn) can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice, and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1β and TNF-α in the striatum and midbrain of WT mice, and these effects were exacerbated in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 μM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1β, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was exacerbated in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated BV2 microglia expressing G2019S caused greater toxicity to cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10, which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway, and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.
Collapse
|
21
|
Díaz-Sánchez E, López-Salas A, Mirchandani-Duque M, Alvarez-Contino JE, Sánchez-Pérez JA, Fuxe K, Borroto-Escuela DO, García-Casares N, Narváez M. Decreased medial prefrontal cortex activity related to impaired novel object preference task performance following GALR2 and Y1R agonists intranasal infusion. Biomed Pharmacother 2023; 161:114433. [PMID: 36848750 DOI: 10.1016/j.biopha.2023.114433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Different brain regions' interactions have been implicated in relevant neurological diseases, such as major depressive disorder (MDD), anxiety disorders, age-dependent cognitive decline, Alzheimer's disease (AD) and addiction. We aim to explore the role of the medial prefrontal cortex (mPFC) in the Neuropeptide Y (NPY) and Galanin (GAL) interaction since we have demonstrated specific NPY and GAL interactions in brain areas related to these brain diseases. We performed GALR2 and Y1R agonists intranasal infusion and analyzed the mPFC activation through c-Fos expression. To assess the associated cellular mechanism we studied the formation of Y1R-GALR2 heteroreceptor complexes with in situ proximity ligation assay (PLA) and the expression of the brain-derived neurotrophic factor (BDNF). Moreover, the functional outcome of the NPY and GAL interaction on the mPFC was evaluated in the novel object preference task. We demonstrated that the intranasal administration of both agonists decrease the medial prefrontal cortex activation as shown with the c-Fos expression. These effects were mediated by the decreased formation of Y1R-GALR2 heteroreceptor complexes without affecting the BDNF expression. The functional outcome of this interaction was related to an impaired performance on the novel object preference task. Our data may suggest the translational development of new heterobivalent agonist pharmacophores acting on Y1R-GALR2 heterocomplexes in the medial prefrontal cortex for the novel therapy on neurodegenerative and psychiatric diseases. DATA SHARING AND DATA ACCESSIBILITY: The data that support the findings of this study are openly available in Institutional repository of the University of Malaga (RIUMA) and from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Estela Díaz-Sánchez
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain; Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain.
| | - Alexander López-Salas
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain.
| | - Marina Mirchandani-Duque
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain.
| | - Jose Erik Alvarez-Contino
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain.
| | - Jose Andrés Sánchez-Pérez
- Instituto de Investigación Biomédica de Málaga, Unit of Psychiatry, Hospital Universitario Virgen de la Victoria, Spain.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.
| | - Dasiel O Borroto-Escuela
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino 61029, Italy.
| | - Natalia García-Casares
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain.
| | - Manuel Narváez
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain; Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.
| |
Collapse
|
22
|
Novel object recognition in Octopus maya. Anim Cogn 2023; 26:1065-1072. [PMID: 36809584 PMCID: PMC10066149 DOI: 10.1007/s10071-023-01753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
The Novel Object Recognition task (NOR) is widely used to study vertebrates' memory. It has been proposed as an adequate model for studying memory in different taxonomic groups, allowing similar and comparable results. Although in cephalopods, several research reports could indicate that they recognize objects in their environment, it has not been tested as an experimental paradigm that allows studying different memory phases. This study shows that two-month-old and older Octopus maya subjects can differentiate between a new object and a known one, but one-month-old subjects cannot. Furthermore, we observed that octopuses use vision and tactile exploration of new objects to achieve object recognition, while familiar objects only need to be explored visually. To our knowledge, this is the first time showing an invertebrate performing the NOR task similarly to how it is performed in vertebrates. These results establish a guide to studying object recognition memory in octopuses and the ontological development of that memory.
Collapse
|
23
|
Kawamura T, Singh Mallah G, Ardalan M, Chumak T, Svedin P, Jonsson L, Jabbari Shiadeh SM, Goretta F, Ikeda T, Hagberg H, Sandberg M, Mallard C. Therapeutic Effect of Nicotinamide Mononucleotide for Hypoxic-Ischemic Brain Injury in Neonatal Mice. ASN Neuro 2023; 15:17590914231198983. [PMID: 37787108 PMCID: PMC10548811 DOI: 10.1177/17590914231198983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/04/2023] Open
Abstract
SUMMARY STATEMENT Neonatal hypoxia-ischemia reduces nicotinamide adenine dinucleotide (NAD+) and SIRT6 levels in the injured hippocampus.Hippocampal high mobility group box-1 (HMGB1) release is significantly increased after neonatal hypoxia-ischemia.Nicotinamide mononucleotide (NMN) treatment normalizes hippocampal NAD+ and SIRT6 levels, with significant decrease in caspase-3 activity and HMGB1 release.NMN improves early developmental behavior, as well as motor and memory function.
Collapse
Affiliation(s)
- Takuya Kawamura
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Gagandeep Singh Mallah
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tetyana Chumak
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lina Jonsson
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Goretta
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Elangovan S, Borody TJ, Holsinger RMD. Fecal Microbiota Transplantation Reduces Pathology and Improves Cognition in a Mouse Model of Alzheimer's Disease. Cells 2022; 12:cells12010119. [PMID: 36611911 PMCID: PMC9818266 DOI: 10.3390/cells12010119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Characterized by the presence of amyloid plaques, neurofibrillary tangles and neuroinflammation, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with no known treatment or cure. Global disease projections warrant an urgent and rapid therapeutic for the treatment of this devastating disease. Fecal microbiota transplantation (FMT) is a widely accepted and safely used treatment for recurrent Clostridium difficile infection and other metabolic diseases such as diabetes mellitus. FMT has also been demonstrated to be a possible AD therapeutic. We examined the potential of FMT for the treatment of AD in a robust, mouse model of the disease and report that a brief, 7-day treatment regimen demonstrated 'plaque-busting' and behavior-modifying effects in treated 5xFAD mice. Importantly, we show that donor age plays an important role in the efficacy of the treatment and these findings warrant further investigation in human trials.
Collapse
Affiliation(s)
- Shalini Elangovan
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas J. Borody
- Centre for Digestive Diseases, Level 1, 229 Great North Road, Five Dock, NSW 2046, Australia
| | - R. M. Damian Holsinger
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
25
|
Kerr NA, Sanchez J, O'Connor G, Watson BD, Daunert S, Bramlett HM, Dietrich WD. Inflammasome-Regulated Pyroptotic Cell Death in Disruption of the Gut-Brain Axis After Stroke. Transl Stroke Res 2022; 13:898-912. [PMID: 35306629 DOI: 10.1007/s12975-022-01005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Approximately 50% of stroke survivors experience gastrointestinal complications. The innate immune response plays a role in changes to the gut-brain axis after stroke. The purpose of this study is to examine the importance of inflammasome-mediated pyroptosis in disruption of the gut-brain axis after experimental stroke. B6129 mice were subjected to a closed-head photothrombotic stroke. We examined the time course of inflammasome protein expression in brain and intestinal lysate using western blot analysis at 1-, 3-, and 7-days post-injury for caspase-1, interleukin-1β, nod-like receptor protein 3 (NLRP3), and apoptosis speck-like protein containing a caspase-recruiting domain (ASC) and gasdermin-D (GSDMD) cleavage. In a separate group of mice, we processed brain tissue 24 and 72 h after thrombotic stroke for immunohistochemical analysis of neuronal and endothelial cell pyroptosis. We examined intestinal tissue for morphological changes and pyroptosis of macrophages. We performed behavioral tests and assessed gut permeability changes to confirm functional changes after stroke. Our data show that thrombotic stroke induces inflammasome activation in the brain and intestinal tissue up to 7-day post-injury as well as pyroptosis of neurons, cerebral endothelial cells, and intestinal macrophages. We found that thrombotic stroke leads to neurocognitive and motor function deficits as well as increased gut permeability. Finally, the adoptive transfer of serum-derived EVs from stroke mice into naive induced inflammasome activation in intestinal tissues. Taken together, these results provide novel information regarding possible mechanisms underlying gut complications after stroke and the identification of new therapeutic targets for reducing the widespread consequences of ischemic brain injury.
Collapse
Affiliation(s)
- Nadine A Kerr
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Juliana Sanchez
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brant D Watson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
26
|
Pajarillo E, Demayo M, Digman A, Nyarko-Danquah I, Son DS, Aschner M, Lee E. Deletion of RE1-silencing transcription factor in striatal astrocytes exacerbates manganese-induced neurotoxicity in mice. Glia 2022; 70:1886-1901. [PMID: 35638297 PMCID: PMC9378447 DOI: 10.1002/glia.24226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
Chronic manganese (Mn) overexposure causes a neurological disorder, referred to as manganism, exhibiting symptoms similar to parkinsonism. Dysfunction of the repressor element-1 silencing transcription factor (REST) is associated with various neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Mn-induced neurotoxicity, but its cellular and molecular mechanisms have yet to be fully characterized. Although neuronal REST is known to be neuroprotective, the role of astrocytic REST in neuroprotection remains to be established. We investigated if astrocytic REST in the striatal region of the mouse brain where Mn preferentially accumulates plays a role in Mn-induced neurotoxicity. Striatal astrocytic REST was deleted by infusion of adeno-associated viral vectors containing sequences of the glial fibrillary acidic protein promoter-driven Cre recombinase into the striatum of RESTflox/flox mice for 3 weeks, followed by Mn exposure (30 mg/kg, daily, intranasally) for another 3 weeks. Striatal astrocytic REST deletion exacerbated Mn-induced impairment of locomotor activity and cognitive function with further decrease in Mn-reduced protein levels of tyrosine hydroxylase and glutamate transporter 1 (GLT-1) in the striatum. Astrocytic REST deletion also exacerbated the Mn-induced proinflammatory mediator COX-2, as well as cytokines such as TNF-α, IL-1β, and IL-6, in the striatum. Mn-induced detrimental astrocytic products such as proinflammatory cytokines on neuronal toxicity were attenuated by astrocytic REST overexpression, but exacerbated by REST inhibition in an in vitro model using primary human astrocytes and Lund human mesencephalic (LUHMES) neuronal culture. These findings indicate that astrocytic REST plays a critical role against Mn-induced neurotoxicity by modulating astrocytic proinflammatory factors and GLT-1.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mark Demayo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Laboratory for Molecular Nutrition of the Institute for Personalized Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
27
|
Cognitive Sequelae and Hippocampal Dysfunction in Chronic Kidney Disease following 5/6 Nephrectomy. Brain Sci 2022; 12:brainsci12070905. [PMID: 35884712 PMCID: PMC9321175 DOI: 10.3390/brainsci12070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Neurological disorders are prevalent in patients with chronic kidney disease (CKD). Vascular factors and uremic toxins are involved with cognitive impairment in CKD. In addition, vascular dementia-induced alterations in the structure and function of the hippocampus can lead to deficits in hippocampal synaptic plasticity and cognitive function. However, regardless of this clinical evidence, the pathophysiology of cognitive impairment in patients with CKD is not fully understood. We used male Sprague Dawley rats and performed 5/6 nephrectomy to observe the changes in behavior, field excitatory postsynaptic potential, and immunostaining of the hippocampus following CKD progression. We measured the hippocampus volume on magnetic resonance imaging scans in the controls (n = 34) and end-stage renal disease (ESRD) hemodialysis patients (n = 42). In four cognition-related behavior assays, including novel object recognition, Y-maze, Barnes maze, and classical contextual fear conditioning, we identified deficits in spatial working memory, learning and memory, and contextual memory, as well as the ability to distinguish familiar and new objects, in the rats with CKD. Immunohistochemical staining of Na+/H+ exchanger1 was increased in the hippocampus of the CKD rat models. We performed double immunofluorescent staining for aquaporin-4 and glial fibrillary acidic protein and then verified the high coexpression in the hippocampus of the CKD rat model. Furthermore, results from recoding of the field excitatory postsynaptic potential (fEPSP) in the hippocampus showed the reduced amplitude and slope of fEPSP in the CKD rats. ESRD patients with cognitive impairment showed a significant decrease in the hippocampus volume compared with ESRD patients without cognitive impairment or the controls. Our findings suggest that uremia resulting from decreased kidney function may cause the destruction of the blood–brain barrier and hippocampus-related cognitive impairment in CKD.
Collapse
|
28
|
Webberley TS, Masetti G, Bevan RJ, Kerry-Smith J, Jack AA, Michael DR, Thomas S, Glymenaki M, Li J, McDonald JAK, John D, Morgan JE, Marchesi JR, Good MA, Plummer SF, Hughes TR. The Impact of Probiotic Supplementation on Cognitive, Pathological and Metabolic Markers in a Transgenic Mouse Model of Alzheimer's Disease. Front Neurosci 2022; 16:843105. [PMID: 35685773 PMCID: PMC9172594 DOI: 10.3389/fnins.2022.843105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Brain degenerative disorders such as Alzheimer’s disease (AD) can be exacerbated by aberrant metabolism. Supplementation with probiotic bacteria is emerging as a promising preventative strategy for both neurodegeneration and metabolic syndrome. In this study, we assess the impact of the Lab4b probiotic consortium on (i) cognitive and pathological markers of AD progression and (ii) metabolic status in 3xTg-AD mice subjected to metabolic challenge with a high fat diet. The group receiving the probiotic performed better in the novel object recognition test and displayed higher hippocampal neuronal spine density than the control group at the end of the 12 weeks intervention period. These changes were accompanied by differences in localised (brain) and systemic anti-inflammatory responses that favoured the Probiotic group together with the prevention of diet induced weight gain and hypercholesterolaemia and the modulation of liver function. Compositional differences between the faecal microbiotas of the study groups included a lower Firmicutes:Bacteroidetes ratio and less numbers of viable yeast in the Probiotic group compared to the Control. The results illustrate the potential of the Lab4b probiotic as a neuroprotective agent and encourage further studies with human participants.
Collapse
Affiliation(s)
- Thomas S Webberley
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Cultech Ltd., Port Talbot, United Kingdom
| | | | - Ryan J Bevan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | - Maria Glymenaki
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jia Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Julie A K McDonald
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark A Good
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
29
|
Hafycz JM, Strus E, Naidoo N. Reducing ER stress with chaperone therapy reverses sleep fragmentation and cognitive decline in aged mice. Aging Cell 2022; 21:e13598. [PMID: 35488730 PMCID: PMC9197403 DOI: 10.1111/acel.13598] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/03/2023] Open
Abstract
As the aging population grows, the need to understand age-related changes in health is vital. Two prominent behavioral changes that occur with age are disrupted sleep and impaired cognition. Sleep disruptions lead to perturbations in proteostasis and endoplasmic reticulum (ER) stress in mice. Further, consolidated sleep and protein synthesis are necessary for memory formation. With age, the molecular mechanisms that relieve cellular stress and ensure proper protein folding become less efficient. It is unclear if a causal relationship links proteostasis, sleep quality, and cognition in aging. Here, we used a mouse model of aging to determine if supplementing chaperone levels reduces ER stress and improves sleep quality and memory. We administered the chemical chaperone 4-phenyl butyrate (PBA) to aged and young mice, and monitored sleep and cognitive behavior. We found that chaperone treatment consolidates sleep and wake, and improves learning in aged mice. These data correlate with reduced ER stress in the cortex and hippocampus of aged mice. Chaperone treatment increased p-CREB, which is involved in memory formation and synaptic plasticity, in hippocampi of chaperone-treated aged mice. Hippocampal overexpression of the endogenous chaperone, binding immunoglobulin protein (BiP), improved cognition, reduced ER stress, and increased p-CREB in aged mice, suggesting that supplementing BiP levels are sufficient to restore some cognitive function. Together, these results indicate that restoring proteostasis improves sleep and cognition in a wild-type mouse model of aging. The implications of these results could have an impact on the development of therapies to improve health span across the aging population.
Collapse
Affiliation(s)
- Jennifer M. Hafycz
- Chronobiology and Sleep Institute and Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ewa Strus
- Chronobiology and Sleep Institute and Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nirinjini Naidoo
- Chronobiology and Sleep Institute and Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
30
|
Ekong MB, Odinukaeze FN, Nwonu AC, Mbadugha CC, Nwakanma AA. BRAIN ACTIVITIES OF STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS TREATED WITH GLICLAZIDE: BEHAVIOURAL, BIOCHEMICAL AND HISTOMORPHOLOGY STUDIES. IBRO Neurosci Rep 2022; 12:271-279. [PMID: 35746981 PMCID: PMC9210456 DOI: 10.1016/j.ibneur.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Gliclazide (GLD), a sulphonylurea is efficacious in the treatment of diabetes type-2. However, there is limited information on its activity in the brain, especially in diabetics. This research investigated the brain activities of GLD following streptozotocin-induced diabetes in Wistar rats. Twenty five adult male Wistar rats (200–250 g) were grouped (n = 5) as: Control (distilled water, 5 mL/kg) and GLD (150 mg/kg) groups; and the diabetic groups, untreated streptozotocin (STZ, 35 mg/kg), and STZ (35 mg/kg) treated with GLD (150 mg/kg) for two and four weeks, and already on high fat diet. The animals’ body weights and blood glucose levels were checked weekly. After the experimental duration, spontaneous alternation and novel object recognition tests were carried out and the animals sacrificed. Perfusion with phosphate buffered saline preceded brain excision for biochemical analyses, with halves fixed in 10% neutral buffered formalin for histology. Compared with the control, results showed (p < 0.05) declined spontaneous alternation and exploratory activities with no preference for familiar or novel objects, body weights loss, raised blood glucose, increased malondialdehyde with decreased superoxide dismutase concentrations, and no apparent adverse effect on hippocampal and prefrontal cortical Nissl substance in the untreated diabetic group. The adverse observations were attenuated in the GLD treated diabetic groups; although the spontaneous alternation in the four weeks GLD treated diabetic group improved (p < 0.05), exploration of objects increased (p < 0.05) without preference. The present results showed that treatment with GLD for two and four weeks mitigated STZ activities, even though there was less improvement in neurocognitive activities.
Collapse
Affiliation(s)
- Moses B. Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
- Corresponding author.
| | - Francis N. Odinukaeze
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Amaobi C. Nwonu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | | | - Agnes A. Nwakanma
- Department of Anatomy, Faculty of Basic Medical Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
| |
Collapse
|
31
|
Persson BM, Ambrozova V, Duncan S, Wood ER, O’Connor AR, Ainge JA. Lateral entorhinal cortex lesions impair odor-context associative memory in male rats. J Neurosci Res 2022; 100:1030-1046. [PMID: 35187710 PMCID: PMC9302644 DOI: 10.1002/jnr.25027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/14/2023]
Abstract
Lateral entorhinal cortex (LEC) has been hypothesized to process nonspatial, item information that is combined with spatial information from medial entorhinal cortex to form episodic memories within the hippocampus. Recent studies, however, have demonstrated that LEC has a role in integrating features of episodic memory prior to the hippocampus. While the precise role of LEC is still unclear, anatomical studies show that LEC is ideally placed to be a hub integrating multisensory information. The current study tests whether the role of LEC in integrating information extends to long-term multimodal item-context associations. In Experiment 1, male rats were trained on a context-dependent odor discrimination task, where two different contexts served as the cue to the correct odor. Rats were pretrained on the task and then received either bilateral excitotoxic LEC or sham lesions. Following surgery, rats were tested on the previously learned odor-context associations. Control rats showed good memory for the previously learned association but rats with LEC lesions showed significantly impaired performance relative to both their own presurgery performance and to control rats. Experiment 2 went on to test whether impairments in Experiment 1 were the result of LEC lesions impairing either odor or context memory retention alone. Male rats were trained on simple odor and context discrimination tasks that did not require integration of features to solve. Following surgery, both LEC and control rats showed good memory for previously learned odors and contexts. These data show that LEC is critical for long-term odor-context associative memory.
Collapse
Affiliation(s)
- Bjorn M. Persson
- School of Psychology & NeuroscienceUniversity of St AndrewsSt AndrewsUK
| | | | - Stephen Duncan
- School of Psychology & NeuroscienceUniversity of St AndrewsSt AndrewsUK
| | - Emma R. Wood
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Akira R. O’Connor
- School of Psychology & NeuroscienceUniversity of St AndrewsSt AndrewsUK
| | - James A. Ainge
- School of Psychology & NeuroscienceUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
32
|
Borroto-Escuela DO, Fores R, Pita M, Barbancho MA, Zamorano‐Gonzalez P, Casares NG, Fuxe K, Narváez M. Intranasal Delivery of Galanin 2 and Neuropeptide Y1 Agonists Enhanced Spatial Memory Performance and Neuronal Precursor Cells Proliferation in the Dorsal Hippocampus in Rats. Front Pharmacol 2022; 13:820210. [PMID: 35250569 PMCID: PMC8893223 DOI: 10.3389/fphar.2022.820210] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
A need for new therapeutic approaches are necessary for dementia conditions and memory deficits of different origins, such as Alzheimer's disease. There is complex pathophysiological mechanisms involved, affecting adult hippocampal neurogenesis, in which neuropeptides and its neurogenesis regulation seem to participate. Neuropeptide Y(NPY) Y1 receptor (Y1R) and galanin (GAL) receptor 2 (GALR2) interact in brain regions responsible for learning and memory processes, emphasizing the hippocampus. Moreover, a significant challenge for treatments involving peptide drugs is bypassing the blood-brain barrier. The current study assesses the sustained memory performance induced by GALR2 and NPYY1R agonists intranasal coadministration and their neurochemical hippocampal correlates. Memory retrieval was conducted in the object-in-place task together with in situ proximity ligation assay (PLA) to manifest the formation of GALR2/Y1R heteroreceptor complexes and their dynamics under the different treatments. We evaluated cell proliferation through a 5-Bromo-2’-deoxyuridine (BrdU) expression study within the dentate gyrus of the dorsal hippocampus. The GalR2 agonist M1145 was demonstrated to act with the Y1R agonist to improve memory retrieval at 24 hours in the object-in-place task. Our data show that the intranasal administration is a feasible technique for directly delivering Galanin or Neuropeptide Y compounds into CNS. Moreover, we observed the ability of the co-agonist treatment to enhance the cell proliferation in the DG of the dorsal hippocampus through 5- Bromo-2’-deoxyuridine (BrdU) expression analysis at 24 hours. The understanding of the cellular mechanisms was achieved by analyzing the GALR2/Y1R heteroreceptor complexes upon agonist coactivation of their two types of receptor protomers in Doublecortin-expressing neuroblasts. Our results may provide the basis for developing heterobivalent agonist pharmacophores, targeting GALR2-Y1R heterocomplexes. It involves especially the neuronal precursor cells of the dentate gyrus in the dorsal hippocampus for the novel treatment of neurodegenerative pathologies as in the Alzheimer’s disease.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino, Italy
- Grupo Bohío-Estudio, Observatorio Cubano de Neurociencias, Yaguajay, Cuba
| | - Ramón Fores
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Mariana Pita
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Departamento de Neurogenética, Instituto de Neurología y Neurocirugía, La Habana, Cuba
| | - Miguel A. Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Pablo Zamorano‐Gonzalez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Natalia García Casares
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Manuel Narváez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- *Correspondence: Manuel Narváez,
| |
Collapse
|
33
|
Joushi S, Esmaeilpour K, Masoumi-Ardakani Y, Esmaeili-Mahani S, Sheibani V. Effects of short environmental enrichment on early-life adversity induced cognitive alternations in adolescent rats. J Neurosci Res 2021; 99:3373-3391. [PMID: 34676587 DOI: 10.1002/jnr.24974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/14/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023]
Abstract
Early-life experiences, including parental care, affect cognitive performance later in life. Being exposed to early-life maternal separation (MS) increases susceptibility to stress-related psychopathology. Previous studies suggest that MS could induce learning and memory impairments. Since enriched environment (EE) provides more opportunities for exploration and social interaction, in the present study we evaluated the effects of a short EE paradigm with a duration of 13 days on cognitive abilities of maternally separated rats (MS; 180 min/day, postnatal day (PND) 1-21) during adolescence in four experimental groups: Control, Control+EE, MS, and MS+EE. Plasma corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels were also measured in experimental animals. We also studied the induction of long-term potentiation (LTP) in the slices of hippocampal CA1 area. The behavioral and electrophysiological assessments were started at PND 35. MS caused higher basal CORT levels in plasma and impaired spatial learning, memory, and social interaction. LTP induction was also impaired in MS rats and plasma BDNF levels were reduced in these animals. MS also induced more anxiety-like behavior. Short EE reduced plasma CORT levels had the potential to improve locomotor activity and anxiety-like behavior in MS+EE rats and reversed MS-induced impairments of spatial learning, memory, and social behavior. LTP induction and plasma BDNF levels were also enhanced in MS+EE rats. We concluded that short EE might be considered as a therapeutic strategy for promoting cognition.
Collapse
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Kumar SP, Babu PP. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol Neurobiol 2021; 59:800-820. [PMID: 34782951 DOI: 10.1007/s12035-021-02598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Long-term cognitive impairment associated with seizure-induced hippocampal damage is the key feature of cerebral malaria (CM) pathogenesis. One-fourth of child survivors of CM suffer from long-lasting neurological deficits and behavioral anomalies. However, mechanisms on hippocampal dysfunction are unclear. In this study, we elucidated whether gp91phox isoform of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) (a potent marker of oxidative stress) mediates hippocampal neuronal abnormalities and cognitive dysfunction in experimental CM (ECM). Mice symptomatic to CM were rescue treated with artemether monotherapy (ARM) and in combination with apocynin (ARM + APO) adjunctive based on scores of Rapid Murine Come behavior Scale (RMCBS). After a 30-day survivability period, we performed Barnes maze, T-maze, and novel object recognition cognitive tests to evaluate working and reference memory in all the experimental groups except CM. Sensorimotor tests were conducted in all the cohorts to assess motor coordination. We performed Golgi-Cox staining to illustrate cornu ammonis-1 (CA1) pyramidal neuronal morphology and study overall hippocampal neuronal density changes. Further, expression of NOX2, NeuN (neuronal marker) in hippocampal CA1 and dentate gyrus was determined using double immunofluorescence experiments in all the experimental groups. Mice administered with ARM monotherapy and APO adjunctive treatment exhibited similar survivability. The latter showed better locomotor and cognitive functions, reduced ROS levels, and hippocampal NOX2 immunoreactivity in ECM. Our results show a substantial increase in hippocampal NeuN immunoreactivity and dendritic arborization in ARM + APO cohorts compared to ARM-treated brain samples. Overall, our study suggests that overexpression of NOX2 could result in loss of hippocampal neuronal density and dendritic spines of CA1 neurons affecting the spatial working and reference memory during ECM. Notably, ARM + APO adjunctive therapy reversed the altered neuronal morphology and oxidative damage in hippocampal neurons restoring long-term cognitive functions after CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Phanithi Prakash Babu
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
35
|
Paterno R, Marafiga JR, Ramsay H, Li T, Salvati KA, Baraban SC. Hippocampal gamma and sharp-wave ripple oscillations are altered in a Cntnap2 mouse model of autism spectrum disorder. Cell Rep 2021; 37:109970. [PMID: 34758298 PMCID: PMC8783641 DOI: 10.1016/j.celrep.2021.109970] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Impaired synaptic neurotransmission may underly circuit alterations contributing to behavioral autism spectrum disorder (ASD) phenotypes. A critical component of impairments reported in somatosensory and prefrontal cortex of ASD mouse models are parvalbumin (PV)-expressing fast-spiking interneurons. However, it remains unknown whether PV interneurons mediating hippocampal networks crucial to navigation and memory processing are similarly impaired. Using PV-labeled transgenic mice, a battery of behavioral assays, in vitro patch-clamp electrophysiology, and in vivo 32-channel silicon probe local field potential recordings, we address this question in a Cntnap2-null mutant mouse model representing a human ASD risk factor gene. Cntnap2-/- mice show a reduction in hippocampal PV interneuron density, reduced inhibitory input to CA1 pyramidal cells, deficits in spatial discrimination ability, and frequency-dependent circuit changes within the hippocampus, including alterations in gamma oscillations, sharp-wave ripples, and theta-gamma modulation. Our findings highlight hippocampal involvement in ASD and implicate interneurons as a potential therapeutical target.
Collapse
Affiliation(s)
- Rosalia Paterno
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA.
| | - Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Harrison Ramsay
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Tina Li
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Kathryn A Salvati
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
36
|
Shahraki S, Esmaeilpour K, Shabani M, Sepehri G, Rajizadeh MA, Maneshian M, Joushi S, Sheibani V. Choline chloride modulates learning, memory, and synaptic plasticity impairments in maternally separated adolescent male rats. Int J Dev Neurosci 2021; 82:19-38. [PMID: 34727391 DOI: 10.1002/jdn.10155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/06/2022] Open
Abstract
Maternal separation (MS) is a model to induce permanent alternations in the central nervous system (CNS) and is associated with increased levels of anxiety and cognitive deficiencies. Since Methyl donor choline (Ch) has been shown to play a significant role in learning and memory and enhances synaptic plasticity, the authors hypothesized that Ch may attenuate MS-induced impairments in synaptic plasticity and cognitive performance. Rat pups underwent a MS protocol for 180 min/day from postnatal day (PND) 1 to 21. Ch was administered subcutaneously (100 mg/kg, 21 days) to the Choline chloride and MS + Choline chloride groups from PND 29 to 49. Anxiety-like behavior, recognition memory, spatial and passive avoidance learning and memory were measured in the adolescent rats. In addition, evoked field excitatory postsynaptic potentials (fEPSP) were recorded from the CA1 region of the hippocampus. MS induced higher anxiety-like behavior in the animals. It also impaired learning and memory. However, MS had no effect on locomotor activity. Subcutaneous administration of Ch attenuated MS-induced cognitive deficits and enhanced the learning and memory of MS rats. Ch also decreased anxiety-like behavior in the open field test. The present results showed that long-term potentiation (LTP) was induced in all groups except MS and MS + saline animals. However, Ch injection induced LTP and had maintenance in MS + choline chloride, but it was not statistically significant compared with the MS group. In summary, the present findings indicate that MS can interfere with normal animal's cognition and subcutaneous of Ch may be considered an appropriate therapeutic strategy for promoting cognitive dysfunctions in MS animals.
Collapse
Affiliation(s)
- Sarieh Shahraki
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology & pharmacology, school of medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Maneshian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
37
|
Hendrickx JO, De Moudt S, Calus E, De Deyn PP, Van Dam D, De Meyer GRY. Age-related cognitive decline in spatial learning and memory of C57BL/6J mice. Behav Brain Res 2021; 418:113649. [PMID: 34728276 DOI: 10.1016/j.bbr.2021.113649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
Abstract
During the last decades, most of the preclinical neurodegenerative research was performed in mouse models of amyloidosis, tauopathies or α-synucleinopathies preferentially maintained on a C57BL/6J background. However, comprehensive neurobehavioural data from C57BL/6J mice outlining the critical point of spontaneous cognitive decline are incomplete. In this study, we aimed for the neurobehavioural phenotyping of hippocampus-dependent spatial learning and memory of aging C57BL/6J mice. Neurobehavioural phenotyping was performed by means of a Morris Water Maze (MWM) and a Novel Object Recognition (NOR) test. MWM measurements revealed signs of age-related memory loss in C57BL/6J animals from the age of 6 months onward. The NOR assessment strengthened latter finding by decreasing discrimination indexes (DI) and recognition indexes (RI) starting from the age of 6 months. Taken together, these findings contribute to the current knowledge of spontaneous cognitive behaviours of this perhaps most widely used mouse strain and serve as a benchmark for dementia mouse models to distinguish spontaneous from pathological neurodegenerative behaviour.
Collapse
Affiliation(s)
- Jhana O Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sofie De Moudt
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Elke Calus
- Laboratory of Neurochemistry and Behaviour, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
38
|
Waite L, Bonardi C, Stevenson CW, Cassaday HJ. Strain comparisons in inhibitory discrimination learning and novel object recognition procedures. Physiol Behav 2021; 240:113557. [PMID: 34400194 PMCID: PMC8476941 DOI: 10.1016/j.physbeh.2021.113557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Strain differences in visual abilities and exploratory tendencies can confound rats' performance in cognitive tests of learning and memory. In the present study we compared the performance of albino Wistar and pigmented Lister Hooded rats in appetitive conditioning and recognition memory procedures, specifically within-subjects inhibitory learning (A+ /AX-) and novel object recognition (NOR) variants. The inhibition task included an excitatory training stage and summation and retardation tests. Difference scores were used to help control for individual variation in baseline nosepoke responding. NOR was tested after a 10 min delay, following 24hr delay and using a recency variant. Discrimination ratios were used to control for individual variation in exploratory activity. In the inhibitory learning procedure, Lister Hooded showed more magazine activity prior to stimulus presentations than Wistar rats but this was a transient effect restricted to day 1 of excitatory training. There was no strain difference in associative learning at the excitatory training stage. The Wistars went on to show some performance advantage at the inhibitory discrimination stage and marginally stronger retardation test performance. In the NOR tasks, there was no significant effect of strain on cognitive performance, but the Wistars showed some advantage in the 10 min delay variant, whereas in the 24hr delay and relative recency NOR variants, the Lister Hooded rats showed some advantage. Overall the results of the present study confirm the suitability of Wistar rats for use in associative learning and basic NOR procedures.
Collapse
Affiliation(s)
- L Waite
- School of Psychology, University of Nottingham,UK
| | - C Bonardi
- School of Psychology, University of Nottingham,UK
| | | | - H J Cassaday
- School of Psychology, University of Nottingham,UK
| |
Collapse
|
39
|
Lissner LJ, Wartchow KM, Toniazzo AP, Gonçalves CA, Rodrigues L. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol Biochem Behav 2021; 210:173273. [PMID: 34536480 DOI: 10.1016/j.pbb.2021.173273] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Object recognition (OR) and the Morris water maze (MWM) are classical tasks widely used to assess memory parameters and deficits in rodents. Learning processes in both tasks involve integrity of the hippocampus and associated regions, and prefrontal cortex connections. Here, we highlight the idea that these classical tests can be used to indicate memory deficits caused by models of disease that affect hippocampal function in rats, and identify some practical issues of OR and MWM, based on the literature and our experience. Additionally, we have shown that the performance of both tasks does not alter blood levels of corticosterone, considering exposure to a single task. Hence, taking into consideration the difficulties and care required during task execution, the infrastructure needed and the training of the experimenter, we suggest that OR and its variations offer minimal manageable stressful conditions, representing an effective and practical tool for hippocampal-related memory assessment of rats. Thus, OR may provide similar information to that of the MWM, despite controversy regarding hippocampus participation in OR and given due differences in the types of memory evaluated and researchers' objectives. We recommend the observation of some important precautions and details, also based on the literature and our own experience.
Collapse
Affiliation(s)
- Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Ana Paula Toniazzo
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil.
| |
Collapse
|
40
|
Feng Y, Li K, Roth E, Chao D, Mecca CM, Hogan QH, Pawela C, Kwok WM, Camara AKS, Pan B. Repetitive Mild Traumatic Brain Injury in Rats Impairs Cognition, Enhances Prefrontal Cortex Neuronal Activity, and Reduces Pre-synaptic Mitochondrial Function. Front Cell Neurosci 2021; 15:689334. [PMID: 34447298 PMCID: PMC8383341 DOI: 10.3389/fncel.2021.689334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
A major hurdle preventing effective interventions for patients with mild traumatic brain injury (mTBI) is the lack of known mechanisms for the long-term cognitive impairment that follows mTBI. The closed head impact model of repeated engineered rotational acceleration (rCHIMERA), a non-surgical animal model of repeated mTBI (rmTBI), mimics key features of rmTBI in humans. Using the rCHIMERA in rats, this study was designed to characterize rmTBI-induced behavioral disruption, underlying electrophysiological changes in the medial prefrontal cortex (mPFC), and associated mitochondrial dysfunction. Rats received 6 closed-head impacts over 2 days at 2 Joules of energy. Behavioral testing included automated analysis of behavior in open field and home-cage environments, rotarod test for motor skills, novel object recognition, and fear conditioning. Following rmTBI, rats spent less time grooming and less time in the center of the open field arena. Rats in their home cage had reduced inactivity time 1 week after mTBI and increased exploration time 1 month after injury. Impaired associative fear learning and memory in fear conditioning test, and reduced short-term memory in novel object recognition test were found 4 weeks after rmTBI. Single-unit in vivo recordings showed increased neuronal activity in the mPFC after rmTBI, partially attributable to neuronal disinhibition from reduced inhibitory synaptic transmission, possibly secondary to impaired mitochondrial function. These findings help validate this rat rmTBI model as replicating clinical features, and point to impaired mitochondrial functions after injury as causing imbalanced synaptic transmission and consequent impaired long-term cognitive dysfunction.
Collapse
Affiliation(s)
- Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Keguo Li
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elizabeth Roth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christina M Mecca
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher Pawela
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
41
|
Kim JH, Chung KH, Hwang YR, Park HR, Kim HJ, Kim HG, Kim HR. Exposure to RF-EMF Alters Postsynaptic Structure and Hinders Neurite Outgrowth in Developing Hippocampal Neurons of Early Postnatal Mice. Int J Mol Sci 2021; 22:ijms22105340. [PMID: 34069478 PMCID: PMC8159076 DOI: 10.3390/ijms22105340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022] Open
Abstract
Exposure to radiofrequency electromagnetic fields (RF-EMFs) has increased rapidly in children, but information on the effects of RF-EMF exposure to the central nervous system in children is limited. In this study, pups and dams were exposed to whole-body RF-EMF at 4.0 W/kg specific absorption rate (SAR) for 5 h per day for 4 weeks (from postnatal day (P) 1 to P28). The effects of RF-EMF exposure on neurons were evaluated by using both pups' hippocampus and primary cultured hippocampal neurons. The total number of dendritic spines showed statistically significant decreases in the dentate gyrus (DG) but was not altered in the cornu ammonis (CA1) in hippocampal neurons. In particular, the number of mushroom-type dendritic spines showed statistically significant decreases in the CA1 and DG. The expression of glutamate receptors was decreased in mushroom-type dendritic spines in the CA1 and DG of hippocampal neurons following RF-EMF exposure. The expression of brain-derived neurotrophic factor (BDNF) in the CA1 and DG was significantly lower statistically in RF-EMF-exposed mice. The number of post-synaptic density protein 95 (PSD95) puncta gradually increased over time but was significantly decreased statistically at days in vitro (DIV) 5, 7, and 9 following RF-EMF exposure. Decreased BDNF expression was restricted to the soma and was not observed in neurites of hippocampal neurons following RF-EMF exposure. The length of neurite outgrowth and number of branches showed statistically significant decreases, but no changes in the soma size of hippocampal neurons were observed. Further, the memory index showed statistically significant decreases in RF-EMF-exposed mice, suggesting that decreased synaptic density following RF-EMF exposure at early developmental stages may affect memory function. Collectively, these data suggest that hindered neuronal outgrowth following RF-EMF exposure may decrease overall synaptic density during early neurite development of hippocampal neurons.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea; (J.H.K.); (H.R.P.); (H.-G.K.)
| | - Kyung Hwun Chung
- Hyangseol Medical Research Center, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea;
| | - Yeong Ran Hwang
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Korea; (Y.R.H.); (H.J.K.)
| | - Hye Ran Park
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea; (J.H.K.); (H.R.P.); (H.-G.K.)
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Korea; (Y.R.H.); (H.J.K.)
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea; (J.H.K.); (H.R.P.); (H.-G.K.)
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea; (J.H.K.); (H.R.P.); (H.-G.K.)
- Correspondence: ; Tel.: +82-41-550-3935
| |
Collapse
|
42
|
Ameen-Ali KE, Sivakumaran MH, Eacott MJ, O'Connor AR, Ainge JA, Easton A. Perirhinal cortex and the recognition of relative familiarity. Neurobiol Learn Mem 2021; 182:107439. [PMID: 33862223 DOI: 10.1016/j.nlm.2021.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/10/2021] [Accepted: 04/09/2021] [Indexed: 01/11/2023]
Abstract
Spontaneous object recognition (SOR) is a widely used task of recognition memory in rodents which relies on their propensity to explore novel (or relatively novel) objects. Network models typically define perirhinal cortex as a region required for recognition of previously seen objects largely based on findings that lesions or inactivations of this area produce SOR deficits. However, relatively little is understood about the relationship between the activity of cells in the perirhinal cortex that signal novelty and familiarity and the behavioural responses of animals in the SOR task. Previous studies have used objects that are either highly familiar or absolutely novel, but everyday memory is for objects that sit on a spectrum of familiarity which includes objects that have been seen only a few times, or objects that are similar to objects which have been previously experienced. We present two studies that explore cellular activity (through c-fos imaging) within perirhinal cortex of rats performing SOR where the familiarity of objects has been manipulated. Despite robust recognition memory performance, we show no significant changes in perirhinal activity related to the level of familiarity of the objects. Reasons for this lack of familiarity-related modulation in perirhinal cortex activity are discussed. The current findings support emerging evidence that perirhinal responses to novelty are complex and that task demands are critical to the involvement of perirhinal cortex in the control of object recognition memory.
Collapse
Affiliation(s)
- Kamar E Ameen-Ali
- Institute of Neuroscience and Psychology, University of Glasgow, G51 4TF, UK; Department of Psychology, Durham University, DH1 3LE, UK
| | | | - Madeline J Eacott
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK
| | - Akira R O'Connor
- School of Psychology & Neuroscience, University of St Andrews, KY16 9JP, UK
| | - James A Ainge
- School of Psychology & Neuroscience, University of St Andrews, KY16 9JP, UK
| | - Alexander Easton
- Department of Psychology, Durham University, DH1 3LE, UK; Centre for Learning and Memory Processes, Durham University, DH1 3LE, UK
| |
Collapse
|
43
|
Modulation of recognition memory performance by light and its relationship with cortical EEG theta and gamma activities. Biochem Pharmacol 2021; 191:114404. [PMID: 33412102 PMCID: PMC8363935 DOI: 10.1016/j.bcp.2020.114404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
Acute exposure to light exerts widespread effects on physiology, in addition to its key role in photoentrainment. Although the modulatory effect of light on physiological arousal is well demonstrated in mice, its effect on memory performance is inconclusive, as the direction of the effect depends on the nature of the behavioural task employed and/or the type of stimulus utilised. Moreover, in all rodent studies that reported significant effects of light on performance, brain activity was not assessed during the task and thus it is unclear how brain activity was modulated by light or the exact relationship between light-modulated brain activity and performance. Here we examine the modulatory effects of light of varying intensities on recognition memory performance and frontoparietal waking electroencephalography (EEG) in mice using the spontaneous recognition memory task. We report a light-intensity-dependent disruptive effect on recognition memory performance at the group level, but inspection of individual-level data indicates that light-intensity-dependent facilitation is observed in some cases. Using linear mixed-effects models, we then demonstrate that EEG fast theta (θ) activity at the time of encoding negatively predicts recognition memory performance, whereas slow gamma (γ) activity at the time of retrieval positively predicts performance. These relationships between θ/γ activity and performance are strengthened by increasing light intensity. Thus, light modulates θ and γ band activities involved in attentional and mnemonic processes, thereby affecting recognition memory performance. However, extraneous factors including the phase of the internal clock at which light is presented and homeostatic sleep pressure may determine how photic input is translated into behavioural performance.
Collapse
|
44
|
Intranasal oxytocin administration facilitates the induction of long-term potentiation and promotes cognitive performance of maternally separated rats. Psychoneuroendocrinology 2021; 123:105044. [PMID: 33227537 DOI: 10.1016/j.psyneuen.2020.105044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
Maternal separation (MS) is known to induce permanent changes in the central nervous system and is associated with increased levels of anxiety and cognitive impairments. The neuropeptide oxytocin (OT) has been implicated in a broad spectrum of social and nonsocial and behaviors. Since it plays a significant role in learning and memory and enhances synaptic plasticity, we hypothesized that OT may affect MS-induced changes in synaptic plasticity and cognitive performance. Rat pups underwent MS protocol for 180 min/day from postnatal day (PND) 1-21. OT was administered intranasally (2 μg/μl, 7 days) to control and MS groups from PND 22-34. Plasma corticosterone (CORT) levels, anxiety-like behavior, sociability, learning and memory were measured in adolescent rats. In addition, extracellular evoked field excitatory postsynaptic potentials (fEPSP) were also recorded from hippocampal slices. MS induced higher plasma CORT levels and impaired social interaction, learning and memory. Moreover, MS reduced locomotor activity and increased anxiety-like behavior. Intranasal OT could overcome MS-induced deficits and promoted sociability, learning and memory of MS rats. OT also enhanced locomotor activity in the open field and decreased anxiety-like behavior. Obtained results showed that long term potentiation (LTP) was not induced in MS animals. However, OT injection overcame the MS-induced impairment in LTP generation in CA1 area of the hippocampus.
Collapse
|
45
|
Farfán N, Carril J, Redel M, Zamorano M, Araya M, Monzón E, Alvarado R, Contreras N, Tapia-Bustos A, Quintanilla ME, Ezquer F, Valdés JL, Israel Y, Herrera-Marschitz M, Morales P. Intranasal Administration of Mesenchymal Stem Cell Secretome Reduces Hippocampal Oxidative Stress, Neuroinflammation and Cell Death, Improving the Behavioral Outcome Following Perinatal Asphyxia. Int J Mol Sci 2020; 21:ijms21207800. [PMID: 33096871 PMCID: PMC7589575 DOI: 10.3390/ijms21207800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Perinatal Asphyxia (PA) is a leading cause of motor and neuropsychiatric disability associated with sustained oxidative stress, neuroinflammation, and cell death, affecting brain development. Based on a rat model of global PA, we investigated the neuroprotective effect of intranasally administered secretome, derived from human adipose mesenchymal stem cells (MSC-S), preconditioned with either deferoxamine (an hypoxia-mimetic) or TNF-α+IFN-γ (pro-inflammatory cytokines). PA was generated by immersing fetus-containing uterine horns in a water bath at 37 °C for 21 min. Thereafter, 16 μL of MSC-S (containing 6 μg of protein derived from 2 × 105 preconditioned-MSC), or vehicle, were intranasally administered 2 h after birth to asphyxia-exposed and control rats, evaluated at postnatal day (P) 7. Alternatively, pups received a dose of either preconditioned MSC-S or vehicle, both at 2 h and P7, and were evaluated at P14, P30, and P60. The preconditioned MSC-S treatment (i) reversed asphyxia-induced oxidative stress in the hippocampus (oxidized/reduced glutathione); (ii) increased antioxidative Nuclear Erythroid 2-Related Factor 2 (NRF2) translocation; (iii) increased NQO1 antioxidant protein; (iv) reduced neuroinflammation (decreasing nuclearNF-κB/p65 levels and microglial reactivity); (v) decreased cleaved-caspase-3 cell-death; (vi) improved righting reflex, negative geotaxis, cliff aversion, locomotor activity, anxiety, motor coordination, and recognition memory. Overall, the study demonstrates that intranasal administration of preconditioned MSC-S is a novel therapeutic strategy that prevents the long-term effects of perinatal asphyxia.
Collapse
Affiliation(s)
- Nancy Farfán
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Jaime Carril
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Martina Redel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Marta Zamorano
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Maureen Araya
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Estephania Monzón
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Raúl Alvarado
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Norton Contreras
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - María Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - José Luis Valdés
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
- Correspondence: ; Tel.: +56-229786788
| |
Collapse
|
46
|
Marchese E, Valentini M, Di Sante G, Cesari E, Adinolfi A, Corvino V, Ria F, Sette C, Geloso MC. Alternative splicing of neurexins 1-3 is modulated by neuroinflammation in the prefrontal cortex of a murine model of multiple sclerosis. Exp Neurol 2020; 335:113497. [PMID: 33058888 DOI: 10.1016/j.expneurol.2020.113497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
Mounting evidence points to immune-mediated synaptopathy and impaired plasticity as early pathogenic events underlying cognitive decline (CD) in Multiple sclerosis (MS) and in the experimental autoimmune encephalomyelitis (EAE) mouse model of the disease. However, knowledge of the neurobiology of synaptic dysfunction is still incomplete. Splicing regulation represents a flexible and powerful mechanism involved in dynamic remodeling of the synapse, which allows the expression of synaptic protein variants that dynamically control the specificity of contacts between neurons. The pre-synaptic adhesion molecules neurexins (NRXNs) 1-3 play a relevant role in cognition and are alternatively spliced to yield variants that differentially cluster specific ligands in the postsynaptic compartment and modulate functional properties of the synaptic contact. Notably, mutations in these genes or disruption of their splicing program are associated with neuropsychiatric disorders. Herein, we have investigated how inflammatory changes imposed by EAE impact on alternative splicing of the Nrxn 1-3 mouse genes in the acute phase of disease. Due to its relevance in cognition, we focused on the prefrontal cortex (PFC) of SJL/J mice, in which EAE-induced inflammatory lesions extend to the rostral forebrain. We found that inclusion of the Nrxn 1-3 AS4 exon is significantly increased in the PFC of EAE mice and that splicing changes are correlated with local Il1β-expression levels. This correlation is sustained by the concomitant downregulation of SLM2, the main splicing factor involved in skipping of the AS4 exon, in EAE mice displaying high levels of Il1β- expression. We also observed that Il1β-expression levels correlate with changes in parvalbumin (PV)-positive interneuron connectivity. Moreover, exposure to environmental enrichment (EE), a condition known to stimulate neuronal connectivity and to improve cognitive functions in mice and humans, modified PFC phenotypes of EAE mice with respect to Il1β-, Slm2-expression, Nrxn AS4 splicing and PV-expression, by limiting changes associated with high levels of inflammation. Our results reveal that local inflammation results in early splicing modulation of key synaptic proteins and in remodeling of GABAergic circuitry in the PFC of SJL/J mice. We also suggest EE as a tool to counteract these inflammation-associated events, thus highlighting potential therapeutic targets for limiting the progressive CD occurring in MS.
Collapse
Affiliation(s)
- Elisa Marchese
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Mariagrazia Valentini
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Annalisa Adinolfi
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| |
Collapse
|
47
|
Relationship Between Task-Based and Parent Report-Based Measures of Attention and Executive Function in Children with Fetal Alcohol Spectrum Disorders (FASD). JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2020; 6:176-188. [PMID: 33585167 DOI: 10.1007/s40817-020-00089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A majority of children with fetal alcohol spectrum disorders (FASD) have demonstrated attention and executive function deficits as measured by both parent report measures and performance on tasks requiring sustained levels of attention. However, prior studies have consistently reported a lack of association between parental report-based and task-based performance measures. The current study investigated whether changes in performance over time within-task (i.e., first-half versus second-half) better correspond to parental reports of executive function and temperament in children with FASD. Greater differences in split-half performance during a continuous performance task were found to be associated with higher parent-reported levels of behavioral regulation and inhibitory control. These findings suggest that within-task performance differences may more accurately reflect individual differences in executive function and temperament as measured by parental report and help to further inform the way in which cognitive processes are measured in children with FASD.
Collapse
|
48
|
Cucinotta FA, Cacao E. Predictions of cognitive detriments from galactic cosmic ray exposures to astronauts on exploration missions. LIFE SCIENCES IN SPACE RESEARCH 2020; 25:129-135. [PMID: 32414486 DOI: 10.1016/j.lssr.2019.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 06/11/2023]
Abstract
For the first-time we report on predictions on cognitive detriments from galactic cosmic ray (GCR) exposures on long-duration space missions outside the protection of the Earth's magnetosphere and solid body shielding. Estimates are based on a relative risk (RR) model of the fluence response for proton and heavy ion in rodent studies using the widely used novel object recognition (NOR) test, which estimates detriments in recognition or object memory. Our recent meta-analysis showed that linear and linear-quadratic dose response models were not accurate, while exponential increasing fluence response models based on particle track structure provided good descriptions of rodent data for doses up to 1 Gy. Using detailed models of the GCR environment and particle transport in shielding and tissue, we predict the excess relative risk (ERR) for NOR detriments for several long-term space mission scenarios. Predictions suggest ERR < 0.15 for most space mission scenarios with ERR<0.1 for 1-year lunar surface missions, and about ERR~0.1 for a 1000 day Mars mission for average solar cycle conditions. We discuss possible implications of these ERR levels of cognitive performance detriments relative to other neurological challenges such as rodent models of Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI). Comparisons suggest a small but potentially clinically significant risk for possible space mission scenarios.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Box 453037, Las Vegas, NV 89195-3037, United States.
| | - Eliedonna Cacao
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Box 453037, Las Vegas, NV 89195-3037, United States
| |
Collapse
|
49
|
The effects of Engelhardtia chrysolepis Hance on long-term memory and potential dopamine involvement in mice. Behav Pharmacol 2020; 30:596-604. [PMID: 31503068 DOI: 10.1097/fbp.0000000000000495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Engelhardtia chrysolepis Hance (ECH) is a perennial plant used in traditional medicine. A major active ingredient of ECH is astilbin (ASB), which has recently been shown to have neuroprotective effects as well as to affect catecholamine neurotransmissions in brain areas such as the prefrontal cortex. In this study, we investigated the effects of ECH and ASB on long-term memory in mice using a battery of behavioral tests. Acute ECH treatments dose-dependently facilitated nonspatial, but not spatial, memory. ECH treatments also upregulated expression of tyrosine hydroxylase, the enzyme mediating catecholamine synthesis, in neuroblastoma cell culture. Acute ASB treatments similarly improved nonspatial memory, whereas chronic ASB treatments improved both nonspatial and spatial memory. In accordance with such behavioral effects, the increased ratio of tissue concentrations of dopamine metabolites over dopamine in striatal regions was observed in mice with chronic ASB treatments. These results suggest that ECH and its active ingredient ASB may facilitate long-term memory by modulating catecholamine transmission.
Collapse
|
50
|
Barker GRI, Warburton EC. Multi-level analyses of associative recognition memory: the whole is greater than the sum of its parts. Curr Opin Behav Sci 2020; 32:80-87. [PMID: 32617383 PMCID: PMC7323598 DOI: 10.1016/j.cobeha.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Associative recognition memory depends on the integration of information concerning an item and the spatio-temporal context in which it was encountered. Such an integration depends on dynamic interactions across a brain-wide memory network. Here we discuss evidence from multiple levels of analysis, behavioural, cellular and synaptic which demonstrating the existence of multiple overlapping, subnetworks embedded within these large-scale networks. Recent advances have revealed that of these subnetworks, a distinct hippocampal-prefrontal networks are engaged by different representations (object-spatial or object temporal). Other subnetworks are recruited by distinct processing demands, such as encoding and retrieval which are supported by distinct cellular and synaptic processes. One challenge to multi-level investigations of memory continues to be that conclusions are drawn from correlations of effects rather than from direct evidence of causation.
Collapse
Affiliation(s)
- Gareth RI Barker
- School of Physiology, Pharmacology andNeuroscience University of Bristol University Walk, Bristol BS8 1TD, United Kingdom
| | - Elizabeth Clea Warburton
- School of Physiology, Pharmacology andNeuroscience University of Bristol University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|