1
|
Rouhi N, Chakeri Z, Ghorbani Nejad B, Rahimzadegan M, Rafi Khezri M, Kamali H, Nosrati R. A comprehensive review of advanced focused ultrasound (FUS) microbubbles-mediated treatment of Alzheimer's disease. Heliyon 2024; 10:e37533. [PMID: 39309880 PMCID: PMC11416559 DOI: 10.1016/j.heliyon.2024.e37533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, memory loss, and cognitive impairment leading to dementia and death. The blood-brain barrier (BBB) prevents the delivery of drugs into the brain, which can limit their therapeutic potential in the treatment of AD. Therefore, there is a need to develop new approaches to bypass the BBB for appropriate treatment of AD. Recently, focused ultrasound (FUS) has been shown to disrupt the BBB, allowing therapeutic agents to penetrate the brain. In addition, microbubbles (MBs) as lipophilic carriers can penetrate across the BBB and deliver the active drug into the brain tissue. Therefore, combined with FUS, the drug-encapsulated MBs can pass through the ultrasound-disrupted zone of the BBB and diffuse into the brain tissue. This review provides clear and concise statements on the recent advances of the various FUS-mediated MBs-based carriers developed for delivering AD-related drugs. In addition, the sonogenetics-based FUS/MBs approaches for the treatment of AD are highlighted. The future perspectives and challenges of ultrasound-based MBs drug delivery in AD are then discussed.
Collapse
Affiliation(s)
- Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zahra Chakeri
- Cardiothoracic Imaging Section, Department of Radiology, University of Washington, Seattle, WA, USA
| | - Behnam Ghorbani Nejad
- Department of Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Antoniou A, Stavrou M, Evripidou N, Georgiou E, Kousiappa I, Koupparis A, Papacostas SS, Kleopa KA, Damianou C. FUS-mediated blood-brain barrier disruption for delivering anti-Aβ antibodies in 5XFAD Alzheimer's disease mice. J Ultrasound 2024; 27:251-262. [PMID: 37516718 PMCID: PMC11178731 DOI: 10.1007/s40477-023-00805-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023] Open
Abstract
PURPOSE Amyloid-β (Aβ) peptides, the main component of amyloid plaques found in the Alzheimer's disease (AD) brain, are implicated in its pathogenesis, and are considered a key target in AD therapeutics. We herein propose a reliable strategy for non-invasively delivering a specific anti-Aβ antibody in a mouse model of AD by microbubbles-enhanced Focused Ultrasound (FUS)-mediated Blood-brain barrier disruption (BBBD), using a simple single stage MR-compatible positioning device. METHODS The initial experimental work involved wild-type mice and was devoted to selecting the sonication protocol for efficient and safe BBBD. Pulsed FUS was applied using a single-element FUS transducer of 1 MHz (80 mm radius of curvature and 50 mm diameter). The success and extent of BBBD were assessed by Evans Blue extravasation and brain damage by hematoxylin and eosin staining. 5XFAD mice were divided into different subgroups; control (n = 1), FUS + MBs alone (n = 5), antibody alone (n = 5), and FUS + antibody combined (n = 10). The changes in antibody deposition among groups were determined by immunohistochemistry. RESULTS It was confirmed that the antibody could not normally enter the brain parenchyma. A single treatment with MBs-enhanced pulsed FUS using the optimized protocol (1 MHz, 0.5 MPa in-situ pressure, 10 ms bursts, 1% duty factor, 100 s duration) transiently disrupted the BBB allowing for non-invasive antibody delivery to amyloid plaques within the sonicated brain regions. This was consistently reproduced in ten mice. CONCLUSION These preliminary findings should be confirmed by longer-term studies examining the antibody effects on plaque clearance and cognitive benefit to hold promise for developing disease-modifying anti-Aβ therapeutics for clinical use.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Marios Stavrou
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Elena Georgiou
- Department of Neuroscience, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Koupparis
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Savvas S Papacostas
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Department of Neuroscience, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
3
|
Conway GE, Paranjape AN, Chen X, Villanueva FS. Development of an In Vitro Model to Study Mechanisms of Ultrasound-Targeted Microbubble Cavitation-Mediated Blood-Brain Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:425-433. [PMID: 38158246 PMCID: PMC10843834 DOI: 10.1016/j.ultrasmedbio.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Ultrasound-targeted microbubble cavitation (UTMC)-mediated blood-brain barrier (BBB) opening is being explored as a method to increase drug delivery to the brain. This strategy has progressed to clinical trials for various neurological disorders, but the underlying cellular mechanisms are incompletely understood. In the study described here, a contact co-culture transwell model of the BBB was developed that can be used to determine the signaling cascade leading to increased BBB permeability. METHODS This BBB model consists of bEnd.3 cells and C8-D1A astrocytes seeded on opposite sides of a transwell membrane. Pulsed ultrasound (US) is applied to lipid microbubbles (MBs), and the change in barrier permeability is measured via transendothelial electrical resistance and dextran flux. Live cell calcium imaging (Fluo-4 AM) is performed during UTMC treatment. RESULTS This model exhibits important features of the BBB, including endothelial tight junctions, and is more restrictive than the endothelial cell (EC) monolayer alone. When US is applied to MBs in contact with the ECs, BBB permeability increases in this model by two mechanisms: UTMC induces pore formation in the EC membrane (sonoporation), leading to increased transcellular permeability, and UTMC causes formation of reversible inter-endothelial gaps, which increases paracellular permeability. Additionally, this study determines that calcium influx into ECs mediates the increase in BBB permeability after UTMC in this model. CONCLUSION Both transcellular and paracellular permeability can be used to increase drug delivery to the brain. Future studies can use this model to determine how UTMC-induced calcium-mediated signaling increases BBB permeability.
Collapse
Affiliation(s)
- Grace E Conway
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anurag N Paranjape
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Paranjape AN, D'Aiuto L, Zheng W, Chen X, Villanueva FS. A multicellular brain spheroid model for studying the mechanisms and bioeffects of ultrasound-enhanced drug penetration beyond the blood‒brain barrier. Sci Rep 2024; 14:1909. [PMID: 38253669 PMCID: PMC10803331 DOI: 10.1038/s41598-023-50203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
The blood‒brain barrier (BBB) acts as a hindrance to drug therapy reaching the brain. With an increasing incidence of neurovascular diseases and brain cancer metastases, there is a need for an ideal in vitro model to develop novel methodologies for enhancing drug delivery to the brain. Here, we established a multicellular human brain spheroid model that mimics the BBB both architecturally and functionally. Within the spheroids, endothelial cells and pericytes localized to the periphery, while neurons, astrocytes, and microglia were distributed throughout. Ultrasound-targeted microbubble cavitation (UTMC) is a novel noninvasive technology for enhancing endothelial drug permeability. We utilized our three-dimensional (3D) model to study the feasibility and mechanisms regulating UTMC-induced hyperpermeability. UTMC caused a significant increase in the penetration of 10 kDa Texas red dextran (TRD) into the spheroids, 100 µm beyond the BBB, without compromising cell viability. This hyperpermeability was dependent on UTMC-induced calcium (Ca2+) influx and endothelial nitric oxide synthase (eNOS) activation. Our 3D brain spheroid model, with its intact and functional BBB, offers a valuable platform for studying the bioeffects of UTMC, including effects occurring spatially distant from the endothelial barrier.
Collapse
Affiliation(s)
- Anurag N Paranjape
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Wenxiao Zheng
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Kung Y, Wu CH, Lin MT, Liao WH, Chen WS, Hsiao MY. Blood-cerebrospinal fluid barrier opening by modified single pulse transcranial focused shockwave. Drug Deliv 2023; 30:97-107. [PMID: 36533878 PMCID: PMC9769131 DOI: 10.1080/10717544.2022.2157068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transcranial focused shockwave (FSW) is a novel noninvasive brain stimulation that can open blood-brain barriers (BBB) and blood-cerebrospinal fluid barriers (BCSFB) with a single low-energy (energy flux density 0.03 mJ/mm2) pulse and low-dose microbubbles (2 × 106/kg). Similar to focused ultrasound, FSW deliver highly precise stimulation of discrete brain regions with adjustable focal lengths that essentially covers the whole brain. By opening the BCSFB, it allows for rapid widespread drug delivery to the whole brain by cerebrospinal fluid (CSF) circulation. Although no definite adverse effect or permeant injury was noted in our previous study, microscopic hemorrhage was infrequently observed. Safety concerns remain the major obstacle to further application of FSW in brain. To enhance its applicability, a modified single pulse FSW technique was established that present 100% opening rate but much less risk of adverse effect than previous methods. By moving the targeting area 2.5 mm more superficially on the left lateral ventricle as compared with the previous methods, the microscopic hemorrhage rate was reduced to zero. We systemically examine the safety profiles of the modified FSW-BCSFB opening regarding abnormal behavior and brain injury or hemorrhage 72 hr after 0, 1, and 10 pulses of FSW-treatment. Animal behavior, physiological monitor, and brain MRI were examined and recorded. Brain section histology was examined for hemorrhage, apoptosis, inflammation, oxidative stress related immunohistochemistry and biomarkers. The single pulse FSW group demonstrated no mortality or gross/microscopic hemorrhage (N = 30), and no observable changes in all examined outcomes, while 10 pulses of FSW was found to be associated with microscopic and temporary RBC extravasation (N = 6/30), and abnormal immunohistochemistry biomarkers which showed a trend of recovery at 72 hrs. The results suggest that single pulse low-energy FSW-BCSFB opening is effective, safe and poses minimal risk of injury to brain tissue (Sprague Dawley, SD rats).
Collapse
Affiliation(s)
- Yi Kung
- Department of Biomechatronic Engineering, National Chiayi University, Chiayi City, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Meng-Ting Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan,CONTACT Ming-Yen Hsiao
| |
Collapse
|
6
|
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 2023; 111:1174-1190. [PMID: 36917978 DOI: 10.1016/j.neuron.2023.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
Treating the brain with focused ultrasound (FUS) at low intensities elicits diverse responses in neurons, astroglia, and the extracellular matrix. In combination with intravenously injected microbubbles, FUS also opens the blood-brain barrier (BBB) and facilitates focal drug delivery. However, an incompletely understood cellular specificity and a wide parameter space currently limit the optimal application of FUS in preclinical and human studies. In this perspective, we discuss how different FUS modalities can be utilized to achieve short- and long-term improvements, thereby potentially treating brain disorders. We review the ongoing efforts to determine which parameters induce neuronal inhibition versus activation and how mechanoreceptors and signaling cascades are activated to induce long-term changes, including memory improvements. We suggest that optimal FUS treatments may require different FUS modalities and devices, depending on the targeted brain area or local pathology, and will be greatly enhanced by new techniques for monitoring FUS efficacy.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Razansky
- Institute for Biomedical Engineering, Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Kong C, Chang WS. Preclinical Research on Focused Ultrasound-Mediated Blood-Brain Barrier Opening for Neurological Disorders: A Review. Neurol Int 2023; 15:285-300. [PMID: 36810473 PMCID: PMC9944161 DOI: 10.3390/neurolint15010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Several therapeutic agents for neurological disorders are usually not delivered to the brain owing to the presence of the blood-brain barrier (BBB), a special structure present in the central nervous system (CNS). Focused ultrasound (FUS) combined with microbubbles can reversibly and temporarily open the BBB, enabling the application of various therapeutic agents in patients with neurological disorders. In the past 20 years, many preclinical studies on drug delivery through FUS-mediated BBB opening have been conducted, and the use of this method in clinical applications has recently gained popularity. As the clinical application of FUS-mediated BBB opening expands, it is crucial to understand the molecular and cellular effects of FUS-induced microenvironmental changes in the brain so that the efficacy of treatment can be ensured, and new treatment strategies established. This review describes the latest research trends in FUS-mediated BBB opening, including the biological effects and applications in representative neurological disorders, and suggests future directions.
Collapse
Affiliation(s)
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Lin Y, O’Reilly MA, Hynynen K. A PVDF Receiver for Acoustic Monitoring of Microbubble-Mediated Ultrasound Brain Therapy. SENSORS (BASEL, SWITZERLAND) 2023; 23:1369. [PMID: 36772406 PMCID: PMC9921684 DOI: 10.3390/s23031369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The real-time monitoring of spectral characteristics of microbubble (MB) acoustic emissions permits the prediction of increases in blood-brain barrier (BBB) permeability and of tissue damage in MB-mediated focused ultrasound (FUS) brain therapy. Single-element passive cavitation detectors provide limited spatial information regarding MB activity, greatly affecting the performance of acoustic control. However, an array of receivers can be used to spatially map cavitation events and thus improve treatment control. The spectral content of the acoustic emissions provides additional information that can be correlated with the bio-effects, and wideband receivers can thus provide the most complete spectral information. Here, we develop a miniature polyvinylidene fluoride (PVDF thickness = 110 μm, active area = 1.2 mm2) broadband receiver for the acoustic monitoring of MBs. The receiver has superior sensitivity (2.36-3.87 V/MPa) to those of a commercial fibre-optic hydrophone in the low megahertz frequency range (0.51-5.4 MHz). The receiver also has a wide -6 dB acceptance angle (54 degrees at 1.1 MHz and 13 degrees at 5.4 MHz) and the ability to detect subharmonic and higher harmonic MB emissions in phantoms. The overall acoustic performance of this low-cost receiver indicates its suitability for the eventual use within an array for MB monitoring and mapping in preclinical studies.
Collapse
Affiliation(s)
- Yi Lin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Meaghan A. O’Reilly
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
9
|
Bok J, Ha J, Ahn BJ, Jang Y. Disease-Modifying Effects of Non-Invasive Electroceuticals on β-Amyloid Plaques and Tau Tangles for Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010679. [PMID: 36614120 PMCID: PMC9821138 DOI: 10.3390/ijms24010679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Electroceuticals refer to various forms of electronic neurostimulators used for therapy. Interdisciplinary advances in medical engineering and science have led to the development of the electroceutical approach, which involves therapeutic agents that specifically target neural circuits, to realize precision therapy for Alzheimer's disease (AD). To date, extensive studies have attempted to elucidate the disease-modifying effects of electroceuticals on areas in the brain of a patient with AD by the use of various physical stimuli, including electric, magnetic, and electromagnetic waves as well as ultrasound. Herein, we review non-invasive stimulatory systems and their effects on β-amyloid plaques and tau tangles, which are pathological molecular markers of AD. Therefore, this review will aid in better understanding the recent technological developments, applicable methods, and therapeutic effects of electronic stimulatory systems, including transcranial direct current stimulation, 40-Hz gamma oscillations, transcranial magnetic stimulation, electromagnetic field stimulation, infrared light stimulation and ionizing radiation therapy, and focused ultrasound for AD.
Collapse
Affiliation(s)
- Junsoo Bok
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Juchan Ha
- Department of Biomedical Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
- Correspondence: ; Tel.: +82-2-2220-0655
| |
Collapse
|
10
|
Methylene Blue Delivery Mediated by Focused Ultrasound-Induced Blood-Brain Barrier Disruption Reduces Neural Damage and Amyloid-Beta Plaques by AQP-4 Upregulation. Biomedicines 2022; 10:biomedicines10123191. [PMID: 36551947 PMCID: PMC9776289 DOI: 10.3390/biomedicines10123191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, causing progressive cognitive decline, memory impairment, and neurological deficits. Methylene blue (MB), an antioxidant, has emerged as a potential drug for the treatment of AD owing to its cognitive improvement and neuroprotective functions. Despite the small molecular size of MB, which can cross the BBB, the therapeutic effective dosage using a BBB-permeable delivery system in a specific brain localization remains unclear. In this study, we presented magnetic resonance-guided focused ultrasound (MRgFUS) as a delivery system to enhance BBB permeability for the effective treatment of AD. MRgFUS using two ultrasound intensities (0.25 and 0.32 MPa) was used to intravenously deliver MB to the hippocampal region. Compared with treatment with 0.25 MPa FUS, treatment with 0.32 MPa FUS significantly enhanced MB brain accumulation. Deposition of amyloid-β (Aβ) plaques and neural cell damage was significantly reduced in 0.32 MPa FUS/MB-treated APP/PS1 mice. Furthermore, aquaporin-4 expression increased significantly in the 0.32 MPa FUS and 0.32 MPa FUS/MB groups without glial fibrillary acidic protein activation. The results from this study demonstrate that FUS improved MB delivery to the brain, and FUS/MB combination treatment reduced the number of Aβ plaques. This study revealed the potential of FUS-BBBD as an effective strategy to enhance the efficacy of therapeutic drugs for AD.
Collapse
|
11
|
Gorick CM, Breza VR, Nowak KM, Cheng VWT, Fisher DG, Debski AC, Hoch MR, Demir ZEF, Tran NM, Schwartz MR, Sheybani ND, Price RJ. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Deliv Rev 2022; 191:114583. [PMID: 36272635 PMCID: PMC9712235 DOI: 10.1016/j.addr.2022.114583] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
The blood brain barrier (BBB) plays a critically important role in the regulation of central nervous system (CNS) homeostasis, but also represents a major limitation to treatments of brain pathologies. In recent years, focused ultrasound (FUS) in conjunction with gas-filled microbubble contrast agents has emerged as a powerful tool for transiently and non-invasively disrupting the BBB in a targeted and image-guided manner, allowing for localized delivery of drugs, genes, or other therapeutic agents. Beyond the delivery of known therapeutics, FUS-mediated BBB opening also demonstrates the potential for use in neuromodulation and the stimulation of a range of cell- and tissue-level physiological responses that may prove beneficial in disease contexts. Clinical trials investigating the safety and efficacy of FUS-mediated BBB opening are well underway, and offer promising non-surgical approaches to treatment of devastating pathologies. This article reviews a range of pre-clinical and clinical studies demonstrating the tremendous potential of FUS to fundamentally change the paradigm of treatment for CNS diseases.
Collapse
Affiliation(s)
- Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Victoria R Breza
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Katherine M Nowak
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Vinton W T Cheng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Delaney G Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Anna C Debski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Matthew R Hoch
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Nghi M Tran
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Schwartz
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
12
|
Wang J, Li Z, Pan M, Fiaz M, Hao Y, Yan Y, Sun L, Yan F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv Drug Deliv Rev 2022; 190:114539. [PMID: 36116720 DOI: 10.1016/j.addr.2022.114539] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Blood-brain barrier (BBB) remains a significant obstacle to drug therapy for brain diseases. Focused ultrasound (FUS) combined with microbubbles (MBs) can locally and transiently open the BBB, providing a potential strategy for drug delivery across the BBB into the brain. Nowadays, taking advantage of this technology, many therapeutic agents, such as antibodies, growth factors, and nanomedicine formulations, are intensively investigated across the BBB into specific brain regions for the treatment of various brain diseases. Several preliminary clinical trials also have demonstrated its safety and good tolerance in patients. This review gives an overview of the basic mechanisms, ultrasound contrast agents, evaluation or monitoring methods, and medical applications of FUS-mediated BBB opening in glioblastoma, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China
| | - Min Pan
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Muhammad Fiaz
- Department of Radiology, Azra Naheed Medical College, Lahore, Pakistan
| | - Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
13
|
Hu Z, Chen S, Yang Y, Gong Y, Chen H. An Affordable and Easy-to-Use Focused Ultrasound Device for Noninvasive and High Precision Drug Delivery to the Mouse Brain. IEEE Trans Biomed Eng 2022; 69:2723-2732. [PMID: 35157574 PMCID: PMC9443669 DOI: 10.1109/tbme.2022.3150781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Focused ultrasound (FUS) combined with microbubble-mediated blood-brain barrier (BBB) opening (FUS-BBBO) is not only a promising technique for clinical applications but also a powerful tool for preclinical research. However, existing FUS devices for preclinical research are expensive, bulky, and lack the precision needed for small animal research, which limits the broad adoption of this promising technique by the research community. Our objective was to design and fabricate an affordable, easy-to-use, high-precision FUS device for small animal research. METHODS We designed and fabricated in-house mini-FUS transducers (∼$80 each in material cost) with three frequencies (1.5, 3.0, and 6.0 MHz) and integrated them with a stereotactic frame for precise mouse brain targeting using established stereotactic procedures. The BBB opening volume by FUS at different acoustic pressures (0.20-0.57 MPa) was quantified using T1-weighted contrast-enhanced magnetic resonance imaging of gadolinium leakage and fluorescence imaging of Evans blue extravasation. RESULTS The targeting accuracy of the device as measured by the offset between the desired target location and the centroid of BBBO was 0.63 ± 0.19 mm. The spatial precision of the device in targeting individual brain structures was improved by the use of higher frequency FUS transducers. The BBB opening volume had high linear correlations with the cavitation index (defined by the ratio between acoustic pressure and frequency) and mechanical index (defined by the ratio between acoustic pressure and the square root of frequency). The correlation coefficient of the cavitation index was slightly higher than that of the mechanical index. CONCLUSION This study demonstrated that spatially accurate and precise BBB opening was achievable using an affordable and easy-to-use FUS device. The BBB opening volume was tunable by modulating the cavitation index. This device is expected to decrease the barriers to the adoption of the FUS-BBBO technique by the broad research community.
Collapse
|
14
|
Man VH, He X, Wang J. Stable Cavitation Interferes with Aβ 16-22 Oligomerization. J Chem Inf Model 2022; 62:3885-3895. [PMID: 35920625 DOI: 10.1021/acs.jcim.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrasound and microbubbles are used for many medical applications nowadays. Scanning ultrasound can remove amyloid-β (Aβ) aggregates in the mouse brain and restores memory in an Alzheimer's disease mouse model. In vitro studies showed that amyloid fibrils are fragmented due to the ultrasound-induced bubble inertial cavitation, and ultrasonic pulses accelerate the depolymerization of Aβ fibrils into monomers at 1 μM of concentration. Under applied ultrasound, microbubbles can be in a stable oscillating state or unstable inertial cavitation state. The latter occurs when ultrasound causes a dramatic change of bubble sizes above a certain acoustic pressure. We have developed and implemented a nonequilibrium molecular dynamics simulation algorithm to the AMBER package, to facilitate the investigation of the molecular mechanism of Aβ oligomerization under stable cavitation. Our results indicated that stable cavitation not only inhibited oligomeric formation, but also prevented the formation of β-rich oligomers. The network analysis of state transitions revealed that stable cavitation altered the oligomerization pathways of Aβ16-22 peptides. Our simulation tool may be applied to optimize the experimental conditions to achieve the best therapeutical effect.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
15
|
Bathini P, Sun T, Schenk M, Schilling S, McDannold NJ, Lemere CA. Acute Effects of Focused Ultrasound-Induced Blood-Brain Barrier Opening on Anti-Pyroglu3 Abeta Antibody Delivery and Immune Responses. Biomolecules 2022; 12:951. [PMID: 35883506 PMCID: PMC9313174 DOI: 10.3390/biom12070951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and hyperphosphorylated tau in the brain. Currently, therapeutic agents targeting amyloid appear promising for AD, however, delivery to the CNS is limited due to the blood-brain-barrier (BBB). Focused ultrasound (FUS) is a method to induce a temporary opening of the BBB to enhance the delivery of therapeutic agents to the CNS. In this study, we evaluated the acute effects of FUS and whether the use of FUS-induced BBB opening enhances the delivery of 07/2a mAb, an anti-pyroglutamate-3 Aβ antibody, in aged 24 mo-old APP/PS1dE9 transgenic mice. FUS was performed either unilaterally or bilaterally with mAb infusion and the short-term effect was analyzed 4 h and 72 h post-treatment. Quantitative analysis by ELISA showed a 5-6-fold increase in 07/2a mAb levels in the brain at both time points and an increased brain-to-blood ratio of the antibody. Immunohistochemistry demonstrated an increase in IgG2a mAb detection particularly in the cortex, enhanced immunoreactivity of resident Iba1+ and phagocytic CD68+ microglial cells, and a transient increase in the infiltration of Ly6G+ immune cells. Cerebral microbleeds were not altered in the unilaterally or bilaterally sonicated hemispheres. Overall, this study shows the potential of FUS therapy for the enhanced delivery of CNS therapeutics.
Collapse
Affiliation(s)
- Praveen Bathini
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA;
| | - Tao Sun
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA;
| | - Mathias Schenk
- Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (M.S.); (S.S.)
| | - Stephan Schilling
- Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (M.S.); (S.S.)
- Faculty of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, Bernburger Strasse 55, 06366 Kothen, Germany
| | - Nathan J. McDannold
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA;
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA;
| |
Collapse
|
16
|
Balbi M, Blackmore DG, Padmanabhan P, Götz J. Ultrasound-Mediated Bioeffects in Senescent Mice and Alzheimer's Mouse Models. Brain Sci 2022; 12:775. [PMID: 35741660 PMCID: PMC9221310 DOI: 10.3390/brainsci12060775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Ultrasound is routinely used for a wide range of diagnostic imaging applications. However, given that ultrasound can operate over a wide range of parameters that can all be modulated, its applicability extends far beyond the bioimaging field. In fact, the modality has emerged as a hybrid technology that effectively assists drug delivery by transiently opening the blood-brain barrier (BBB) when combined with intravenously injected microbubbles, and facilitates neuromodulation. Studies in aged mice contributed to an insight into how low-intensity ultrasound brings about its neuromodulatory effects, including increased synaptic plasticity and improved cognitive functions, with a potential role for neurogenesis and the modulation of NMDA receptor-mediated neuronal signalling. This work is complemented by studies in mouse models of Alzheimer's disease (AD), a form of pathological ageing. Here, ultrasound was mainly employed as a BBB-opening tool that clears protein aggregates via microglial activation and neuronal autophagy, thereby restoring cognition. We discuss the currently available ultrasound approaches and how studies in senescent mice are relevant for AD and can accelerate the application of low-intensity ultrasound in the clinic.
Collapse
Affiliation(s)
- Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (M.B.); (D.G.B.); (P.P.)
| | - Daniel G. Blackmore
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (M.B.); (D.G.B.); (P.P.)
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (M.B.); (D.G.B.); (P.P.)
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jürgen Götz
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (M.B.); (D.G.B.); (P.P.)
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Influence of 40 Hz and 100 Hz Vibration on SH-SY5Y Cells Growth and Differentiation-A Preliminary Study. Molecules 2022; 27:molecules27103337. [PMID: 35630814 PMCID: PMC9143216 DOI: 10.3390/molecules27103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: A novel bioreactor platform of neuronal cell cultures using low-magnitude, low-frequency (LMLF) vibrational stimulation was designed to discover vibration influence and mimic the dynamic environment of the in vivo state. To better understand the impact of 40 Hz and 100 Hz vibration on cell differentiation, we join biotechnology and advanced medical technology to design the nano-vibration system. The influence of vibration on the development of nervous tissue on the selected cell line SH-SY5Y (experimental research model in Alzheimer’s and Parkinson’s) was investigated. (2) Methods: The vibration stimulation of cell differentiation and elongation of their neuritis were monitored. We measured how vibrations affect the morphology and differentiation of nerve cells in vitro. (3) Results: The highest average length of neurites was observed in response to the 40 Hz vibration on the collagen surface in the differentiating medium, but cells response did not increase with vibration frequency. Also, vibrations at a frequency of 40 Hz or 100 Hz did not affect the average density of neurites. 100 Hz vibration increased the neurites density significantly with time for cultures on collagen and non-collagen surfaces. The exposure of neuronal cells to 40 Hz and 100 Hz vibration enhanced cell differentiation. The 40 Hz vibration has the best impact on neuronal-like cell growth and differentiation. (4) Conclusions: The data demonstrated that exposure to neuronal cells to 40 Hz and 100 Hz vibration enhanced cell differentiation and proliferation. This positive impact of vibration can be used in tissue engineering and regenerative medicine. It is planned to optimize the processes and study its molecular mechanisms concerning carrying out the research.
Collapse
|
18
|
Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022; 27:molecules27082483. [PMID: 35458686 PMCID: PMC9030874 DOI: 10.3390/molecules27082483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.
Collapse
|
19
|
Kovalenko E, Makhnovich E, Osinovskaya N, Bogolepova A. Focused ultrasound as a non-invasive method with therapeutic potential in patients with Alzheimer’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:38-45. [DOI: 10.17116/jnevro202212210138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Hosseini M, Pierre K, Felisma P, Mampre D, Stein A, Fusco A, Reddy R, Chandra V, Lucke-Wold B. Focused ultrasound: Innovation in use for neurologic conditions. TRAUMA AND EMERGENCY MEDICINE 2022; 1:1-12. [PMID: 36745142 PMCID: PMC9897206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Focused ultrasound has emerged as a key tool for neurologic disorders. In this focused review, we discuss the utility in disrupting the blood brain barrier to maximize treatment. This can facilitate creating direct coagulative lesions and aid in the administration of chemotherapy. Furthermore, it can facilitate neuromodulation when used in pulse sequencing. The current literature regarding brain tumors, essential tremor, and obsessive-compulsive disorder is reviewed. Additionally, concepts and experimental outcomes for neurodegenerative disease such as Alzheimer's is presented. Focused ultrasound as a tool is still in its infancy but the potential for adjuvant and direct therapy is promising. More clinical uses will become apparent in coming decades.
Collapse
Affiliation(s)
- Mohammad Hosseini
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Kevin Pierre
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Patrick Felisma
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - David Mampre
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Allison Stein
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Anna Fusco
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Ramya Reddy
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Vyshak Chandra
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
21
|
Peterson DR, Hawkins RA, Viña JR. Editorial: Organization and Functional Properties of the Blood-Brain Barrier. Front Physiol 2021; 12:796030. [PMID: 34925076 PMCID: PMC8674868 DOI: 10.3389/fphys.2021.796030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Darryl R. Peterson
- Discipline of Physiology and Biophysics, Chicago Medical School/Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Richard A. Hawkins
- Discipline of Physiology and Biophysics, Chicago Medical School/Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute INCLIVA, University of Valencia, Valencia, Spain
| |
Collapse
|
22
|
Liu X, Naomi SSM, Sharon WL, Russell EJ. The Applications of Focused Ultrasound (FUS) in Alzheimer's Disease Treatment: A Systematic Review on Both Animal and Human Studies. Aging Dis 2021; 12:1977-2002. [PMID: 34881081 PMCID: PMC8612615 DOI: 10.14336/ad.2021.0510] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) affects the basic ability to function and has imposed an immense burden on the community and health care system. Focused ultrasound (FUS) has recently been proposed as a novel noninvasive therapeutic approach for AD. However, systematic reviews on the FUS application in AD treatment have not been forthcoming. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria to summarize the techniques associated with safety and efficacy, as well as possible underlying mechanisms of FUS effects on AD in animal and human studies. Animal studies demonstrated FUS with microbubbles (FUS-MB) induced blood-brain-barrier (BBB) opening that could facilitate various therapeutic agents entering the brain. Repeated FUS-MB and FUS stimulation can relieve AD pathology and improve cognitive and memory function. Human studies showed repeated FUS-MB are well tolerated with few adverse events and FUS stimulation could enhance local perfusion and neural function, which correlated with cognitive improvement. We conclude that FUS is a feasible and safe therapeutic and drug delivery strategy for AD. However, FUS treatment on humans is still in the early stages and requires further optimization and standardization.
Collapse
Affiliation(s)
- Xiaodan Liu
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - S. Sta Maria Naomi
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - Wu Lin Sharon
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - E. Jacobs Russell
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Park SH, Baik K, Jeon S, Chang WS, Ye BS, Chang JW. Extensive frontal focused ultrasound mediated blood-brain barrier opening for the treatment of Alzheimer's disease: a proof-of-concept study. Transl Neurodegener 2021; 10:44. [PMID: 34740367 PMCID: PMC8570037 DOI: 10.1186/s40035-021-00269-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening has shown efficacy in removal of amyloid plaque and improvement of cognitive functions in preclinical studies, but this is rarely reported in clinical studies. This study was conducted to evaluate the safety, feasibility and potential benefits of repeated extensive BBB opening. METHODS In this open-label, prospective study, six patients with Alzheimer's disease (AD) were enrolled at Severance Hospital in Korea between August 2020 and September 2020. Five of them completed the study. FUS-mediated BBB opening, targeting the bilateral frontal lobe regions over 20 cm3, was performed twice at three-month intervals. Magnetic resonance imaging, 18F-Florbetaben (FBB) positron emission tomography, Caregiver-Administered Neuropsychiatric Inventory (CGA-NPI) and comprehensive neuropsychological tests were performed before and after the procedures. RESULTS FUS targeted a mean volume of 21.1 ± 2.7 cm3 and BBB opening was confirmed at 95.7% ± 9.4% of the targeted volume. The frontal-to-other cortical region FBB standardized uptake value ratio at 3 months after the procedure showed a slight decrease, which was statistically significant, compared to the pre-procedure value (- 1.6%, 0.986 vs1.002, P = 0.043). The CGA-NPI score at 2 weeks after the second procedure significantly decreased compared to baseline (2.2 ± 3.0 vs 8.6 ± 6.0, P = 0.042), but recovered after 3 months (5.2 ± 5.8 vs 8.6 ± 6.0, P = 0.89). No adverse effects were observed. CONCLUSIONS The repeated and extensive BBB opening in the frontal lobe is safe and feasible for patients with AD. In addition, the BBB opening is potentially beneficial for amyloid removal in AD patients.
Collapse
Affiliation(s)
- So Hee Park
- Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Chang
- Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| | - Jin Woo Chang
- Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Monteiro F, Sotiropoulos I, Carvalho Ó, Sousa N, Silva FS. Multi-mechanical waves against Alzheimer's disease pathology: a systematic review. Transl Neurodegener 2021; 10:36. [PMID: 34560902 PMCID: PMC8464104 DOI: 10.1186/s40035-021-00256-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia, affecting approximately 40 million people worldwide. The ineffectiveness of the available pharmacological treatments against AD has fostered researchers to focus on alternative strategies to overcome this challenge. Mechanical vibrations delivered in different stimulation modes have been associated with marked improvements in cognitive and physical performance in both demented and non-demented elderly. Some of the mechanical-based stimulation modalities in efforts are earlier whole-body vibration, transcranial ultrasound stimulation with microbubble injection, and more recently, auditory stimulation. However, there is a huge variety of treatment specifications, and in many cases, conflicting results are reported. In this review, a search on Scopus, PubMed, and Web of Science databases was performed, resulting in 37 papers . These studies suggest that mechanical vibrations delivered through different stimulation modes are effective in attenuating many parameters of AD pathology including functional connectivity and neuronal circuit integrity deficits in the brains of AD patients, as well as in subjects with cognitive decline and non-demented older adults. Despite the evolving preclinical and clinical evidence on these therapeutic modalities, their translation into clinical practice is not consolidated yet. Thus, this comprehensive and critical systematic review aims to address the most important gaps in the reviewed protocols and propose optimal regimens for future clinical application.
Collapse
Affiliation(s)
- Francisca Monteiro
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | - Óscar Carvalho
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipe S Silva
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
| |
Collapse
|
25
|
Chen KT, Wei KC, Liu HL. Focused Ultrasound Combined with Microbubbles in Central Nervous System Applications. Pharmaceutics 2021; 13:pharmaceutics13071084. [PMID: 34371774 PMCID: PMC8308978 DOI: 10.3390/pharmaceutics13071084] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
The blood–brain barrier (BBB) protects the central nervous system (CNS) from invasive pathogens and maintains the homeostasis of the brain. Penetrating the BBB has been a major challenge in the delivery of therapeutic agents for treating CNS diseases. Through a physical acoustic cavitation effect, focused ultrasound (FUS) combined with microbubbles achieves the local detachment of tight junctions of capillary endothelial cells without inducing neuronal damage. The bioavailability of therapeutic agents is increased only in the area targeted by FUS energy. FUS with circulating microbubbles is currently the only method for inducing precise, transient, reversible, and noninvasive BBB opening (BBBO). Over the past decade, FUS-induced BBBO (FUS-BBBO) has been preclinically confirmed to not only enhance the penetration of therapeutic agents in the CNS, but also modulate focal immunity and neuronal activity. Several recent clinical human trials have demonstrated both the feasibility and potential advantages of using FUS-BBBO in diseased patients. The promising results support adding FUS-BBBO as a multimodal therapeutic strategy in modern CNS disease management. This review article explores this technology by describing its physical mechanisms and the preclinical findings, including biological effects, therapeutic concepts, and translational design of human medical devices, and summarizes completed and ongoing clinical trials.
Collapse
Affiliation(s)
- Ko-Ting Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan;
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan;
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, TuCheng, New Taipei 236, Taiwan
- School of Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Correspondence: (K.-C.W.); (H.-L.L.)
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Da’an, Taipei 106, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Da’an, Taipei 106, Taiwan
- Correspondence: (K.-C.W.); (H.-L.L.)
| |
Collapse
|
26
|
Sun T, Shi Q, Zhang Y, Power C, Hoesch C, Antonelli S, Schroeder MK, Caldarone BJ, Taudte N, Schenk M, Hettmann T, Schilling S, McDannold NJ, Lemere CA. Focused ultrasound with anti-pGlu3 Aβ enhances efficacy in Alzheimer's disease-like mice via recruitment of peripheral immune cells. J Control Release 2021; 336:443-456. [PMID: 34186148 DOI: 10.1016/j.jconrel.2021.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Pyroglutamate-3 amyloid-β (pGlu3 Aβ) is an N-terminally modified, pathogenic form of amyloid-β that is present in cerebral amyloid plaques and vascular deposits. Here, we used focused ultrasound (FUS) with microbubbles to enhance the intravenous delivery of an Fc-competent anti-pGlu3 Aβ monoclonal antibody, 07/2a mAb, across the blood brain barrier (BBB) in an attempt to improve Aβ removal and memory in aged APP/PS1dE9 mice, an Alzheimer's disease (AD)-like model of amyloidogenesis. First, we demonstrated that bilateral hippocampal FUS-BBB disruption (FUS-BBBD) led to a 5.5-fold increase of 07/2a mAb delivery to the brains compared to non-sonicated mice 72 h following a single treatment. Then, we determined that three weekly treatments with 07/2a mAb alone improved spatial learning and memory in aged, plaque-rich APP/PS1dE9 mice, and that this improvement occurred faster and in a higher percentage of animals when combined with FUS-BBBD. Mice given the combination treatment had reduced hippocampal plaque burden compared to PBS-treated controls. Furthermore, synaptic protein levels were higher in hippocampal synaptosomes from mice given the combination treatment compared to sham controls, and there were more CA3 synaptic puncta labeled in the APP/PS1dE9 mice given the combination treatment compared to those given mAb alone. Plaque-associated microglia were present in the hippocampi of APP/PS1dE9 mice treated with 07/2a mAb with and without FUS-BBBD. However, we discovered that plaque-associated Ly6G+ monocytes were only present in the hippocampi of APP/PS1dE9 mice that were given FUS-BBBD alone or even more so, the combination treatment. Lastly, FUS-BBBD did not increase the incidence of microhemorrhage in mice with or without 07/2a mAb treatment. Our findings suggest that FUS is a useful tool to enhance delivery and efficacy of an anti-pGlu3 Aβ mAb for immunotherapy either via an additive effect or an independent mechanism. We revealed a potential novel mechanism wherein the combination of 07/2a mAb with FUS-BBBD led to greater monocyte infiltration and recruitment to plaques in this AD-like model. Overall, these effects resulted in greater plaque removal, sparing of synapses and improved cognitive function without causing overt damage, suggesting the possibility of FUS-BBBD as a noninvasive method to increase the therapeutic efficacy of drugs or biologics in AD patients.
Collapse
Affiliation(s)
- Tao Sun
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Qiaoqiao Shi
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Yongzhi Zhang
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Chanikarn Power
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Camilla Hoesch
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America
| | - Shawna Antonelli
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America
| | - Maren K Schroeder
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America
| | - Barbara J Caldarone
- Harvard Medical School Mouse Behavior Core, Boston, MA, United States of America
| | - Nadine Taudte
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Halle (Saale), Germany
| | - Mathias Schenk
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Halle (Saale), Germany
| | | | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Halle (Saale), Germany; Vivoryon Therapeutics AG, Halle (Saale), Germany; Anhalt University of Applied Sciences, Köthen, Germany
| | - Nathan J McDannold
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
27
|
Sanati M, Aminyavari S, Khodagholi F, Hajipour MJ, Sadeghi P, Noruzi M, Moshtagh A, Behmadi H, Sharifzadeh M. PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer's disease: Potential participation of STIMs. Neurotoxicology 2021; 85:145-159. [PMID: 34058247 DOI: 10.1016/j.neuro.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The amyloid-beta (Aβ) fibrillation process seems to execute a principal role in the neuropathology of Alzheimer's disease (AD). Accordingly, novel therapeutic plans have concentrated on the inhibition or degradation of Aβ oligomers and fibrils. Biocompatible nanoparticles (NPs), e.g., gold and iron oxide NPs, take a unique capacity in redirecting Aβ fibrillation kinetics; nevertheless, their impacts on AD-related memory impairment have not been adequately evaluated in vivo. Here, we examined the effect of commercial PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) on the learning and memory of an AD-animal model. The outcomes demonstrated the dose-dependent effect of SPIONs on Aβ fibrillation and learning and memory processes. In vitro and in vivo findings revealed that Low doses of SPIONs inhibited Aβ aggregation and ameliorated learning and memory deficit in the AD model, respectively. Enhanced level of hippocampal proteins, including brain-derived neurotrophic factor, BDNF, phosphorylated-cAMP response element-binding protein, p-CREB, and stromal interaction molecules, e.g., STIM1 and STIM2, were also observed. However, at high doses, SPIONs did not improve the detrimental impacts of Aβ fibrillation on spatial memory and hippocampal proteins expression. Overall, we revealed the potential capacity of SPIONs on retrieval of behavioral and molecular manifestations of AD in vivo, which needs further investigations to determine the mechanistic effect of SPIONs in the AD conundrum.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hajipour
- The Persian Gulf Biomedical Sciences Research Institute, Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, 47263, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Payam Sadeghi
- Department of Plastic Surgery, Cleveland Clinic, OH, USA
| | - Marzieh Noruzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Aynaz Moshtagh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.
| |
Collapse
|
28
|
Zhang Z, Liu R, Li G, Su M, Li F, Zheng H, Qiu W. A Dual-mode 2D Matrix Array for Ultrasound Image-guided Noninvasive Therapy. IEEE Trans Biomed Eng 2021; 68:3482-3490. [PMID: 33872140 DOI: 10.1109/tbme.2021.3073951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Focused ultrasound (FUS) lacks reliable real-time image guidance, which hinders the development of non-invasive ultrasound treatment in many important clinical applications. A dual-mode ultrasound array, capable of both imaging and therapy offers a new and reliable strategy for image-guided ultrasound therapy applications. The strategy has the advantages of real-time use, low cost, portability and inherent registration between imaging and therapeutic coordinate systems. In this work, a dual-mode two-dimensional (2D) matrix array with 1 MHz center frequency and 256 elements for ultrasound image-guided non-invasive therapy is reported. The array can provide three-dimensional (3D) volumetric ultrasound imaging and 3D focus control. Ultrasound imaging and therapeutic applications for the brain of small animals demonstrated the multi-functional capability of the dual-mode 2D matrix array. A method of rat brain positioning based on ultrasound imaging was proposed and verified. Transcranial ultrasound image-guided bloodbrain barrier (BBB) opening of multiple-targets was achieved in vivo, using the proposed dual-mode 2D array. The obtained results indicate that the dual-mode 2D matrix array is a promising method for practical use in ultrasound image-guided non-invasive therapy applications.
Collapse
|
29
|
Leinenga G, Koh WK, Götz J. A comparative study of the effects of Aducanumab and scanning ultrasound on amyloid plaques and behavior in the APP23 mouse model of Alzheimer disease. ALZHEIMERS RESEARCH & THERAPY 2021; 13:76. [PMID: 33836798 PMCID: PMC8035770 DOI: 10.1186/s13195-021-00809-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aducanumab is an anti-amyloid-β (Aβ) antibody that achieved reduced amyloid pathology in Alzheimer's disease (AD) trials; however, it is controversial whether it also improved cognition, which has been suggested would require a sufficiently high cumulative dose of the antibody in the brain. Therapeutic ultrasound, in contrast, has only begun to be investigated in human AD clinical trials. We have previously shown that scanning ultrasound in combination with intravenously injected microbubbles (SUS), which temporarily and safely opens the blood-brain barrier (BBB), removes amyloid and restores cognition in APP23 mice. However, there has been no direct testing of how the effects of SUS compare to immunotherapy or whether a combination therapy is more effective. METHODS In a study comprising four treatment arms, we tested the efficacy of an Aducanumab analog, Adu, both in comparison to SUS, and as a combination therapy, in APP23 mice (aged 13-22 months), using sham as a control. The active place avoidance (APA) test was used to test spatial memory, and histology and ELISA were used to measure amyloid. Brain antibody levels were also determined. RESULTS We found that both Adu and SUS reduced the total plaque area in the hippocampus with no additive effect observed with the combination treatment (SUS + Adu). Whereas in the cortex where there was a trend towards reducing the total plaque area from either Adu or SUS, only the combination treatment yielded a statistically significant decrease in total plaque area compared to sham. Only the SUS and SUS + Adu groups included animals that had their plaque load reduced to below 1% from above 10%. There was a robust improvement in spatial memory for the SUS + Adu group only, and in this group the level of Adu, when measured 3 days post-treatment, was 5-fold higher compared to those mice that received Adu on its own. Together, these findings suggest that SUS should be considered as a treatment option for AD. Alternatively, a combination trial using Aducanumab together with ultrasound to increase brain levels of the antibody may be warranted.
Collapse
Affiliation(s)
- Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wee Kiat Koh
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
30
|
Cheng CL, Chan MH, Feng SJ, Hsiao M, Liu RS. Long-Term Near-Infrared Signal Tracking of the Therapeutic Changes of Glioblastoma Cells in Brain Tissue with Ultrasound-Guided Persistent Luminescent Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6099-6108. [PMID: 33507729 DOI: 10.1021/acsami.0c22489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The blood-brain barrier (BBB) is a physical barrier that selectively prevents certain substances from entering the brain through the blood. The BBB protects the brain from germs and causes difficulty in intracranial treatment. The chemotherapy drug temozolomide (TMZ), embedded in nanobubbles (NBs) and combined with persistent luminescent nanoparticles (PLNs), has been used to treat glioblastoma (GBM) effectively through image tracking. Through ultrasound induction, NBs produce cavitation that temporarily opens the BBB. Additionally, the PLNs release near-infrared emission and afterglow, which can penetrate deep tissues and improve the signal-to-noise ratio of bioimages. In this work, the nanosystem crossed the BBB for drug delivery and image tracking over time, allowing the enhancement of the drug's therapeutic effect on GBM. We hope that this nanosystem can be applied to the treatment of different brain diseases by embedding different drugs in NBs.
Collapse
Affiliation(s)
- Chiao-Ling Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng-Jan Feng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
31
|
Giammalva GR, Gagliardo C, Marrone S, Paolini F, Gerardi RM, Umana GE, Yağmurlu K, Chaurasia B, Scalia G, Midiri F, La Grutta L, Basile L, Gulì C, Messina D, Pino MA, Graziano F, Tumbiolo S, Iacopino DG, Maugeri R. Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives. Brain Sci 2021; 11:84. [PMID: 33435152 PMCID: PMC7827488 DOI: 10.3390/brainsci11010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Transcranial MR-guided Focused ultrasound (tcMRgFUS) is a surgical procedure that adopts focused ultrasounds beam towards a specific therapeutic target through the intact skull. The convergence of focused ultrasound beams onto the target produces tissue effects through released energy. Regarding neurosurgical applications, tcMRgFUS has been successfully adopted as a non-invasive procedure for ablative purposes such as thalamotomy, pallidotomy, and subthalamotomy for movement disorders. Several studies confirmed the effectiveness of tcMRgFUS in the treatment of several neurological conditions, ranging from motor disorders to psychiatric disorders. Moreover, using low-frequencies tcMRgFUS systems temporarily disrupts the blood-brain barrier, making this procedure suitable in neuro-oncology and neurodegenerative disease for controlled drug delivery. Nowadays, tcMRgFUS represents one of the most promising and fascinating technologies in neuroscience. Since it is an emerging technology, tcMRgFUS is still the subject of countless disparate studies, even if its effectiveness has been already proven in many experimental and therapeutic fields. Therefore, although many studies have been carried out, many others are still needed to increase the degree of knowledge of the innumerable potentials of tcMRgFUS and thus expand the future fields of application of this technology.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (C.G.); (F.M.)
| | - Salvatore Marrone
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | | | - Kaan Yağmurlu
- Departments of Neuroscience and Neurosurgery, University of Virginia Health System, Charlottesville, VA 22903, USA;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy; (G.S.); (F.G.)
| | - Federico Midiri
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (C.G.); (F.M.)
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties-ProMISE, University of Palermo, 90127 Palermo, Italy;
| | - Luigi Basile
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Carlo Gulì
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Domenico Messina
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Maria Angela Pino
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Francesca Graziano
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy; (G.S.); (F.G.)
| | - Silvana Tumbiolo
- Division of Neurosurgery, Villa Sofia Hospital, 90146 Palermo, Italy;
| | - Domenico Gerardo Iacopino
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| |
Collapse
|
32
|
Fletcher SMP, Choi M, Ogrodnik N, O'Reilly MA. A Porcine Model of Transvertebral Ultrasound and Microbubble-Mediated Blood-Spinal Cord Barrier Opening. Am J Cancer Res 2020; 10:7758-7774. [PMID: 32685018 PMCID: PMC7359082 DOI: 10.7150/thno.46821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Blood-spinal cord barrier opening, using focused ultrasound and microbubbles, has the potential to improve drug delivery for the treatment of spinal cord pathologies. Delivering and detecting ultrasound through the spine is a challenge for clinical translation. We have previously developed short burst, phase keying exposures, which can be used in a dual-aperture configuration to address clinical scale targeting challenges. Here we demonstrate the use of these pulses for blood-spinal cord barrier opening, in vivo in pigs. Methods: The spinal cords of Yorkshire pigs (n=8) were targeted through the vertebral laminae, in the lower thoracic to upper lumbar region using focused ultrasound (486 kHz) and microbubbles. Four animals were treated with a combination of pulsed sinusoidal exposures (1.0-4.0 MPa, non-derated) and pulsed short burst, phase keying exposures (1.0-2.0 MPa, non-derated). Four animals were treated using ramped short burst, phase keying exposures (1.8-2.1 MPa, non-derated). A 250 kHz narrowband receiver was used to detect acoustic emissions from microbubbles. Blood-spinal cord barrier opening was assessed by the extravasation of Evans blue dye. Histological analysis of the spinal cords was used to assess tissue damage and excised vertebral samples were used in benchtop experiments. Results: Ramped short burst, phase keying exposures successfully modified the blood-spinal cord barrier at 16/24 targeted locations, as assessed by the extravasation of Evans blue dye. At 4 of these locations, opening was confirmed with minimal adverse effects observed through histology. Transmission measurements through excised vertebrae indicated a mean transmission of (47.0 ± 7.0 %) to the target. Conclusions: This study presents the first evidence of focused ultrasound-induced blood-spinal cord barrier opening in a large animal model, through the intact spine. This represents an important step towards clinical translation.
Collapse
|
33
|
Kung Y, Huang HY, Liao WH, Huang APH, Hsiao MY, Wu CH, Liu HL, Inserra C, Chen WS. A Single High-Intensity Shock Wave Pulse With Microbubbles Opens the Blood-Brain Barrier in Rats. Front Bioeng Biotechnol 2020; 8:402. [PMID: 32478046 PMCID: PMC7232561 DOI: 10.3389/fbioe.2020.00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Focused extracorporeal shockwave (FSW), one kind of focused high-intensity pulsed ultrasound, has been shown to induce blood-brain barrier (BBB) opening in targeted brain areas in rat animal models with minimal detrimental effects below threshold intensity levels or iterations. In the current study, we found that the thresholds could be further reduced by the addition of microbubbles (ultrasound contrast agents or UCA; SonoVue). FSW with 2 × 106 MBs/kg of UCA (20% of clinical dosage) at an intensity level of 0.1 (peak positive pressure 5.4 MPa; peak negative pressure -4.2 MPa; energy flux density 0.03 mJ/mm2) resulting in a 100% BBB opening rate without detectable hemorrhage or apoptosis in the brain. Significantly reduced free radical production was found compared with 0.5 MHz focused ultrasound at a peak negative pressure of 0.44 MPa (1% duty cycle and 4 × 107 MBs/kg of UCA). FSW devices offer advantages of commercial availability and high safety, and thus may facilitate future research and applications of focal BBB opening for oncological and pharmacological purposes.
Collapse
Affiliation(s)
- Yi Kung
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Yu Huang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Abel P.-H. Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Claude Inserra
- INSERM, U1032, LabTAU, Universiteì Claude Bernard Lyon 1, Lyon, France
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
34
|
Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev 2019; 165-166:1-14. [PMID: 31790711 DOI: 10.1016/j.addr.2019.11.009] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that functions as a gatekeeper, reflecting the unique requirements of the brain. In this review, following a brief historical overview of how the concepts of the BBB and the neurovascular unit (NVU) developed, we describe its physiology and architecture, which pose a particular challenge to therapeutic intervention. We then discuss how the restrictive nature of this barrier can be overcome for the delivery of therapeutic agents. Alterations to drug formulation offer one option, in part by utilizing distinct transport modes; another is invasive or non-invasive strategies to bypass the BBB. An emerging non-invasive technology for targeted drug delivery is focused ultrasound that allows for the safe and reversible disruption of the BBB. We discuss the underlying mechanisms and provide an outlook, emphasizing the need for more research into the NVU and investment in innovative technologies to overcome the BBB for drug delivery.
Collapse
Affiliation(s)
- Rucha Pandit
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Liyu Chen
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
35
|
Fletcher SMP, Ogrodnik N, O'Reilly MA. Enhanced Detection of Bubble Emissions Through the Intact Spine for Monitoring Ultrasound-Mediated Blood-Spinal Cord Barrier Opening. IEEE Trans Biomed Eng 2019; 67:1387-1396. [PMID: 31442968 DOI: 10.1109/tbme.2019.2936972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We previously developed short burst, phase keying (SBPK) focused ultrasound (FUS) to mitigate standing waves in the human vertebral canal. Here, we show microbubble emissions from these pulses can be detected through the human vertebral arch and that these pulses are effective for blood-spinal cord barrier (BSCB) opening. METHODS At f0 = 514 kHz, circulating microbubbles were sonicated through ex vivo human vertebrae (60 kPa-1 MPa) using a dual-aperture approach and SBPK exposures engineered to incorporate pulse inversion (PI). Signals from a 250 kHz receiver were analyzed using PI, short-time Fourier analysis and the maximum projection over the pulse train. In rats (n = 14), SBPK FUS+microbubbles was applied to 3 locations/spinal cord at fixed pressures (∼0.20-0.47 MPa). MRI and histology were used to assess opening and tissue damage. RESULTS In human vertebrae between 0.2-0.4 MPa, PI amplified the microbubble/baseline ratio at f0/2 and 2f0 by 202 ± 40% (132-291%). This was maximal at 0.4 MPa, coinciding with the onset of broadband emissions. In vivo, opening was achieved at 40/42 locations, with mean MRI enhancement of 46 ± 32%(16%-178%). Using PI, f0/2 was detected at 14/40 opening locations. At the highest pressures (f0/2 present) histology showed widespread bleeding throughout the focal region. At the lowest pressures, opening was achieved without bleeding. CONCLUSION This study confirmed that PI can increase sensitivity to transvertebral detection of microbubble signals. Preliminary in vivo investigations show that SBPK FUS can increase BSCB permeability without tissue damage. SIGNIFICANCE SBPK is a clinically relevant pulse scheme and, in combination with PI, provides a means of mediating and monitoring BSCB opening noninvasively.
Collapse
|
36
|
Sinharay S, Tu TW, Kovacs ZI, Schreiber-Stainthorp W, Sundby M, Zhang X, Papadakis GZ, Reid WC, Frank JA, Hammoud DA. In vivo imaging of sterile microglial activation in rat brain after disrupting the blood-brain barrier with pulsed focused ultrasound: [18F]DPA-714 PET study. J Neuroinflammation 2019; 16:155. [PMID: 31345243 PMCID: PMC6657093 DOI: 10.1186/s12974-019-1543-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound combined with the infusion of microbubbles (pFUS+MB) induces transient blood-brain barrier opening (BBBO) in targeted regions. pFUS+MB, through the facilitation of neurotherapeutics’ delivery, has been advocated as an adjuvant treatment for neurodegenerative diseases and malignancies. Sterile neuroinflammation has been recently described following pFUS+MB BBBO. In this study, we used PET imaging with [18F]-DPA714, a biomarker of translocator protein (TSPO), to assess for neuroinflammatory changes following single and multiple pFUS+MB sessions. Methods Three groups of Sprague-Dawley female rats received MRI-guided pFUS+MB (Optison™; 5–8 × 107 MB/rat) treatments to the left frontal cortex and right hippocampus. Group A rats were sonicated once. Group B rats were sonicated twice and group C rats were sonicated six times on weekly basis. Passive cavitation detection feedback (PCD) controlled the peak negative pressure during sonication. We performed T1-weighted scans immediately after sonication to assess efficiency of BBBO and T2*-weighted scans to evaluate for hypointense voxels. [18F]DPA-714 PET/CT scans were acquired after the BBB had closed, 24 h after sonication in group A and within an average of 10 days from the last sonication in groups B and C. Ratios of T1 enhancement, T2* values, and [18F]DPA-714 percent injected dose/cc (%ID/cc) values in the targeted areas to the contralateral brain were calculated. Histological assessment for microglial activation/astrocytosis was performed. Results In all groups, [18F]DPA-714 binding was increased at the sonicated compared to non-sonicated brain (%ID/cc ratios > 1). Immunohistopathology showed increased staining for microglial and astrocytic markers in the sonicated frontal cortex compared to contralateral brain and to a lesser extent in the sonicated hippocampus. Using MRI, we documented BBB disruption immediately after sonication with resolution of BBBO 24 h later. We found more T2* hypointense voxels with increasing number of sonications. In a longitudinal group of animals imaged after two and after six sonications, there was no cumulative increase of neuroinflammation on PET. Conclusion Using [18F]DPA-714 PET, we documented in vivo neuroinflammatory changes in association with pFUS+MB. Our protocol (utilizing PCD feedback to minimize damage) resulted in neuroinflammation visualized 24 h post one sonication. Our findings were supported by immunohistochemistry showing microglial activation and astrocytosis. Experimental sonication parameters intended for BBB disruption should be evaluated for neuroinflammatory sequelae prior to implementation in clinical trials. Electronic supplementary material The online version of this article (10.1186/s12974-019-1543-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanhita Sinharay
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA.,University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology, Howard University, Washington DC, USA
| | - Zsofia I Kovacs
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - William Schreiber-Stainthorp
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA
| | - Maggie Sundby
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Xiang Zhang
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Georgios Z Papadakis
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA.,Department of Radiology, University of Crete and Department of Medical Imaging Heraklion University Hospital, Crete, Greece
| | - William C Reid
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA.
| |
Collapse
|
37
|
Su X, Thomas RG, Bharatula LD, Kwan JJ. Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound. Sci Rep 2019; 9:9612. [PMID: 31270380 PMCID: PMC6610131 DOI: 10.1038/s41598-019-46022-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/20/2019] [Indexed: 01/04/2023] Open
Abstract
Ultrasound-enhanced drug delivery has shown great promise in providing targeted burst release of drug at the site of the disease. Yet current solid ultrasound-responsive particles are non-degradable with limited potential for drug-loading. Here, we report on an ultrasound-responsive multi-cavity poly(lactic-co-glycolic acid) microparticle (mcPLGA MP) loaded with rhodamine B (RhB) with or without 4',6-diamidino-2-phenylindole (DAPI) to represent small molecule therapeutics. After exposure to high intensity focused ultrasound (HIFU), these delivery vehicles were remotely implanted into gel and porcine tissue models, where the particles rapidly released their payload within the first day and sustained release for at least seven days. RhB-mcPLGA MPs were implanted with HIFU into and beyond the sub-endothelial space of porcine arteries without observable damage to the artery. HIFU also guided the location of implantation; RhB-mcPLGA MPs were only observed at the focus of the HIFU away from the direction of ultrasound. Once implanted, DAPI co-loaded RhB-mcPLGA MPs released DAPI into the arterial wall, staining the nucleus of the cells. Our work shows the potential for HIFU-guided implantation of drug-loaded particles as a strategy to improve the local and sustained delivery of a therapeutic for up to two weeks.
Collapse
Affiliation(s)
- Xiaoqian Su
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Reju George Thomas
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lakshmi Deepika Bharatula
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - James J Kwan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.
| |
Collapse
|
38
|
Ultrasound-mediated blood-brain barrier opening enhances delivery of therapeutically relevant formats of a tau-specific antibody. Sci Rep 2019; 9:9255. [PMID: 31239479 PMCID: PMC6592925 DOI: 10.1038/s41598-019-45577-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
The microtubule-associated protein tau is an attractive therapeutic target for the treatment of Alzheimer’s disease and related tauopathies as its aggregation strongly correlates with disease progression and is considered a key mediator of neuronal toxicity. Delivery of most therapeutics to the brain is, however, inefficient, due to their limited ability to cross the blood-brain barrier (BBB). Therapeutic ultrasound is an emerging non-invasive technology which transiently opens the BBB in a focused manner to allow peripherally delivered molecules to effectively enter the brain. In order to open a large area of the BBB, we developed a scanning ultrasound (SUS) approach by which ultrasound is applied in a sequential pattern across the whole brain. We have previously shown that delivery of an anti-tau antibody in a single-chain variable fragment (scFv) format to the brain is increased with SUS allowing for an enhanced therapeutic effect. Here we compared the delivery of an anti-tau antibody, RN2N, in an scFv, fragment antigen-binding (Fab) and full-sized immunoglobulin G (IgG) format, with and without sonication, into the brain of pR5 tau transgenic mice, a model of tauopathy. Our results revealed that the full-sized IgG reaches a higher concentration in the brain compared with the smaller formats by bypassing renal excretion. No differences in either the ultrasound-mediated uptake or distribution in the brain from the sonication site was observed across the different antibody formats, suggesting that ultrasound can be used to successfully increase the delivery of therapeutic molecules of various sizes into the brain for the treatment of neurological diseases.
Collapse
|
39
|
Klibanov AL, McDannold NJ. Moving toward Noninvasive, Focused Ultrasound Therapeutic Delivery of Drugs in the Brain: Prolonged Opening of Blood-Brain Barrier May Not Be Needed. Radiology 2019; 291:467-468. [PMID: 30917292 DOI: 10.1148/radiol.2019190410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander L Klibanov
- From the Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, UVA CVRC, MR4 RM3147, 409 Lane Rd, Charlottesville, VA 22908 (A.L.K.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (N.J.M.)
| | - Nathan J McDannold
- From the Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, UVA CVRC, MR4 RM3147, 409 Lane Rd, Charlottesville, VA 22908 (A.L.K.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (N.J.M.)
| |
Collapse
|
40
|
Lahiri S, Regis GC, Koronyo Y, Fuchs DT, Sheyn J, Kim EH, Mastali M, Van Eyk JE, Rajput PS, Lyden PD, Black KL, Ely EW, D Jones H, Koronyo-Hamaoui M. Acute neuropathological consequences of short-term mechanical ventilation in wild-type and Alzheimer's disease mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:63. [PMID: 30795776 PMCID: PMC6387486 DOI: 10.1186/s13054-019-2356-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
Background Mechanical ventilation is strongly associated with cognitive decline after critical illness. This finding is particularly evident among older individuals who have pre-existing cognitive impairment, most commonly characterized by varying degrees of cerebral amyloid-β accumulation, neuroinflammation, and blood-brain barrier dysfunction. We sought to test the hypothesis that short-term mechanical ventilation contributes to the neuropathology of cognitive impairment by (i) increasing cerebral amyloid-β accumulation in mice with pre-existing Alzheimer’s disease pathology, (ii) increasing neurologic and systemic inflammation in wild-type mice and mice with pre-existing Alzheimer’s disease pathology, and (iii) increasing hippocampal blood-brain barrier permeability in wild-type mice and mice with pre-existing Alzheimer’s disease pathology. Methods We subjected double transgenic Alzheimer’s disease (APP/PSEN1) and wild-type mice to mechanical ventilation for 4 h and compared to non-mechanically ventilated Alzheimer’s disease model and wild-type mice. Cerebral soluble/insoluble amyloid-β1–40/amyloid-β1–42 and neurological and systemic markers of inflammation were quantified. Hippocampal blood-brain barrier permeability was quantified using a novel methodology that enabled assessment of small and large molecule permeability across the blood-brain barrier. Results Mechanical ventilation resulted in (i) a significant increase in cerebral soluble amyloid-β1–40 (p = 0.007) and (ii) significant increases in neuroinflammatory cytokines in both wild-type and Alzheimer’s disease mice which, in most cases, were not reflected in the plasma. There were (i) direct correlations between polymorphonuclear cells in the bronchoalveolar fluid and cerebral soluble amyloid-β1–40 (p = 0.0033), and several Alzheimer’s disease-relevant neuroinflammatory biomarkers including cerebral TNF-α and IL-6; (iii) significant decreases in blood-brain barrier permeability in mechanically ventilated Alzheimer’s disease mice and a trend towards increased blood-brain barrier permeability in mechanically ventilated wild-type mice. Conclusions These results provide the first evidence that short-term mechanical ventilation independently promotes the neuropathology of Alzheimer’s disease in subjects with and without pre-existing cerebral Alzheimer’s disease pathology. Future studies are needed to further clarify the specific mechanisms by which this occurs and to develop neuroprotective mechanical ventilation strategies that mitigate the risk of cognitive decline after critical illness. Electronic supplementary material The online version of this article (10.1186/s13054-019-2356-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA.
| | - Giovanna C Regis
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Elizabeth H Kim
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Mitra Mastali
- Biostatistics and Informatics Core, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Jennifer E Van Eyk
- Biostatistics and Informatics Core, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Padmesh S Rajput
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Patrick D Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - E Wesley Ely
- Department of Pulmonary and Critical Care Medicine, Veteran's Affairs Tennessee Valley Geriatric Research Education and Clinical Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Heather D Jones
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA.
| |
Collapse
|
41
|
Chen KT, Wei KC, Liu HL. Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Front Pharmacol 2019; 10:86. [PMID: 30792657 PMCID: PMC6374338 DOI: 10.3389/fphar.2019.00086] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022] Open
Abstract
Focused Ultrasound (FUS) in combination with gaseous microbubbles has emerged as a potential new means of effective drug delivery to the brain. Recent research has shown that, under burst-type energy exposure with the presence of microbubbles, this modality can transiently permeate the blood-brain barrier (BBB). The bioavailability of therapeutic agents is site-specifically augmented only in the zone where the FUS energy is targeted. The non-invasiveness of this approach makes FUS-induced BBB opening a novel and attractive means to perform localized CNS therapeutic agent delivery. Over the past decade, FUS-BBB opening has been preclinically confirmed to successfully enhance CNS penetration of therapeutic agents including chemotherapeutic agents, therapeutic peptides, monoclonal antibodies, and nanoparticles. Recently, a number of clinical human trials have begun to explore clinical utility. This review article, explores this technology through its physical mechanisms, summarizes the existing preclinical findings (including current medical device designs and technical approaches), and summarizes current ongoing clinical trials.
Collapse
Affiliation(s)
- Ko-Ting Chen
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hao-Li Liu
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
42
|
Souza RMDCE, da Silva ICS, Delgado ABT, da Silva PHV, Costa VRX. Focused ultrasound and Alzheimer's disease A systematic review. Dement Neuropsychol 2018; 12:353-359. [PMID: 30546844 PMCID: PMC6289486 DOI: 10.1590/1980-57642018dn12-040003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) affects millions of people, however, there is still no effective treatment. The use of focused ultrasound with microbubbles (FUS-MB) for the opening of the blood-brain barrier has been recently studied and may become a promising therapeutic target.
Collapse
Affiliation(s)
- Rodrigo Marmo da Costa E Souza
- Neurosurgeon. Departamento de Psicologia, Programa de Neurociências Cognitiva e do Comportamento, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.,Departamento de Medicina, Liga de Neurologia e Neurocirurgia Funcional da Paraíba, Cabedelo, PB, Brazil
| | - Inaê Carolline Silveira da Silva
- Medical student. Departamento de Medicina, Universidade Federal da Paraíba, João Pessoa, PB, Brazil.,Departamento de Medicina, Liga de Neurologia e Neurocirurgia Funcional da Paraíba, Cabedelo, PB, Brazil
| | - Anna Beatriz Temoteo Delgado
- Medical student. Departamento de Medicina, Faculdade de Ciências Médicas da Paraíba, Cabedelo, PB, Brazil.,Departamento de Medicina, Liga de Neurologia e Neurocirurgia Funcional da Paraíba, Cabedelo, PB, Brazil
| | - Pedro Hugo Vieira da Silva
- Medical student. Departamento de Medicina, Faculdade de Ciências Médicas da Paraíba, Cabedelo, PB, Brazil.,Departamento de Medicina, Liga de Neurologia e Neurocirurgia Funcional da Paraíba, Cabedelo, PB, Brazil
| | - Victor Ribeiro Xavier Costa
- Medical student. Departamento de Medicina, Faculdade de Ciências Médicas da Paraíba, Cabedelo, PB, Brazil.,Departamento de Medicina, Liga de Neurologia e Neurocirurgia Funcional da Paraíba, Cabedelo, PB, Brazil
| |
Collapse
|