1
|
Ponmani M, Padmavathy P, Manimekalai D, Shalini R, Ravikumar T, Hariharan G, Manickavasagam S. Vulnerability of mangrove ecosystems to anthropogenic marine litter along the southeast coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177224. [PMID: 39477121 DOI: 10.1016/j.scitotenv.2024.177224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Human-caused marine pollution poses a constant threat to marine ecosystems, particularly tropical mangrove forests, which are vulnerable to litter from both inland and marine sources due to inadequate waste management. Despite well-documented effects of marine litter on various maritime habitats, its impact on mangrove forests remains underexplored. This study investigates the abundance, composition, sources, and impacts of human-caused marine litter on mangroves along the Thoothukudi coast in the Gulf of Mannar, southeast India. The study recorded an average litter abundance of 6.7 ± 1.2 items/m2 on the mangrove ground and 8.6 ± 0.3 items/tree, with plastic litter comprising over 81 % of all collected litter. Single-use plastic items were the most common across all sites. Several indices, including the General Index, Clean Coast Index, Pollution Load Index (PLI), and Hazardous Items Index (HII), were used to evaluate mangrove floor cleanliness, all indicating poor conditions. The PLI revealed "Hazard Level I" plastic debris concerns, with litter levels varying significantly by location. Areas with high population density and poor solid waste management had significantly more stranded litter. Litter sources were identified as both local (land-based) and external (marine fishing). Trapped plastic was found to impair mangrove pneumatophores and branches. To mitigate the negative impacts on mangrove ecosystems and ensure their conservation, the study emphasizes the need for strict law enforcement, a unified solid waste management strategy, and a widespread behavioural shift among citizens.
Collapse
Affiliation(s)
- Muthu Ponmani
- Ph.D Scholar, Department of Aquatic Environment Management, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India
| | - P Padmavathy
- Director i/c, Directorate of Sustainable Aquaculture, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Nagapattinam - 611 002, Tamil Nadu, India.
| | - D Manimekalai
- Assistant Professor, Department of Aquatic Environment Management, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India
| | - R Shalini
- Assistant Professor and Head i/c, Department of Fish Quality Assurance and Management, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India
| | - T Ravikumar
- Assistant Professor, Department of Fishing Technology and Fisheries Engineering, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India
| | - G Hariharan
- Scientist-C, National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai-600025, India
| | - S Manickavasagam
- Assistant Professor, Thanjavur Centre for Sustainable Aquaculture (TCeSA), Directorate of Sustainable Aquaculture, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Thanjavur - 614 904, Tamil Nadu, India
| |
Collapse
|
2
|
Dey G, Maity JP, Banerjee P, Sharma RK, Das K, Gnanachandrasamy G, Wang CW, Lin PY, Wang SL, Chen CY. Evaluation and mitigation of potentially toxic elements contamination in mangrove ecosystem: Insights into phytoremediation and microbial perspective. MARINE POLLUTION BULLETIN 2024; 209:117035. [PMID: 39393228 DOI: 10.1016/j.marpolbul.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Mangroves, essential coastal ecosystems, are threatened by human-induced Potentially-toxic-elements (PTEs) pollution. This study analyzed PTEs distribution, phytoremediation potential, and rhizosphere microbial communities in Taiwan's Xinfeng mangrove forest. Significant variations in physicochemical and PTEs concentrations were observed across adjacent water bodies, with moderate contamination in the river, estuary, and overlying water of mangroves sediment. The partition-coefficient showed the mobility of Bi, Pb, Co, and Sr at the water-sediment interface. The geochemical-indices revealed high Bi and Pb contamination and moderate Zn, Sr, Cu, and Cd contamination in sediment. The overall pollution indices indicated the significant contamination, while moderate ecological risk was found for Cd (40 ≤ Eri < 80). Mangroves Kandelia obovata and Avicennia marina exhibited promising PTEs phytoremediation potential (Bi, Cd, Mn, Sr, and Co). Metagenomics indicated a diverse microbial community with N-fixation, P-solubilization, IAA synthesis, and PTEs-resistance genes. These findings underscore the need for targeted conservation to protect these critical habitats.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Biological Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry 605104, India
| | - Chin-Wen Wang
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan.
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan; You-Cheng Engineering & Technology Co., Ltd, Chiayi 62102, Taiwan.
| |
Collapse
|
3
|
de Carvalho FM, Laux M, Ciapina LP, Gerber AL, Guimarães APC, Kloh VP, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Finding microbial composition and biological processes as predictive signature to access the ongoing status of mangrove preservation. Int Microbiol 2024; 27:1485-1500. [PMID: 38388811 PMCID: PMC11452435 DOI: 10.1007/s10123-024-00492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Mangroves are complex land-sea transition ecosystems whose microbiota are essential for their nutrient recycling and conservation. Brazil is the third-largest estuarine area in the world and "Baía de Todos os Santos" (BTS) is one of the largest bays of the country, with wide anthropogenic exploration. Using a metagenomic approach, we investigated composition and functional adaptability as signatures of the microbiome of pristine and anthropized areas of BTS, including those under petroleum refinery influence. The taxonomic analysis showed dominance of sulfate-reducing Desulfobacteraceae, Rhodobacteraceae, and Flavobacteriaceae. Taxa were significantly diverse between pristine and disturbed areas. Disturbed mangroves showed a notary increase in abundance of halophilic, sulfur-related, and hydrocarbon-degrading genera and a decrease in diatoms compared to pristine area. The metabolic profile of BTS mangroves was correlated with the differentially abundant microbiota. Two ecological scenarios were observed: one marked by functions of central metabolism associated with biomass degradation and another by mechanisms of microbial adaptability to pollution conditions and environmental degradation. Part of the microbiome was distinct and not abundant in Brazilian estuarine soils. The microbiome signature observed in each BTS mangrove reflects how human actions impact the diversity of these ecosystems and also emphasize their role in attempting to restore disturbed mangroves. The microbiome may act as a potential biological indicator of the preservation status of these soils, despite the limitation of soil property conditions. Additionally, our data pointed to metagenomics as an additional tool for environmental assessment and reinforced the need for protective measures for the mangroves under study.
Collapse
Affiliation(s)
- Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Vinícius Prata Kloh
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| |
Collapse
|
4
|
Schaduw JNW, Tallei TE, Sumilat DA. Mangrove Health Index, Community Structure and Canopy Cover in Small Islands of Bunaken National Park, Indonesia: Insights into Dominant Mangrove Species and Overall Mangrove Condition. Trop Life Sci Res 2024; 35:187-210. [PMID: 39234475 PMCID: PMC11371410 DOI: 10.21315/tlsr2024.35.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/04/2024] [Indexed: 09/06/2024] Open
Abstract
Mangrove ecosystems are crucial for protecting littoral regions, preserving biodiversity and sequestering carbon. The implementation of effective conservation and management strategies requires a comprehensive understanding of mangrove community structure, canopy coverage and overall health. This investigation focused on four small islands located within the Bunaken National Park in Indonesia: Bunaken, Manado Tua, Mantehage and Nain. Utilising the line transect quadrant method and hemispherical photography, the investigation comprised a total of 12 observation stations. Nain had the greatest average canopy coverage at 76.09%, followed by Mantehage, Manado Tua and Bunaken at 75.82%, 71.83% and 70.01%, respectively. Mantehage had the maximum species density, with 770.83 ind/ha, followed by Bunaken, Nain and Manado Tua with 675 ind/ha, 616.67 ind/ha and 483.34 ind/ha, respectively. The predominant sediment type observed was sandy mud and the mangrove species identified were Avicennia officinalis (AO), Bruguiera gymnorrhiza (BG), Rhizophora apiculata (RA), R. mucronata (RM), and Sonneratia alba (SA). On the small islands, S. alba emerged as the dominant mangrove species based on the importance value index (IVI). In addition, the Mangrove Health Index revealed that only 6.79% of the region exhibited poor health values, while 50% of the region was categorised as being in outstanding condition. These findings indicate that the overall condition of mangroves on these islands was relatively favourable.
Collapse
Affiliation(s)
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado 95111, Indonesia
| | - Deiske A Sumilat
- Department of Marine Science, Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95111, Indonesia
| |
Collapse
|
5
|
Prayudha B, Ulumuddin YI, Siregar V, Suyarso, Agus SB, Prasetyo LB, Suyadi, Avianto P, Ramadhani MR. Enhanced mangrove index: A spectral index for discrimination understorey, nypa, and mangrove trees. MethodsX 2024; 12:102778. [PMID: 38883587 PMCID: PMC11179249 DOI: 10.1016/j.mex.2024.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
Unsupervised classification using vegetation indices has been extensively employed to map mangrove forests using medium-resolution satellite images. However, its capability is restricted to determining the extent of mangroves only. This study introduces a new spectral index called the enhanced mangrove index (EMI) for accurately mapping different components of mangrove vegetation, including mangrove trees, nypa, and understorey. An immediate effort is required to monitor the invasion of nypa and understorey in the mangrove forest of Segara Anakan Lagoon, located in Central Java, Indonesia. This issue may also be prevalent in other mangrove areas worldwide. The development of EMI involved: 1). the analysis of the reflectance exhibited by different types of mangrove vegetation, and 2). The performance of EMI was evaluated by comparing it with spectral indices such as automated mangrove map and index (AMMI), as well as supervised classification models like random forest (RF). The accuracy assessment indicates that the overall accuracy and Kappa coefficient achieved values of 0.87 and 0.84, respectively, surpassing other spectral indices and supervised classification models. AMMI and RF exhibited high overall accuracy, with values of 0.82 and 0.73, respectively. Additionally, they demonstrated a Kappa coefficient of 0.77 and 0.66, respectively.
Collapse
Affiliation(s)
- Bayu Prayudha
- Research Center for Oceanography, National Research and Inovation Agency (BRIN), Jl. Pasir Putih I, Ancol Timur 14430 Jakarta Indonesia
- Postgraduate School, Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, Jl. Raya Dramaga, Kampus IPB, Dramaga Bogor 16680 Jawa Barat, Indonesia
| | - Yaya I Ulumuddin
- Research Center for Oceanography, National Research and Inovation Agency (BRIN), Jl. Pasir Putih I, Ancol Timur 14430 Jakarta Indonesia
| | - Vincentius Siregar
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, Jl. Raya Dramaga, Kampus IPB, Dramaga Bogor 16680 Jawa Barat, Indonesia
| | - Suyarso
- Research Center for Oceanography, National Research and Inovation Agency (BRIN), Jl. Pasir Putih I, Ancol Timur 14430 Jakarta Indonesia
| | - Syamsul B Agus
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, Jl. Raya Dramaga, Kampus IPB, Dramaga Bogor 16680 Jawa Barat, Indonesia
| | - Lilik B Prasetyo
- Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry and Environment, IPB University, Jl. Raya Dramaga, Kampus IPB, Dramaga Bogor 16680, Jawa Barat, Indonesia
| | - Suyadi
- Research Center for Ecology and Ethnobiology, National Research and Inovation Agency (BRIN), Jl. Raya Jakarta-Bogor No.Km.46, Cibinong, Bogor 16911 Jawa Barat, Indonesia
| | - Praditya Avianto
- Research Center for Oceanography, National Research and Inovation Agency (BRIN), Jl. Pasir Putih I, Ancol Timur 14430 Jakarta Indonesia
| | - Muhammad R Ramadhani
- Research Center for Oceanography, National Research and Inovation Agency (BRIN), Jl. Pasir Putih I, Ancol Timur 14430 Jakarta Indonesia
| |
Collapse
|
6
|
Xie X, Lu Y, Lei H, Cheng J, An X, Wang W, Jiang X, Xie J, Xiong Y, Wu T. Bioaccumulation and trophic transfer of per- and polyfluoroalkyl substances in a subtropical mangrove estuary food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172094. [PMID: 38575036 DOI: 10.1016/j.scitotenv.2024.172094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Mangrove estuaries are an important land-sea transitional ecosystem that is currently under various pollution pressures, while there is a lack of research on per- and polyfluoroalkyl substances (PFAS) in the organisms of mangrove estuaries. In this study, we investigated the distribution and seasonal variation of PFAS in the tissues of organisms from a mangrove estuary. The PFAS concentrations in fish tissues varied from 0.45 ng/g ww to 17.67 ng/g ww and followed the order of viscera > head > carcass > muscle, with the highest tissue burden found in the fish carcass (39.59 ng). The log BAF values of PFDoDA, PFUnDA, and PFDA in the whole fish exceeded 3.70, indicating significant bioaccumulation. The trophic transfer of PFAS in the mangrove estuary food web showed a dilution effect, which was mainly influenced by the spatial heterogeneity of PFAS distribution in the estuarine environment, and demonstrated that the gradient dilution of PFAS in the estuary habitat environment can disguise the PFAS bio-magnification in estuarine organisms, and the larger the swimming ranges of organisms, the more pronounced the bio-dilution effect. The PFOA-equivalent HRs of category A and B fish were 3.48-5.17 and 2.59-4.01, respectively, indicating that mangrove estuarine residents had a high PFAS exposure risk through the intake of estuarine fish.
Collapse
Affiliation(s)
- Xingwei Xie
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China.
| | - Haojie Lei
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jianhua Cheng
- Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Fujian 361102, China
| | - Xupeng An
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Wenqing Wang
- Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Fujian 361102, China
| | - Xudong Jiang
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jianglin Xie
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yunting Xiong
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Ting Wu
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| |
Collapse
|
7
|
Bastos RF, Condini MV, Barbosa EF, Oliveira RL, Almeida LL, Garcia AM, Hostim-Silva M. Seeing further into the early steps of the endangered atlantic goliath grouper (Epinephelus itajara): Eye lenses high resolution isotopic profiles reveal ontogenetic trophic and habitat shifts. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106517. [PMID: 38657369 DOI: 10.1016/j.marenvres.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Estuarine mangroves are often considered nurseries for the Atlantic Goliath grouper juveniles. Yet, the contributions of different estuarine primary producers and habitats as sources of organic matter during early ontogenetic development remain unclear. Given the species' critically endangered status and protection in Brazil, obtaining biological samples from recently settled recruits in estuaries is challenging. In this study, we leveraged a local partnership with fishers and used stable isotope (C and N) profiles from the eye lenses of stranded individuals or incidentally caught by fishery to reconstruct the trophic and habitat changes of small juveniles. The eye lens grows by the apposition of protein-rich layers. Once these layers are formed, they become inert, allowing to make inferences on the trophic ecology and habitat use along the development of the individual until its capture. We used correlations between fish size and the entire eye lens size, along with estuarine baselines, to reconstruct the fish size and trophic positions for each of the lens layers obtained. We then used dominant primary producers and basal sources from mangrove sheltered, exposed estuarine and marine habitats to construct an ontogenetic model of trophic and habitat support changes since maternal origins. Our model revealed marine support before the juveniles reached 25 mm (standard length), followed by a rapid increase in reliance on mangrove sheltered sources, coinciding with the expected size at settlement. After reaching 60 mm, individuals began to show variability. Some remained primarily supported by the mangrove sheltered area, while others shifted to rely more on the exposed estuarine area around 150 mm. Our findings indicate that while mangroves are critical for settlement, as Goliath grouper juveniles grow, they can utilize organic matter produced throughout the estuary. This underscores the need for conservation strategies that focus on seascape connectivity, as protecting just one discrete habitat may not be sufficient to preserve this endangered species and safeguard its ecosystem functions.
Collapse
Affiliation(s)
- Rodrigo F Bastos
- Laboratório de Ecologia de Peixes Marinhos/LEPMAR, Departamento de Ciências Agrárias e Biológicas, CEUNES, Universidade Federal do Espírito Santo, BR-101, Km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil; Programa de Pós-graduação Em Oceanografia Ambiental, Universidade Federal Do Espírito Santo - Av. Fernando Ferrari, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil.
| | - Mario V Condini
- Laboratório de Ecologia de Peixes Marinhos/LEPMAR, Departamento de Ciências Agrárias e Biológicas, CEUNES, Universidade Federal do Espírito Santo, BR-101, Km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil; Programa de Pós-graduação Em Oceanografia Ambiental, Universidade Federal Do Espírito Santo - Av. Fernando Ferrari, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Ester F Barbosa
- Laboratório de Ecologia de Peixes Marinhos/LEPMAR, Departamento de Ciências Agrárias e Biológicas, CEUNES, Universidade Federal do Espírito Santo, BR-101, Km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil
| | - Rafael L Oliveira
- Laboratório de Ecologia de Peixes Marinhos/LEPMAR, Departamento de Ciências Agrárias e Biológicas, CEUNES, Universidade Federal do Espírito Santo, BR-101, Km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil; Programa de Pós-Graduação Em Ciências Biológicas (Biologia Animal - PPGBAN), Departamento de Ciências Biológicas, Universidade Federal Do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, CEP: 29055-460, Vitória, ES, Brazil
| | - Lorena L Almeida
- Laboratório de Ecologia de Peixes Marinhos/LEPMAR, Departamento de Ciências Agrárias e Biológicas, CEUNES, Universidade Federal do Espírito Santo, BR-101, Km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil; Instituto Meros Do Brasil, Rua Benjamin Constant 67, Conj. 1104, CEP: 80060-020, Curitiba, PR, Brazil
| | - Alexandre M Garcia
- Laboratório de Ictiologia, Instituto de Oceanografia, Universidade Federal Do Rio Grande, Av. Itália Km 8, Carreiros. 96.201-900, Rio Grande, RS, Brazil
| | - Maurício Hostim-Silva
- Laboratório de Ecologia de Peixes Marinhos/LEPMAR, Departamento de Ciências Agrárias e Biológicas, CEUNES, Universidade Federal do Espírito Santo, BR-101, Km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil; Programa de Pós-graduação Em Oceanografia Ambiental, Universidade Federal Do Espírito Santo - Av. Fernando Ferrari, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil; Programa de Pós-Graduação Em Ciências Biológicas (Biologia Animal - PPGBAN), Departamento de Ciências Biológicas, Universidade Federal Do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, CEP: 29055-460, Vitória, ES, Brazil; Instituto Meros Do Brasil, Rua Benjamin Constant 67, Conj. 1104, CEP: 80060-020, Curitiba, PR, Brazil
| |
Collapse
|
8
|
Heck N, Goldberg L, Andradi-Brown DA, Campbell A, Narayan S, Ahmadia GN, Lagomasino D. Global drivers of mangrove loss in protected areas. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14293. [PMID: 38766900 DOI: 10.1111/cobi.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/11/2024] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Despite increasing efforts and investment in mangrove conservation, mangrove cover continues to decline globally. The extent to which protected area (PA) management effectively prevents mangrove loss globally across differing management objectives and governance types is not well understood. We combined remote sensing data with PA information to identify the extent and the drivers of mangrove loss across PAs with distinct governance types and protection levels based on categories developed by the International Union for Conservation of Nature (IUCN). Mangrove loss due to storms and erosion was prevalent across all governance types and most IUCN categories. However, the extent of human-driven loss differed across governance types and IUCN categories. Loss was highest in national government PAs. Private, local, shared arrangement, and subnational government agencies had low human-driven mangrove loss. Human-driven loss was highest in PAs with the highest level of restrictions on human activities (IUCN category I) due to mangrove conversion to areas for commodity production (e.g., aquaculture), whereas PAs that allowed sustainable resource use (e.g., category VI) experienced low levels of human-driven mangrove loss. Because category I PAs with high human-driven loss were primarily governed by national government agencies, conservation outcomes in highly PAs might depend not only on the level of restrictions, but also on the governance type. Mangrove loss across different governance types and IUCN categories varied regionally. Specific governance types and IUCN categories thus seemed more effective in preventing mangrove loss in certain regions. Overall, we found that natural drivers contributed to global mangrove loss across all PAs, whereas human-driven mangrove loss was lowest in PAs with subnational- to local-level governance and PAs with few restrictions on human activities.
Collapse
Affiliation(s)
- Nadine Heck
- Department of Coastal Studies, East Carolina University, Greenville, North Carolina, USA
| | - Liza Goldberg
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | | | - Anthony Campbell
- Biospheric Sciences Laboratory, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, Maryland, USA
- Goddard Earth Sciences Technology and Research II, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Siddharth Narayan
- Department of Coastal Studies, East Carolina University, Greenville, North Carolina, USA
| | - Gabby N Ahmadia
- Ocean Conservation, World Wildlife Fund, Washington, DC, USA
| | - David Lagomasino
- Department of Coastal Studies, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
9
|
Pfenning-Butterworth A, Buckley LB, Drake JM, Farner JE, Farrell MJ, Gehman ALM, Mordecai EA, Stephens PR, Gittleman JL, Davies TJ. Interconnecting global threats: climate change, biodiversity loss, and infectious diseases. Lancet Planet Health 2024; 8:e270-e283. [PMID: 38580428 PMCID: PMC11090248 DOI: 10.1016/s2542-5196(24)00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024]
Abstract
The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions-including a mismatch in scales, data availability, and methods-are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.
Collapse
Affiliation(s)
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - John M Drake
- School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Maxwell J Farrell
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada; School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alyssa-Lois M Gehman
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada; Hakai Institute, Calvert, BC, Canada
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Patrick R Stephens
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - John L Gittleman
- School of Ecology, University of Georgia, Athens, GA, USA; Nicholas School for the Environment, Duke University, Durham, NC, USA
| | - T Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, BC, Canada; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Rahman, Ceanturi A, Tuahatu JW, Lokollo FF, Supusepa J, Hulopi M, Permatahati YI, Lewerissa YA, Wardiatno Y. Mangrove ecosystems in Southeast Asia region: Mangrove extent, blue carbon potential and CO 2 emissions in 1996-2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170052. [PMID: 38218471 DOI: 10.1016/j.scitotenv.2024.170052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
This study aimed to analyze mangrove extent (ME), carbon stock, blue carbon potential, and CO2 emission from 1996 to 2020 in Southeast Asia region. The data was obtained through the Global Mangrove Alliance (GMA) on the platform www.globalmangrovewatch.org v.3. Furthermore, ME was analyzed descriptively and the triggers for mangrove land changes in each country were investigated through a relevant literature review. The spatial analysis was conducted for blue carbon potential, while CO2 emission was derived by multiplying net change by emission factor (EF) of mangrove ecosystem. The results showed that the total ME in Southeast Asia was 5.07 million hectares (Mha) in 1996, decreasing to 4.82 Mha by 2020 due to various land uses, primarily shrimp farming. The total carbon stock potential was 2367.68 MtC, while a blue carbon potential was 8682.32 MtCO2-e, consisting of 1304.33 MtCO2-e and 7377.99 MtCO2-e from above-ground and soil carbon. Indonesia contributed 5939.57 MtCO2-e to blue carbon potential, while Singapore and Timor-Leste had the lowest contributions of 1.05 MtCO2-e and 1.37 MtCO2-e, respectively. Carbon stock potential (AGC and SOC) in Southeast Asia was influenced by ME conditions. The relationship between ME and AGC was found to be exponential (AGC = 0.0307e0.8938x; R2 = 0.9331; rME-AGC = 0.9964, P < 0.01). Similarly, ME and SOC, or AGC and SOC showed a relationship where SOC = 0.2e0.8829x (R2 = 0.937, rME-SOC = 0.9965 and rAGC-SOC = 0.9989, P < 0.01). The average CO2-e emission in Southeast Asia reached 17.0760 MtCO2-e yr-1 and the largest were attributed to Indonesia at 16.3817 MtCO2-e yr-1. Meanwhile, Brunei and Timor Leste did not show CO2-e emission as mangrove in these countries absorbed more CO2 from the atmosphere at -0.034 MtCO2-e yr-1 and -0.0002 MtCO2-e yr-1, respectively.
Collapse
Affiliation(s)
- Rahman
- Department of Marine Science, Pattimura University, Ambon, Indonesia.
| | - Ardan Ceanturi
- Peatland and Mangrove Restoration Agency of Republic of Indonesia, Indonesia
| | - Juliana W Tuahatu
- Department of Marine Science, Pattimura University, Ambon, Indonesia
| | - Frijona F Lokollo
- Department of Marine Science, Pattimura University, Ambon, Indonesia
| | - Junita Supusepa
- Department of Marine Science, Pattimura University, Ambon, Indonesia
| | - Mahriyana Hulopi
- Department of Aquatic Resources Management, Pattimura University, Indonesia
| | - Yustika Intan Permatahati
- Department of Aquatic Resources Management, Halu Oleo University, Indonesia; Mangrove Research and Development Centre Halu Oleo University, Indonesia
| | - Yona A Lewerissa
- Department of Aquatic Resources Management, Pattimura University, Indonesia
| | - Yusli Wardiatno
- Department of Aquatic Resources Management, IPB University, Indonesia
| |
Collapse
|
11
|
Arisuryanti T, Waskito Aji K, Nur Shabrina F, Febriyanti D, Setiadi Daryono B, Sendi Priyono D. Phylogenetic and genetic variation of common mudskippers (Periophthalmus kalolo Lesson, 1831) from the southern coast of Java, Indonesia inferred from the COI mitochondrial gene. J Genet Eng Biotechnol 2024; 22:100335. [PMID: 38494250 PMCID: PMC10860878 DOI: 10.1016/j.jgeb.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND The common mudskipper (Periophthalmus kalolo Lesson, 1831) belongs to a group of fish species that exhibit amphibious lifestyles during specific daily periods. However, identifying this species poses a challenge due to its morphological similarities with other mudskipper species. These similarities have occasionally caused misidentifications of mudskippers. In Indonesia, previous studies have examined the genetic variation of common mudskippers, but these investigations have been limited to a few specific areas, particularly along the southern coast of Java. As a result, the available data remain fragmented, and no comprehensive genetic population analysis of common mudskippers on the southern coast of Java has been conducted. Therefore, our study aimed to establish DNA barcodes of COI mtDNA and explore the genetic variation and relationship among these common mudskipper populations from the southern coast of Java. We collected nine specimens from two populations, Cilacap Mangrove Forest and Kondang Bandung Beach, and supplemented our dataset with 38 previously collected COI sequences of common mudskippers from three different populations from the southern coast of Java (Pasir Mendit Beach, Bogowonto Lagoon, and Baros Beach). RESULTS The study revealed that 47 common mudskippers from five different populations are separated into three genetically distinct clades (A, B, and C). These clades display genetic divergences ranging from 0.97% to 1.91%. Each clade exhibits high levels of haplotype diversity but relatively low nucleotide diversity, suggesting a previous bottleneck in population followed by a fast expansion. However, the phylogeny, haplotype network, and principal coordinate analysis indicate overlapping populations with no geographic separation within these clades. This suggests the potential occurrence of gene flow among these populations, which might have been facilitated by past geological events. CONCLUSIONS These results enhance our understanding of common mudskipper biodiversity in Indonesia. Further studies involving common mudskipper populations from various geographical sites in Indonesia are required to further enrich our understanding of the variation and evolution of this species.
Collapse
Affiliation(s)
- Tuty Arisuryanti
- Laboratory of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Katon Waskito Aji
- Laboratory of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Faizah Nur Shabrina
- Laboratory of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Diana Febriyanti
- Laboratory of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Budi Setiadi Daryono
- Laboratory of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Dwi Sendi Priyono
- Laboratory of Animal Systematics, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
12
|
Chen G, Gu X, Mo Y, Cui B. Monospecific mangrove reforestation changes relationship between benthic mollusc diversity and biomass: Implication for coastal wetland management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120140. [PMID: 38290263 DOI: 10.1016/j.jenvman.2024.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Anthropogenic causes are overtaking natural factors to reshape patterns of biodiversity and ecosystem functioning. Mangrove reforestation aimed at reversing losses of mangroves has been conducted worldwide for several decades. However, how reforestation influences the link between ecological processes that shape community diversity and the consequent effects on ecosystem functions such as biomass production is less well known. Here we used data collected before and after mangrove planting to examine the effects of reforestation on molluscan species richness and biomass production by testing the changes in species richness, compositional similarities, distance-decay effects (community similarity decreases with increasing geographical distance) in metacommunity across a regional scale of 480 km (23-27 °N) in southeast Chinese coasts. Additionally, we further detected the impact of landscape configuration caused by different intensities of reforestation on the mollusc community. After the mangrove reforestation, mollusc species richness and biomass increased significantly. The increases in species richness and biomass of mollusc community were mediated by reducing distance-decay effect, indicating an increase in relationship strength between species richness and biomass might be associated with a decrease in distance-decay effect with rising mangrove habitat. We highlight the importance of considering the effects of anthropogenic changes on the relationship between biodiversity and ecosystem functioning. Quantifying the distance-decay effect of these influences enables management decisions about coastal restoration to be based upon ecological mechanisms rather than wishful thinking or superficial appearance.
Collapse
Affiliation(s)
- Guogui Chen
- State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing, China; Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Xuan Gu
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of Education, College of the Environment & Ecology, Xiamen University, CN-361102, Xiamen, Fujian, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
| | - Baoshan Cui
- State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing, China; Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.
| |
Collapse
|
13
|
Shi Y, Li S, Li Y, Jiang L, Khan FU, Waiho K, Wang Y, Hu M. Saving the overlooked mangrove horseshoe crabs-A perspective from enhancing mangrove ecosystem conservation. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106282. [PMID: 38042633 DOI: 10.1016/j.marenvres.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
Despite being widely distributed in Asia, Carcinoscorpius rotundicauda is often overlooked and, its population status remains unclear. Moreover, it is threatened by illegal harvesting and degradation of mangrove ecosystems. Protecting its habitat is essential for population and biodiversity conservation, as mangroves provide nursery grounds and food supply for C. rotundicauda. This review discusses the biological characteristics of C. rotundicauda, including ecology, nutrition, life history, toxicology, and immunology. It also presents information about its distribution and population status. The review emphasizes the challenges faced by C. rotundicauda and proposes a conservation framework that involves the participation of local residents to facilitate conservation efforts. Collaboration between local residents and communities is proposed to protect and monitor the mangrove ecosystem. Additionally, this framework can support field research, protect C. rotundicauda juveniles and other species, and ensure the livelihood of local residents through participation in carbon trading markets and eco-industries such as eco-farming and eco-tourism.
Collapse
Affiliation(s)
- Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shuhui Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaowu Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Lingfeng Jiang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| |
Collapse
|
14
|
Jacob JKS, Witzel K, dela Cruz TEE. Comparative Diversity and Functional Traits of Fungal Endophytes in Response to Elevated Mineral Content in a Mangrove Ecosystem. J Fungi (Basel) 2023; 9:1186. [PMID: 38132787 PMCID: PMC10744541 DOI: 10.3390/jof9121186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
This study investigates the impact of water quality, specifically elevated phosphate and zinc content, on the diversity and functional properties of mangrove fungal endophytes in two distinct mangrove forests. Mangrove plant performance is directly related to the presence of fungal leaf endophytes as these fungi could enhance plant health, resilience, and adaptability under stressed environmental conditions. Two distinct mangrove forest sites, one non-disturbed (ND) and one disturbed by aquaculture practices (D), were assessed for differences in water quality parameters. We further analyzed the fungal endophyte diversity associated with the leaves of a target host mangrove, Rhizophora mucronata Lamk., with the aim to elucidate whether fungal diversity and functional traits are linked to disturbances brought about by aquaculture practices and to characterize functional traits of selected fungal isolates with respect to phosphate (PO4) and zinc (Zn) solubilization. Contrary to expectations, the disturbed site exhibited a higher fungal diversity, challenging assumptions about the relationship between contamination and fungal community dynamics. Water quality, as determined by nutrient and mineral levels, emerged as a crucial factor in shaping both microbial community compositions in the phyllosphere of mangroves. From both sites, we isolated 188 fungal endophytes, with the ND site hosting a higher number of isolates and a greater colonization rate. While taxonomic diversity marginally differed (ND: 28 species, D: 29 species), the Shannon (H' = 3.19) and FAI (FA = 20.86) indices revealed a statistically significant increase in species diversity for fungal endophytes in the disturbed mangrove site as compared to the non-disturbed area (H' = 3.10, FAI = 13.08). Our chosen mangrove fungal endophytes exhibited remarkable phosphate solubilization capabilities even at elevated concentrations, particularly those derived from the disturbed site. Despite their proficiency in solubilizing zinc across a wide range of concentrations, a significant impact on their mycelial growth was noted, underscoring a crucial aspect of their functional dynamics. Our findings revealed a nuanced trade-off between mycelial growth and enzymatic production in fungal endophytes from ostensibly less contaminated sites, highlighting the relationship between nutrient availability and microbial activities. These insights provide a foundation for understanding the impact of anthropogenic pressures, specifically nutrient pollution, on mangrove-associated fungal endophytes.
Collapse
Affiliation(s)
- James Kennard S. Jacob
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Fungal Biodiversity, Ecogenomics and Systematics-Metabolomics (FBeS) Group, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Department of Biological Sciences, College of Arts and Sciences, Isabela State University, Echague 3309, Isabela, Philippines
| | - Katja Witzel
- Department of Plant-Microbes Systems, Leibniz Institute of Vegetables and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Thomas Edison E. dela Cruz
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Fungal Biodiversity, Ecogenomics and Systematics-Metabolomics (FBeS) Group, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| |
Collapse
|
15
|
Samanta S, Hazra S, French JR, Nicholls RJ, Mondal PP. Exploratory modelling of the impacts of sea-level rise on the Sundarbans mangrove forest, West Bengal, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166624. [PMID: 37643706 DOI: 10.1016/j.scitotenv.2023.166624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
In this paper we conduct exploratory simulations of the possible evolution of the Indian Sundarbans mangroves to 2100 under a range of future sea-level rise (SLR) scenarios, considering the effects of both inundation and shoreline erosion. The Sea Level Affecting Marshes Model (SLAMM) is used to simulate habitat transitions due to inundation and these outputs are combined with an empirical model of SLR-driven shoreline erosion. A set of plausible climate-induced SLR scenarios are considered, together with delta subsidence and constrained vertical sediment accretion. Significant mangrove decline is found in all cases: the greater the rise in sea level the greater the losses. By the end of the century, the Indian Sundarbans mangroves could lose between 42 % and 80 % of their current area if current management is continued. Managed realignment could offset these losses but at the expense of productive land and the migration of the human population.
Collapse
Affiliation(s)
- Sourav Samanta
- School of Oceanographic Studies, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Sugata Hazra
- School of Oceanographic Studies, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Jon R French
- Coastal and Estuarine Research Unit, UCL Department of Geography, University College London, London WC1E 6BT, UK.
| | - Robert J Nicholls
- Tyndall Centre for Climate Change Research, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Partho P Mondal
- School of Oceanographic Studies, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
16
|
Malekmohammadi L, Sheidai M, Ghahremaninejad F, Danehkar A, Koohdar F. Putative Local Adaptive SNPs in the Genus Avicennia. Biochem Genet 2023; 61:2260-2275. [PMID: 37010715 DOI: 10.1007/s10528-023-10362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
The genus Avicennia with eight species grow in intertidal zones of tropical and temperate regions, ranging in distribution from West Asia, to Australia, and Latin America. These mangroves have several medicinal applications for mankind. Many genetic and phylogenetic studies have been carried out on mangroves, but none is concerned with geographical adaptation of SNPs. We therefore, used ITS sequences of about 120 Avicennia taxa growing in different parts of the world and undertook computational analyses to identify discriminating SNPs among these species and to study their association with geographical variables. A combination of multivariate and Bayesian approaches such as CCA, RDA, and LFMM were conducted to identify the SNPs with potential adaptation to geographical and ecological variables. Manhattan plot revealed that many of these SNPs are significantly associated with these variables. The genetic changes accompanied by local and geographical adaptation were illustrated by skyline plot. These genetic changes occurred not under a molecular clock model of evolution and probably under a positive selection pressure imposed in different geographical regions in which these plants grow.
Collapse
Affiliation(s)
- Laleh Malekmohammadi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Sheidai
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Afshin Danehkar
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fahimeh Koohdar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Ickowitz A, Lo MGY, Nurhasan M, Maulana AM, Brown BM. Quantifying the contribution of mangroves to local fish consumption in Indonesia: a cross-sectional spatial analysis. Lancet Planet Health 2023; 7:e819-e830. [PMID: 37821161 DOI: 10.1016/s2542-5196(23)00196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Indonesia has lost more mangroves than any other country. The importance of mangroves for carbon storage and biodiversity is well recognised, but much less is known about what they contribute to the communities living near them who are called on to protect them. Malnutrition in Indonesia is high, with more than a third of children stunted, partly due to poor diets. Fish are nutrient-rich and are the most widely consumed animal source food in Indonesia, making the relationship between mangroves and fish consumption of great importance. Aquaculture is also tremendously important for fish production in Indonesia and has replaced large areas of mangroves over the last two decades. METHODS We performed a cross-sectional, spatial analysis in this study. We combined data on fish consumption for rural Indonesian coastal households from the Indonesian National Socioeconomic Survey with spatial data on mangrove forest and aquaculture area from the Indonesian Ministry of Environment and Forestry to create a cross-sectional spatial dataset. Using a mixed-effects regression model, we estimated to what extent living in proximity to different densities of mangroves and aquaculture was associated with fresh fish consumption for rural coastal households. FINDINGS Our sample included 6741 villages with 107 486 households in 2008. The results showed that rural coastal households residing near high-density mangroves consumed 28% (134/477) more fresh fish and other aquatic animals, and those residing near medium-density mangroves consumed 19% (90/477) more fresh fish and other aquatic animals, than coastal households who did not live near mangroves. Coastal households that lived near high-density aquaculture consumed 2% (9/536) more fresh fish, and those that lived near medium-density aquaculture consumed 1% (3/536) less, than other rural coastal households. INTERPRETATION Mangroves contribute substantially to the food security and nutrition of coastal communities in Indonesia. This finding means that the conservation of mangroves is important not only for carbon storage and biodiversity, but also for the communities living near them. Aquaculture does not appear to offer similar food security benefits. FUNDING Bureau for Economic Growth, Education, and Environment, United States Agency for International Development.
Collapse
Affiliation(s)
- Amy Ickowitz
- Center for International Forestry Research, World Agroforestry Center, Beit Zayit, Israel.
| | - Michaela Guo Ying Lo
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, UK
| | - Mulia Nurhasan
- Center for International Forestry Research, World Agroforestry, Bogor, West Java, Indonesia
| | - Agus Muhamad Maulana
- Center for International Forestry Research, World Agroforestry, Bogor, West Java, Indonesia
| | | |
Collapse
|
18
|
Mendes DS, Beasley CR, Silva DNN, Fernandes MEB. Microplastic in mangroves: A worldwide review of contamination in biotic and abiotic matrices. MARINE POLLUTION BULLETIN 2023; 195:115552. [PMID: 37738877 DOI: 10.1016/j.marpolbul.2023.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
This review presents the spatial distribution (where) and the methods applied (how) in assessing Microplastics (MPs) contamination in sediments, water, and organisms in mangrove areas. We analyzed 53 articles on MPs in Asia, America, and Africa and produced by 359 authors, although very localized, lacking wide-scale coverage of mangrove coasts around the world. The results showed that most of studies provided MP's bulk characteristics (type, size, color, form), along with global gross reserves of MPs in the mangrove compartments. Investigations in mangrove areas are still relatively limited. Therefore, for future research, it is relevant to enhance spatial and temporal sampling of MP contamination and to establish standardized protocols to enable effective comparisons between mangrove areas, rivers, beaches, and coastal seas. In addition, it is crucial to investigate the role of MPs as carriers or vectors of other pollutants.
Collapse
Affiliation(s)
- Dayene Santiago Mendes
- Programa de Pós-Graduação em Biologia Ambiental, Instituto de Estudos Costeiros (IECOS) Universidade Federal do Pará (UFPA), Bragança, PA, Brazil; Laboratório de Ecologia de Manguezal (LAMA), Universidade Federal do Pará (UFPA), Bragança, PA, Brazil.
| | - Colin Robert Beasley
- Programa de Pós-Graduação em Biologia Ambiental, Instituto de Estudos Costeiros (IECOS) Universidade Federal do Pará (UFPA), Bragança, PA, Brazil; Laboratório de Conservação da Biodiversidade e das Águas, Campus Bragança, Universidade Federal do Pará (UFPA), Bragança, PA, Brazil.
| | - Daniel Nobre Nunes Silva
- Laboratório de Ciência e Engenharia de Petróleo (LCPetro), Campus Salinópolis, Universidade Federal do Pará (UFPA), Salinópolis, PA, Brazil.
| | - Marcus Emanuel Barroncas Fernandes
- Programa de Pós-Graduação em Biologia Ambiental, Instituto de Estudos Costeiros (IECOS) Universidade Federal do Pará (UFPA), Bragança, PA, Brazil; Laboratório de Ecologia de Manguezal (LAMA), Universidade Federal do Pará (UFPA), Bragança, PA, Brazil.
| |
Collapse
|
19
|
Goulding TC, Dayrat B. The Coral Triangle and Strait of Malacca are two distinct hotspots of mangrove biodiversity. Sci Rep 2023; 13:15793. [PMID: 37737278 PMCID: PMC10516942 DOI: 10.1038/s41598-023-42057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Knowledge of the biogeography of marine taxa has lagged significantly behind terrestrial ecosystems. A hotspot of marine biodiversity associated with coral reefs is known in the Coral Triangle of the Indo-West Pacific, but until now there was little data with which to evaluate broad patterns of species richness in the coastal fauna of ecosystems other than coral reefs. This data is critically needed for fauna with low functional redundancy like that of mangroves, that are vulnerable to habitat loss and rising sea levels. Here we show that the diversity of mangrove fauna is characterized by two distinct hotspots in the Indo-West Pacific, associated with two habitat types: fringe mangroves in the Coral Triangle, and riverine mangroves in the Strait of Malacca, between the west coast of Peninsular Malaysia and Sumatra. This finding, based on a family of slugs of which the systematics has been completely revised, illustrates an unexpected biogeographic pattern that emerged only after this taxon was studied intensively. Most organisms that live in the mangrove forests of Southeast Asia remain poorly known both taxonomically and ecologically, and the hotspot of diversity of onchidiid slugs in the riverine mangroves of the Strait of Malacca indicates that further biodiversity studies are needed to support effective conservation of mangrove biodiversity.
Collapse
Affiliation(s)
- Tricia C Goulding
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, Washington, DC, 20013, USA.
| | - Benoît Dayrat
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
20
|
Yang Y, Zhang W, Liu W, He D, Wan W. Irreversible community difference between bacterioplankton generalists and specialists in response to lake dredging. WATER RESEARCH 2023; 243:120344. [PMID: 37482008 DOI: 10.1016/j.watres.2023.120344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Understanding response of bacterioplankton community responsible for maintaining ecological functions of aquatic ecosystems to environmental disturbance is an important subject. However, it remains largely unclear how bacterioplankton generalists and specialists respond to dredging disturbance. Illumina MiSeq sequencing and statistical analyses were used to evaluate landscape patterns, evolutionary potentials, environmental adaptability, and community assembly processes of generalists and specialists in response to dredging in eutrophic Lake Nanhu. The Proteobacteria and Actinobacteria dominated bacterioplankton communities of generalists and specialists, and abundances of Proteobacteria decreased and Actinobacteria increased after dredging. The generalists displayed higher phylogenetic distance, richness difference, speciation rate, extinction rate, and diversification rate as well as stronger environmental adaptation than that of specialists. In contrast, the specialists rather than generalists showed higher community diversity, taxonomic distance, and species replacement as well as closer phylogenetic clustering. Stochastic processes dominated community assemblies of generalists and specialists, and stochasticity exhibited a larger effect on community assembly of generalists rather than specialists. Our results emphasized that lake dredging could change landscape patterns of bacterioplankton generalists and specialists, whereas the short-term dredging conducted within one year was unable to reverse community difference between generalists and specialists. Our findings extend our understanding of how bacterioplankton generalists and specialists responding to dredging disturbance, and these findings might in turn call on long-term dredging for better ecological restoration of eutrophic lakes.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Donglan He
- College of Life Science, South-Central Minzu University, Wuhan 430070, China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China.
| |
Collapse
|
21
|
Ahmed S, Sarker SK, Kamruzzaman M, Ema JA, Saagulo Naabeh CS, Cudjoe E, Chowdhury FI, Pretzsch H. How biotic, abiotic, and functional variables drive belowground soil carbon stocks along stress gradient in the Sundarbans Mangrove Forest? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117772. [PMID: 36958279 PMCID: PMC10109099 DOI: 10.1016/j.jenvman.2023.117772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Mangrove forests, some of the most carbon-dense ecosystems on Earth, play an important role in climate change mitigation through storing carbon in the soil. However, increasing anthropogenic pressures and sea level rise are likely to alter mangrove forest structure and functions, including the major source of carbon in mangrove ecosystems - below-ground soil carbon stocks (BSCS). Although estimating soil carbon stocks has been a popular practice in the mangroves, but poorly understood the (I) the linkage between BSCS and key ecosystem drivers (i.e., biotic, abiotic, and functional) and in (II) determining the pathways of how BSCS and multiple forest variables interact along stress gradients. This lack of understanding limits our ability to predict ecosystem carbon dynamics under future changes in climate. Here, we aimed to understand how abiotic factors (such as salinity, canopy gap fraction, nutrients, and soil pH), biotic factors (e.g., structural parameters, canopy packing, and leaf area index, LAI), and forest functional variables (e.g., growth and aboveground biomass stocks, AGB) affect BSCS (i.e., soil organic carbon, SOC, and root carbon, RC) using spatiotemporal data collected from the Sundarbans Mangrove Forest (SMF) in Bangladesh. We observed that BSCS decreased significantly with increasing salinity (e.g., from 70.6 Mg C ha-1 in the low-saline zone to 44.6 Mg C ha-1 in the high-saline zone). In contrast, the availability of several macronutrients (such as nitrogen, phosphorous, and potassium), LAI, species diversity, AGB, and growth showed a significant positive effect on SOC and RC. Stand properties, including tree height, basal area, density, canopy packing, and structural diversity, had a non-significant but positive impact on RC, while tree height and basal area significantly influenced SOC. Pathway analysis showed that salinity affects BSCS variability directly and indirectly by regulating stand structure and restricting nutrients and forest functions, although basal area, nutrients, and LAI directly enhance RC stocks. Our results indicate that an increase in nutrient content, canopy density, species diversity, and leaf area index can enhance BSCS, as they improve forest functions and contribute to a better understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Shamim Ahmed
- Chair of Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh.
| | - Swapan Kumar Sarker
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Kamruzzaman
- Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Juthika Afneen Ema
- Department of Soil and Environmental Sciences, Barishal University, Barishal-8200, Bangladesh
| | - Clement Sullibie Saagulo Naabeh
- Institute of Environment and Sanitation Studies, University of Ghana, International Programmes Office, MR39+C4X, Annie Jiagge Rd, Accra, Ghana
| | - Eric Cudjoe
- Departamento de Producción Vegetal y Recursos Forestales, E.T.S de Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - Faqrul Islam Chowdhury
- Institute of Forestry and Environmental Sciences University of Chittagong, Chattogram 4331, Bangladesh; CREAF, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Hans Pretzsch
- Chair of Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
22
|
Abd Rahim NH, Yahya K, Shuib S. Spatiotemporal effect reveal the abundance of the crab Paracleistostoma depressum negatively correlated with pneumatophore density in a tropical mangrove. REGIONAL STUDIES IN MARINE SCIENCE 2023; 60:102834. [DOI: 10.1016/j.rsma.2023.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Kinol AD, Arango-Quiroga J, Kuhl L. Opportunities for Nature-based Solutions to contribute to Climate-Resilient Development Pathways. CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY 2023; 62:101297. [PMID: 37377639 PMCID: PMC10299796 DOI: 10.1016/j.cosust.2023.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
There is potential for Nature-based Solutions (NbS) to contribute to Climate Resilient Development (CRD) due to their integrated approach to mitigation, adaptation, and sustainable development. However, despite alignment between NbS and CRD's objectives, realization of this potential is not guaranteed. A CRD Pathways (CRDP) approach helps to analyze the complexities of the relationship between CRD and NbS, and a climate justice lens enables the identification of the multiple ways that NbS can support or undermine CRD by foregrounding the politics inherent in deciding between NbS trade-offs. We use stylized vignettes of potential NbS to examine how the dimensions of climate justice reveal the potential of NbS to contribute to CRDP. We consider tensions in NbS projects between local and global climate objectives, and the potential for NbS framing to reinforce inequalities or unsustainable practices. Ultimately, we present a framework that combines climate justice and CRDP in an analytical tool for understanding the potential for a NbS to support CRD in specific places.
Collapse
Affiliation(s)
- Alaina D. Kinol
- School of Public Policy and Urban Affairs, Northeastern University, 310 Renaissance Park, 1135 Tremont St, Boston, MA 02115 US
| | - Johan Arango-Quiroga
- School of Public Policy and Urban Affairs, Northeastern University, 310 Renaissance Park, 1135 Tremont St, Boston, MA 02115 US
| | - Laura Kuhl
- School of Public Policy and Urban Affairs, Northeastern University, 310 Renaissance Park, 1135 Tremont St, Boston, MA 02115 US
| |
Collapse
|
24
|
Wainwright BJ, Millar T, Bowen L, Semon L, Hickman KJE, Lee JN, Yeo ZY, Zahn G. The core mangrove microbiome reveals shared taxa potentially involved in nutrient cycling and promoting host survival. ENVIRONMENTAL MICROBIOME 2023; 18:47. [PMID: 37264467 DOI: 10.1186/s40793-023-00499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/01/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Microbes have fundamental roles underpinning the functioning of our planet, they are involved in global carbon and nutrient cycling, and support the existence of multicellular life. The mangrove ecosystem is nutrient limited and if not for microbial cycling of nutrients, life in this harsh environment would likely not exist. The mangroves of Southeast Asia are the oldest and most biodiverse on the planet, and serve vital roles helping to prevent shoreline erosion, act as nursery grounds for many marine species and sequester carbon. Despite these recognised benefits and the importance of microbes in these ecosystems, studies examining the mangrove microbiome in Southeast Asia are scarce.cxs RESULTS: Here we examine the microbiome of Avicenia alba and Sonneratia alba and identify a core microbiome of 81 taxa. A further eight taxa (Pleurocapsa, Tunicatimonas, Halomonas, Marinomonas, Rubrivirga, Altererythrobacte, Lewinella, and Erythrobacter) were found to be significantly enriched in mangrove tree compartments suggesting key roles in this microbiome. The majority of those identified are involved in nutrient cycling or have roles in the production of compounds that promote host survival. CONCLUSION The identification of a core microbiome furthers our understanding of mangrove microbial biodiversity, particularly in Southeast Asia where studies such as this are rare. The identification of significantly different microbial communities between sampling sites suggests environmental filtering is occurring, with hosts selecting for a microbial consortia most suitable for survival in their immediate environment. As climate change advances, many of these microbial communities are predicted to change, however, without knowing what is currently there, it is impossible to determine the magnitude of any deviations. This work provides an important baseline against which change in microbial community can be measured.
Collapse
Affiliation(s)
- Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
| | - Trevor Millar
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Lacee Bowen
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Lauren Semon
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - K J E Hickman
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Jen Nie Lee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Zhi Yi Yeo
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| |
Collapse
|
25
|
Duarte de Paula Costa M, Adame MF, Bryant CV, Hill J, Kelleway JJ, Lovelock CE, Ola A, Rasheed MA, Salinas C, Serrano O, Waltham N, York PH, Young M, Macreadie P. Quantifying blue carbon stocks and the role of protected areas to conserve coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162518. [PMID: 36870497 DOI: 10.1016/j.scitotenv.2023.162518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Vegetated coastal ecosystems, in particular mangroves, tidal marshes and seagrasses are highly efficient at sequestering and storing carbon, making them valuable assets for climate change mitigation and adaptation. The state of Queensland, in northeastern Australia, contains almost half of the total area of these blue carbon ecosystems in the country, yet there are few detailed regional or state-wide assessments of their total sedimentary organic carbon (SOC) stocks. We compiled existing SOC data and used boosted regression tree models to evaluate the influence of environmental variables in explaining the variability in SOC stocks, and to produce spatially explicit blue carbon estimates. The final models explained 75 % (for mangroves and tidal marshes) and 65 % (for seagrasses) of the variability in SOC stocks. Total SOC stocks in the state of Queensland were estimated at 569 ± 98 Tg C (173 ± 32 Tg C, 232 ± 50 Tg C, and 164 ± 16 Tg C from mangroves, tidal marshes and seagrasses, respectively). Regional predictions for each of Queensland's eleven Natural Resource Management regions revealed that 60 % of the state's SOC stocks occurred within three regions (Cape York, Torres Strait and Southern Gulf Natural Resource Management regions) due to a combination of high values of SOC stocks and large areas of coastal wetlands. Protected areas in Queensland play an important role in conserving SOC assets in Queensland's coastal wetlands. For example, ~19 Tg C within terrestrial protected areas, ~27 Tg C within marine protected areas and ~ 40 Tg C within areas of matters of State Environmental Significance. Using multi-decadal (1987-2020) mapped distributions of mangroves in Queensland; we found that mangrove area increased by approximately 30,000 ha from 1987 to 2020, which led to temporal fluctuations in mangrove plant and SOC stocks. We estimated that plant stocks decreased from ~45 Tg C in 1987 to ~34.2 Tg C in 2020, while SOC stocks remained relatively constant from ~107.9 Tg C in 1987 to 108.0 Tg C in 2020. Considering the level of current protection, emissions from mangrove deforestation are potentially very low; therefore, representing minor opportunities for mangrove blue carbon projects in the region. Our study provides much needed information on current trends in carbon stocks and their conservation in Queensland's coastal wetlands, while also contributing to guide future management actions, including blue carbon restoration projects.
Collapse
Affiliation(s)
- Micheli Duarte de Paula Costa
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia.
| | - Maria Fernanda Adame
- Australian Rivers Institute, Coastal & Marine Research Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Catherine V Bryant
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD 4870, Australia
| | - Jack Hill
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jeffrey J Kelleway
- School of Earth, Atmospheric and Life Sciences and GeoQuEST Research Centre, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Anne Ola
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Michael A Rasheed
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD 4870, Australia
| | - Cristian Salinas
- School of Science & Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup Drive, Joondalup, WA 6027, Australia
| | - Oscar Serrano
- School of Science & Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup Drive, Joondalup, WA 6027, Australia; Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones Científicas, Blanes, Spain
| | - Nathan Waltham
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Paul H York
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD 4870, Australia
| | - Mary Young
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Warrnambool Campus, Geelong, VIC 3125, Australia
| | - Peter Macreadie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia
| |
Collapse
|
26
|
Zheng J, Wei H, Chen R, Liu J, Wang L, Gu W. Invasive Trends of Spartina alterniflora in the Southeastern Coast of China and Potential Distributional Impacts on Mangrove Forests. PLANTS (BASEL, SWITZERLAND) 2023; 12:1923. [PMID: 37653840 PMCID: PMC10222674 DOI: 10.3390/plants12101923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Mangrove forests are one of the most productive and seriously threatened ecosystems in the world. The widespread invasion of Spartina alterniflora has seriously imperiled the security of mangroves as well as coastal mudflat ecosystems. Based on a model evaluation index, we selected RF, GBM, and GLM as a predictive model for building a high-precision ensemble model. We used the species occurrence records combined with bioclimate, sea-land topography, and marine environmental factors to predict the potentially suitable habitats of mangrove forests and the potentially suitable invasive habitats of S. alterniflora in the southeastern coast of China. We then applied the invasion risk index (IRI) to assess the risk that S. alterniflora would invade mangrove forests. The results show that the suitable habitats for mangrove forests are mainly distributed along the coastal provinces of Guangdong, Hainan, and the eastern coast of Guangxi. The suitable invasive habitats for S. alterniflora are mainly distributed along the coast of Zhejiang, Fujian, and relatively less in the southern provinces. The high-risk areas for S. alterniflora invasion of mangrove forests are concentrated in Zhejiang and Fujian. Bioclimate variables are the most important variables affecting the survival and distribution of mangrove forests and S. alterniflora. Among them, temperature is the most important environmental variable determining the large-scale distribution of mangrove forests. Meanwhile, S. alterniflora is more sensitive to precipitation than temperature. Our results can provide scientific insights and references for mangrove forest conservation and control of S. alterniflora.
Collapse
Affiliation(s)
- Jiaying Zheng
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
| | - Haiyan Wei
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
| | - Ruidun Chen
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
| | - Jiamin Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
| | - Lukun Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Gu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
27
|
Yadav KK, Gupta N, Prasad S, Malav LC, Bhutto JK, Ahmad A, Gacem A, Jeon BH, Fallatah AM, Asghar BH, Cabral-Pinto MMS, Awwad NS, Alharbi OKR, Alam M, Chaiprapat S. An eco-sustainable approach towards heavy metals remediation by mangroves from the coastal environment: A critical review. MARINE POLLUTION BULLETIN 2023; 188:114569. [PMID: 36708616 DOI: 10.1016/j.marpolbul.2022.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Mangroves provide various ecosystem services, carbon sequestration, biodiversity depository, and livelihoods. They are most abundant in marine and coastal ecosystems and are threatened by toxic contaminants like heavy metals released from various anthropogenic activities. However, they have significant potential to survive in salt-driven environments and accumulate various pollutants. The adverse effects of heavy metals have been extensively studied and recognized as toxic to mangrove species. This study sheds light on the dynamics of heavy metal levels, their absorption, accumulation and transport in the soil environment in a mangrove ecosystem. The article also focuses on the potential of mangrove species to remove heavy metals from marine and coastal environments. This review concludes that mangroves are potential candidates to clean up contaminated water, soil, and sediments through their phytoremediation ability. The accumulation of toxic heavy metals by mangroves is mainly through roots with limited upward translocation. Therefore, promoting the maintenance of biodiversity and stability in the coastal environment is recommended as an environmentally friendly and potentially cost-effective approach.
Collapse
Affiliation(s)
- Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, India
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Lal Chand Malav
- ICAR-National Bureau of Soil Survey & Land Use Planning, Regional Centre, Udaipur 313001, India
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ahmed M Fallatah
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, Taif 21944, Saudi Arabia
| | - Basim H Asghar
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Manawwer Alam
- Department of Chemistry, College of Science, Kind Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
28
|
Catching the Drift of Marine Invertebrate Diversity through Digital Repositories—A Case Study of the Mangroves and Seagrasses of Maputo Bay, Mozambique. DIVERSITY 2023. [DOI: 10.3390/d15020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Mangroves and seagrasses present with high marine macroinvertebrate biodiversity that contributes to their structure and functioning. Macroinvertebrates possess a broad range of functional traits, making them excellent models for biodiversity and available-trait-based studies. This study aimed to characterize the biodiversity of marine macroinvertebrates as two different ecosystems situated along the coastline of Maputo Bay by compiling dispersed data from online databases. Specifically, this study addressed species richness, taxonomic and functional diversity based on two traits (habitat occupation and trophic guild), and the community structure of these traits. Mangroves presented with a higher species richness and taxonomic diversity than seagrasses. The functional diversity of mangroves was mostly explained by the trophic guild trait. In the case of seagrasses, functional diversity was mostly due to differences in habitat occupation in the 20th century, but the trophic guild accounted for this functional diversity from 2000 onwards. The comparison of community compositions between the two ecosystems showed low or no similarity. The use of digital databases revealed some limitations, mostly regarding the sampling methods and individual counts. The trends and data gaps presented in this study can be further used to inform subsequent systematic data acquisition and support the development of future research. A further step that may be taken to improve the use of digital data in future biodiversity studies is to fully incorporate functional traits, abundance and sampling methods into online databases.
Collapse
|
29
|
De K, Sautya S, Dora GU, Gaikwad S, Katke D, Salvi A. Mangroves in the "Plasticene": High exposure of coastal mangroves to anthropogenic litter pollution along the Central-West coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160071. [PMID: 36356762 DOI: 10.1016/j.scitotenv.2022.160071] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic litter is a ubiquitous stressor in the global ocean, and poses ominous threats to oceanic biodiversity and ecosystem functioning. At the terrestrial-ocean interface, tropical mangrove forests are subject to substantial exposure to mismanaged litter from inland and marine sources. While the effects of litter in different marine ecosystems are well-documented, research on the ecological consequences of litter pollution on mangroves remain nascent stage. Here, we investigated anthropogenic litter concentration, composition, probable sources, and impact on coastal mangroves along the Central West coast of India. The mean concentration of trapped litter was measured 8.5 ± 1.9 items/m2 (ranged 1.4 ̶ 26.9 items/m2), and 10.6 ± 0.5 items/tree (ranged 0 ̶ 85 items/tree) on the mangrove floor and mangrove canopy, respectively. Plastic dominated 83.02 % of all litter deposited on the mangrove forest floor and 93.4 % of all entangled litter on mangrove canopy. Most litter comprised single-use plastic products across all surveyed locations. Mangrove floor cleanliness was assessed using several indices, such as Clean Coast Index, General Index, Hazardous Items Index, and Pollution Load Index, reiterating an inferior cleanliness status. The pollution load index indicates "Hazard level I" plastic pollution risk across the mangroves. Litter concentration differed markedly across all sites. However, a significantly higher concentration of stranded litter was detected in the densely populated urban agglomeration and rural areas with inadequate solid waste management. Probable sources of litter indicate land-based (local) and sea-originated (fishing). Supportive information on the transport and accumulation of marine litter is examined based on the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) model version 2 reanalysis of surface wind and current pattern across the Arabian Sea followed by MIKE simulated tide-induced coastal current. Mangrove pneumatophores and branches were found to be damaged by entangled plastics. Hence, determining litter quantum and their probable input source is pivotal in mitigating anthropogenic litter impact on mangrove ecosystems and fostering mangrove conservation. Overall, results envisage that stringent enforcement, implementation of an integrated solid waste management framework, and general behavioral change of the public are crucial to mitigate litter/plastic pollution.
Collapse
Affiliation(s)
- Kalyan De
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India.
| | - Sabyasachi Sautya
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India.
| | - G Udhaba Dora
- Physical Oceanography Division, CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| | - Santosh Gaikwad
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| | - Dinesh Katke
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| | - Aditya Salvi
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| |
Collapse
|
30
|
Fan C, Xu H, Hou X. Spatial efficiency of protected mangrove areas in Madagascar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116568. [PMID: 36419301 DOI: 10.1016/j.jenvman.2022.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Protected Areas (PAs) are an important nature-based solution for mangrove conservation and rehabilitation. We evaluated spatial effectiveness of PAs for mangroves toward achieving Global Conservation Targets (GCTs). The hypothesis for this study was that PAs with different attributes have insignificant effects on mangrove conservation. We assessed the proportions of the most vulnerable mangroves inside PAs, and focused on a typical mangrove country (Madagascar). First, based on remote sensing technology and big data in Google Earth Engine (GEE), we identified the exposure location of mangroves, and determined the environmental factors significantly influencing mangrove distribution. Then, Vulnerability Assessment and Hot-Spot Analysis models were used to measure spatial vulnerability and hotspots of those values, respectively. Finally, we implemented the statistics for the most vulnerable mangroves inside PAs. It was found that: i. Mangroves were mainly abundant in west and east coasts with low latitudes, and the most typical environmental factor influencing mangrove distribution was elevation and; ii. PAs sheltered 486.18 km2 (22.16%) of the most vulnerable mangroves in Madagascar. Overall, PAs in Madagascar failed to match 30% of spatial requirements proposed by GCTs (A key proportion of spatial requirements used to reverse trends in biodiversity loss). This study provides a quantitative paradigm for verifying the spatial efficiency of PAs, and will inform local decision-makers on places where mangroves are facing adaption loss to optimize mangrove conservation in future.
Collapse
Affiliation(s)
- Chao Fan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, PR China
| | - He Xu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, PR China
| | - Xiyong Hou
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
31
|
Ahmed S, Sarker SK, Friess DA, Kamruzzaman M, Jacobs M, Islam MA, Alam MA, Suvo MJ, Sani MNH, Dey T, Naabeh CSS, Pretzsch H. Salinity reduces site quality and mangrove forest functions. From monitoring to understanding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158662. [PMID: 36089020 DOI: 10.1016/j.scitotenv.2022.158662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Mangroves continue to be threatened across their range by a mix of anthropogenic and climate change-related stress. Climate change-induced salinity is likely to alter the structure and functions of highly productive mangrove systems. However, we still lack a comprehensive understanding of how rising salinity affects forest structure and functions because of the limited availability of mangrove field data. Therefore, based on extensive spatiotemporal mangrove data covering a large-scale salinity gradient, collected from the world's largest single tract mangrove ecosystem - the Bangladesh Sundarbans, we, aimed to examine (QI) how rising salinity influences forest structure (e.g., stand density, diversity, leaf area index (LAI), etc.), functions (e.g., carbon stocks, forest growth), nutrients availability, and functional traits (e.g., specific leaf area, wood density). We also wanted to know (QII) how forest functions interact (direct vs. indirect) with biotic (i.e., stand structure, species richness, etc.) and abiotic factors (salinity, nutrients, light availability, etc.). We also asked (QIII) whether the functional variable decreases disproportionately with salinity and applied the power-law (i.e., Y = a Xb) to the salinity and functional variable relationships. In this study, we found that rises in salinity significantly impede forest growth and produce less productive ecosystems dominated by dwarf species while reducing stand structural properties (i.e., tree height, basal area, dominant tree height, LAI), soil carbon (organic and root carbon), and macronutrient availability in the soil (e.g., NH4+, P, and K). Besides, species-specific leaf area (related to resource acquisition) also decreased with salinity, whereas wood density (related to resource conservation) increased. We observed a declining abundance of the salt-intolerant climax species (Heritiera fomes) and dominance of the salt-tolerant species (Excoecaria agallocha, Ceriops decandra) in the high saline areas. In the case of biotic and abiotic factors, salinity and salinity-driven gap fraction (high transmission of light) had a strong negative impact on functional variables, while nutrients and LAI had a positive impact. In addition, the power-law explained the consistent decline of functional variables with salinity. Our study disentangles the negative effects of salinity on site quality in the Sundarbans mangrove ecosystem, and we recognize that nutrient availability and LAI are likely to buffer the less salt-tolerant species to maintain the ability to sequester carbon with sea-level rise. These novel findings advance our understanding of how a single stressor-salinity-can shape mangrove structure, functions, and productivity and offer decision makers a much-needed scientific basis for developing pragmatic ecosystem management and conservation plans in highly stressed coastal ecosystems across the globe.
Collapse
Affiliation(s)
- Shamim Ahmed
- Chair of Forest Growth and Yield Science, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh.
| | - Swapan Kumar Sarker
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Daniel A Friess
- Department of Geography, 1 Arts Link, National University of Singapore, 117570, Singapore
| | - Md Kamruzzaman
- Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Martin Jacobs
- Chair of Forest Growth and Yield Science, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Md Akramul Islam
- Bangladesh Forest Research Institute, Ministry of Environment, Forest and Climate Change, Bangladesh
| | - Md Azharul Alam
- Department of Pest Management and Conservation, Lincoln University, Lincoln 7647, New Zealand
| | - Mohammad Jamil Suvo
- Faculty of Agricultural Sciences, Nutritional Science and Environmental Management, Justus Liebig University, Bismarckstraße 24, 35390 Giessen, Germany
| | | | - Tanmoy Dey
- Bangladesh Forest Research Institute, Ministry of Environment, Forest and Climate Change, Bangladesh
| | - Clement Sullibie Saagulo Naabeh
- Institute of Environment and Sanitation Studies, University of Ghana, International Programmes Office, MR39+C4X, Annie Jiagge Rd, Accra, Ghana
| | - Hans Pretzsch
- Chair of Forest Growth and Yield Science, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
32
|
Zhang M, Zhang L, He H, Ren X, Lv Y, Niu Z, Chang Q, Xu Q, Liu W. Improvement of ecosystem quality in National Key Ecological Function Zones in China during 2000-2015. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116406. [PMID: 36352714 DOI: 10.1016/j.jenvman.2022.116406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Improving ecosystem quality is the ultimate goal of ecological restoration projects and sustainable ecosystem management. However, previous results of ecosystem quality lack comparability among different regions when assessing the effectiveness of ecological restoration projects on the regional or national scales, due to the influence of geographical and climatic background conditions. Here we proposed a new index, ecosystem quality ratio (EQR), by integrating the status of landscape structure, ecosystem services, ecosystem stability, and human disturbance relative to their reference conditions, and assessed the EQR changes in China's counties and National Key Ecological Function Zones (NKEFZs) from 1990 to 2015. The results showed that the average ecosystem quality of China's counties deviated from the reference condition by 28%. EQR decreased by 1.2% during 1990-2000 but increased by 3.7% during 2000-2015. Those counties with increasing EQR in 2000-2015 occupy 64.7%, with obviously increasing counties mainly located in the water conservation, biodiversity maintenance, and water and soil conservation types of NKEFZs. The EQR increase in counties within NKEFZs was 3.65 times that outside of NKEFZs. Remarkable improvement of ecosystem quality occurred in the forest region in Changbai Mountain, biodiversity and soil conservation region in Wuling Mountains, and hilly and gully region of Loess Plateau, where EQR increases mainly resulted from the conversion of farmland to forest or grassland and consequent increases in ecosystem services and stability. The magnitude of EQR enhancement showed a positive relationship with the increase in forest and grassland coverage in NKEFZs. Our results highlight the important role of ecological restoration projects in improving ecosystem quality in China, and demonstrate the feasibility of the new index (EQR) for the assessment of ecosystem quality in terms of ecosystem management and restoration.
Collapse
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Honglin He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xiaoli Ren
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Lv
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China
| | - Zhong'en Niu
- School of Resources and Environmental Engineering, Ludong University, Shandong, 264025, China
| | - Qingqing Chang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weihua Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Cepeda D, González-Casarrubios A, Sánchez N, Spedicato A, Michaud E, Zeppilli D. Two new species of mud dragons (Scalidophora: Kinorhyncha) inhabiting a human-impacted mangrove from Mayotte (Southwestern Indian Ocean). ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Meng H, Yan Z, Li X. Effects of exogenous organic acids and flooding on root exudates, rhizosphere bacterial community structure, and iron plaque formation in Kandelia obovata seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154695. [PMID: 35337868 DOI: 10.1016/j.scitotenv.2022.154695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The rhizosphere of coastal wetland plants is the active interface of iron (Fe) redox transformation. However, coupling mechanism between organic acids (OAs) exuded by plant roots and Fe speciation transformation participated by Fe redox cycling bacteria in the rhizosphere is still unclear. Effects of four common OAs (citric acid, malic acid, tartaric acid, and oxalic acid) on root exudation, rhizosphere bacterial community structure, root Fe plaque, and Fe redox cycling bacterial communities of Kandelia obovata were investigated in this study. Long-term flooding (10 h) was conducive to K. obovata seedlings exuding additional dissolved organic carbon (DOC) and nitrogen and phosphorus organic matter (NH4+-N, NO3--N, and dissolved inorganic phosphorus [DIP]) under each OA level. DOC, NH4+-N, NO3--N, and DIP in root exudates increased significantly with the increase of exogenous OA level. Notably, long flooding time corresponds to an evidently increasing trend. Exogenous OAs also significantly increased contents of formic and oxalic acids in root exudates. Exogenous OAs and flooding enhanced the rhizosphere effect of K. obovata and significantly enhanced bacterial diversity of the rhizosphere and relative abundance of dominant bacteria in rhizoplane. Bacterial diversity in the rhizosphere of K. obovata seedlings was significantly higher than that in the rhizoplane under the same level of OAs and flooding. Fe plaque content of K. obovata root decreased significantly and the relative abundance of typical Fe-oxidizing bacteria, such as Gallionella, unclassified_f__Gallionellaceae, and Sideroxydans, decreased significantly in the rhizosphere but increased significantly in the rhizoplane with the increase of the treatment level of exogenous OAs. This finding is likely due to the Fe3+ reduction caused by acidification of rhizosphere environment after exogenous OA treatment rather than the result of chemotactic colonization of Fe redox cycling bacteria in the rhizoplane.
Collapse
Affiliation(s)
- Huijie Meng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.
| | - Xiuzhen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
35
|
Hydrodynamic Limitations to Mangrove Seedling Retention in Subtropical Estuaries. SUSTAINABILITY 2022. [DOI: 10.3390/su14148605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mangrove-forest sustainability hinges upon propagule recruitment and seedling retention. This study evaluates biophysical limitations to mangrove-seedling persistence by measuring anchoring force of two mangrove species (Rhizophora mangle L. and Avicennia germinans (L.) L.). Anchoring force was measured in 362 seedlings via lateral pull tests administered in mangrove forests of two subtropical estuaries and in laboratory-based experiments. Removal mechanism varied with seedling age: newly established seedlings failed due to root pull-out while seedlings older than 3 months failed by root breakage. The anchoring force of R. mangle seedlings was consistently and significantly greater than A. germinans (p = 0.002); however, force to remove A. germinans seedlings increased with growth at a faster rate (p < 0.001; A. germinans: 0.20–0.23 N/g biomass; R. mangle: 0.04–0.07 N/g biomass). Increasing density of surrounding vegetation had a positive effect (p = 0.04) on anchoring force of both species. Critical velocities at which seedlings become susceptible to instantaneous uprooting estimated from anchoring forces measured in the field were 1.20 m/s and 1.50 m/s, respectively, for R. mangle and A. germinans. As estimated critical velocities exceed typical flow magnitudes observed in field sites, removal of established seedlings likely occurs following erosion of sediments from the seedling base.
Collapse
|
36
|
Palit K, Rath S, Chatterjee S, Das S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32467-32512. [PMID: 35182344 DOI: 10.1007/s11356-022-19048-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mangroves are among the world's most productive ecosystems and a part of the "blue carbon" sink. They act as a connection between the terrestrial and marine ecosystems, providing habitat to countless organisms. Among these, microorganisms (e.g., bacteria, archaea, fungi, phytoplankton, and protozoa) play a crucial role in this ecosystem. Microbial cycling of major nutrients (carbon, nitrogen, phosphorus, and sulfur) helps maintain the high productivity of this ecosystem. However, mangrove ecosystems are being disturbed by the increasing concentration of greenhouse gases within the atmosphere. Both the anthropogenic and natural factors contribute to the upsurge of greenhouse gas concentration, resulting in global warming. Changing climate due to global warming and the increasing rate of human interferences such as pollution and deforestation are significant concerns for the mangrove ecosystem. Mangroves are susceptible to such environmental perturbations. Global warming, human interventions, and its consequences are destroying the ecosystem, and the dreadful impacts are experienced worldwide. Therefore, the conservation of mangrove ecosystems is necessary for protecting them from the changing environment-a step toward preserving the globe for better living. This review highlights the importance of mangroves and their microbial components on a global scale and the degree of vulnerability of the ecosystems toward anthropic and climate change factors. The future scenario of the mangrove ecosystem and the resilience of plants and microbes have also been discussed.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
37
|
Coastal Protection Using Integration of Mangroves with Floating Barges: An Innovative Concept. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mangroves and moored barges are used individually for coastal protection and beach restoration. This conceptual paper discusses about the integration of mangroves with moored floating barges for coastal protection. The concept involves towing of a barge to a particular location, mooring it to the seafloor and planting mangroves along the shore or beach. The barges will be unmoored and towed away once the mangroves attain certain growth and are well rooted in the soil. Mangroves can protect the beach from incoming waves using their roots and branches. The incoming waves can be reduced by 50% to 99% using mangroves of 500 m width. Mangroves have a life span of 20–100 years, and they do not need any yearly maintenance as do any other conventional coastal protection measures. Mangroves are considered as soft coastal protection structures and are environmentally friendly. Mangroves will also improve the aesthetic appearance of the beach. This paper discusses about some of the research methodologies for the development of the barge-assisted mangroves coastal protection method. The dimensions of the barge, gap width between the moored barges and the environmental condition at the location determines the performance of the barge-assisted mangroves coastal protection method. The gap width between the barges, draft of the barge and breadth of the barge influence the resonant frequency of the fluid between the barges. The shielding effect of the floating barges can be used for other applications, such as berthing of ships and growing living shorelines using oysters, rocks, sand, plants, coir, etc. for coastal protection.
Collapse
|
38
|
Seedling Growth and Quality of Avicennia marina (Forssk.) Vierh. under Growth Media Composition and Controlled Salinity in an Ex Situ Nursery. FORESTS 2022. [DOI: 10.3390/f13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Avicennia marina (Forssk.) Vierh. is an important mangrove species that inhabits the outermost zone of mangrove forests, but it has been shown to have a poor ability to regenerate due to its low seedling quality. We conducted a study to evaluate the specific growth requirements of A. marina, i.e., medium and salinity level. Germinated seeds were transplanted to pots filled with media, i.e., silt loam (M1), loam (M2), sandy loam (M3), or sand (M4), with various salinity levels 5 (S1), 5–15 (S2), 15–25 (S3), or 25–35 ppt (S4). Survival rate, growth, biomass partition, and seedling quality were observed for 14 weeks after transplanting the seeds. The highest rate of seedling survival was found in the S2 condition, and higher concentrations of salinity lowered the survival rates. The S1 treatment promoted the initial 8 week growth of the seedlings. Growth medium had no significant effect, except on the survival rates grown in M4. Growth medium composition had no distinct effect on seedling growth. The S2 and S3 treatments induced better growth (in terms of shoot height and root length) and resulted in high-quality (i.e., Dickson quality index) seedlings in any type of medium. The S3 treatment increased the seedling quality in M1 and M4, whereas the S4 treatment only benefited seedlings in the M4 medium. According to the results, a specific range of salinity (5–15 ppt) with circulated water in any type of medium is recommended for the establishment of an ex situ nursery for the propagation of A. marina, in contrast to the general range of salinity (4–35 ppt) stated in previous references.
Collapse
|
39
|
Xu SJL, Chan SCY, Wong BYK, Zhou HC, Li FL, Tam NFY, Lee FWF. Relationship between phytoplankton community and water parameters in planted fringing mangrove area in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152838. [PMID: 34999073 DOI: 10.1016/j.scitotenv.2021.152838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Reforestation has been commonly adopted to increase the mangrove areas lost due to developments. A diverse phytoplankton community is critical to mangrove ecosystem functions; however, its compositions in planted mangrove habitats have seldom been reported. The present study, based on the temporal and spatial variations of phytoplankton community and water parameters, evaluated their relationships in a 20-year old artificially planted fringing mangrove in South China. Thirty-one phytoplankton taxa were identified from tidal water collected from three sites along a planted mangrove shoreline: within, and at the edge of mangroves, and at bare shoreline without mangroves. In all three sites, Bacillariophyta (diatom) was the most abundant phylum, dominated by Navicula and Nitzschia at 9.82-83.76% and 2.57-33.97%, respectively. The overall diversity ranged between 0.41 and 1.94. The temporal variations of phytoplankton and water parameters were more obvious than site differences. Higher phytoplankton diversity was found in summer, with increased green algae and cyanobacteria abundance accompanied by riverine discharge. There was site-specific dominance in some phyla between June and January, noticeably Chlorophyta, Cyanophyta, Dinophyta, and Euglenophyta. A potential toxic dinoflagellate Peridinium sp. was identified during fall and winter, serving as a warning to probable harmful bloom events. Multivariate statistical analyses revealed the abundance of major phytoplankton taxa significantly related to water physiochemical parameters, especially nitrate, ammonium, total phosphorous and orthophosphate. The present study suggests that mangrove vegetation may influence water quality and shape phytoplankton composition, but temporal differences were more significant. Compared with the protected natural mangroves in the National Nature Reserve nearby, this planted fringing mangrove habitat not only had lower nutrients, especially total nitrogen in tidal water, but also had different dominant phytoplankton species and lower species richness. The 20-year old artificially planted mangroves may still not serve the same ecological function as the protected natural mangrove forest.
Collapse
Affiliation(s)
- Steven Jing-Liang Xu
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Sophie Cheuk-Yan Chan
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Brian Yu-Keung Wong
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Hai-Chao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Feng-Lan Li
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Fred Wang-Fat Lee
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
40
|
Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis. SUSTAINABILITY 2022. [DOI: 10.3390/su14084433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Globally, mangrove forests are substantially declining, and a globally synthesized database containing the drivers of deforestation and drivers’ interactions is scarce. Here, we synthesized the key social-ecological drivers of global mangrove deforestation by reviewing about two hundred published scientific studies over the last four decades (from 1980 to 2021). Our focus was on both natural and anthropogenic drivers with their gradual and abrupt impacts and on their geographic coverage of effects, and how these drivers interact. We also summarized the patterns of global mangrove coverage decline between 1990 and 2020 and identified the threatened mangrove species. Our consolidated studies reported an 8600 km2 decline in the global mangrove coverage between 1990 and 2020, with the highest decline occurring in South and Southeast Asia (3870 km2). We could identify 11 threatened mangrove species, two of which are critically endangered (Sonneratia griffithii and Bruguiera hainseii). Our reviewed studies pointed to aquaculture and agriculture as the predominant driver of global mangrove deforestation though their impacts varied across global regions. Gradual climate variations, i.e., sea-level rise, long-term precipitation, and temperature changes and driven coastline erosion, salinity intrusion and acidity at coasts, constitute the second major group of drivers. Our findings underline a strong interaction across natural and anthropogenic drivers, with the strongest interaction between the driver groups aquaculture and agriculture and industrialization and pollution. Our results suggest prioritizing globally coordinated empirical studies linking drivers and mangrove deforestation and global development of policies for mangrove conservation.
Collapse
|
41
|
Savari M, Damaneh HE, Damaneh HE. Factors involved in the degradation of mangrove forests in Iran: A mixed study for the management of this ecosystem. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Remote Sensing Based Conservation Effectiveness Evaluation of Mangrove Reserves in China. REMOTE SENSING 2022. [DOI: 10.3390/rs14061386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent decades, the mangrove area in China has changed dramatically, and governments have established multiple mangrove protected areas at various levels. However, we know little about the effectiveness of conservation on mangroves on a national scale. In this study, we constructed an evaluation index system for landscape health and proposed a landscape health composite index (LHCI) to characterize the landscape health status of mangroves. Based on the distribution dataset of mangrove forests mangrove in the recent 40 years, we evaluated the conservation effectiveness of mangrove reserves in China from a perspective of landscape health. The dynamics of mangrove areas show that the mangrove area in 83% of the reserves increased after the establishment of reserves. Additionally, the increase in mangrove area in provincial-level, municipal-level, and county-level reserves was higher than that in national-level reserves, and the most significant increase in mangrove area was in Guangxi, followed by Fujian and Hong Kong. The evaluation results show that mangrove reserves have achieved outstanding conservation effectiveness in China, with 43% of the reserves significantly improving the landscape health status of mangroves and 35% of the reserves maintaining good condition. The reserves in Guangxi, Guangdong, and Fujian Provinces showed more significant protective effects. Specifically, the most effective reserves protecting mangroves were the Qi’ao Island reserve, Maowei Gulf reserve, and Enping reserve. This study may provide references for formulating a rapid evaluation method of conservation effectiveness based on remote sensing and promote the scientific management of protected areas and the ecological restoration of mangroves in China.
Collapse
|
43
|
Pootakham W, Naktang C, Sonthirod C, Kongkachana W, Yoocha T, Jomchai N, Maknual C, Chumriang P, Pravinvongvuthi T, Tangphatsornruang S. De novo reference assembly of the upriver orange mangrove (Bruguiera sexangula) genome. Genome Biol Evol 2022; 14:6527208. [PMID: 35148390 PMCID: PMC8872974 DOI: 10.1093/gbe/evac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Upriver orange mangrove (Bruguiera sexangula) is a member of the most mangrove-rich taxon (Rhizophoraceae family) and is commonly distributed in the intertidal zones in tropical and subtropical latitudes. In this study, we employed the 10× Genomics linked-read technology to obtain a preliminary de novo assembly of the B. sexangula genome, which was further scaffolded to a pseudomolecule level using the Bruguiera parviflora genome as a reference. The final assembly of the B. sexangula genome contained 260 Mb with an N50 scaffold length of 11,020,310 bases. The assembly comprised 18 pseudomolecules (corresponding to the haploid chromosome number in B. sexangula), covering 204,645,832 bases or 78.6% of the 260-Mb assembly. We predicted a total of 23,978 protein-coding sequences, 17,598 of which were associated with gene ontology terms. Our gene prediction recovered 96.6% of the highly conserved orthologs based on the Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis. The chromosome-level assembly presented in this work provides a valuable genetic resource to help strengthen our understanding of mangroves’ physiological and morphological adaptations to the intertidal zones.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nukoon Jomchai
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chatree Maknual
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok, 10210, Thailand
| | - Pranom Chumriang
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok, 10210, Thailand
| | - Tamanai Pravinvongvuthi
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok, 10210, Thailand
| | | |
Collapse
|
44
|
Fiard M, Cuny P, Sylvi L, Hubas C, Jézéquel R, Lamy D, Walcker R, El Houssainy A, Heimbürger-Boavida LE, Robinet T, Bihannic I, Gilbert F, Michaud E, Dirberg G, Militon C. Mangrove microbiota along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America): Drivers and potential bioindicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150667. [PMID: 34599952 DOI: 10.1016/j.scitotenv.2021.150667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The microbial communities inhabiting the Atlantic-East Pacific (AEP) mangroves have been poorly studied, and mostly comprise chronically polluted mangroves. In this study, we characterized changes in the structure and diversity of microbial communities of mangroves along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America) that experience low human impact. The microbial communities were assigned into 50 phyla. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Planctomycetes were the most abundant taxa. The environmental determinants found to significantly correlated to the microbial communities at these mangroves were granulometry, dieldrin concentration, pH, and total carbon (TC) content. Furthermore, a precise analysis of the sediment highlights the existence of three types of anthropogenic pressure among the stations: (i) organic matter (OM) enrichment due to the proximity to the city and its wastewater treatment plant, (ii) dieldrin contamination, and (iii) naphthalene contamination. These forms of weak anthropogenic pressure seemed to impact the bacterial population size and microbial assemblages. A decrease in Bathyarchaeota, "Candidatus Nitrosopumilus", and Nitrospira genera was observed in mangroves subjected to OM enrichment. Mangroves polluted with organic contaminants were enriched in Desulfobacteraceae, Desulfarculaceae, and Acanthopleuribacteraceae (with dieldrin or polychlorobiphenyl contamination), and Chitinophagaceae and Geobacteraceae (with naphthalene contamination). These findings provide insights into the main environmental factors shaping microbial communities of mangroves in the AEP that experience low human impact and allow for the identification of several potential microbial bioindicators of weak anthropogenic pressure.
Collapse
Affiliation(s)
- Maud Fiard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Cédric Hubas
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Station Marine de Concarneau, 29900 Concarneau, France.
| | | | - Dominique Lamy
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France; Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Sorbonne Université, Univ Paris Est Créteil, IRD, CNRS, INRA, 4 place Jussieu, 75005 Paris, France.
| | - Romain Walcker
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| | - Amonda El Houssainy
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | | | - Tony Robinet
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Station Marine de Concarneau, 29900 Concarneau, France.
| | | | - Franck Gilbert
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Guillaume Dirberg
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France.
| | - Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| |
Collapse
|
45
|
Chakraborti U, Mitra B, Bhadra K. Island Based Assemblage Pattern and Foraging Profile of Insect Flower Visitors on Aegialitis rotundifolia -a Near Threatened Mangrove Plant from Indian Sundarban. NEOTROPICAL ENTOMOLOGY 2022; 51:32-42. [PMID: 34546551 DOI: 10.1007/s13744-021-00911-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Understanding the association pattern and foraging behaviour of flower visitors is crucial to determine their role in the interaction with plants. To analyse the insect flower visitor association as well as their foraging profile on Aegialitis rotundifolia Roxb.-a near threatened mangrove plant, present study has been conducted among four islands of Indian Sundarban for three consecutive years. Results using first three Hill numbers depicted that, the species richness and Shannon and Simpson diversity of flower visitors were higher among the islands situated far from the sea than the islands neighbouring to the sea. NMDS analysis showed moderately ordinate data structure for island-year-based flower visitor association. Furthermore, network analysis for island-based visitor assemblage showed a significantly generalised network with no specialisation among islands. Five abundant visitors were further analysed for foraging profile, where the highest foraging rate was shown by Apis dorsata Fabricius, 1793 and the highest handling time was shown by Micraspis discolor (Fabricius, 1798). Moreover, all the visitors except M. discolor showed a significant variation in their foraging rate among different time frames. Furthermore, only M. discolor showed significant variation in their foraging behaviour when compared individually with each visitor in all the time frames. Present findings conclude that, flower visitors showed a generalised assemblage pattern among islands. Both honey bees provided excellent foraging on this plant and butterflies were good foragers too. Therefore, to device conservation strategies for this plant, protection of flower visitors must be of paramount concern.
Collapse
Affiliation(s)
- Udipta Chakraborti
- Department of Zoology, University of Kalyani, Nadia, West Bengal, Kalyani, India
| | | | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, West Bengal, Kalyani, India.
| |
Collapse
|
46
|
Swangjang K, Panishkan K. Assessment of factors that influence carbon storage: An important ecosystem service provided by mangrove forests. Heliyon 2021; 7:e08620. [PMID: 35005274 PMCID: PMC8715159 DOI: 10.1016/j.heliyon.2021.e08620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Mangrove ecosystem services (ES) support the global carbon (C) cycle. This study aimed to assess factors affecting the loss or gain of C stocks in mangrove forests in Thailand. Two fundamental considerations were taken into account, including ES supplied by mangroves from the perspective of C stocks, and the potential for C loss resulting from human activities conducted in mangrove forests. Three different land-use types in mangrove forests were studied: an area encroached upon by the local population (L1), a conservation area (L2), (both of which were dominated by the mangrove species Avicennia alba), and a seaside area. Based on their average height and diameter at breast height (DBH), most of the mangrove trees were determined to be young. The highest importance value index (IVI) was seen for A. alba, at 224.73 (L1) and 213.79 (L2). Above- and below-ground C levels were 189.97 t-Cha-1, 77.11 t-Cha-1 in L1 and 81.73 t-Cha-1, 32.54 t-Cha-1 in L2. Soil C stocks were 60.95 t-Cha-1 (L1) and 43.71 t-Cha-1 (L2). Statistical analysis indicated that nitrogen was the crucial factor influencing soil C in both L1 and L2. Overall, the total mangrove C stocks in L1 were estimated to be 328.64 t-Cha-1, which surprisingly was higher than in L2, at 290.34 t-Cha-1. The potential change in C stocks was then assessed. This showed that demand for mangrove resources resulted in the permanent loss of C stocks, particularly within plant communities, as the major fraction of C was from above-ground C stores. The loss of 1 ha of mangrove vegetation was estimated to result in the loss of 77.71-189.97 t-C/ha-1 and 32.54-81.73 t-Cha-1 in L1 and L2, respectively. Different approaches to mangrove management based on the differing supply and demand for ES are recommended.
Collapse
Affiliation(s)
- Kanokporn Swangjang
- Department of Environmental Science, Faculty of Science, Silpakorn University, Nakhonpathom, 73000, Thailand
| | - Kamolchanok Panishkan
- Department of Statistics, Faculty of Science, Silpakorn University, Nakhonpathom, 73000, Thailand
| |
Collapse
|
47
|
GIS Models for Vulnerability of Coastal Erosion Assessment in a Tropical Protected Area. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2021. [DOI: 10.3390/ijgi10090598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coastal erosion is considered a major worldwide challenge. The vulnerability assessment of coastal areas, in relation to climate change, is a key topic of worldwide increasing interest. The integration of methodologies supported by Remote Sensing, Geographical Information Systems (GIS) and in situ monitoring has allowed a viable identification of vulnerable areas to erosion. In the present study, a model was proposed to the assessment of the estuarine system of Cananéia-Iguape (Brazil), by applying the evaluation and prediction of vulnerability models for the conservation and preservation of mangroves. Approximately 1221 Km2 were classified, with 16% of the total presenting high and very high vulnerability to erosion. Other relevant aspects, were the identification and georeferencing sites that showed strong evidence of erosion and, thus, having a huge influence on the final vulnerability scores. The obtained results led to the development of a multidisciplinary approach through the application of a prediction and description model that resulted from the adaptation of the study system from a set of implemented models for coastal regions, in order to contribute to the erosion vulnerability assessment in the mangroves ecosystems (and associated localities, municipalities and communities).
Collapse
|
48
|
Lebordais M, Gutierrez-Villagomez JM, Gigault J, Baudrimont M, Langlois VS. Molecular impacts of dietary exposure to nanoplastics combined with arsenic in Canadian oysters (Crassostrea virginica) and bioaccumulation comparison with Caribbean oysters (Isognomon alatus). CHEMOSPHERE 2021; 277:130331. [PMID: 34384184 DOI: 10.1016/j.chemosphere.2021.130331] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 06/13/2023]
Abstract
Despite the urge need to address the possible impact of plastic debris, up to now, little is known about the translocation of nanoplastics through the trophic web. Plus, due to their surface reactivity, nanoplastics could sorb and thus increase metals bioavailability to aquatic filter-feeding organisms (e.g., bivalves). In this study, we investigated the dietary exposure route on the oyster Crassostrea virginica through microalgae themselves exposed to three nanoplastic dispersions (PSL, PSC and NPG) at reportedly environmental concentrations combined or not with arsenic. Interactive effects of nanoplastics on arsenic bioaccumulation were studied, along with the expression of key genes in gills and visceral mass. The investigated gene functions were endocytosis (cltc), oxidative stress (gapdh, sod3, cat), mitochondrial metabolism (12S), cell cycle regulation (gadd45, p53), apoptosis (bax, bcl-2), detoxification (cyp1a, mdr, mt), and energy storage (vit). Results showcased that nanoplastic treatments combined with arsenic triggered synergetic effects on gene expressions. Relative mRNA level of 12S significantly increased at 10 and 100 μg L-1 for NPG combined with arsenic and for PSC combined with arsenic. Relative mRNA level of bax increased for PSL combined with arsenic and for PSC combined with arsenic at 10 and 100 μg L-1 respectively. We also observed that relative arsenic bioaccumulation was significantly higher in Crassostrea virginica gills compared to Isognomon alatus'. These results are the first comparative molecular effects of nanoplastics alone and combined with arsenic investigated in farmed C. virginica oysters. Together with I. alatus results we thus shed light on species different sensitivity.
Collapse
Affiliation(s)
- Marc Lebordais
- Université de Bordeaux, CNRS, UMR EPOC 5805, Place Du Dr Peyneau, 33120, Arcachon, France; Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 Rue de La Couronne, G1K 9A9, Québec City, QC, Canada
| | - Juan Manuel Gutierrez-Villagomez
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 Rue de La Couronne, G1K 9A9, Québec City, QC, Canada
| | - Julien Gigault
- Université Laval, UMI Takuvik 3376, 1045 Avenue de La Médecine, G1V 0A6, Québec City, QC, Canada
| | - Magalie Baudrimont
- Université de Bordeaux, CNRS, UMR EPOC 5805, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 Rue de La Couronne, G1K 9A9, Québec City, QC, Canada.
| |
Collapse
|
49
|
Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SAR, Ayal D, Totin E, Lydia AM, Kalaba FK, Oguge NO. The influence of ecosystems services depletion to climate change adaptation efforts in Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146414. [PMID: 33735656 DOI: 10.1016/j.scitotenv.2021.146414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Climate change is one of the major challenges societies round the world face at present. Apart from efforts to achieve a reduction of emissions of greenhouse gases so as to mitigate the problem, there is a perceived need for adaptation initiatives urgently. Ecosystems are known to play an important role in climate change adaptation processes, since some of the services they provide, may reduce the impacts of extreme events and disturbance, such as wildfires, floods, and droughts. This role is especially important in regions vulnerable to climate change such as the African continent, whose adaptation capacity is limited by many geographic and socio-economic constraints. In Africa, interventions aimed at enhancing ecosystem services may play a key role in supporting climate change adaptation efforts. In order to shed some light on this aspect, this paper reviews the role of ecosystems services and investigates how they are being influenced by climate change in Africa. It contains a set of case studies from a sample of African countries, which serve the purpose to demonstrate the damages incurred, and how such damages disrupt ecosystem services. Based on the data gathered, some measures which may assist in fostering the cause of ecosystems services are listed, so as to cater for a better protection of some of the endangered Africa ecosystems, and the services they provide.
Collapse
Affiliation(s)
- Walter Leal Filho
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom.
| | - Ulisses Miranda Azeiteiro
- Department of Biology & CESAM Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Abdul-Lateef Balogun
- Geospatial Analysis & Modelling Research (GAMR) Laboratory, Department of Civil & Environmental Engineering, University Teknologi PETRONAS (UTP), Malaysia
| | | | - Serafino A R Mucova
- Department of Biology & CESAM Centre for Environmental and Marine Studies, University of Aveiro, Portugal; Faculty of Natural Sciences, Lúrio University, Pemba, P.O. Box 958, Mozambique
| | - Desalegn Ayal
- Centre for Food Security Studies (CFSS), College of Development Studies, Addis Ababa University, Ethiopia
| | - Edmond Totin
- Ecole de Foresterie Tropicale, Université Nationale d'Agriculture, Benin
| | - Adeleke Mosunmola Lydia
- Department of Fisheries and Aquaculture Technology, The Federal University of Technology Akure, Nigeria
| | | | - Nicholas Otienoh Oguge
- Centre for Advanced Studies in Environmental Law & Policy (CASELAP), University of Nairobi, Kenya
| |
Collapse
|
50
|
Lebordais M, Venel Z, Gigault J, Langlois VS, Baudrimont M. Molecular Impacts of Dietary Exposure to Nanoplastics Combined or Not with Arsenic in the Caribbean Mangrove Oysters ( Isognomon alatus). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1151. [PMID: 33925079 PMCID: PMC8146365 DOI: 10.3390/nano11051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
Nanoplastics (NPs) are anthropogenic contaminants that raise concern, as they cross biological barriers. Metals' adsorption on NPs' surface also carries ecotoxicological risks to aquatic organisms. This study focuses on the impacts of three distinct NPs on the Caribbean oyster Isognomon alatus through dietary exposure. As such, marine microalgae Tisochrysis lutea were exposed to environmentally weathered mixed NPs from Guadeloupe (NPG), crushed pristine polystyrene nanoparticles (PSC), and carboxylated polystyrene nanoparticles of latex (PSL). Oysters were fed with NP-T. lutea at 10 and 100 µg L-1, concentrations considered environmentally relevant, combined or not with 1 mg L-1 pentoxide arsenic (As) in water. We investigated key gene expression in I. alatus' gills and visceral mass. NP treatments revealed significant induction of cat and sod1 in gills and gapdh and sod1 in visceral mass. As treatment significantly induced sod1 expression in gills, but once combined with any of the NPs at both concentrations, basal mRNA levels were observed. Similarly, PSL treatment at 100 µg L-1 that significantly induced cat expression in gills or sod1 in visceral mass showed repressed mRNA levels when combined with As (reduction of 2222% and 34%, respectively, compared to the control). This study suggested a protective effect of the interaction between NPs and As, possibly by decreasing both contaminants' surface reactivity.
Collapse
Affiliation(s)
- Marc Lebordais
- Université de Bordeaux, CNRS, UMR EPOC 5805, Place du Dr Peyneau, 33120 Arcachon, France; (M.L.); (Z.V.)
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada;
| | - Zélie Venel
- Université de Bordeaux, CNRS, UMR EPOC 5805, Place du Dr Peyneau, 33120 Arcachon, France; (M.L.); (Z.V.)
| | - Julien Gigault
- Université Laval, UMI Takuvik 3376, 1045 Avenue de la Médecine, Québec City, QC G1V 0A6, Canada;
| | - Valerie S. Langlois
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada;
| | - Magalie Baudrimont
- Université de Bordeaux, CNRS, UMR EPOC 5805, Place du Dr Peyneau, 33120 Arcachon, France; (M.L.); (Z.V.)
| |
Collapse
|