1
|
Zhang B, Geng H, Zhao K, Omorou M, Liu S, Ye Z, Zhang F, Luan H, Zhang X. FSTL1 aggravates high glucose-induced oxidative stress and transdifferentiation in HK-2 cells. Sci Rep 2025; 15:434. [PMID: 39748077 PMCID: PMC11696259 DOI: 10.1038/s41598-024-84462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Chronic hyperglycemia, a hallmark of diabetes, can trigger inflammatory responses in the kidney, leading to diabetic nephropathy (DN). Follistatin-like protein 1 (FSTL1) has emerged as a potential therapeutic target in various kidney diseases. This study investigated the effect of high glucose on FSTL1 expression and its role in oxidative stress and cellular transdifferentiation injury in HK-2 human proximal tubule epithelial cells, a model of DN. We investigated FSTL1's level in HK-2 cells exposed to high glucose using Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). FSTL1 was manipulated using recombinant human FSTL1 (rhFSTL1) or lentiviral shFSTL1. We then analyzed proliferation, oxidative stress, transdifferentiation, cell migration, and the nuclear factor kappa-B (NF-κB) signaling pathway potentially involved in FSTL1 effects. Finally, we blocked the NF-κB pathway to see its influence on these cellular processes. High glucose exposure significantly increased FSTL1 in HK-2 cells, with longer/higher glucose further amplifying this effect. Silencing of FSTL1 ameliorates cellular damage by promoting proliferation, enhancing superoxide dismutase (SOD) and glutathione (GSH) activity, and reducing malondialdehyde (MDA) production, inhibiting cell migration. Furthermore, it prevented the harmful conversion of HK-2 cells from epithelial to myofibroblast-like phenotypes, evidenced by decreased fibronectin (FN) and α-smooth muscle actin (α-SMA) and preserved E-cadherin. Notably, silencing FSTL1 also inhibited the NF-κB signaling pathway. Conversely, rhFSTL1 exhibited opposite effects. Importantly, blocking NF-κB reversed the detrimental effects of FSTL1. These findings suggest that FSTL1 contributes to high glucose-induced kidney injury by promoting oxidative stress and cellular transdifferentiation potentially via the NF-κB pathway. Targeting FSTL1 may represent a novel therapeutic strategy for preventing or mitigating DN progression.
Collapse
Affiliation(s)
- Baoyuan Zhang
- Department of Histology and Embryology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hang Geng
- Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Kai Zhao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Moussa Omorou
- Laboratory of Medical Biochemistry, First Affiliated Hospital, University of Lomé, Lomé, Togo
| | - Shuang Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Biology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Zhihui Ye
- Department of Orthodontics, Second Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Fanting Zhang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Haiyan Luan
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China.
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China.
| | - Xuesong Zhang
- Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
2
|
Liu M, Yang W, Qu S, Zhao T, Jiang S, Peng S, Zhang M, Xuan J, Liu Z, Zen K. Loss of glomerular aldolase B in diabetic nephropathy promotes renal fibrosis via activating Akt/GSK/β-catenin axis. J Adv Res 2024:S2090-1232(24)00605-2. [PMID: 39725005 DOI: 10.1016/j.jare.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE Diabetic nephropathy (DN), characterized by a complex and multifaceted pathogenesis, stands as the foremost catalyst behind end-stage renal disease (ESRD). This study aims to analyze the level and non-metabolic role of glomerular aldolase B (ALDOB) in DN progression. METHODS Glomerular proteomics and transcriptome are analyzed from 50 DN patients and 25 controls, respectively. Human kidney biopsy, cultured podocytes and mouse models are employed to study ALDOB levels and function. RESULTS ALDOB is strongly downregulated in DN-affected glomeruli, as well as in human and murine podocytes exposed to inflammatory cytokines. ALDOB reduction increases podocyte injury, while adenovirus-mediated ALDOB overexpression leads to substantial alleviation of renal injuries in a diabetic mouse model. Mechanistically, ALDOB reduction triggers the Akt/GSK/β-catenin signaling cascade within podocytes. CONCLUSION Our findings reveal a novel non-metabolic role of glomerular ALDOB in protecting against podocyte injury and renal fibrosis.
Collapse
Affiliation(s)
- Minghui Liu
- School of Pharmaceutical Science, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China; State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University, School of Life Sciences, Nanjing, Jiangsu 210093, China
| | - Wenwen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University, School of Life Sciences, Nanjing, Jiangsu 210093, China
| | - Shuang Qu
- Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, China
| | - Tingting Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Suming Peng
- School of Life Science and Technology, Chinese Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Ji Xuan
- Department of Gastroenterology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, China.
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University, School of Life Sciences, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
3
|
Shen S, Zhong H, Zhou X, Li G, Zhang C, Zhu Y, Yang Y. Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment. PHARMACEUTICAL BIOLOGY 2024; 62:222-232. [PMID: 38357845 PMCID: PMC10877659 DOI: 10.1080/13880209.2024.2314705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) is a prominent complication arising from diabetic microangiopathy, and its prevalence and renal impact have placed it as the primary cause of end-stage renal disease. Traditional Chinese Medicine (TCM) has the distinct advantage of multifaceted and multilevel therapeutic attributes that show efficacy in improving clinical symptoms, reducing proteinuria, protecting renal function, and slowing DKD progression. Over recent decades, extensive research has explored the mechanisms of TCM for preventing and managing DKD, with substantial studies that endorse the therapeutic benefits of TCM compounds and single agents in the medical intervention of DKD. OBJECTIVE This review lays the foundation for future evidence-based research efforts and provide a reference point for DKD investigation. METHODS The relevant literature published in Chinese and English up to 30 June 2023, was sourced from PubMed, Cochrane Library, VIP Database for Chinese Technical Periodicals (VIP), Wanfang Data, CNKI, and China Biology Medicine disc (CBM). The process involved examining and summarizing research on TCM laboratory tests and clinical randomized controlled trials for DKD treatment. RESULTS AND CONCLUSIONS The TCM intervention has shown the potential to inhibit the expression of inflammatory cytokines and various growth factors, lower blood glucose levels, and significantly affect insulin resistance, lipid metabolism, and improved renal function. Furthermore, the efficacy of TCM can be optimized by tailoring personalized treatment regimens based on the unique profiles of individual patients. We anticipate further rigorous and comprehensive clinical and foundational investigations into the mechanisms underlying the role of TCM in treating DKD.
Collapse
Affiliation(s)
- Shiyi Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Huiyun Zhong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| |
Collapse
|
4
|
Lan F, Zhao J, Liang D, Mo C, Shi W. Comprehensive analysis of cuproptosis-related ceRNA network and immune infiltration in diabetic kidney disease. Heliyon 2024; 10:e35700. [PMID: 39247321 PMCID: PMC11379612 DOI: 10.1016/j.heliyon.2024.e35700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is the primary contributor to renal failure and poses a severe threat to human health. Accumulating studies demonstrated that competing endogenous RNA (ceRNA) network is involved in cuproptosis and DKD progression. However, the role of cuproptosis-associated ceRNA network and immune infiltration in DKD remains largely unclear. This study aimed to investigate the cuproptosis-related ceRNA regulation network and immune infiltration in DKD. Methods The rat model of DKD was induced by combining the nephrectomy of the left kidney, high-fat diet, and streptozotocin. Differentially expressed genes (DEGs), miRNAs (DEMs), and lncRNAs (DELs) between normal and DKD rats were obtained. DEGs were intersected with cuproptosis-related genes (CRGs) to obtain DE-CRGs. LncRNAs and miRNAs were predicted based on the DE-CRGs, and they were intersected with DEMs and DELs, respectively. Subsequently, a cuproptosis-associated lncRNA-miRNA-mRNA network was established in DKD. In addition, the relative proportion of 22 infiltrating immune cell types in each sample was calculated, and the relationship between hub DE-CRGs and immune cells was explored. Results In total, there were 429 DEGs, 22 DEMs, and 48 DELs between CON and MOD groups. Then, 73 DE-CRGs were obtained, which were significantly enriched in 22 pathways, such as MAPK signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. In addition, a core cuproptosis-related ceRNA network that included one lncRNA (USR0000B2476D), one miRNA (miR-34a-3p), and eight mRNAs (Mmp9, Pik3c3, Prom1, Snta1, Slc51b, Ntrk3, Snca, Egf) was established. In addition, 18 hub DE-CRGs were obtained. CIBERSORT algorithms showed that resting dendritic cells and resting NK cells were more infiltrated whereas regulatory T cells were less infiltrated in DKD rats than in normal rats. Spearman's correlation analysis revealed that hub DE-CRGs showed significant positive or negative correlations with naive B cells, regulatory T cells, resting NK cells, M0 macrophages, resting dendritic cells, and resting mast cells. Conclusion A ceRNA network was comprehensively constructed, and 18 hub DE-CRGs were obtained, which will provide novel insights into the pathologic mechanism elucidation and targeted therapy development of DKD.
Collapse
Affiliation(s)
- Fang Lan
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, PR China
| | - Jie Zhao
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, PR China
| | - Dan Liang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, PR China
| | - Chao Mo
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, PR China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, PR China
| | - Wei Shi
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, PR China
| |
Collapse
|
5
|
Lu KC, Tsai KW, Hu WC. Role of TGFβ-producing regulatory T cells in scleroderma and end-stage organ failure. Heliyon 2024; 10:e35590. [PMID: 39170360 PMCID: PMC11336735 DOI: 10.1016/j.heliyon.2024.e35590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial immune cells that initiate a tolerable immune response. Transforming growth factor-beta (TGFβ) is a key cytokine produced by Tregs and plays a significant role in stimulating tissue fibrosis. Systemic sclerosis, an autoimmune disease characterized by organ fibrosis, is associated with an overrepresentation of regulatory T cells. This review aims to identify Treg-dominant tolerable host immune reactions and discuss their association with scleroderma and end-stage organ failure. End-stage organ failures, including heart failure, liver cirrhosis, uremia, and pulmonary fibrosis, are frequently linked to tissue fibrosis. This suggests that TGFβ-producing Tregs are involved in the pathogenesis of these conditions. However, the exact significance of TGFβ and the mechanisms through which it induces tolerable immune reactions during end-stage organ failure remain unclear. A deeper understanding of these mechanisms could lead to improved preventive and therapeutic strategies for these severe diseases.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan City, 333, Taiwan
| |
Collapse
|
6
|
Yang Y, Wang Y, Zhou Y, Deng J, Wu L. Tirzepatide alleviates oxidative stress and inflammation in diabetic nephropathy via IL-17 signaling pathway. Mol Cell Biochem 2024:10.1007/s11010-024-05066-1. [PMID: 38965127 DOI: 10.1007/s11010-024-05066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Oxidative stress (OS) and inflammation play essential roles in the development of diabetic nephropathy (DN). Tirzepatide (TZP) has a protective effect in diabetes. However, its underlying mechanism in DN remains unclear. DN model mice were induced by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg), followed by administration of different doses of TZP (3 and 10 nmol/kg) via intraperitoneal injection for 8 weeks. The effects of TZP on DN were evaluated by detecting DN-related biochemical indicators, kidney histopathology, apoptosis, OS, and inflammation levels. Additionally, to further reveal the potential mechanism, we investigated the role of TZP in modulating the IL-17 pathway. TZP reduced serum creatinine (sCR), blood urea nitrogen (BUN), and advanced glycosylation end products (AGEs) levels, while simultaneously promoting insulin secretion in diabetic mice. Additionally, TZP attenuated tubular and glomerular injury and reduced renal apoptosis levels. Further studies found that TZP increased the levels of SOD and CAT, and decreased MDA. Meanwhile, TZP also reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in both mouse serum and kidney homogenates. TZP effectively inhibited the IL-17 pathway, and subsequent intervention with an IL-17 pathway agonist (IL-17A) reversed the suppressive effects of TZP on OS and inflammation. TZP can improve DN by inhibiting OS and inflammation through the suppression of the IL-17 pathway.
Collapse
Affiliation(s)
- Yong Yang
- Division of Cardiac Arrhythmia, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Shenzhen, Guangdong, China.
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Shenzhen, 518053, Guangdong, China.
| | - Yiyong Wang
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Yong Zhou
- Department of Oncology, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Shenzhen, Guangdong, China
| | - Jing Deng
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Shenzhen, 518053, Guangdong, China
| | - Lihao Wu
- Department of Cardiovascular Medicine, University of Chinese Academy of Science Shenzhen Hospital, No. 4253 Matian Street, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Elahi R, Nazari M, Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. IL-17 in type II diabetes mellitus (T2DM) immunopathogenesis and complications; molecular approaches. Mol Immunol 2024; 171:66-76. [PMID: 38795686 DOI: 10.1016/j.molimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Chronic inflammation has long been considered the characteristic feature of type II diabetes mellitus (T2DM) Immunopathogenesis. Pro-inflammatory cytokines are considered the central drivers of the inflammatory cascade leading to β-cell dysfunction and insulin resistance (IR), two major pathologic events contributing to T2DM. Analyzing the cytokine profile of T2DM patients has also introduced interleukin-17 (IL-17) as an upstream regulator of inflammation, regarding its role in inducing the nuclear factor-kappa B (NF-κB) pathway. In diabetic tissues, IL-17 induces the expression of inflammatory cytokines and chemokines. Hence, IL-17 can deteriorate insulin signaling and β-cell function by activating the JNK pathway and inducing infiltration of neutrophils into pancreatic islets, respectively. Additionally, higher levels of IL-17 expression in patients with diabetic complications compared to non-complicated individuals have also proposed a role for IL-17 in T2DM complications. Here, we highlight the role of IL-17 in the Immunopathogenesis of T2DM and corresponding pathways, recent advances in preclinical and clinical studies targeting IL-17 in T2DM, and corresponding challenges and possible solutions.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
8
|
Peroumal D, Biswas PS. Kidney-Specific Interleukin-17 Responses During Infection and Injury. Annu Rev Immunol 2024; 42:35-55. [PMID: 37906942 DOI: 10.1146/annurev-immunol-052523-015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The kidneys are life-sustaining organs that are vital to removing waste from our bodies. Because of their anatomic position and high blood flow, the kidneys are vulnerable to damage due to infections and autoinflammatory conditions. Even now, our knowledge of immune responses in the kidney is surprisingly rudimentary. Studying kidney-specific immune events is challenging because of the poor regenerative capacity of the nephrons, accumulation of uremic toxins, and hypoxia- and arterial blood pressure-mediated changes, all of which have unexpected positive or negative impacts on the immune response in the kidney. Kidney-specific defense confers protection against pathogens. On the other hand, unresolved inflammation leads to kidney damage and fibrosis. Interleukin-17 is a proinflammatory cytokine that has been linked to immunity against pathogens and pathogenesis of autoinflammatory diseases. In this review, we discuss current knowledge of IL-17 activities in the kidney in the context of infections, autoinflammatory diseases, and renal fibrosis.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Zhang T, Huo H, Zhang Y, Tao J, Yang J, Rong X, Yang Y. Th17 cells: A new target in kidney disease research. Int Rev Immunol 2024; 43:263-279. [PMID: 38439681 DOI: 10.1080/08830185.2024.2321901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024]
Abstract
Type 17 T helper (Th17) cells, which are a subtype of CD4+ T helper cells, secrete pro-inflammatory cytokines such as IL-17A, IL-17F, IL-21, IL-22, and GM-CSF, which play crucial roles in immune defence and protection against fungal and extracellular pathogen invasion. However, dysfunction of Th17 cell immunity mediates inflammatory responses and exacerbates tissue damage. This pathological process initiated by Th17 cells is common in kidney diseases associated with renal injury, such as glomerulonephritis, lupus nephritis, IgA nephropathy, hypertensive nephropathy, diabetic kidney disease and acute kidney injury. Therefore, targeting Th17 cells to treat kidney diseases has been a hot topic in recent years. This article reviews the mechanisms of Th17 cell-mediated inflammation and autoimmune responses in kidney diseases and discusses the related clinical drugs that modulate Th17 cell fate in kidney disease treatment.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yinghui Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Tao
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junzheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, Guangdong, China
| | - Xianglu Rong
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Thangaraj SS, Gunlund TSG, Stubbe J, Palarasah Y, Svenningsen P, Nielsen LH, Ovesen PG, Jensen BL. Effect of short-term changes in salt intake on plasma cytokines in women with healthy and hypertensive pregnancies. Pregnancy Hypertens 2024; 35:82-87. [PMID: 38301351 DOI: 10.1016/j.preghy.2024.01.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Salt (NaCl) promotes T-lymphocyte conversion to pro-inflammatory Th-17 cells in vitro. Interleukin (IL)-17A aggravates hypertension in preeclampsia (PE) models. OBJECTIVES It was hypothesized that 1) women with PE exhibit increased plasma IL-17A and related cytokines and 2) high dietary salt intake elevates circulating IL-17A in patients with PE compared to women with healthy pregnancy (HP) and non-pregnant (NonP) women. MAIN OUTCOME MEASURES Plasma concentration of cytokines IL-17A, IFN-γ, IL-10, TNF, IL-6, and IL-1β in samples from NonP women (n = 13), HP (n = 15), and women with PE (n = 7). STUDY DESIGN Biobanked samples from a randomized, double-blind, cross-over placebo-controlled dietary intervention study. Participants received a low sodium diet (50-60 mmol NaCl/24 h) for 10 days and were randomly assigned to ingest placebo tablets (low salt intake) or salt tablets (172 mmol NaCl/24 h, high salt intake) for 5 + 5 days. Plasma samples were drawn at baseline and after each diet. RESULTS While a high salt diet suppressed renin, angiotensin II, and aldosterone levels, it did not affect blood pressure or plasma cytokine concentrations in any group compared to low salt intake. Plasma TNF was significantly higher in PE than in HP and NonP at baseline and after a low salt diet. Plasma IL-6 was significantly higher in PE compared to HP at baseline and NonP at low salt. CONCLUSION Interleukin-17A and related T-cell and macrophage-cytokines are not sensitive to salt-intake in PE. Preeclampsia is associated with elevated levels of TNF and IL-6 macrophage-derived cytokines. Salt-sensitive changes in systemic IL-17A are less likely to explain hypertension in PE.
Collapse
Affiliation(s)
- Sai Sindhu Thangaraj
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark.
| | - Tina-Signe Gissel Gunlund
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Jane Stubbe
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Yaseelan Palarasah
- Dept. of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Per Svenningsen
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Lise Hald Nielsen
- Dept. of women's disease and births, Gødstrup Regional hospital, Aarhus University Hospital Skejby, Denmark
| | - Per Glud Ovesen
- Department of Gynecology and Obstetrics, Institute of Clinical Medicine, Aarhus University Hospital Skejby, Denmark
| | - Boye L Jensen
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
11
|
Chen L, Lu S, Wu Z, Zhang E, Cai Q, Zhang X. Innate immunity in diabetic nephropathy: Pathogenic mechanisms and therapeutic targets. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 01/02/2025]
Abstract
AbstractDiabetic nephropathy (DN) represents a prevalent chronic microvascular complication of diabetes mellitus (DM) and is a major cause of end‐stage renal disease. The anfractuous surrounding of DN pathogenesis and the intricate nature of this metabolic disorder often pose challenges in both the diagnosis and treatment of DN compared to other kidney diseases. Hyperglycaemia in DM predispose vulnerable renal cells into microenvironmental disequilibrium and thereby results in innate immunocytes infiltration including neutrophils, macrophages, myeloid‐derived suppressor cells, dendritic cells, and so forth. These immune cells play dual roles in kidney injury and closely correlated with the degree of proteinuria in DN patients. Additionally, innate immune signaling cascades, initiated by altered metabolic and hemodynamic in diabetic context, are crucial in instigating and perpetuating renal inflammation, which detrimentally contribute to DN pathogenesis. As such, anti‐inflammatory therapies, particularly those targeting innate immunity, hold renoprotective promise in DN. In this article, we reviewed the origin and feature of the above four prominent kidney innate immune cells, analyze their pathogenic role in DN, and discuss potential targeted‐therapeutic strategies, aiming to enhance the current understanding of renal innate immunity and hence help to discover promising therapeutic approaches for DN.
Collapse
Affiliation(s)
- Le‐Xin Chen
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Shu‐Ru Lu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Zhi‐Hao Wu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - En‐Xin Zhang
- Shenzhen Bao'an Authentic TCM Therapy Hospital Shenzhen PR China
| | - Qing‐Qun Cai
- The First Affiliated Hospital Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Xiao‐Jun Zhang
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| |
Collapse
|
12
|
Bosnić Z, Babič F, Wittlinger T, Anderková V, Šahinović I, Majnarić LT. Influence of Age, Gender, Frailty, and Body Mass Index on Serum IL-17A Levels in Mature Type 2 Diabetic Patients. Med Sci Monit 2023; 29:e940128. [PMID: 37837182 PMCID: PMC10583604 DOI: 10.12659/msm.940128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/09/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The cytokine IL-17A is emerging as a marker of chronic inflammation in cardio-metabolic conditions. This study aimed to identify relevant factors that in older primary care patients with type 2 diabetes (T2D) could influence serum IL-17A concentrations. The results have a potential to improve risk stratification and therapy options for these patients. MATERIAL AND METHODS The study was conducted during a period of 4 months, in 2020, in the south-eastern region of Croatia. Patients from primary health care, diagnosed with T2D (N=170, M: F 75: 95, ≥50 years old), were recruited at their visits. Those with malignant diseases, on chemotherapy or biological therapy, with amputated legs, or at hemodialysis, were excluded. The multinomial regression models were used to determine independent associations of the groups of variables, indicating sociodemographic and clinical characteristics of these patients, with increasing values (quartiles) of serum IL-17A. RESULTS The regression models indicated the frailty index and sex bias are the key modifying factors in associations of other variables with IL-17A serum values. CONCLUSIONS Sex bias and the existence of different frailty phenotypes could be the essential determining factors of the serum IL-17A levels in community-dwelling patients with T2D age 50 years and older. The results support the concept of T2D as a complex disorder.
Collapse
Affiliation(s)
- Zvonimir Bosnić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - František Babič
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Košice, Slovakia
| | - Thomas Wittlinger
- Department of Cardiology, Asklepios Hospital, Goslar, Germany
- University of Göttingen, Göttingen, Germany
| | - Viera Anderková
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Košice, Slovakia
| | - Ines Šahinović
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
13
|
Petrica L, Vlad A, Gadalean F, Muntean DM, Vlad D, Dumitrascu V, Bob F, Milas O, Suteanu-Simulescu A, Glavan M, Jianu DC, Ursoniu S, Balint L, Mogos-Stefan M, Ienciu S, Cretu OM, Popescu R. Mitochondrial DNA Changes in Blood and Urine Display a Specific Signature in Relation to Inflammation in Normoalbuminuric Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2023; 24:9803. [PMID: 37372951 DOI: 10.3390/ijms24129803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial dysfunction is an important mechanism contributing to the development and progression of diabetic kidney disease (DKD). Mitochondrial DNA (mtDNA) levels in blood and urine were evaluated in relation to podocyte injury and proximal tubule (PT) dysfunction, as well as to a specific inflammatory response in normoalbuminuric DKD. A total of 150 type 2 diabetes mellitus (DM) patients (52 normoalbuminuric, 48 microalbuminuric, and 50 macroalbuminuric ones, respectively) and 30 healthy controls were assessed concerning the urinary albumin/creatinine ratio (UACR), biomarkers of podocyte damage (synaptopodin and podocalyxin), PT dysfunction (kidney injury molecule-1 (KIM-1) and N-acetyl-β-(D)-glucosaminidase (NAG)), and inflammation (serum and urinary interleukins (IL-17A, IL-18, and IL-10)). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine via qRT-PCR. MtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies via analysis of the CYTB/B2M and ND2/B2M ratio. Multivariable regression analysis provided models in which serum mtDNA directly correlated with IL-10 and indirectly correlated with UACR, IL-17A, and KIM-1 (R2 = 0.626; p < 0.0001). Urinary mtDNA directly correlated with UACR, podocalyxin, IL-18, and NAG, and negatively correlated with eGFR and IL-10 (R2 = 0.631; p < 0.0001). Mitochondrial DNA changes in serum and urine display a specific signature in relation to inflammation both at the podocyte and tubular levels in normoalbuminuric type 2 DM patients.
Collapse
Affiliation(s)
- Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Internal Medicine II, Division of Diabetes and Metabolic Diseases, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Danina Mirela Muntean
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Department of Functional Sciences III, Division of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Daliborca Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Oana Milas
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Mihaela Glavan
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Neurosciences VIII, Division of Neurology I, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Sorin Ursoniu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Functional Sciences III, Division of Public Health and Health and History of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Balint
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Maria Mogos-Stefan
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Silvia Ienciu
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Octavian Marius Cretu
- Department of Surgery I, Division of Surgical Semiology I, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Emergency Clinical Municipal Hospital Timisoara, 300041 Timisoara, Romania
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Microscopic Morphology II, Division of Cell and Molecular Biology II, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
14
|
Shen Y, Xu Y, Shen P, Shen P, Bian Q, Han L, Cao Z, Fan J, Zeng X, Zhang Y, Guo Z, Ju D, Mei X. A bifunctional fusion protein protected against diabetic nephropathy by suppressing NLRP3 activation. Appl Microbiol Biotechnol 2023; 107:2561-2576. [PMID: 36843198 DOI: 10.1007/s00253-023-12431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Diabetic nephropathy (DN), the principal pathogeny of end-stage renal disease (ESRD), is related to metabolic disorders, chronic inflammation, and oxidative stress. It was reported that high expression of interleukin-17A (IL-17A) was intimately related to the progression of DN, and targeting IL-17A exhibited regulating effects on inflammation and autoimmunity but had only limited impact on the oxidative stress damage in DN. Recent studies showed that interleukin-22 (IL-22) could inhibit mitochondrial damage and inflammatory response. Thus, the cytokine IL-22 was first fused to anti-IL-17A antibody for endowing the antibody with the anti-hyperglycemia and anti-inflammation activity. Our study demonstrated that the fusion molecule, anti-IL17A/IL22 fusion protein, could not only lead to the increase of M1 macrophages and the decrease of M2 macrophages, further improving the immune microenvironment, but also prevent the loss of mitochondrial membrane potential by reducing the production of ROS in murine DN model. In addition, the fusion protein could block TRAF6/NF-κB and AKT/ROS/TXNIP signaling pathways, further synergistically restraining the production of NLRP3, thus suppressing the inflammatory response and playing beneficial effect on slowing down the progression of DN. In conclusion, our findings demonstrated that the bifunctional IL-17A antibody and IL-22 fusion protein were of great benefit to DN, which highlighted a potential therapeutic strategy. KEY POINTS: • Anti-IL17A/IL22 fusion protein could improve the immune microenvironment and reduce the production of ROS. • Anti-IL17A/IL22 fusion protein could block TRAF6/NF-κB and AKT/ROS/TXNIP signaling pathways and then restrain the activation of NLRP3.
Collapse
Affiliation(s)
- Yilan Shen
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Department of Nephrology, Gongli Hospital, Second Military Medical University, Shanghai, 200135, China
| | - Yuqing Xu
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Department of Nephrology, Gongli Hospital, Second Military Medical University, Shanghai, 200135, China
| | - Pei Shen
- Department of Nephrology, Gongli Hospital, Second Military Medical University, Shanghai, 200135, China
| | - Peiling Shen
- Department of Nephrology, Gongli Hospital, Second Military Medical University, Shanghai, 200135, China
| | - Qi Bian
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lei Han
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Zhonglian Cao
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Jiajun Fan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xian Zeng
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Yuting Zhang
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China.
| | - Xiaobin Mei
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
15
|
SGLT2 Inhibitor—Dapagliflozin Attenuates Diabetes-Induced Renal Injury by Regulating Inflammation through a CYP4A/20-HETE Signaling Mechanism. Pharmaceutics 2023; 15:pharmaceutics15030965. [PMID: 36986825 PMCID: PMC10054805 DOI: 10.3390/pharmaceutics15030965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes, affecting millions of people worldwide. Inflammation and oxidative stress are key contributors to the development and progression of DKD, making them potential targets for therapeutic interventions. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a promising class of drugs, with evidence demonstrating that they can improve renal outcomes in people with diabetes. However, the exact mechanism by which SGLT2i exert their renoprotective effects is not yet fully understood. This study demonstrates that dapagliflozin treatment attenuates renal injury observed in type 2 diabetic mice. This is evidenced by the reduction in renal hypertrophy and proteinuria. Furthermore, dapagliflozin decreases tubulointerstitial fibrosis and glomerulosclerosis by mitigating the generation of reactive oxygen species and inflammation, which are activated through the production of CYP4A-induced 20-HETE. Our findings provide insights onto a novel mechanistic pathway by which SGLT2i exerts their renoprotective effects. Overall, and to our knowledge, the study provides critical insights into the pathophysiology of DKD and represents an important step towards improving outcomes for people with this devastating condition.
Collapse
|
16
|
Cao Z, Zhao H, Fan J, Shen Y, Han L, Jing G, Zeng X, Jin X, Zhu Z, Bian Q, Nan Y, Hu X, Mei X, Ju D, Yang P. Simultaneous blockade of VEGF-B and IL-17A ameliorated diabetic kidney disease by reducing ectopic lipid deposition and alleviating inflammation response. Cell Death Dis 2023; 9:8. [PMID: 36646672 PMCID: PMC9842640 DOI: 10.1038/s41420-023-01304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
The pathogenesis of diabetic kidney disease (DKD) is complicated. Current clinical treatments fail to achieve satisfactory efficacy in the prevention of DKD progression, it urgently needs novel and effective treatment for DKD. In this study, we firstly demonstrated that renal lipid metabolism abnormality and inflammation significantly changed in DKD conditions by mining public transcriptomic data of DKD patient samples. KEGG analysis further exhibited the critical role of vascular endothelial growth factor B (VEGF-B) and interleukin 17A (IL-17A) signal pathways in DKD progression, indicating that VEGF-B and IL-17A might be the promising targets for DKD treatment. Then the potential of a novel combination therapy, anti-VEGF-B plus anti-IL-17A antibody, was evaluated for DKD treatment. Our results demonstrated that simultaneous blockade of VEGF-B and IL-17A signaling with their neutralizing antibodies alleviated renal damage and ameliorated renal function. The therapeutic effectiveness was not only related to the reduced lipid deposition especially the neutral lipids in kidney but also associated with the decreased inflammation response. Moreover, the therapy alleviated renal fibrosis by reducing collagen deposition and the expression of fibronectin and α-SMA in kidney tissues. RNA-seq analysis indicated that differential expression genes (DEGs) in db/db mice were significantly clustered into lipid metabolism, inflammation, fibrosis and DKD pathology-related pathways, and 181 of those DEGs were significantly reversed by the combinatory treatment, suggesting the underlying mechanism of administration of anti-VEGF-B and anti-IL-17A antibodies in DKD treatment. Taken together, this study identified that renal lipid metabolism abnormality and inflammation were critically involved in the progression of DKD, and simultaneous blockade of VEGF-B and IL-17A signaling represents a potential DKD therapeutic strategy.
Collapse
Affiliation(s)
- Zhonglian Cao
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China ,grid.8547.e0000 0001 0125 2443Instrumental Analysis Center, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Hui Zhao
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Jiajun Fan
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Yilan Shen
- grid.73113.370000 0004 0369 1660Department of Nephrology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Lei Han
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Guangjun Jing
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Xian Zeng
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Xin Jin
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Zeguo Zhu
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Qi Bian
- grid.73113.370000 0004 0369 1660Department of Nephrology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Yanyang Nan
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Xiaozhi Hu
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Xiaobin Mei
- grid.73113.370000 0004 0369 1660Department of Nephrology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China ,Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, 200135 Shanghai, China
| | - Dianwen Ju
- grid.8547.e0000 0001 0125 2443Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, 201203 Shanghai, China
| | - Ping Yang
- grid.8547.e0000 0001 0125 2443Instrumental Analysis Center, Fudan University School of Pharmacy, 201203 Shanghai, China
| |
Collapse
|
17
|
Zhang X, Ren L, Wei J, Ni Y, Sun L, Zhao X, Zhang Y, Qiao H. Silencing long noncoding RNA-CES1P1 suppresses glomerular endothelial cell inflammation in diabetic nephropathy. Int Immunopharmacol 2022; 110:108820. [PMID: 35834955 DOI: 10.1016/j.intimp.2022.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
Diabetic nephropathy (DN) has become the main cause of end-stage renal disease worldwide. Inflammation is associated with the occurrence and development of DN, and long noncoding RNAs (lncRNAs) are involved in the regulation of inflammatory processes. This study aims to determine the role and mechanism of lncRNA-CES1P1 in DN.C57BL/6 mice and human umbilical vein endothelial cells (HUVECs) were used for this experimental study. In vivo experimental intraperitoneal injection of streptozotocin (STZ) to construct a diabetes mellitus (DM) model in C57BL/6 mice caused increased expression of lncRNA-CES1P1, decreased expression of miR-214-3p in kidney tissue, and produced renal inflammation and proteinuria. Exogenous knockdown of lncRNA-CES1P1 expression decreased renal inflammatory infiltration. In vitro experiments using high glucose (HG) stimulation of HUVECs cell revealed increased expression of lncRNA-CES1P1, decreased expression of miR-214-3p, and increased expression of the inflammatory factors IL-17, IκB, NF-κB, and IL-6. Luciferase reporter assays showed direct targets of miR-214-3p interaction with lncRNA-CES1P1 and IL-17. These results suggest that hyperglycemia represses miR-214-3p by inducing lncRNA-CES1P1, which promotes the expression of the inflammatory factors IL-17, IκB, NF-κB and IL-6 ultimately leading to the development of DN. Interfering with lncRNA-CES1P1 can reduce hyperglycemia-induced DN.
Collapse
Affiliation(s)
- Xiaona Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Long Ren
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jiaxing Wei
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yanan Ni
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Lulu Sun
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xiaoyu Zhao
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yaguang Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Hong Qiao
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
18
|
Tan HB, Zheng YQ, Zhuang YP. IL-17A in diabetic kidney disease: protection or damage. Int Immunopharmacol 2022; 108:108707. [PMID: 35344813 DOI: 10.1016/j.intimp.2022.108707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
The effect of IL-17A in diabetic kidney disease (DKD) has received increasing attention. Interleukin (IL)-17A promotes renal inflammation and the progression of DKD, and IL-17A deficiency improves experimental DKD. However, recent studies have found that the effect of IL-17A on DKD is more complicated than the negative impact. IL-17A alleviates renal inflammation and fibrosis via regulating autophagy or the macrophage phenotype. Moreover, paradoxical expression of IL-17A has been reported in human DKD. This review focuses on how IL-17A affects the progression of DKD and the resulting opportunities and challenges.
Collapse
Affiliation(s)
- Hai-Bo Tan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Yan-Qiu Zheng
- Pi-Wei Institute, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yu-Pei Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
19
|
Yang YQ, Tan HB, Zhang XY, Zhang YZ, Lin QY, Huang MY, Lin ZY, Mo JZ, Zhang Y, Lan T, Bei WJ, Guo J. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against renal injury and inflammation in mice with diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115165. [PMID: 35247475 DOI: 10.1016/j.jep.2022.115165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi capsule (FTZ) is a patented preparation of Chinese herbal medicine that has been used to treat hyperlipidemia, nonalcoholic fatty liver disease, atherosclerosis, and other glucolipid metabolic diseases (GLMDs) in the clinic for almost 10 years. However, how FTZ reduces albuminuria and attenuates diabetic kidney disease (DKD) progression is unknown. AIM OF THE STUDY To clarify the effects of FTZ on DKD mice model and to explore the underlying mechanisms. MATERIALS AND METHODS We used streptozotocin (STZ) (40 mg/kg/d, i.p. for 5 days, consecutively) combined with a high-fat diet (HFD) to induce a DKD mouse model, followed by FTZ (1, 2 g/kg/d, i.g.) treatment for 12 weeks. Losartan (30 mg/kg/d, i.g.) was used as a positive control. Measurements of 24 h proteinuria, serum creatinine (SCr), fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels and expression levels of fibronectin (FN), collagen IV, inflammatory cytokines, inflammatory cells, interleukin-17A (IL-17A) and the nuclear transcription factor-κB (NF-κB) signaling pathway in the kidney were examined. RESULTS FTZ effectively decreased 24 h proteinuria, Scr, FBG, TC, TG, and LDL-C levels, inhibited mesangial cell expansion, reduced FN and collagen IV accumulation, and F4/80+ macrophage cell infiltration and Ly-6G+ neutrophil infiltration in glomerulus and tubulointerstitium. Furthermore, IL-17A production and the NF-κB signaling pathway were also downregulated after the administration of FTZ. CONCLUSION FTZ might attenuate DKD progression, and inhibited kidney inflammation and fibrosis by inhibiting the expression of RORγT and IL-17A in vivo, offering novel insights for the clinical application of FTZ.
Collapse
Affiliation(s)
- Yi-Qi Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Hai-Bo Tan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xiao-Yu Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yu-Zhen Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Quan-You Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Min-Yi Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Zi-Yang Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jia-Zhi Mo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Tian Lan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Wei-Jian Bei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Zhong H, Sun X. Contribution of Interleukin-17A to Retinal Degenerative Diseases. Front Immunol 2022; 13:847937. [PMID: 35392087 PMCID: PMC8980477 DOI: 10.3389/fimmu.2022.847937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Retinal degenerative diseases are a leading cause of vision loss and blindness throughout the world, characterized by chronic and progressive loss of neurons and/or myelin. One of the common features of retinal degenerative diseases and central neurodegenerative diseases is chronic neuroinflammation. Interleukin-17A (IL-17A) is the cytokine most closely related to disease in its family. Accumulating evidence suggests that IL-17A plays a key role in human retinal degenerative diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. This review aims to provide an overview of the role of IL-17A participating in the pathogenesis of retinal degenerative diseases, which may open new avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
- Huimin Zhong
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaodong Sun
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
21
|
Mahmoud B, Abdel-Moneim A, Negeem Z, Nabil A. The relationship between B-cell lymphoma 2, interleukin-1β, interleukin-17, and interleukin-33 and the development of diabetic nephropathy. Mol Biol Rep 2022; 49:3803-3809. [PMID: 35277788 DOI: 10.1007/s11033-022-07221-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is among the main complications of diabetes mellitus and has been a major factor of renal failure. This study was designed to address the association between beta-cell lymphoma-2 (Bcl-2), interleukin (IL)-1β, IL-17, and IL-33 and the development of DN. METHODS In this study, 20 healthy volunteers and 100 patients were enrolled. According to their biochemical markers, the patients were categorized into five groups: diabetic, chronic renal disease, diabetic chronic renal disease, end-stage renal disease, and diabetic end-stage renal disease. RESULTS Our results showed a noticeable elevation in IL-1β and IL-17 levels and a reduction in IL-33 and Bcl-2 levels in all investigated groups compared with those in the healthy group. Positive correlations were found between IL-1β and fasting blood sugar and between creatinine levels and IL-17, HbA1c%, and sodium levels. However, negative correlations were found between IL-33 and urea and sodium concentrations and between Bcl-2 and HbA1c% and creatinine levels. CONCLUSIONS The present data revealed a marked relationship between Bcl-2, IL-1β, IL-17, and IL-33 levels and the onset and progression of DN. Understanding the molecular pathways of these processes could be translated into the development of therapeutic strategies.
Collapse
Affiliation(s)
- Basant Mahmoud
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Zinab Negeem
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt
| | - Ahmed Nabil
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt.
| |
Collapse
|
22
|
Linh H, Iwata Y, Senda Y, Sakai-Takemori Y, Nakade Y, Oshima M, Yoneda-Nakagawa S, Ogura H, Sato K, Minami T, Kitajima S, Toyama T, Yamamura Y, Miyakawa T, Hara A, Shimizu M, Furuichi K, Sakai N, Yamada H, Asanuma K, Matsushima K, Wada T. Intestinal Bacterial Translocation Contributes to Diabetic Kidney Disease. J Am Soc Nephrol 2022; 33:1105-1119. [PMID: 35264456 PMCID: PMC9161796 DOI: 10.1681/asn.2021060843] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/22/2022] [Indexed: 11/03/2022] Open
Abstract
Background In recent years, many studies have focused on the intestinal environment to elucidate pathogenesis of various diseases, including kidney diseases. Impairment of the intestinal barrier function, the "leaky gut," reportedly contributes to pathological processes in some disorders. Mitochondrial antiviral signaling protein (MAVS), a component of innate immunity, maintains intestinal integrity. The effects of disrupted intestinal homeostasis associated with MAVS signaling in diabetic kidney disease remains unclear. Methods To evaluate the contribution of intestinal barrier impairment to kidney injury under diabetic conditions, we induced diabetic kidney disease in wild-type and MAVS knockout mice through unilateral nephrectomy and streptozotocin treatment. We then assessed effects on the kidney, intestinal injuries, and bacterial translocation. Results MAVS knockout diabetic mice showed more severe glomerular and tubular injuries compared with wild-type diabetic mice. Owing to impaired intestinal integrity, the presence of intestine-derived Klebsiella oxytoca and elevated IL-17 were detected in the circulation and kidneys of diabetic mice, especially in diabetic MAVS knockout mice. Stimulation of tubular epithelial cells with K. oxytoca activated MAVS pathways and the phosphorylation of Stat3 and ERK1/2, leading to the production of kidney injury molecule-1 (KIM-1). Nevertheless, MAVS inhibition induced inflammation in the intestinal epithelial cells and KIM-1 production in tubular epithelial cells under K. oxytoca supernatant or IL-17 stimulation. Treatment with neutralizing anti-IL-17 antibody treatment had renoprotective effects. In contrast, lipopolysaccharide administration accelerated kidney injury in the murine diabetic kidney disease model. Conclusions Impaired MAVS signaling both in the kidney and intestine contributes to the disrupted homeostasis, leading to diabetic kidney disease progression. Controlling intestinal homeostasis may offer a novel therapeutic approach for this condition.
Collapse
Affiliation(s)
- Hoang Linh
- H Linh, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Y Iwata, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yasuko Senda
- Y Senda, Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Yukiko Sakai-Takemori
- Y Sakai-Takemori, Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Yusuke Nakade
- Y Nakade, Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Megumi Oshima
- M Oshima, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shiori Yoneda-Nakagawa
- S Yoneda-Nakagawa, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hisayuki Ogura
- H Ogura, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Koichi Sato
- K Sato, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Taichiro Minami
- T Minami, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- S Kitajima, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- T Toyama, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Y Yamamura, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Taro Miyakawa
- T Miyakawa, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- A Hara, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- M Shimizu, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- K Furuichi, Division of Nephrology, Kanazawa Medical University School of Medicine Graduate School of Medicine, Kahoku-gun, Japan
| | - Norihiko Sakai
- N Sakai, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Yamada
- H Yamada, Department of Nephrology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Katsuhiko Asanuma
- K Asanuma, Department of Nephrology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Kouji Matsushima
- K Matsushima, Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Shinjuku-ku, Japan
| | - Takashi Wada
- T Wada, Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
23
|
Kong L, Andrikopoulos S, MacIsaac RJ, Mackay LK, Nikolic‐Paterson DJ, Torkamani N, Zafari N, Marin ECS, Ekinci EI. Role of the adaptive immune system in diabetic kidney disease. J Diabetes Investig 2022; 13:213-226. [PMID: 34845863 PMCID: PMC8847140 DOI: 10.1111/jdi.13725] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a highly prevalent complication of diabetes and the leading cause of end-stage kidney disease. Inflammation is recognized as an important driver of progression of DKD. Activation of the immune response promotes a pro-inflammatory milieu and subsequently renal fibrosis, and a progressive loss of renal function. Although the role of the innate immune system in diabetic renal disease has been well characterized, the potential contribution of the adaptive immune system remains poorly defined. Emerging evidence in experimental models of DKD indicates an increase in the number of T cells in the circulation and in the kidney cortex, that in turn triggers secretion of inflammatory mediators such as interferon-γ and tumor necrosis factor-α, and activation of cells in innate immune response. In human studies, the number of T cells residing in the interstitial region of the kidney correlates with the degree of albuminuria in people with type 2 diabetes. Here, we review the role of the adaptive immune system, and associated cytokines, in the development of DKD. Furthermore, the potential therapeutic benefits of targeting the adaptive immune system as a means of preventing the progression of DKD are discussed.
Collapse
Affiliation(s)
- Lingyun Kong
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
| | | | - Richard J MacIsaac
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Department of Endocrinology & DiabetesSt Vincent's Hospital MelbourneMelbourneVictoriaAustralia
| | - Laura K Mackay
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVictoriaAustralia
| | - David J Nikolic‐Paterson
- Department of NephrologyMonash Medical Center and Monash University Center for Inflammatory DiseasesMelbourneVictoriaAustralia
| | - Niloufar Torkamani
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Endocrine Center of ExcellenceAustin HealthMelbourneVictoriaAustralia
| | - Neda Zafari
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
| | - Evelyn C S Marin
- College of Sport and Exercise ScienceVictoria UniversityMelbourneVictoriaAustralia
| | - Elif I Ekinci
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Endocrine Center of ExcellenceAustin HealthMelbourneVictoriaAustralia
| |
Collapse
|
24
|
Thangaraj SS, Thiesson HC, Svenningsen P, Stubbe J, Palarasah Y, Bistrup C, Jensen BL, Mortensen LA. Mineralocorticoid receptor blockade with spironolactone has no direct effect on plasma IL-17A and injury markers in urine from kidney transplant patients. Am J Physiol Renal Physiol 2021; 322:F138-F149. [PMID: 34894724 DOI: 10.1152/ajprenal.00104.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney transplantation is associated with increased risk of cardiovascular morbidity. Interleukin-17A (IL-17A) mediates kidney injury. Aldosterone promotes T-helper-17 (Th-17) lymphocyte differentiation and IL-17A production through the mineralocorticoid receptor (MR). In this exploratory, post-hoc substudy, it was hypothesized that 1-year intervention with the MR antagonist spironolactone lowers IL-17A and related cytokines and reduces epithelial injury in kidney transplant recipients. Plasma and urine samples were obtained from kidney transplant recipients from a double-blind randomized clinical trial testing spironolactone (n=39) versus placebo (n=41). Plasma concentrations of cytokines IFN-γ, IL-17A, TNF-α, IL-6, IL-1β, and IL-10 were determined before and after 1-year treatment. Urine calbindin, clusterin, KIM-1, osteoactivin, TFF3, and VEGF/creatinine ratios were analyzed. Blood pressure and plasma aldosterone concentration at inclusion did not relate to plasma cytokines and injury markers. None of the cytokines changed in plasma after spironolactone intervention. Plasma IL-17A increased in the placebo group. Spironolactone induced an increase in plasma K+ (0.4 ± 0.4 mmol/L). This increase did not correlate with plasma IL-17A or urine calbindin and TFF3 changes. Ongoing treatment at inclusion with angiotensin-converting-enzyme inhibitor and/or angiotensin II receptor blockers was not associated with changed levels of IL-17A and injury markers and had no effect on the response to spironolactone. Urinary calbindin and TFF3 decreased in the spironolactone group with no difference in between-group analyses. In conclusion, irrespective of ongoing ANGII inhibition, spironolactone has no effect on plasma IL-17A and related cytokines or urinary injury markers in kidney transplant recipients.
Collapse
Affiliation(s)
- Sai Sindhu Thangaraj
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helle Charlotte Thiesson
- Department of Nephrology, Odense University Hospital, Odense C, Denmark.,Department of Clinical Research, Faculty of Health Science, University of Southern Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of southern Denmark, Odense C, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense C, Denmark.,Department of Clinical Research, Faculty of Health Science, University of Southern Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
25
|
Clustering Inflammatory Markers with Sociodemographic and Clinical Characteristics of Patients with Diabetes Type 2 Can Support Family Physicians' Clinical Reasoning by Reducing Patients' Complexity. Healthcare (Basel) 2021; 9:healthcare9121687. [PMID: 34946413 PMCID: PMC8700975 DOI: 10.3390/healthcare9121687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023] Open
Abstract
Diabetes mellitus type 2 (DM2) is a complex disease associated with chronic inflammation, end-organ damage, and multiple comorbidities. Initiatives are emerging for a more personalized approach in managing DM2 patients. We hypothesized that by clustering inflammatory markers with variables indicating the sociodemographic and clinical contexts of patients with DM2, we could gain insights into the hidden phenotypes and the underlying pathophysiological backgrounds thereof. We applied the k-means algorithm and a total of 30 variables in a group of 174 primary care (PC) patients with DM2 aged 50 years and above and of both genders. We included some emerging markers of inflammation, specifically, neutrophil-to-lymphocyte ratio (NLR) and the cytokines IL-17A and IL-37. Multiple regression models were used to assess associations of inflammatory markers with other variables. Overall, we observed that the cytokines were more variable than the marker NLR. The set of inflammatory markers was needed to indicate the capacity of patients in the clusters for inflammatory cell recruitment from the circulation to the tissues, and subsequently for the progression of end-organ damage and vascular complications. The hypothalamus–pituitary–thyroid hormonal axis, in addition to the cytokine IL-37, may have a suppressive, inflammation-regulatory role. These results can help PC physicians with their clinical reasoning by reducing the complexity of diabetic patients.
Collapse
|
26
|
Pessoa Rodrigues C, Chatterjee A, Wiese M, Stehle T, Szymanski W, Shvedunova M, Akhtar A. Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice. Nat Commun 2021; 12:6212. [PMID: 34707105 PMCID: PMC8551339 DOI: 10.1038/s41467-021-26277-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Aindrila Chatterjee
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Meike Wiese
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Stehle
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Witold Szymanski
- Proteomics Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
27
|
Targeting Inflammatory Cytokines to Improve Type 2 Diabetes Control. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7297419. [PMID: 34557550 PMCID: PMC8455209 DOI: 10.1155/2021/7297419] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is one of the most common chronic metabolic disorders in adulthood worldwide, whose pathophysiology includes an abnormal immune response accompanied by cytokine dysregulation and inflammation. As the T2D-related inflammation and its progression were associated with the balance between pro and anti-inflammatory cytokines, anticytokine treatments might represent an additional therapeutic option for T2D patients. This review focuses on existing evidence for antihyperglycemic properties of disease-modifying antirheumatic drugs (DMARDs) and anticytokine agents (anti-TNF-α, anti-interleukin-(IL-) 6, -IL-1, -IL-17, -IL-23, etc.). Emphasis is placed on their molecular mechanisms and on the biological rationale for clinical use. Finally, we briefly summarize the results from experimental model studies and promising clinical trials about the potential of anticytokine therapies in T2D, discussing the effects of these drugs on systemic and islet inflammation, beta-cell function, insulin secretion, and insulin sensitivity.
Collapse
|
28
|
Paquissi FC, Abensur H. The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Front Med (Lausanne) 2021; 8:654912. [PMID: 34540858 PMCID: PMC8446428 DOI: 10.3389/fmed.2021.654912] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by dysregulation and hyperreactivity of the immune response at various levels, including hyperactivation of effector cell subtypes, autoantibodies production, immune complex formation, and deposition in tissues. The consequences of hyperreactivity to the self are systemic and local inflammation and tissue damage in multiple organs. Lupus nephritis (LN) is one of the most worrying manifestations of SLE, and most patients have this involvement at some point in the course of the disease. Among the effector cells involved, the Th17, a subtype of T helper cells (CD4+), has shown significant hyperactivation and participates in kidney damage and many other organs. Th17 cells have IL-17A and IL-17F as main cytokines with receptors expressed in most renal cells, being involved in the activation of many proinflammatory and profibrotic pathways. The Th17/IL-17 axis promotes and maintains repetitive tissue damage and maladaptive repair; leading to fibrosis, loss of organ architecture and function. In the podocytes, the Th17/IL-17 axis effects include changes of the cytoskeleton with increased motility, decreased expression of health proteins, increased oxidative stress, and activation of the inflammasome and caspases resulting in podocytes apoptosis. In renal tubular epithelial cells, the Th17/IL-17 axis promotes the activation of profibrotic pathways such as increased TGF-β expression and epithelial-mesenchymal transition (EMT) with consequent increase of extracellular matrix proteins. In addition, the IL-17 promotes a proinflammatory environment by stimulating the synthesis of inflammatory cytokines by intrinsic renal cells and immune cells, and the synthesis of growth factors and chemokines, which together result in granulopoiesis/myelopoiesis, and further recruitment of immune cells to the kidney. The purpose of this work is to present the prognostic and immunopathologic role of the Th17/IL-17 axis in Kidney diseases, with a special focus on LN, including its exploration as a potential immunotherapeutic target in this complication.
Collapse
Affiliation(s)
- Feliciano Chanana Paquissi
- Department of Medicine, Clínica Girassol, Luanda, Angola
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Abensur
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Moratal C, Laurain A, Naïmi M, Florin T, Esnault V, Neels JG, Chevalier N, Chinetti G, Favre G. Regulation of Monocytes/Macrophages by the Renin-Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. Int J Mol Sci 2021; 22:ijms22116009. [PMID: 34199409 PMCID: PMC8199594 DOI: 10.3390/ijms22116009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin-angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages. This review focuses on the control of monocyte recruitment and the modulation of macrophage polarization by the RAS in the context of DN. The local RAS favors the adhesion of monocytes on renal endothelial cells and increases the production of monocyte chemotactic protein-1 and of osteopontin in tubular cells, driving monocytes into the kidneys. There, proinflammatory cytokines and the RAS promote the differentiation of macrophages into the M1 proinflammatory phenotype, largely contributing to renal lesions of DN. Finally, resolution of the inflammatory process is associated with a phenotype switch of macrophages into the M2 anti-inflammatory subset, which protects against DN. The pharmacologic interruption of the RAS reduces albuminuria, improves the trajectory of the renal function, decreases macrophage infiltration in the kidneys and promotes the switch of the macrophage phenotype from M1 to M2.
Collapse
Affiliation(s)
- Claudine Moratal
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
- Correspondence:
| | - Audrey Laurain
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Mourad Naïmi
- Université Côte d’Azur, CHU, 06000 Nice, France;
| | - Thibault Florin
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Vincent Esnault
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
| | - Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Guillaume Favre
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| |
Collapse
|
30
|
Ixekizumab May Improve Renal Function in Psoriasis. Healthcare (Basel) 2021; 9:healthcare9050543. [PMID: 34066917 PMCID: PMC8148436 DOI: 10.3390/healthcare9050543] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Psoriasis is a chronic dermatological condition characterized by lesions on extensor surfaces, hands, feet, and genital areas. Chronic renal failure is often associated with metabolic syndrome and inflammatory conditions, such as psoriasis. Case report: In this paper, we report a patient with stage-three chronic renal failure that improved his renal condition after treatment with ixekizumab, an anti-IL17A drug used in the treatment of various cutaneous and rheumatological conditions. Conclusions: IL17A blockage may help to treat various autoimmune and inflammatory conditions, such as psoriasis, that may lead to renal impairment. Further investigation is necessary in order to prove the effectiveness of this drug in renal conditions.
Collapse
|
31
|
Zapadka TE, Lindstrom SI, Batoki JC, Lee CA, Taylor BE, Howell SJ, Taylor PR. Aryl Hydrocarbon Receptor Agonist VAF347 Impedes Retinal Pathogenesis in Diabetic Mice. Int J Mol Sci 2021; 22:4335. [PMID: 33919327 PMCID: PMC8122442 DOI: 10.3390/ijms22094335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy is the leading cause of blindness in the working-age population worldwide. Although the cause of diabetic retinopathy is multifactorial, IL-17A is a prevalent inflammatory cytokine involved in the promotion of diabetes-mediated retinal inflammation and the progression of diabetic retinopathy. The primary source of IL-17A is Th17 cells, which are T helper cells that have been differentiated by dendritic cells in a proinflammatory cytokine environment. Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can manipulate dendritic cell maturation, halt the production of IL-6 (a proinflammatory cytokine), and suppress Th17 cell differentiation. In the current study, we examined the efficacy of an AhR agonist, VAF347, as a potential therapeutic for the onset of non-proliferative diabetic retinopathy in streptozotocin (STZ)-induced diabetic C57BL/6 mice. We determined that diabetes-mediated leukostasis, oxidative stress, and inflammation in the retina of STZ-diabetic mice were all significantly lower when treated with the AhR agonist VAF347. Furthermore, when VAF347 was subcutaneously injected into STZ-diabetic mice, retinal capillary degeneration was ameliorated, which is the hallmark of non-proliferative diabetic retinopathy in this diabetes murine model. Collectively, these findings provide evidence that the AhR agonist VAF347 could be a potentially novel therapeutic for non-proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Thomas E. Zapadka
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Sarah I. Lindstrom
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Julia C. Batoki
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Brooklyn E. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Scott J. Howell
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
33
|
Basile DP, Ullah MM, Collet JA, Mehrotra P. T helper 17 cells in the pathophysiology of acute and chronic kidney disease. Kidney Res Clin Pract 2021; 40:12-28. [PMID: 33789382 PMCID: PMC8041630 DOI: 10.23876/j.krcp.20.185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Both acute and chronic kidney disease have a strong underlying inflammatory component. This review focuses primarily on T helper 17 (Th17) cells as mediators of inflammation and their potential to modulate acute and chronic kidney disease. We provide updated information on factors and signaling pathways that promote Th17 cell differentiation with specific reference to kidney disease. We highlight numerous clinical studies that have investigated Th17 cells in the setting of human kidney disease and provide updated summaries from various experimental animal models of kidney disease indicating an important role for Th17 cells in renal fibrosis and hypertension. We focus on the pleiotropic effects of Th17 cells in different renal cell types as potentially relevant to the pathogenesis of kidney disease. Finally, we highlight studies that present contrasting roles for Th17 cells in kidney disease progression.
Collapse
Affiliation(s)
- David P Basile
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, IN, United States
| | - Md Mahbub Ullah
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, IN, United States
| | - Jason A Collet
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, IN, United States
| | - Purvi Mehrotra
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, IN, United States
| |
Collapse
|
34
|
Donate-Correa J, Ferri CM, Sánchez-Quintana F, Pérez-Castro A, González-Luis A, Martín-Núñez E, Mora-Fernández C, Navarro-González JF. Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications. Front Med (Lausanne) 2021; 7:628289. [PMID: 33553221 PMCID: PMC7862763 DOI: 10.3389/fmed.2020.628289] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/24/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and a main contributing factor for cardiovascular morbidity and mortality in patients with diabetes mellitus. Strategies employed to delay the progression of this pathology focus on the control of traditional risk factors, such as hyperglycemia, and elevated blood pressure. Although the intimate mechanisms involved in the onset and progression of DKD remain incompletely understood, inflammation is currently recognized as one of the main underlying processes. Untangling the mechanisms involved in the appearing of a harmful inflammatory response in the diabetic patient is crucial for the development of new therapeutic strategies. In this review, we focus on the inflammation-related pathogenic mechanisms involved in DKD and in the therapeutic utility of new anti-inflammatory strategies.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Carla M Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Fátima Sánchez-Quintana
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Atteneri Pérez-Castro
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.,Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.,REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
35
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
36
|
Rada J, Donato M, Penas FN, Alba Soto C, Cevey ÁC, Pieralisi AV, Gelpi R, Mirkin GA, Goren NB. IL-10-Dependent and -Independent Mechanisms Are Involved in the Cardiac Pathology Modulation Mediated by Fenofibrate in an Experimental Model of Chagas Heart Disease. Front Immunol 2020; 11:572178. [PMID: 33072115 PMCID: PMC7541836 DOI: 10.3389/fimmu.2020.572178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
IL-10 is an anti-inflammatory cytokine that plays a significant role in the modulation of the immune response in many pathological conditions, including infectious diseases. Infection with Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas disease, results in an ongoing inflammatory response that may cause heart dysfunction, ultimately leading to heart failure. Given its infectious and inflammatory nature, in this work we analyzed whether the lack of IL-10 hinders the anti-inflammatory effects of fenofibrate, a PPARα ligand, in a murine model of Chagas heart disease (CHD) using IL-10 knockout (IL-10 KO) mice. Our results show fenofibrate was able to restore the abnormal cardiac function displayed by T. cruzi-infected mice lacking IL-10. Treatment with fenofibrate reduced creatine kinase (CK) levels in sera of IL-10 KO mice infected with T. cruzi. Moreover, although fenofibrate could not modulate the inflammatory infiltrates developing in the heart, it was able to reduce the increased collagen deposition in infected IL-10 KO mice. Regarding pro-inflammatory mediators, the most significant finding was the increase in serum IL-17. These were reduced in IL-10 KO mice upon fenofibrate treatment. In agreement with this, the expression of RORγt was reduced. Infection of IL-10 KO mice increased the expression of YmI, FIZZ and Mannose Receptor (tissue healing markers) that remained unchanged upon treatment with fenofibrate. In conclusion, our work emphasizes the role of anti-inflammatory mechanisms to ameliorate heart function in CHD and shows, for the first time, that fenofibrate attains this through IL-10-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Jimena Rada
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Donato
- Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiopatología Cardiovascular, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico N Penas
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Catalina Alba Soto
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ágata C Cevey
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Azul V Pieralisi
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ricardo Gelpi
- Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiopatología Cardiovascular, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo A Mirkin
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora B Goren
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
37
|
Multiplex Bead Array Assay of a Panel of Circulating Cytokines and Growth Factors in Patients with Albuminuric and Non-AlbuminuricDiabetic Kidney Disease. J Clin Med 2020; 9:jcm9093006. [PMID: 32961903 PMCID: PMC7565054 DOI: 10.3390/jcm9093006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
A panel of cytokines and growth factors, mediating low-grade inflammation and fibrosis, was assessed in patients with type 2 diabetes (T2D) and different patterns of chronic kidney disease (CKD). Patients with long-term T2D (N = 130) were classified into four groups: no signs of CKD; estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 without albuminuria; albuminuria and eGFR ≥60 mL/min/1.73 m2; albuminuria and eGFR <60 mL/min/1.73 m2. Thirty healthy subjects were acted as control. Twenty-seven cytokines and growth factors were assessed in serum by multiplex bead array assay. Serum hs-CRP, urinary nephrin, podocine, and WFDC2 were measured by ELISA. Patients with T2D showed elevated IL-1Ra, IL-6, IL-17A, G-CSF, IP-10, MIP-1α, and bFGF levels; concentrations of IL-4, IL-12, IL-15, INF-γ, and VEGF were decreased. IL-6, IL-17A, G-CSF, MIP-1α, and bFGF correlated negatively with eGFR; IL-10 and VEGF demonstrated negative associations with WFDC2; no relationships with podocyte markers were found. Adjusted IL-17A and MIP-1α were predictors of non-albuminuric CKD, IL-13 predicted albuminuria with preserved renal function, meanwhile, IL-6 and hsCRP were predictors of albuminuria with eGFR decline. Therefore, albuminuric and non-albuminuric CKD in T2D patients are associated with different pro-inflammatory shifts in the panel of circulating cytokines.
Collapse
|
38
|
Gupta A, Kumar D, Puri S, Puri V. Neuroimmune Mechanisms in Signaling of Pain During Acute Kidney Injury (AKI). Front Med (Lausanne) 2020; 7:424. [PMID: 32850914 PMCID: PMC7427621 DOI: 10.3389/fmed.2020.00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 07/01/2020] [Indexed: 11/18/2022] Open
Abstract
Acute kidney injury (AKI) is a significant global health concern. The primary causes of AKI include ischemia, sepsis and nephrotoxicity. The unraveled interface between nervous system and immune response with specific focus on pain pathways is generating a huge interest in reference to AKI. The nervous system though static executes functions by nerve fibers throughout the body. Neuronal peptides released by nerves effect the immune response to mediate the hemodynamic system critical to the functioning of kidney. Pain is the outcome of cellular cross talk between nervous and immune systems. The widespread release of neuropeptides, neurotransmitters and immune cells contribute to bidirectional neuroimmune cross talks for pain manifestation. Recently, we have reported pain pathway genes that may pave the way to better understand such processes during AKI. An auxiliary understanding of the functions and communications in these systems will lead to novel approaches in pain management and treatment through the pathological state, specifically during acute kidney injury.
Collapse
Affiliation(s)
- Aprajita Gupta
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh, India
| | - Dev Kumar
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh, India
| |
Collapse
|
39
|
Oliveira KC, Zambom FFF, Albino AH, Alarcon Arias SC, Ávila VF, Faustino VD, Malheiros DMAC, Camara NOS, Fujihara CK, Zatz R. NF-κB blockade during short-term l-NAME and salt overload strongly attenuates the late development of chronic kidney disease. Am J Physiol Renal Physiol 2020; 319:F215-F228. [PMID: 32463727 DOI: 10.1152/ajprenal.00495.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide synthase inhibition by Nω-nitro-l-arginine methyl ester (l-NAME) plus a high-salt diet (HS) is a model of chronic kidney disease (CKD) characterized by marked hypertension and renal injury. With cessation of treatment, most of these changes subside, but progressive renal injury develops, associated with persistent low-grade renal inflammation. We investigated whether innate immunity, and in particular the NF-κB system, is involved in this process. Male Munich-Wistar rats received HS + l-NAME (32 mg·kg-1·day-1), whereas control rats received HS only. Treatment was ceased after week 4 when 30 rats were studied. Additional rats were studied at week 8 (n = 30) and week 28 (n = 30). As expected, HS + l-NAME promoted severe hypertension, albuminuria, and renal injury after 4 wk of treatment, whereas innate immunity activation was evident. After discontinuation of treatments, partial regression of renal injury and inflammation occurred, along with persistence of innate immunity activation at week 8. At week 28, glomerular injury worsened, while renal inflammation persisted and renal innate immunity remained activated. Temporary administration of the NF-κB inhibitor pyrrolidine dithiocarbamate, in concomitancy with the early 4-wk HS + l-NAME treatment, prevented the development of late renal injury and inflammation, an effect that lasted until the end of the study. Early activation of innate immunity may be crucial to the initiation of renal injury in the HS + l-NAME model and to the autonomous progression of chronic nephropathy even after cessation of the original insult. This behavior may be common to other conditions leading to CKD.
Collapse
Affiliation(s)
- Karin Carneiro Oliveira
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Amanda Helen Albino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Costa Alarcon Arias
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Victor Ferreira Ávila
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Viviane Dias Faustino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Guo J, Zheng HJ, Zhang W, Lou W, Xia C, Han XT, Huang WJ, Zhang F, Wang Y, Liu WJ. Accelerated Kidney Aging in Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1234059. [PMID: 32774664 PMCID: PMC7407029 DOI: 10.1155/2020/1234059] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
With aging, the kidney undergoes inexorable and progressive changes in structural and functional performance. These aging-related alterations are more obvious and serious in diabetes mellitus (DM). Renal accelerated aging under DM conditions is associated with multiple stresses such as accumulation of advanced glycation end products (AGEs), hypertension, oxidative stress, and inflammation. The main hallmarks of cellular senescence in diabetic kidneys include cyclin-dependent kinase inhibitors, telomere shortening, and diabetic nephropathy-associated secretory phenotype. Lysosome-dependent autophagy and antiaging proteins Klotho and Sirt1 play a fundamental role in the accelerated aging of kidneys in DM, among which the autophagy-lysosome system is the convergent mechanism of the multiple antiaging pathways involved in renal aging under DM conditions. Metformin and the inhibitor of sodium-glucose cotransporter 2 are recommended due to their antiaging effects independent of antihyperglycemia, besides angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. Additionally, diet intervention including low protein and low AGEs with antioxidants are suggested for patients with diabetic nephropathy (DN). However, their long-term benefits still need further study. Exploring the interactive relationships among antiaging protein Klotho, Sirt1, and autophagy-lysosome system may provide insight into better satisfying the urgent medical needs of elderly patients with aging-related DN.
Collapse
Affiliation(s)
- Jing Guo
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hui Juan Zheng
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenting Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenjiao Lou
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenhui Xia
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xue Ting Han
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jun Huang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yaoxian Wang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jing Liu
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, No. 57th South Renmin Road, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
41
|
Macrophage Phenotype and Fibrosis in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21082806. [PMID: 32316547 PMCID: PMC7215738 DOI: 10.3390/ijms21082806] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. The primary initiating mechanism in DN is hyperglycemia-induced vascular dysfunction, but its progression is due to different pathological mechanisms, including oxidative stress, inflammatory cells infiltration, inflammation and fibrosis. Macrophages (Mφ) accumulation in kidneys correlates strongly with serum creatinine, interstitial myofibroblast accumulation and interstitial fibrosis scores. However, whether or not Mφ polarization is involved in the progression of DN has not been adequately defined. The prevalence of the different phenotypes during the course of DN, the existence of hybrid phenotypes and the plasticity of these cells depending of the environment have led to inconclusive results. In the same sense the role of the different macrophage phenotype in fibrosis associated or not to DN warrants additional investigation into Mφ polarization and its role in fibrosis. Due to the association between fibrosis and the progressive decline of renal function in DN, and the role of the different phenotypes of Mφ in fibrosis, in this review we examine the role of macrophage phenotype control in DN and highlight the potential factors contributing to phenotype change and injury or repair in DN.
Collapse
|
42
|
Fan C, Chen Q, Ren J, Yang X, Ru J, Zhang H, Yang X. Notoginsenoside R1 Suppresses Inflammatory Signaling and Rescues Renal Ischemia-Reperfusion Injury in Experimental Rats. Med Sci Monit 2020; 26:e920442. [PMID: 32198879 PMCID: PMC7111146 DOI: 10.12659/msm.920442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Notoginsenoside R1 (NR) is a major dynamic constituent of Panax notoginseng found to possess anti-inflammatory activity against various inflammatory diseases. However, its protective effects against renal ischemia-reperfusion (I/R) injury have not been elucidated. In male Wistar rats, we induced I/R under general anesthesia by occluding the renal artery for 60 min, followed by reperfusion and right nephrectomy. Material/Methods Rats were randomized to 4 groups: a sham group, an I/R group, an NR-pretreated (50 mg/kg) before I/R induction group, and an NR control group. All animals were killed at 72 h after I/R induction. Blood and renal tissues were collected, and histological and basic renal function parameters were assessed. In addition, levels of various kidney markers and proinflammatory cytokines were measured using RT-PCR, ELISA, and immunohistochemistry analysis. Results After I/R induction, the onset of renal dysfunction was shown by the elevated levels of serum urea, creatinine levels, and histological evaluation, showing a 2-fold increase in the renal failure markers kim-1 and NGAL compared to control rats. Rats pretreated with NR before I/R induction had significantly better renal functions, with attenuated levels of oxidative markers, restored levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), tumor growth factor-β1 (TGF-β1), INF-γ, and IL-6, and increased anti-inflammatory cytokine levels (IL-10) compared to I/R-induced rats. Conclusions NR suppressed I/R-induced inflammatory cytokines production by suppressing oxidative stress and kidney markers, suggesting that NR is a promising drug candidate for prevention, progression, and treatment of renal dysfunction.
Collapse
Affiliation(s)
- Chuming Fan
- Department of Critical Care Medicine, First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Qingning Chen
- Department of Dermatology, First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Jingyu Ren
- Department of Critical Care Medicine, First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Xiaohua Yang
- Department of Critical Care Medicine, First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Jin Ru
- Department of Critical Care Medicine, First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Hongbo Zhang
- Department of Critical Care Medicine, First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Xinyue Yang
- Department of Critical Care Medicine, First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
43
|
Lavoz C, Rayego-Mateos S, Orejudo M, Opazo-Ríos L, Marchant V, Marquez-Exposito L, Tejera-Muñoz A, Navarro-González JF, Droguett A, Ortiz A, Egido J, Mezzano S, Rodrigues-Diez RR, Ruiz-Ortega M. Could IL-17A Be a Novel Therapeutic Target in Diabetic Nephropathy? J Clin Med 2020; 9:E272. [PMID: 31963845 PMCID: PMC7019373 DOI: 10.3390/jcm9010272] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease has become a major medical issue in recent years due to its high prevalence worldwide, its association with premature mortality, and its social and economic implications. A number of patients gradually progress to end-stage renal disease (ESRD), requiring then dialysis and kidney transplantation. Currently, approximately 40% of patients with diabetes develop kidney disease, making it the most prevalent cause of ESRD. Thus, more effective therapies for diabetic nephropathy are needed. In preclinical studies of diabetes, anti-inflammatory therapeutic strategies have been used to protect the kidneys. Recent evidence supports that immune cells play an active role in the pathogenesis of diabetic nephropathy. Th17 immune cells and their effector cytokine IL-17A have recently emerged as promising targets in several clinical conditions, including renal diseases. Here, we review current knowledge regarding the involvement of Th17/IL-17A in the genesis of diabetic renal injury, as well as the rationale behind targeting IL-17A as an additional therapy in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
| | - Sandra Rayego-Mateos
- Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198 Lleida, Spain;
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
| | - Macarena Orejudo
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.O.-R.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Vanessa Marchant
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Laura Marquez-Exposito
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Antonio Tejera-Muñoz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Alejandra Droguett
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.O.-R.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
| | - Raúl R. Rodrigues-Diez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| |
Collapse
|
44
|
Wang Y, Liu T, Ma F, Lu X, Mao H, Zhou W, Yang L, Li P, Zhan Y. A Network Pharmacology-Based Strategy for Unveiling the Mechanisms of Tripterygium Wilfordii Hook F against Diabetic Kidney Disease. J Diabetes Res 2020; 2020:2421631. [PMID: 33274236 PMCID: PMC7695487 DOI: 10.1155/2020/2421631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) poses a major public-health burden globally. Tripterygium wilfordii Hook F (TwHF) is a widely employed herbal medicine in decreasing albuminuria among diabetic patients. However, a holistic network pharmacology strategy to investigate the active components and therapeutic mechanism underlying DKD is still unavailable. METHODS We collected TwHF ingredients and their targets by traditional Chinese Medicine databases (TCMSP). Then, we obtained DKD targets from GeneCards and OMIM and collected and analyzed TwHF-DKD common targets using the STRING database. Protein-protein interaction (PPI) network was established by Cytoscape and analyzed by MCODE plugin to get clusters. In addition, the cytoHubba software was used to identify hub genes. Finally, all the targets of clusters were subjected for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses via DAVID. RESULTS A total of 51 active ingredients in TwHF were identified and hit by 88 potential targets related to DKD. Compounds correspond to more targets include kaempferol, beta-sitosterol, stigmasterol, and Triptoditerpenic acid B, which appeared to be high-potential compounds. Genes with higher degree including VEGFA, PTGS2, JUN, MAPK8, and HSP90AA1 are hub genes of TwHF against DKD, which are involved in inflammation, insulin resistance, and lipid homeostasis. Kaempferol and VEGFA were represented as the uppermost active ingredient and core gene of TwHF in treating DKD, respectively. DAVID results indicated that TwHF may play a role in treating DKD through AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, insulin resistance, and calcium signaling pathway (P < 0.05). CONCLUSION Kaempferol and VEGFA were represented as the uppermost active ingredient and core gene of TwHF in treating DKD, respectively. The key mechanisms of TwHF against DKD might be involved in the reduction of renal inflammation by downregulating VEGFA.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tongtong Liu
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Fang Ma
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoguang Lu
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Huimin Mao
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Weie Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Liping Yang
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yongli Zhan
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
45
|
An L, Ji D, Hu W, Wang J, Jin X, Qu Y, Zhang N. Interference of Hsa_circ_0003928 Alleviates High Glucose-Induced Cell Apoptosis and Inflammation in HK-2 Cells via miR-151-3p/Anxa2. Diabetes Metab Syndr Obes 2020; 13:3157-3168. [PMID: 32982348 PMCID: PMC7494388 DOI: 10.2147/dmso.s265543] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe end-stage kidney disease developed from diabetes mellitus. The involvement of circular RNA (circRNAs) in the regulation of DN pathogenesis has been implied, but the underlying mechanism of DN is still lacking. This study aimed to investigate the effect of hsa_circ_0003928 on the inflammation and apoptosis of high glucose (HG)-induced renal tubular cells. METHODS The expression of hsa_circ_0003928, miR-151-3p and Anxa2 in blood samples from DN patients and healthy controls was detected by RT-qPCR. Human renal epithelial cells HK-2 were incubated with D-glucose (30 mmol/l) to establish DN model in vitro. RT-qPCR analysis confirmed the transfection effects and detected the expressions of TNF-α, IL-6 and IL-1β. Western blotting analysis determined the protein expression of Anxa2, Bcl-2, Bax, cleaved caspase-3 and caspase-3. The production of ROS was detected by DCF-DA method and production of inflammatory cytokines was verified by ELISA assay. CCK-8 assay and TUNEL assay were performed to determine cell viability and apoptosis, respectively. Dual-luciferase reporter assay was performed to confirm the relationship between miR-151-3p and hsa_circ_0003928 or Anxa2. RESULTS Hsa_circ_0003928 and Anxa2 mRNA levels were increased, whereas miR-151-3p was decreased in both HG-induced HK-2 cells and patients with DN. Hsa_circ_0003928 knockdown could decrease cell viability loss and apoptosis, increase Bcl-2 expression, and decrease Bax and cleaved caspase-3 expression. Besides, hsa_circ_0003928 knockdown suppressed HG-induced overproduction of ROS, TNF-α, IL-6 and IL-1β. However, the effects made by miR-151-3p inhibition were opposite to those made by hsa_circ_0003928 knockdown. Furthermore, the binding sites between miR-151-3p and hsa_circ_0003928 or Anxa2 were predicted and verified. Protein expression of Anxa2 was suppressed by hsa_circ_0003928 knockdown, which was rescued by miR-151-3p inhibition. CONCLUSION These results demonstrated that hsa_circ_0003928 could act as a sponge of miR-151-3p and regulate HG-induced inflammation and apoptosis partly through regulating Anxa2.
Collapse
Affiliation(s)
- Ling An
- Department of Nephrology, Qinghai Provincial People’s Hospital, Xining810007, People’s Republic of China
| | - Dongde Ji
- Department of Gastroenterology, Qinghai Provincial People’s Hospital, Xining810007, People’s Republic of China
| | - Wenbo Hu
- Department of Nephrology, Qinghai Provincial People’s Hospital, Xining810007, People’s Republic of China
| | - Jianrong Wang
- Department of Nephrology, Qinghai Provincial People’s Hospital, Xining810007, People’s Republic of China
| | - Xiuzhen Jin
- Department of Nursing, Qinghai Institute of Health Sciences, Xining810007, People’s Republic of China
| | - Yunfei Qu
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing404000, People’s Republic of China
- Correspondence: Yunfei Qu; Ning Zhang Chongqing University Three Gorges Hospital, No. 165, Xincheng Road, Wanzhou District, Chongqing404000, People’s Republic of China Email ;
| | - Ning Zhang
- Department of General Practice, Chongqing University Three Gorges Hospital, Chongqing404000, People’s Republic of China
| |
Collapse
|
46
|
Motavalli R, Etemadi J, Kahroba H, Mehdizadeh A, Yousefi M. Immune system-mediated cellular and molecular mechanisms in idiopathic membranous nephropathy pathogenesis and possible therapeutic targets. Life Sci 2019; 238:116923. [DOI: 10.1016/j.lfs.2019.116923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/21/2022]
|
47
|
Li XQ, Chang DY, Chen M, Zhao MH. Deficiency of C3a receptor attenuates the development of diabetic nephropathy. BMJ Open Diabetes Res Care 2019; 7:e000817. [PMID: 31798904 PMCID: PMC6861086 DOI: 10.1136/bmjdrc-2019-000817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/18/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Diabetic nephropathy (DN) is the leading cause of chronic kidney disease and end-stage renal disease. Emerging evidence suggests that complement activation is involved in the pathogenesis of DN. The aim of this study was to investigate the pathogenic role of C3a and C3a receptor (C3aR) in DN. Research design and methods The expression of C3aR was examined in the renal specimen of patients with DN. Using a C3aR gene knockout mice (C3aR-/-), we evaluated kidney injury in diabetic mice. The mouse gene expression microarray was performed to further explore the pathogenic role of C3aR. Then the underlying mechanism was investigated in vitro with macrophage treated with C3a. Results Compared with normal controls, the renal expression of C3aR was significantly increased in patients with DN. C3aR-/- diabetic mice developed less severe diabetic renal damage compared with wild-type (WT) diabetic mice, exhibiting significantly lower level of albuminuria and milder renal pathological injury. Microarray profiling uncovered significantly suppressed inflammatory responses and T-cell adaptive immunity in C3aR-/- diabetic mice compared with WT diabetic mice, and this result was further verified by immunohistochemical staining of renal CD4+, CD8+ T cells and macrophage infiltration. In vitro study demonstrated C3a can enhance macrophage-secreted cytokines which could induce inflammatory responses and differentiation of T-cell lineage. Conclusions C3aR deficiency could attenuate diabetic renal damage through suppressing inflammatory responses and T-cell adaptive immunity, possibly by influencing macrophage-secreted cytokines. Thus, C3aR may be a promising therapeutic target for DN.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
48
|
Lv N, Li C, Liu X, Qi C, Wang Z. miR-34b Alleviates High Glucose-Induced Inflammation and Apoptosis in Human HK-2 Cells via IL-6R/JAK2/STAT3 Signaling Pathway. Med Sci Monit 2019; 25:8142-8151. [PMID: 31665127 PMCID: PMC6842269 DOI: 10.12659/msm.917128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background It is well established that inflammation and apoptosis of renal tubular epithelial cells caused by hyperglycemia contribute to the development of diabetic nephropathy (DN). Although microRNAs (miRNAs) are known to have roles in inflammation-related disorders, the exact role of miR-34b in DN has not been defined, and the regulatory mechanism has been unclear. This study aimed to clarify the role of miR-34b in DN pathogenesis. Material/Methods Expression of miR-34b, IL-6R, and other key factors of inflammation, apoptosis (TNF-α, IL-1β, IL-6, caspase-3) in high glucose (HG)-induced HK-2 cells were measured by real-time PCR, Western blot, and flow cytometric cell apoptosis assays. We used luciferase reporter assay to detect the target of miR-34b. Moreover, the targeting gene of miR-34b and its downstream JAK2/STAT3 signaling pathway were explored. Results It was demonstrated that miR-34b overexpression inhibited apoptosis and expression levels of TNF-α, IL-1β, IL-6, and caspase-3 in HG-treated HK-2 cells. We also found that IL-6R is a direct target of miR-34b, which could rescue inflammation and apoptosis in HG-treated HK-2 cells transfected with miR-34b mimic. Furthermore, we showed that overexpression of miR-34b inhibited the IL-6R/JAK2/STAT3 signaling pathway in HG-treated HK-2 cells. Conclusions Our data suggest that overexpression of miR-34b improves inflammation and ameliorates apoptosis in HG-induced HK-2 cells via the IL-6R/JAK2/STAT3 pathway, indicating that miR-34b could be a promising therapeutic target in DN.
Collapse
Affiliation(s)
- Na Lv
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| | - Chunqing Li
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| | - Xin Liu
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| | - Caihui Qi
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| | - Zhenqing Wang
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| |
Collapse
|
49
|
Zabad OM, Samra YA, Eissa LA. P-Coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats. Life Sci 2019; 238:116965. [PMID: 31629762 DOI: 10.1016/j.lfs.2019.116965] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/05/2023]
Abstract
AIMS Diabetic nephropathy (DN) is responsible for the occurrence of 30-47% of the incident cases of end-stage renal disease (ESRD) worldwide. DN is a chronic inflammatory disorder, which results from hyperglycemia-induced alterations and leads to renal fibrosis and ESRD. Toll like receptor-4 (TLR-4) participates in regulation of inflammatory response through controlling of innate immune system. P-Coumaric Acid (P-CA) is a natural hydroxycinnamic acid derivative and is widely present in vegetables, fruits, mushrooms and cereals. This study aimed to explore the renoprotective effect of P-CA, as anti-inflammatory and antioxidant natural compound, against experimental DN. METHODS DN was induced by single intraperitoneal injection of streptozotocin (45 mg/kg) in rats. In kidney homogenate, levels of TLR-4, interleukin-6 (IL-6) and transforming growth factor β1 (TGFβ1) were measured using ELISA technique. Also, kidney collagen content was determined colorimetrically. KEY FINDINGS Oral administration of P-CA (100 mg/kg) for 8 weeks significantly alleviated the DN. P-CA significantly reduced serum concentrations of glucose, creatinine, blood urea nitrogen (BUN) and reduced protein content in urine. Also, P-CA significantly increased superoxide dismutase (SOD) activity and significantly reduced kidney contents of malondialdehyde (MDA), TLR-4, IL-6, TGFβ1 and collagen when compared with DN group. Moreover, P-CA significantly improved DN-induced histopathological abnormalities. SIGNIFICANCE P-CA confers protection against the progression of DN. This renoprotective effect can be attributed to its ability to decrease the generation of inflammatory and fibrotic cytokines in addition to restoring oxidant/antioxidant balance through its ability to down-regulate TLR-4 activation.
Collapse
Affiliation(s)
- Omar M Zabad
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|