1
|
Jin Y, Wang Y, Ma X, Li H, Zhang M. Identification of NET formation and the renoprotective effect of degraded NETs in lupus nephritis. Am J Physiol Renal Physiol 2024; 327:F637-F654. [PMID: 39205658 PMCID: PMC11483074 DOI: 10.1152/ajprenal.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
To explore molecular biomarkers associated with the pathophysiology and therapy of lupus nephritis (LN), we conducted a joint analysis of transcriptomic data from 40 peripheral blood mononuclear cells (PBMCs) (GSE81622) and 21 kidney samples (GSE112943) from the Gene Expression Omnibus database using bioinformatics. A total of 976 and 2,427 differentially expressed genes (DEGs) were identified in PBMCs and renal tissues. Seven and two functional modules closely related to LN were identified. Further enrichment analysis revealed that the neutrophil activation pathway was highly active in both PBMCs and the kidney. Subsequently, 16 core genes closely associated with LN were verified by protein-protein interaction screening and quantitative PCR. In vitro cell models and MRL/lpr mouse models confirmed that the abnormal expression of these core genes was closely linked to neutrophil extracellular traps (NETs) generated by neutrophil activation, while degradation of NETs led to downregulation of core gene expression, thereby improving pathological symptoms of LN. Therefore, identification of patients with systemic lupus erythematosus exhibiting abnormal expression patterns for these core genes may serve as a useful indicator for kidney involvement. In addition, targeting neutrophils to modulate their activation levels and inhibit aberrant expression of these genes represents a potential therapeutic strategy for treating LN. NEW & NOTEWORTHY The mechanisms by which immune cells cause kidney injury in lupus nephritis are poorly understood. We integrated and analyzed the transcriptomic features of PBMCs and renal tissues from the GEO database to identify key molecular markers associated with neutrophil activation. We confirmed that neutrophil extracellular traps (NETs) formed by neutrophil activation promoted the upregulation of key genes in cell and animal models. Targeted degradation of NETs significantly ameliorated kidney injury in MRL/lpr mice.
Collapse
Affiliation(s)
- Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yutong Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xu Ma
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Manling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
2
|
Bruschi M, Angeletti A, Prunotto M, Meroni PL, Ghiggeri GM, Moroni G, Sinico RA, Franceschini F, Fredi M, Vaglio A, Cavalli A, Scapozza L, Patel JJ, Tan JC, Lo KC, Cavagna L, Petretto A, Pratesi F, Migliorini P, Locatelli F, Pazzola G, Pesce G, Giannese D, Manfredi A, Ramirez GA, Esposito P, Murdaca G, Negrini S, Bui F, Trezzi B, Emmi G, Cavazzana I, Binda V, Fenaroli P, Pisan I, Montecucco C, Santoro D, Scolari F, Mescia F, Volpi S, Mosca M, Tincani A, Ravelli A, Murtas C, Candiano G, Caridi G, La Porta E, Verrina E. A critical view on autoantibodies in lupus nephritis: Concrete knowledge based on evidence. Autoimmun Rev 2024; 23:103535. [PMID: 38552995 DOI: 10.1016/j.autrev.2024.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Deposition of autoantibodies in glomeruli is a key factor in the development of lupus nephritis (LN). For a long time, anti-dsDNA and anti-C1q antibodies were thought to be the main cause of the kidney damage. However, recent studies have shown that the list of autoantibidies that have renal tropism and deposit in the kidney in LN is increasing and the link between anti-dsDNA and renal pathology is weak due to potential confounders. Aspecific bindings of dsDNA with cationic antibodies and of anti-dsDNA with several renal antigens such as actinin, laminin, entactin, and annexinA2 raised doubts about the specific target of these antibodies in the kidney. Moreover, the isotype of anti-dsDNA in SLE and LN has never received adequate interest until the recent observation that IgG2 are preponderant over IgG1, IgG3 and IgG4. Based on the above background, recent studies investigated the involvement of anti-dsDNA IgG2 and of other antibodies in LN. It was concluded that circulating anti-dsDNA IgG2 levels do not distinguish between LN versus non-renal SLE, and, in patients with LN, their levels do not change over time. Circulating levels of other antibodies such as anti-ENO1 and anti-H2 IgG2 were, instead, higher in LN vs non-renal SLE at the time of diagnosis and decreased following therapies. Finally, new classes of renal antibodies that potentially modify the anti-inflammatory response in the kidney are emerging as new co-actors in the pathogenetic scenario. They have been defined as 'second wave antibodies' for the link with detoxifying mechanisms limiting the oxidative stress in glomeruli that are classically stimulated in a second phase of inflammation. These findings have important clinical implications that may modify the laboratory approach to LN. Serum levels of anti-ENO1 and anti-H2 IgG2 should be measured in the follow up of patients for designing the length of therapies and identify those patients who respond to treatments. Anti-SOD2 could help to monitor and potentiate the anti-inflammatory response in the kidney.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano-Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy.
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Gabriella Moroni
- Department of Biomedical Sciences, Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Firenze, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Leonardo Scapozza
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | | | - Ken C Lo
- Nimble Therapeutics, Madison, WI, USA
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Francesco Locatelli
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Giulia Pazzola
- Nephrology and Dialysis, Arciospedale Santa Maria nuova, Reggio Emilia, Italy
| | - Giampaola Pesce
- Nephrology and Dialysis, Arciospedale Santa Maria nuova, Reggio Emilia, Italy
| | | | - Angelo Manfredi
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giuseppe A Ramirez
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Pasquale Esposito
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | | | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Italy
| | - Federica Bui
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | - Barbara Trezzi
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giacomo Emmi
- Lupus Clinic Department of biomedicine, University of Florence, University Hospital Careggi, Florence, Italy
| | - Ilaria Cavazzana
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Valentina Binda
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Firenze, Italy
| | - Paride Fenaroli
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | - Isabella Pisan
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | | | - Domenico Santoro
- Nephrology and Dialysis Unit, University of Messina and G Martino Hospital, Messina, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Federica Mescia
- Division of Nephrology and Dialysis, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Stefano Volpi
- Division of Paediatric Rheumatology and Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Mosca
- Rheumatologu Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Angela Tincani
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Angelo Ravelli
- Division of Paediatric Rheumatology and Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Corrado Murtas
- Nephrology and Dialysis Unit, Ospedale Belcolle, 01100 Viterbo, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Edoardo La Porta
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
3
|
Saleh M, Sjöwall J, Bendtsen M, Sjöwall C. The prevalence of neutropenia and association with infections in patients with systemic lupus erythematosus: a Swedish single-center study conducted over 14 years. Rheumatol Int 2024; 44:839-849. [PMID: 38502234 PMCID: PMC10980633 DOI: 10.1007/s00296-024-05566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Hematologic abnormalities are common manifestations of SLE, although neutropenia is observed less frequently and is not included in the classification criteria. Nonetheless, neutropenia is a risk factor for infections, especially those caused by bacteria or fungi. We aimed to evaluate the impact of neutropenia in SLE through a systematic investigation of all infections in a large cohort of well-characterized patients, focusing on neutropenia, lymphopenia, and hypocomplementemia. Longitudinal clinical and laboratory parameters obtained at visits to the Rheumatology Unit, Linköping University Hospital, and linked data on all forms of healthcare utilization for all the subjects included in our regional SLE register during 2008-2022 were assessed. Data regarding confirmed infections were retrieved from the medical records. Overall, 333 patients were included and monitored during 3,088 visits to a rheumatologist during the study period. In total, 918 infections were identified, and 94 occasions of neutropenia (ANC < 1.5 × 109/L) were detected in 40 subjects (12%). Thirty neutropenic episodes in 15 patients occurred in association with infections, of which 13 (43%) required in-hospital care, 4 (13%) needed intensive care, and 1 (3%) resulted in death. Bayesian analysis showed that patients with ≥ 1 occasion of neutropenia were more likely to experience one or more infections (OR = 2.05; probability of association [POA] = 96%). Both invasiveness (OR = 7.08; POA = 98%) and severity (OR = 2.85; POA = 96%) of the infections were significantly associated with the present neutropenia. Infections are common among Swedish SLE patients, 12% of whom show neutropenia over time. Importantly, neutropenia is linked to both the invasiveness and severity of infections. Awareness of the risks of severe infections in neutropenic patients is crucial to tailor therapies to prevent severe illness and death.
Collapse
Affiliation(s)
- Muna Saleh
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden.
- Rheumatology Unit, Linköping University Hospital, 581 85, Linköping, Sweden.
| | - Johanna Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Infectious Diseases, Linköping University, Linköping, Sweden
| | - Marcus Bendtsen
- Department of Health, Medicine and Caring Sciences, Division of Society and Health, Linköping University, 581 83, Linköping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Wang Y, Du C, Zhang Y, Zhu L. Composition and Function of Neutrophil Extracellular Traps. Biomolecules 2024; 14:416. [PMID: 38672433 PMCID: PMC11048602 DOI: 10.3390/biom14040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate fibrous structures released by neutrophils in response to specific stimuli. These structures are composed of depolymerized chromatin adorned with histones, granule proteins, and cytosolic proteins. NETs are formed via two distinct pathways known as suicidal NETosis, which involves NADPH oxidase (NOX), and vital NETosis, which is independent of NOX. Certain proteins found within NETs exhibit strong cytotoxic effects against both pathogens and nearby host cells. While NETs play a defensive role against pathogens, they can also contribute to tissue damage and worsen inflammation. Despite extensive research on the pathophysiological role of NETs, less attention has been paid to their components, which form a unique structure containing various proteins that have significant implications in a wide range of diseases. This review aims to elucidate the components of NETs and provide an overview of their impact on host defense against invasive pathogens, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
5
|
Akkipeddi SMK, Rahmani R, Schartz D, Chittaranjan S, Ellens NR, Kohli GS, Bhalla T, Mattingly TK, Welle K, Morrell CN, Bender MT. Stroke emboli from patients with atrial fibrillation enriched with neutrophil extracellular traps. Res Pract Thromb Haemost 2024; 8:102347. [PMID: 38496712 PMCID: PMC10943055 DOI: 10.1016/j.rpth.2024.102347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 03/19/2024] Open
Abstract
Background Recent literature has demonstrated remarkable heterogeneity in the composition of acute ischemic stroke (AIS) emboli, which may impact susceptibility to therapy. Objectives In this study, we explored differences in proteomic composition of retrieved embolic material from patients with stroke with and without atrial fibrillation (AF) (AF+ and AF-, respectively). Methods The full proteome of retrieved thromboembolic material from 24 patients with AIS was obtained by mass spectrometry. Known marker proteins were assigned groups representing broad classes of embolus components: red blood cells, platelets, neutrophils, eosinophils, histones, complement, and other clotting-associated proteins (eg, fibrinogen). Relative protein abundances were compared between AF+ and AF- samples. Functional implications of differences were explored with gene set enrichment analysis and Gene Ontology enrichment analysis and visualization tool. Results One hundred sixty-six proteins were differentially expressed between AF+ and AF- specimens. Eight out of the 15 neutrophil proteins (P < .05; fold change, >2) and 4 of the 14 histone proteins were significantly enriched in AF+ emboli (P < .05; fold change, >2). Gene set enrichment analysis revealed a significant representation of proteins from published neutrophil extracellular trap (NET) proteomic gene sets. The most significantly represented functional Gene Ontology pathways in patients with AF involved neutrophil activation and degranulation (P < 1 × 10-7). Conclusion The present analysis suggests enrichment of NETs in emboli of patients with stroke and AF. NETs are a significant though understudied structural component of thrombi. This work suggests not only unique stroke biology in AF but also potential therapeutic targets for AIS in this population.
Collapse
Affiliation(s)
| | - Redi Rahmani
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Derrek Schartz
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Siddharth Chittaranjan
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nathaniel R. Ellens
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gurkirat S. Kohli
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Tarun Bhalla
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas K. Mattingly
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Kevin Welle
- Mass Spectrometry Research Laboratory, University of Rochester Medical Center, Rochester, New York, USA
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew T. Bender
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Adeeb S, Arabi TZ, Shah H, Alsalameh S, Abu-Shaar M, El-Sibai AM, Alkattan K, Yaqinuddin A. Unveiling the Web: Exploring the Multifaceted Role of Neutrophil Extracellular Traps in Ocular Health and Disease. J Clin Med 2024; 13:512. [PMID: 38256646 PMCID: PMC10816449 DOI: 10.3390/jcm13020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Neutrophil extracellular traps (NETs) play an essential role in antimicrobial defense. However, NETs have also been shown to promote and mediate a wide spectrum of diseases, including cancer, diabetes mellitus, cardiovascular diseases, and ocular diseases. Data regarding NETs in ocular diseases remain limited. In physiological conditions, NETs protect the eye from debris and cleave proinflammatory cytokines, including several interleukins. On the other hand, NETs play a role in corneal diseases, such as dry eye disease and ocular graft-versus-host disease, where they promote acinar atrophy and delayed wound healing. Additionally, NET levels positively correlate with increased severity of uveitis. NETs have also been described in the context of diabetic retinopathy. Although increased NET biomarkers are associated with an increased risk of the disease, NETs also assist in the elimination of pathological blood vessels and the regeneration of normal vessels. Targeting NET pathways for the treatment of ocular diseases has shown promising outcomes; however, more studies are still needed in this regard. In this article, we summarize the literature on the protective roles of NETs in the eye. Then, we describe their pathogenetic effects in ocular diseases, including those of the cornea, uvea, and retinal blood vessels. Finally, we describe the therapeutic implications of targeting NETs in such conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.Z.A.); (H.S.); (S.A.); (M.A.-S.); (A.M.E.-S.); (K.A.)
| |
Collapse
|
7
|
Whittall-Garcia LP, Naderinabi F, Gladman DD, Urowitz M, Touma Z, Konvalinka A, Wither J. Circulating neutrophil extracellular trap remnants as a biomarker to predict outcomes in lupus nephritis. Lupus Sci Med 2024; 11:e001038. [PMID: 38177067 PMCID: PMC10773436 DOI: 10.1136/lupus-2023-001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To determine if the serum levels of neutrophil extracellular trap (NET) remnants (Elastase-DNA and HMGB1-DNA complexes) at the time of a lupus nephritis (LN) flare predict renal outcomes in the following 24 months. METHODS This was a retrospective study performed in prospectively followed cohorts. The study included two cohorts: an exploratory cohort to assess the association between NET remnant levels and the presence of active LN, and a separate LN cohort to determine the utility of NET remnants to predict renal outcomes over the subsequent 24 months. RESULTS Ninety-two individuals were included in the exploratory cohort (49 active systemic lupus erythematosus (SLE), 23 inactive SLE and 20 healthy controls (HC)). NET remnants were significantly higher in patients with SLE patients compared with HC (p<0.0001 for both complexes) and those with active LN (36%) had significantly higher levels of NET remnants compared with active SLE without LN (Elastase-DNA: p=0.03; HMGB1-DNA: p=0.02). The LN cohort included 109 active LN patients. Patients with proliferative LN had significantly higher levels of NET remnants than non-proliferative LN (Elastase-DNA: p<0.0001; HMGB1-DNA: p=0.0003). Patients with higher baseline levels of NET remnants had higher odds of not achieving complete remission (Elastase-DNA: OR 2.34, p=0.007; HMGB1-DNA: OR 2.61, p=0.009) and of progressing to severe renal impairment (Elastase-DNA: OR 2.84, p=0.006; HMGB1-DNA: OR 2.04, p=0.02) at 24 months after the flare. CONCLUSIONS Elastase-DNA and HMGB1-DNA complexes predict renal outcomes, suggesting they could be used to identify patients requiring more aggressive therapy at flare onset.
Collapse
Affiliation(s)
- Laura Patricia Whittall-Garcia
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- University of Toronto Lupus Clinic, Centre for Prognosis Studies in the Rheumatic Diseases, Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Farnoosh Naderinabi
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- University of Toronto Lupus Clinic, Centre for Prognosis Studies in the Rheumatic Diseases, Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Dafna D Gladman
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- University of Toronto Lupus Clinic, Centre for Prognosis Studies in the Rheumatic Diseases, Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Murray Urowitz
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- University of Toronto Lupus Clinic, Centre for Prognosis Studies in the Rheumatic Diseases, Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zahi Touma
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- University of Toronto Lupus Clinic, Centre for Prognosis Studies in the Rheumatic Diseases, Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - Joan Wither
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Luz IS, Takaya R, Ribeiro DG, Castro MS, Fontes W. Proteomics: Unraveling the Cross Talk Between Innate Immunity and Disease Pathophysiology, Diagnostics, and Treatment Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:221-242. [PMID: 38409424 DOI: 10.1007/978-3-031-50624-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.
Collapse
Affiliation(s)
- Isabelle Souza Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Raquel Takaya
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
9
|
Collins MS, Imbrogno MA, Kopras EJ, Howard JA, Zhang N, Kramer EL, Hudock KM. Heterogeneity in Neutrophil Extracellular Traps from Healthy Human Subjects. Int J Mol Sci 2023; 25:525. [PMID: 38203698 PMCID: PMC10779146 DOI: 10.3390/ijms25010525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Neutrophil extracellular traps (NETs), a key component of early defense against microbial infection, are also associated with tissue injury. NET composition has been reported to vary with some disease states, but the composition and variability of NETs across many healthy subjects provide a critical comparison that has not been well investigated. We evaluated NETs from twelve healthy subjects of varying ages isolated from multiple blood draws over a three-and-one-half-year period to delineate the variability in extracellular DNA, protein, enzymatic activities, and susceptibility to protease inhibitors. We calculated correlations for NET constituents and loss of human bronchial epithelial barrier integrity, measured by transepithelial electrical resistance, after NET exposure. We found that although there was some variability within the same subject over time, the mean NET total DNA, dsDNA, protein, LDH, neutrophil elastase (NE), and proteinase 3 (PR3) in isolated NETs were consistent across subjects. NET serine protease activity varied considerably within the same donor from day to day. The mean NET cathepsin G and MPO were significantly different across donors. IL-8 > IL-1RA > G-CSF were the most abundant cytokines in NETs. There was no significant difference in the mean concentration or variability of IL-8, IL-1RA, G-CSF, IL-1α, IL-1β, or TNF-α in different subjects' NETs. NET DNA concentration was correlated with increased NET neutrophil elastase activity and higher NET IL-1RA concentrations. The mean reduction in protease activity by protease inhibitors was significantly different across donors. NET DNA concentration correlated best with reductions in the barrier integrity of human bronchial epithelia. Defining NET concentration by DNA content correlates with other NET components and reductions in NET-driven epithelial barrier dysfunction, suggesting DNA is a reasonable surrogate measurement for these complex structures in healthy subjects.
Collapse
Affiliation(s)
- Margaret S. Collins
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Michelle A. Imbrogno
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Elizabeth J. Kopras
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Nanhua Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth L. Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristin M. Hudock
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Joshua V, Loberg Haarhaus M, Hensvold A, Wähämaa H, Gerstner C, Hansson M, Israelsson L, Stålesen R, Sköld M, Grunewald J, Klareskog L, Grönwall C, Réthi B, Catrina A, Malmström V. Rheumatoid Arthritis-Specific Autoimmunity in the Lung Before and at the Onset of Disease. Arthritis Rheumatol 2023; 75:1910-1922. [PMID: 37192126 DOI: 10.1002/art.42549] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE The lung is implicated as a site for breach of tolerance prior to onset of seropositive rheumatoid arthritis (RA). To substantiate this, we investigated lung-resident B cells in bronchoalveolar lavage (BAL) samples from untreated early RA patients and anti-citrullinated protein antibody (ACPA)-positive individuals at risk for developing RA. METHODS Single B cells (n = 7,680) were phenotyped and isolated from BAL samples from individuals at risk of RA (n = 3) and at RA diagnosis (n = 9). The immunoglobulin variable region transcripts were sequenced and selected for expression as monoclonal antibodies (n = 141). Monoclonal ACPAs were tested for reactivity patterns and binding to neutrophils. RESULTS Using our single-cell approach, we found significantly increased proportions of B lymphocytes in ACPA+ compared to ACPA- individuals. Memory and double-negative B cells were prominent in all subgroups. Upon antibody re-expression, 7 highly mutated citrulline-autoreactive clones originating from different memory B cell subsets were identified, both in individuals at risk of RA and early RA patients. Lung IgG variable gene transcripts from ACPA+ individuals carried frequent mutation-induced N-linked Fab glycosylation sites (P < 0.001), often in the framework 3 of the variable region. Two of the lung ACPAs bound to activated neutrophils, 1 from an individual at risk of RA and 1 from an early RA patient. CONCLUSION T cell-driven B cell differentiation resulting in local class switching and somatic hypermutation are evident in lungs before as well as in early stages of ACPA+ RA. Our findings add to the notion of lung mucosa being a site for initiation of citrulline autoimmunity preceding seropositive RA.
Collapse
Affiliation(s)
- Vijay Joshua
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malena Loberg Haarhaus
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aase Hensvold
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heidi Wähämaa
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Gerstner
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Israelsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ragnhild Stålesen
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Sköld
- Division of Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, and Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Grunewald
- Division of Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bence Réthi
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anca Catrina
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Reshetnyak T, Nurbaeva K. The Role of Neutrophil Extracellular Traps (NETs) in the Pathogenesis of Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Int J Mol Sci 2023; 24:13581. [PMID: 37686381 PMCID: PMC10487763 DOI: 10.3390/ijms241713581] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease of unknown aetiology [...].
Collapse
Affiliation(s)
- Tatiana Reshetnyak
- Department of Thromboinflammation, V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
| | | |
Collapse
|
12
|
Melbouci D, Haidar Ahmad A, Decker P. Neutrophil extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open 2023; 9:e003104. [PMID: 37562857 PMCID: PMC10423839 DOI: 10.1136/rmdopen-2023-003104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/14/2023] [Indexed: 08/12/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) represent one of the first lines of defence against invading pathogens and are the most abundant leucocytes in the circulation. Generally described as pro-inflammatory cells, recent data suggest that PMN also have immunomodulatory capacities. In response to certain stimuli, activated PMN expel neutrophil extracellular traps (NET), structures made of DNA and associated proteins. Although originally described as an innate immune mechanism fighting bacterial infection, NET formation (or probably rather an excess of NET together with impaired clearance of NET) may be deleterious. Indeed, NET have been implicated in the development of several inflammatory and autoimmune diseases as rheumatoid arthritis or systemic lupus erythematosus, as well as fibrosis or cancer. They have been suggested as a source of (neo)autoantigens or regulatory proteins like proteases or to act as a physical barrier. Different mechanisms of NET formation have been described, leading to PMN death or not, depending on the stimulus. Interestingly, NET may be both pro-inflammatory and anti-inflammatory and this probably partly depends on the mechanism, and thus the stimuli, triggering NET formation. Within this review, we will describe the pro-inflammatory and anti-inflammatory activities of NET and especially how NET may modulate immune responses.
Collapse
Affiliation(s)
- Dyhia Melbouci
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Ahmad Haidar Ahmad
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Patrice Decker
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| |
Collapse
|
13
|
Cavalcante-Silva LHA, Almeida FS, Andrade AGD, Comberlang FC, Cardoso LL, Vanderley SER, Keesen TSL. Mycobacterium tuberculosis in a Trap: The Role of Neutrophil Extracellular Traps in Tuberculosis. Int J Mol Sci 2023; 24:11385. [PMID: 37511144 PMCID: PMC10379580 DOI: 10.3390/ijms241411385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), a disease that causes pulmonary inflammation but can also affect other tissues. Despite macrophages having a defined role in TB immunopathogenesis, other innate immune cells, such as neutrophils, are involved in this process. These cells have high phagocytic ability and a microbial-killing machine comprised of enzymes, antimicrobial peptides, and reactive oxygen species. In the last two decades, a new neutrophil immune response, the neutrophil extracellular traps (NETs), has been intensely researched. NETs comprise DNA associated with histones, enzymes, and antimicrobial peptides. These structures are related to antimicrobial immune response and some immuno-pathogenesis mechanisms. This mini review highlights the role of NETs in tuberculosis and how they can be helpful as a diagnostic tool and/or therapeutic target.
Collapse
Affiliation(s)
- Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Leonardo Lima Cardoso
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
14
|
Bissenova S, Ellis D, Callebaut A, Eelen G, Derua R, Buitinga M, Mathieu C, Gysemans C, Overbergh L. NET Proteome in Established Type 1 Diabetes Is Enriched in Metabolic Proteins. Cells 2023; 12:cells12091319. [PMID: 37174719 PMCID: PMC10177393 DOI: 10.3390/cells12091319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND AIMS Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by a T-cell-mediated destruction of the pancreatic insulin-producing beta cells. A growing body of evidence suggests that abnormalities in neutrophils and neutrophil extracellular trap (NET) formation (NETosis) are associated with T1D pathophysiology. However, little information is available on whether these changes are primary neutrophil defects or related to the environmental signals encountered during active disease. METHODS In the present work, the NET proteome (NETome) of phorbol 12-myristate 13-acetate (PMA)- and ionomycin-stimulated neutrophils from people with established T1D compared to healthy controls (HC) was studied by proteomic analysis. RESULTS Levels of NETosis, in addition to plasma levels of pro-inflammatory cytokines and NET markers, were comparable between T1D and HC subjects. However, the T1D NETome was distinct from that of HC in response to both stimuli. Quantitative analysis revealed that the T1D NETome was enriched in proteins belonging to metabolic pathways (i.e., phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and UTP-glucose-1-phosphate uridylyltransferase). Complementary metabolic profiling revealed that the rate of extracellular acidification, an approximate measure for glycolysis, and mitochondrial respiration were similar between T1D and HC neutrophils in response to both stimuli. CONCLUSION The NETome of people with established T1D was enriched in metabolic proteins without an apparent alteration in the bio-energetic profile or dysregulated NETosis. This may reflect an adaptation mechanism employed by activated T1D neutrophils to avoid impaired glycolysis and consequently excessive or suboptimal NETosis, pivotal in innate immune defence and the resolution of inflammation.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Aïsha Callebaut
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department Cellular & Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- SyBioMa, Proteomics Core Facility, KU Leuven, 3000 Leuven, Belgium
| | - Mijke Buitinga
- Department of Nutrition and Movement Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Lut Overbergh
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Angeletti A, Bruschi M, Kajana X, Spinelli S, Verrina E, Lugani F, Caridi G, Murtas C, Candiano G, Prunotto M, Ghiggeri GM. Mechanisms Limiting Renal Tissue Protection and Repair in Glomerulonephritis. Int J Mol Sci 2023; 24:ijms24098318. [PMID: 37176025 PMCID: PMC10179029 DOI: 10.3390/ijms24098318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Glomerulonephritis are renal disorders resulting from different pathogenic mechanisms (i.e., autoimmunity, complement, inflammatory activation, etc.). Clarifying details of the pathogenic cascade is basic to limit the progression from starting inflammation to degenerative stages. The balance between tissue injury, activation of protective systems and renal tissue repair determines the final outcome. Induction of an oxidative stress is part of glomerular inflammation and activation of protective antioxidant systems has a crucial role in reducing tissue effects. The generation of highly reactive oxygen species can be evaluated in vivo by tracing the inner-layer content of phosphatidyl ethanolamine and phosphatidyl serine in cell membranes. Albumin is the major antioxidant in serum and the level of oxidized albumin is another indirect sign of oxidative stress. Studies performed in Gn, specifically in FSGS, showed a high degree of oxidation in most contexts. High levels of circulating anti-SOD2 antibodies, limiting the detoxyfing activity of SOD2, have been detected in autoimmune Gn(lupus nephritis and membranous nephropathy) in association with persistence of proteinuria and worsening of renal function. In renal transplant, high levels of circulating anti-Glutathione S-transferase antibodies have been correlated with chronic antibody rejection and progressive loss of renal function. Annexins, mainly ANXA1 and ANXA2, play a general anti-inflammatory effect by inhibiting neutrophil functions. Cytosolic ANXA1 is decreased in apoptotic neutrophils of patients with glomerular polyangitis in association with delayed apoptosis that is considered the mechanism for polyangitis. High circulating levels of anti-ANXA1 and anti-ANXA2 antibodies characterize lupus nephritis implying a reduced anti-inflammatory effect. High circulating levels of antibodies targeting Macrophages (anti-FMNL1) have been detected in Gn in association with proteinuria. They potentially modify the intra-glomerular presence of protective macrophages (M2a, M2c) thus acting on the composition of renal infiltrate and on tissue repair.
Collapse
Affiliation(s)
- Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Maurizio Bruschi
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy
| | - Xuliana Kajana
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Sonia Spinelli
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Enrico Verrina
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Francesca Lugani
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Gialuca Caridi
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Corrado Murtas
- Nephrology and Dialysis Unit, Ospedale Belcolle, 01100 Viterbo, Italy
| | - Giovanni Candiano
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| |
Collapse
|
16
|
Sadeghi M, Dehnavi S, Jamialahmadi T, Johnston TP, Sahebkar A. Neutrophil extracellular trap: A key player in the pathogenesis of autoimmune diseases. Int Immunopharmacol 2023; 116:109843. [PMID: 36764274 DOI: 10.1016/j.intimp.2023.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Numerous studies suggest that neutrophils might have a crucial role in the pathogenesis of systemic autoimmune diseases through neutrophil extracellular trap (NET) formation, production of pro-inflammatory cytokines, and organ destruction. NET components that are released into extracellular spaces can be considered autoantigens, which contribute to causing a break in self-tolerance. Subsequently, this leads to the development of autoimmune responses in predisposed individuals. Additionally, an imbalance between NET formation and NET degradation may prolong immune system contact with these modified autoantigens and enhance NET-induced tissue damage. In this review, we discuss the generation and clearance of the NET, as well as the role of NETosis in the pathogenesis of autoimmune disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV), multiple sclerosis (MS), psoriasis, antiphospholipid syndrome (APS), and Type-1 diabetes mellitus (T1DM).
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Schaid TR, LaCroix I, Hansen KC, D'Alessandro A, Moore EE, Sauaia A, Dzieciatkowska M, DeBot M, Cralley AL, Thielen O, Hallas W, Erickson C, Mitra S, Banerjee A, Jones K, Silliman CC, Cohen MJ. A proteomic analysis of NETosis in trauma: Emergence of serpinB1 as a key player. J Trauma Acute Care Surg 2023; 94:361-370. [PMID: 36730076 PMCID: PMC9974543 DOI: 10.1097/ta.0000000000003849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Release of neutrophil extracellular traps (NETosis) may mediate postinjury organ dysfunction, but mechanisms remain unclear. The intracellular serine protease inhibitor (serpin) B1 is vital to neutrophil function and has been shown to restrict NETosis in inflammatory settings. In this study, we used discovery proteomics to identify the proteomic signature of trauma-induced NETosis. We hypothesized that serpinB1 would be a major component of this NET protein profile and associated with adverse outcomes. METHODS This was a post hoc analysis of data collected as part of the COMBAT randomized clinical trial. Blood was collected from injured patients at a single Level I Trauma Center. Proteomic analyses were performed through targeted liquid chromatography coupled with mass spectrometry. Abundances of serpinB1 and known NETosis markers were analyzed with patient and injury characteristics, clinical data, and outcomes. RESULTS SerpinB1 levels on emergency department (ED) arrival were significantly correlated with proteomic markers of NETosis, including core histones, transketolase, and S100A8/A9 proteins. More severely injured patients had elevated serpinB1 and NETosis markers on ED arrival. Levels of serpinB1 and top NETosis markers were significantly elevated on ED arrival in nonsurvivors and patients with fewer ventilator- and ICU-free days. In proteome-wide receiver operating characteristic analysis, serpinB1 was consistently among the top proteins associated with adverse outcomes. Among NETosis markers, levels of serpinB1 early in the patient's course exhibited the greatest separation between patients with fewer and greater ventilator- and ICU-free days. Gene Ontology analysis of top predictors of adverse outcomes further supports NETosis as a potential mediator of postinjury organ dysfunction. CONCLUSION We have identified a proteomic signature of trauma-induced NETosis, and NETosis is an early process following severe injury that may mediate organ dysfunction. In addition, serpinB1 is a major component of this NET protein profile that may serve as an early marker of excessive NETosis after injury.
Collapse
Affiliation(s)
- Terry R Schaid
- From the Department of Surgery/Trauma Research Center (T.R.S.Jr, E.E.M., A.S., M.D.B., O.T., W.H., S.M., A.B., K.J., C.C.S., M.J.C.), Department of Biochemistry and Molecular Genetics (I.L.C., K.C.H., A.D'A., M.D., C.E.), University of Colorado Denver, School of Medicine, Aurora; Department of Surgery (E.E.M., A.L.C.), Denver Health Medical Center, Denver; Department of Health Systems, Management, and Policy (A.S.), University of Colorado Denver, School of Medicine, Aurora; Vitalant Research Institute (C.C.S.), Denver; and Department of Pediatrics (C.C.S.), University of Colorado Denver, School of Medicine, Aurora, CO
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vaglio A, Gattorno M, McAdoo S, Obici LP, Ghiggeri GM. Editorial: The kidney in auto-immune and auto-inflammatory processes: Definitions, mechanisms, and biomarkers. Front Med (Lausanne) 2023; 9:1129021. [PMID: 36703882 PMCID: PMC9872156 DOI: 10.3389/fmed.2022.1129021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Augusto Vaglio
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
- Department of Biomedical Experimental and Clinical Sciences, University of Firenze, Florence, Italy
| | - Marco Gattorno
- Center of Autoinflammatory Diseases and Immunodeficiencies, Department of Pediatrics and Rheumatology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Stephen McAdoo
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, United Kingdom
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Laura Piera Obici
- Amyloidosis Research and Treatment Centre, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
19
|
Resolution Potential of Necrotic Cell Death Pathways. Int J Mol Sci 2022; 24:ijms24010016. [PMID: 36613458 PMCID: PMC9819908 DOI: 10.3390/ijms24010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
During tissue damage caused by infection or sterile inflammation, not only damage-associated molecular patterns (DAMPs), but also resolution-associated molecular patterns (RAMPs) can be activated. These dying cell-associated factors stimulate immune cells localized in the tissue environment and induce the production of inflammatory mediators or specialized proresolving mediators (SPMs). Within the current prospect of science, apoptotic cell death is considered the main initiator of resolution. However, more RAMPs are likely to be released during necrotic cell death than during apoptosis, similar to what has been observed for DAMPs. The inflammatory potential of many regulated forms of necrotic cell death modalities, such as pyroptosis, necroptosis, ferroptosis, netosis, and parthanatos, have been widely studied in necroinflammation, but their possible role in resolution is less considered. In this review, we aim to summarize the relationship between necrotic cell death and resolution, as well as present the current available data regarding the involvement of certain forms of regulated necrotic cell death in necroresolution.
Collapse
|
20
|
Sun W, Feng Y, Li H, He X, Lu Y, Shan Z, Teng W, Li J. The effects of maternal anti-alpha-enolase antibody expression on the brain development in offspring. Clin Exp Immunol 2022; 210:187-198. [PMID: 36149061 PMCID: PMC9750830 DOI: 10.1093/cei/uxac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023] Open
Abstract
Anti-alpha-enolase autoantibodies have not only been found to play an important role in autoimmune diseases but also cause neurological damage in adults. In this study, a pregnant mouse model with high serum alpha-enolase (ENO1)-specific antibody (ENO1Ab) was established by immunization with ENO1 protein to explore the effects of maternal circulatory ENO1Ab on the brain development in offspring. The pups showed impaired learning and memory abilities with obviously thinner tight junctions in the brain tissue. IgG deposits colocalized with both ENO1 protein and complement 3 (C3), and the membrane attack complex was obviously detectable in the brain tissues of pups from dams with high serum ENO1Ab expression. Our findings suggest that highly expressed ENO1Ab in the maternal circulation can pass through the blood-placenta-barrier and the compromised blood-brain barrier into the brain tissues of offspring and may cause neurological development impairment mainly through complement-dependent cytotoxicity.
Collapse
Affiliation(s)
- Wei Sun
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Yan Feng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Hui Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Xiaoqing He
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Yihan Lu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| |
Collapse
|
21
|
Galardi A, Stathopoulos C, Colletti M, Lavarello C, Russo I, Cozza R, Romanzo A, Carcaboso AM, Locatelli F, Petretto A, Munier FL, Di Giannatale A. Proteomics of Aqueous Humor as a Source of Disease Biomarkers in Retinoblastoma. Int J Mol Sci 2022; 23:ijms232113458. [PMID: 36362243 PMCID: PMC9659039 DOI: 10.3390/ijms232113458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Aqueous humor (AH) can be easily and safely used to evaluate disease-specific biomarkers in ocular disease. The aim of this study was to identify specific proteins biomarkers in the AH of retinoblastoma (RB) patients at various stages of the disease. We analyzed the proteome of 53 AH samples using high-resolution mass spectrometry. We grouped the samples according to active vitreous seeding (Group 1), active aqueous seeding (Group 2), naive RB (group 3), inactive RB (group 4), and congenital cataracts as the control (Group 5). We found a total of 889 proteins in all samples. Comparative parametric analyses among the different groups revealed three additional proteins expressed in the RB groups that were not expressed in the control group. These were histone H2B type 2-E (HISTH2B2E), InaD-like protein (PATJ), and ubiquitin conjugating enzyme E2 V1 (UBE2V1). Upon processing the data of our study with the OpenTarget Tool software, we found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and CD44 were more highly expressed in the RB groups. Our results provide a proteome database regarding AH related to RB disease that may be used as a source of biomarkers. Further prospective studies should validate our finding in a large cohort of RB patients.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Christina Stathopoulos
- Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1002 Lausanne, Switzerland
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Ida Russo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Raffaele Cozza
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Antonino Romanzo
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Francis L. Munier
- Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1002 Lausanne, Switzerland
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
Chen XQ, Tu L, Tang Q, Huang L, Qin YH. An Emerging Role for Neutrophil Extracellular Traps in IgA Vasculitis: A Mini-Review. Front Immunol 2022; 13:912929. [PMID: 35799774 PMCID: PMC9253285 DOI: 10.3389/fimmu.2022.912929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A vasculitis (IgAV) is the most common systemic small vessel vasculitis in childhood. Its clinical manifestations are non-thrombocytopenic purpura, accompanied by gastrointestinal tract, joint, kidney and other organ system involvement. The pathogenesis of IgAV has not been fully elucidated. It may be related to many factors including genetics, infection, environmental factors, and drugs. The most commonly accepted view is that galactose-deficient IgA1 and the deposition of IgA and complement C3 in small blood vessel walls are key contributors to the IgAV pathogenesis. Extensive neutrophil extracellular traps (NETs) in the peripheral circulation and skin, kidney, and gastrointestinal tissue of patients with IgAV has been identified in the past two years and is associated with disease activity. This mini-review provides a possible mechanism for NETs involvement in the pathogenesis of IgAV.
Collapse
|
23
|
Krémer V, de Chaisemartin L, Jönsson F. The role of neutrophils in antibody-driven autoimmune cytopenias. Int J Biochem Cell Biol 2022; 147:106231. [PMID: 35644471 DOI: 10.1016/j.biocel.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Autoimmune cytopenias are a consequence of autoantibodies that target blood cell lineages and mark them for their accelerated destruction, mostly through phagocytosis by monocytes and macrophages and complement activation. Neutrophils, although equipped with Fc and complement receptors and effector mechanisms that are critical in other autoimmune conditions, remained long overlooked. Recent reports, however, propose a new and possibly critical role of neutrophils. In this review, we gathered available evidence on the contribution of neutrophils to the development, onset, and consequences of autoantibody-dependent cytopenias.
Collapse
Affiliation(s)
- Vanessa Krémer
- Institut Pasteur, Université́ Paris Cité, Inserm UMR1222, Unit of Antibodies in Therapy and Pathology, F-75015 Paris, France; Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Luc de Chaisemartin
- Institut Pasteur, Université́ Paris Cité, Inserm UMR1222, Unit of Antibodies in Therapy and Pathology, F-75015 Paris, France; Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France; APHP, Bichat Hospital, Immunology Department, F-75018 Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Université́ Paris Cité, Inserm UMR1222, Unit of Antibodies in Therapy and Pathology, F-75015 Paris, France; CNRS, F-75015 Paris, France
| |
Collapse
|
24
|
Polymorphonuclear Neutrophils in Rheumatoid Arthritis and Systemic Lupus Erythematosus: More Complicated Than Anticipated. IMMUNO 2022. [DOI: 10.3390/immuno2010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are the most abundant leucocytes in the circulation in humans. They represent a heterogeneous population exerting diverse functions through several activities. Usually described as typical pro-inflammatory cells, immunomodulatory properties of PMNs have been reported. Among others, once activated and depending on the stimulus, PMNs expel neutrophil extracellular traps (NET) in the extracellular space. NETs are complexes made of DNA and granule proteins representing an innate immune mechanism fighting infections. Nevertheless, an excess of NET formation might be involved in the development of inflammatory or autoimmune responses. Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two chronic, inflammatory, autoimmune diseases of unknown etiology and affecting mostly women. Several abnormal or non-classical functions of PMNs or PMN sub-populations have been described in SLE and RA. Particularly, NETs have been suggested to trigger pro-inflammatory responses by exposing pro-inflammatory mediators. Likewise, NETs may be the targets of autoantibodies or even might trigger the development of autoantibodies by exposing autoantigens. In the present review, we will summarize heterogeneous properties of human PMNs and we will discuss recent evidence linking PMNs and NETs to the pathogenesis of both SLE and RA.
Collapse
|
25
|
Antiochos B, Trejo-Zambrano D, Fenaroli P, Rosenberg A, Baer A, Garg A, Sohn J, Li J, Petri M, Goldman DW, Mecoli C, Casciola-Rosen L, Rosen A. The DNA sensors AIM2 and IFI16 are SLE autoantigens that bind neutrophil extracellular traps. eLife 2022; 11:72103. [PMID: 35608258 PMCID: PMC9129876 DOI: 10.7554/elife.72103] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 04/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background Nucleic acid binding proteins are frequently targeted as autoantigens in systemic lupus erythematosus (SLE) and other interferon (IFN)-linked rheumatic diseases. The AIM-like receptors (ALRs) are IFN-inducible innate sensors that form supramolecular assemblies along double-stranded (ds)DNA of various origins. Here, we investigate the ALR absent in melanoma 2 (AIM2) as a novel autoantigen in SLE, with similar properties to the established ALR autoantigen interferon-inducible protein 16 (IFI16). We examined neutrophil extracellular traps (NETs) as DNA scaffolds on which these antigens might interact in a pro-immune context. Methods AIM2 autoantibodies were measured by immunoprecipitation in SLE and control subjects. Neutrophil extracellular traps were induced in control neutrophils and combined with purified ALR proteins in immunofluorescence and DNase protection assays. SLE renal tissues were examined for ALR-containing NETs by confocal microscopy. Results AIM2 autoantibodies were detected in 41/131 (31.3%) SLE patients and 2/49 (4.1%) controls. Our SLE cohort revealed a frequent co-occurrence of anti-AIM2, anti-IFI16, and anti-DNA antibodies, and higher clinical measures of disease activity in patients positive for antibodies against these ALRs. We found that both ALRs bind NETs in vitro and in SLE renal tissues. We demonstrate that ALR binding causes NETs to resist degradation by DNase I, suggesting a mechanism whereby extracellular ALR-NET interactions may promote sustained IFN signaling. Conclusions Our work suggests that extracellular ALRs bind NETs, leading to DNase resistant nucleoprotein fibers that are targeted as autoantigens in SLE. Funding These studies were funded by NIH R01 DE12354 (AR), P30 AR070254, R01 GM 129342 (JS), K23AR075898 (CM), K08AR077100 (BA), the Jerome L. Greene Foundation and the Rheumatology Research Foundation. Dr. Antiochos and Dr. Mecoli are Jerome L. Greene Scholars. The Hopkins Lupus Cohort is supported by NIH grant R01 AR069572. Confocal imaging performed at the Johns Hopkins Microscopy Facility was supported by NIH Grant S10 OD016374.
Collapse
Affiliation(s)
- Brendan Antiochos
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Daniela Trejo-Zambrano
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Paride Fenaroli
- Nephrology Unit, Parma University Hospital, Department of Medicine and SurgeryParmaItaly,Johns Hopkins University School of Medicine, Division of PathologyBaltimoreUnited States
| | - Avi Rosenberg
- Johns Hopkins University School of Medicine, Division of PathologyBaltimoreUnited States
| | - Alan Baer
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Archit Garg
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical ChemistryBaltimoreUnited States
| | - Jungsan Sohn
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States,Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical ChemistryBaltimoreUnited States
| | - Jessica Li
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Michelle Petri
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Daniel W Goldman
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Christopher Mecoli
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Livia Casciola-Rosen
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Antony Rosen
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States,Johns Hopkins University School of Medicine, Division of PathologyBaltimoreUnited States
| |
Collapse
|
26
|
Georgakis S, Gkirtzimanaki K, Papadaki G, Gakiopoulou H, Drakos E, Eloranta ML, Makridakis M, Kontostathi G, Zoidakis J, Baira E, Rönnblom L, Boumpas DT, Sidiropoulos P, Verginis P, Bertsias G. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-α production in patients with SLE. JCI Insight 2021; 6:147671. [PMID: 34554930 PMCID: PMC8663547 DOI: 10.1172/jci.insight.147671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
IL-33, a nuclear alarmin released during cell death, exerts context-specific effects on adaptive and innate immune cells, eliciting potent inflammatory responses. We screened blood, skin, and kidney tissues from patients with systemic lupus erythematosus (SLE), a systemic autoimmune disease driven by unabated type I IFN production, and found increased amounts of extracellular IL-33 complexed with neutrophil extracellular traps (NETs), correlating with severe, active disease. Using a combination of molecular, imaging, and proteomic approaches, we show that SLE neutrophils, activated by disease immunocomplexes, release IL-33–decorated NETs that stimulate robust IFN-α synthesis by plasmacytoid DCs in a manner dependent on the IL-33 receptor ST2L. IL33-silenced neutrophil-like cells cultured under lupus-inducing conditions generated NETs with diminished interferogenic effect. Importantly, NETs derived from patients with SLE are enriched in mature bioactive isoforms of IL-33 processed by the neutrophil proteases elastase and cathepsin G. Pharmacological inhibition of these proteases neutralized IL-33–dependent IFN-α production elicited by NETs. We believe these data demonstrate a novel role for cleaved IL-33 alarmin decorating NETs in human SLE, linking neutrophil activation, type I IFN production, and end-organ inflammation, with skin pathology mirroring that observed in the kidneys.
Collapse
Affiliation(s)
- Spiros Georgakis
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Katerina Gkirtzimanaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Garyfalia Papadaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Hariklia Gakiopoulou
- 1st Department of Pathology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete, Medical School, Iraklio, Greece
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Kontostathi
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eirini Baira
- Laboratory of Toxicological Assessment of Pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Joint Rheumatology Program and 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Panayotis Verginis
- Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece.,Laboratory of Immune Regulation and Tolerance, University of Crete, Medical School, Iraklio, Greece
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| |
Collapse
|
27
|
Angeletti A, Migliorini P, Bruschi M, Pratesi F, Candiano G, Prunotto M, Verrina E, Ghiggeri GM. Anti-alpha enolase multi-antibody specificity in human diseases. Clinical significance and molecular mechanisms. Autoimmun Rev 2021; 20:102977. [PMID: 34718161 DOI: 10.1016/j.autrev.2021.102977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Alpha-enolase (Eno) is an ubiquitary glycolytic enzyme playing multiple functions that go well beyond its principal metabolic role of energy supplier during glycolysis. Eno is localized in the cytoplasm, but also expressed on the cell membrane, where it binds plasminogen allowing its activation. Its shorter form, in the nucleus, acts as transcription factor. In inflammatory conditions, Eno undergoes post-translational modifications, such as citrullination, oxidation and phosphorylation. Eno is also an autoantigen in different disorders. In fact, autoantibodies to Eno have been detected in rheumatoid arthritis, lupus nephritis, primary glomerulonephritis, cancer, infections and other disorders, and in many cases they represent specific markers to be utilized in clinical practice. Anti-Eno antibodies in the different clinical conditions are not equal: they differ in isotype and often recognize different epitopes on the enzyme. IgG1 and IgG3 are prevalent in Rheumatoid Arthritis, IgG2 in Lupus nephritis and IgG4 in primary autoimmune glomerulopathy. This review analyzes the characteristics of anti-Eno autoantibodies in autoimmune disorders and cancer, describing their fine specificity and isotype restriction. The post-translational modifications that are target of autoantibodies are also discussed, as they represent the basis for elucidating the molecular mechanisms responsible for epitope generation. Despite an impressive amount of experimental work on anti-Eno antibodies, it is still necessary to validate the use of anti-Eno antibodies as biomarkers of selected diseases and extend the knowledge on the mechanisms of anti-Eno autoantibody production. Strategies that downmodulate the immune response to Eno may represent in the future novel approaches in the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Andrea Angeletti
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy.
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Enrico Verrina
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy.
| |
Collapse
|
28
|
Angeletti A, Volpi S, Bruschi M, Lugani F, Vaglio A, Prunotto M, Gattorno M, Schena F, Verrina E, Ravelli A, Ghiggeri GM. Neutrophil Extracellular Traps-DNase Balance and Autoimmunity. Cells 2021; 10:cells10102667. [PMID: 34685647 PMCID: PMC8534732 DOI: 10.3390/cells10102667] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are macromolecular structures programmed to trap circulating bacteria and viruses. The accumulation of NETs in the circulation correlates with the formation of anti-double-stranded (ds) DNA antibodies and is considered a causative factor for systemic lupus erythematosus (SLE). The digestion of DNA by DNase1 and DNases1L3 is the rate- limiting factor for NET accumulation. Mutations occurring in one of these two DNase genes determine anti-DNA formation and are associated with severe Lupus-like syndromes and lupus nephritis (LN). A second mechanism that may lead to DNase functional impairment is the presence of circulating DNase inhibitors in patients with low DNase activity, or the generation of anti-DNase antibodies. This phenomenon has been described in a relevant number of patients with SLE and may represent an important mechanism determining autoimmunity flares. On the basis of the reviewed studies, it is tempting to suppose that the blockade or selective depletion of anti-DNase autoantibodies could represent a potential novel therapeutic approach to prevent or halt SLE and LN. In general, strategies aimed at reducing NET formation might have a similar impact on the progression of SLE and LN.
Collapse
Affiliation(s)
- Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno Infantili, University of Genoa, 16132 Genoa, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, 50121 Firenze, Italy;
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland;
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
- Clinics of Pediatrics and Rheumatology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Francesca Schena
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Angelo Ravelli
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
- Correspondence:
| |
Collapse
|
29
|
Chen XQ, Tu L, Zou JS, Zhu SQ, Zhao YJ, Qin YH. The Involvement of Neutrophil Extracellular Traps in Disease Activity Associated With IgA Vasculitis. Front Immunol 2021; 12:668974. [PMID: 34539623 PMCID: PMC8446352 DOI: 10.3389/fimmu.2021.668974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives This aim of this study was to determine whether neutrophil extracellular traps (NETs) are involved in the pathogenesis of IgA vasculitis (IgAV) and investigate whether the circulating NETs levels are associated with disease activity in children. Methods We performed a case-control study and collected blood samples from 193 children with different stages of IgAV (61 were at the onset stage, 64 at the remission stage, 43 at the active stage, and 25 were undergoing drug withdrawal). A total of 192 healthy children were recruited as controls. Circulating cell free DNA (cf-DNA) was obtained from the plasma and quantified by using the Quant-iT PicoGreen DNA quantification kit. NETs-associated myeloperoxidase-DNA (MPO-DNA), citrullinated-histone H3 (cit-H3), neutrophil elastase (NE), and the deoxyribonuclease I (DNase I) concentrations were measured using enzyme-linked immunosorbent assays. The presence of NETs in the kidney and gastrointestinal tissues of onset and active IgAV patients was determined by multiple immunofluorescence staining in 15 IgAV nephritis patients and 9 IgAV patients without IgAV nephritis, respectively. NETs degradation potency of collected sera samples from IgAV patients were checked in vitro. Relationships between circulating levels of cf-DNA with MPO-DNA, NE, and DNase I and the patients were analyzed. Results Circulating levels of cf-DNA in onset and active IgAV patients were significantly higher than those in remission and drug withdrawal patients as well as healthy controls. The results were similar for MPO-DNA and NE. The levels of circulating cf-DNA correlated significantly with MPO-DNA, NE and DNase I. A significantly decreased degradation of NETs from the onset and active IgAV patients was observed, but was normal in healthy controls. Furthermore, presence of NETs was also confirmed in all renal and gastrointestinal tissues obtained from the onset and active IgAV patients but not control samples. Conclusions Our data showed that NETs were released into the circulation of IgAV patients and are involved in the disease activity. The circulating levels of NETs maybe used to assess disease severity in children with IgAV.
Collapse
Affiliation(s)
- Xiu-Qi Chen
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Li Tu
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jia-Sen Zou
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Shi-Qun Zhu
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yan-Jun Zhao
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yuan-Han Qin
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Liew PX. Mired in the glomeruli: witnessing live neutrophil recruitment in the kidney. Am J Physiol Cell Physiol 2021; 321:C384-C393. [PMID: 34232747 DOI: 10.1152/ajpcell.00429.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammation of the kidney is a key contributor to proliferative glomerulonephritis, and kidney damage during glomerulonephritis can lead to renal failure. The immune response associated with glomerulonephritis episodes is a major determinant of patient outcomes, and understanding this response is paramount for effective therapeutic treatment. Neutrophils are the first responders to sites of infection or tissue injury and are a significant cellular infiltrate during proliferative glomerulonephritis. This immune cell was initially recognized as a "blunt" nonspecific effector cell that was recruited to kill pathogens and then die quickly. However, recent studies have shown that the behavior and function of neutrophils are substantially more complex. Neutrophil recruitment to inflammatory sites must be carefully regulated so that these potent cells accurately arrive at tissue sites and perform their functions without nonspecific injury to other locations. As the kidney contains unique microvasculature befitting their specialized role in blood filtration, the recruitment of neutrophils in the renal environment differs from other organs. This Mini-Review will describe how advances in live-animal (intravital) imaging led to the discovery of novel recruitment pathways in the kidney, particularly in the glomeruli, and highlight these differences to canonical neutrophil recruitment. In addition, molecular engagement of surface molecules that lead to intracellular signaling, which is followed by neutrophil capture in the glomeruli, is also briefly discussed. Finally, the contribution of other immune cells in renal neutrophil recruitment, the fate of the emigrated neutrophils after inflammation, and the relevance of mouse models compared with human glomerulonephritides will also be explored.
Collapse
Affiliation(s)
- Pei Xiong Liew
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Bruschi M, Moroni G, Sinico RA, Franceschini F, Fredi M, Vaglio A, Cavagna L, Petretto A, Pratesi F, Migliorini P, Locatelli F, Pazzola G, Pesce G, Bagnasco M, Manfredi A, Ramirez GA, Esposito P, Murdaca G, Negrini S, Cipriani L, Trezzi B, Emmi G, Cavazzana I, Binda V, d’Alessandro M, Fenaroli P, Pisani I, Garibotto G, Montecucco C, Santoro D, Scolari F, Volpi S, Mosca M, Tincani A, Candiano G, Prunotto M, Verrina E, Angeletti A, Ravelli A, Ghiggeri GM. Serum IgG2 antibody multi-composition in systemic lupus erythematosus and in lupus nephritis (Part 2): prospective study. Rheumatology (Oxford) 2021; 60:3388-3397. [PMID: 33351137 PMCID: PMC8516512 DOI: 10.1093/rheumatology/keaa793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Circulating anti-ENO1 and anti-H2A IgG2 have been identified as specific signatures of LN in a cross-over approach. We sought to show whether the same antibodies identify selected population of patients with LN with potentially different clinical outcomes. METHODS Here we report the prospective analysis over 36 months of circulating IgG2 levels in patients with newly diagnosed LN (n=91) and SLE (n=31) and in other patients with SLE recruited within 2 years from diagnosis (n=99). Anti-podocyte (ENO1), anti-nucleosome (DNA, histone 2 A, histone 3) and anti-circulating proteins (C1q, AnnexinA1-ANXA1) IgG2 antibodies were determined by home-made techniques. RESULTS LN patients were the main focus of the study. Anti-ENO1, anti-H2A and anti-ANXA1 IgG2 decreased in parallel to proteinuria and normalized within 12 months in the majority of patients while anti-dsDNA IgG2 remained high over the 36 months. Anti-ENO1 and anti-H2A had the highest association with proteinuria (Heat Map) and identified the highest number of patients with high proteinuria (68% and 71% respectively) and/or with reduced estimated glomerula filtration rate (eGFR) (58% for both antibodies) compared with 23% and 17% of anti-dsDNA (agreement analysis). Anti-ENO1 positive LN patients had higher proteinuria than negative patients at T0 and presented the maximal decrement within 12 months. CONCLUSIONS Anti-ENO1, anti-H2A and anti-ANXA1 antibodies were associated with high proteinuria in LN patients and Anti-ENO1 also presented the maximal reduction within 12 months that paralleled the decrease of proteinuria. Anti-dsDNA were not associated with renal outcome parameters. New IgG2 antibody signatures should be utilized as tracers of personalized therapies in LN. TRIAL REGISTRATION The Zeus study was registered at https://clinicaltrials.gov (study number: NCT02403115).
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gabriella Moroni
- Division of Nephrology and Dialysis, Fondazione IRCCS Ca' Granda Ospedale Maggiore, Milano, Italy
| | | | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences ‘Mario Serio’, University of Firenze, Firenze, Italy
- Nephrology and Dialysis Unit, Meyer Children’s Hospital, Firenze, Italy
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Francesco Locatelli
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Giulia Pazzola
- Nephrology and Dialysis, Arciospedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Giampaola Pesce
- Medical and Radiometabolic Therapy Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Marcello Bagnasco
- Medical and Radiometabolic Therapy Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Angelo Manfredi
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giuseppe A Ramirez
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Pasquale Esposito
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Leda Cipriani
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | - Barbara Trezzi
- Department of Medicine and Surgery, University of Milan, Bicocca, Italy
| | - Giacomo Emmi
- Lupus Clinic Department of Biomedicine, University of Florence, University Hospital Careggi, Florence, Italy
| | - Ilaria Cavazzana
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Valentina Binda
- Division of Nephrology and Dialysis, Fondazione IRCCS Ca' Granda Ospedale Maggiore, Milano, Italy
| | - Matteo d’Alessandro
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paride Fenaroli
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | - Isabella Pisani
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | - Giacomo Garibotto
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | | | - Domenico Santoro
- Nephrology and Dialysis Unit, University of Messina and G Martino Hospital, Messina, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, University of Brescia and Ospedale di Montichiari, Brescia, Italy
| | - Stefano Volpi
- Division of Paediatric Rheumatology Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Mosca
- Rheumatologu Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Angela Tincani
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angelo Ravelli
- Division of Paediatric Rheumatology Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Correspondence to: Gian Marco Ghiggeri, Division of Nephrology, Dialysis and Transplantation, Istituto G. Gaslini, Largo G. Gaslini 5, Genoa, Italy. E-mail:
| |
Collapse
|
32
|
Fetz AE, Bowlin GL. Neutrophil Extracellular Traps: Inflammation and Biomaterial Preconditioning for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:437-450. [PMID: 33736452 DOI: 10.1089/ten.teb.2021.0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue injury initiates a tissue repair program, characterized by acute inflammation and recruitment of immune cells, dominated by neutrophils. Neutrophils prevent infection in the injured tissue through multiple effector functions, including the production of reactive oxygen species, the release of granules, the phagocytosis of invaders, and the extrusion of neutrophil extracellular traps (NETs). However, these canonical protective mechanisms can also have detrimental effects both in the context of infection and in response to sterile injuries. Of particular interest to biomaterials and tissue engineering is the release of NETs, which are extracellular structures composed of decondensed chromatin and various toxic nuclear and granular components. These structures and their dysregulated release can cause collateral tissue damage, uncontrolled inflammation, and fibrosis and prevent the neutrophil from exerting its prohealing functions. This review discusses our knowledge of NETs, including their composition and morphology, signaling pathways, inhibitors, and contribution to inflammatory pathologies, as well as their role in the resolution of inflammation. In addition, we summarize what is known about the release of NETs as a preconditioning event in the response to biomaterials and highlight future considerations to target the neutrophil response and enhance biomaterial-guided tissue repair and regeneration. Impact statement Neutrophil extracellular trap (NET) release is an active process programmed into the neutrophil's molecular machinery to prevent infection. However, the release of NETs on biomaterials appears to be a significant preconditioning event that influences the potential for tissue healing with largely detrimental consequences. Given their contribution to inflammatory pathologies, this review highlights the role of NETs in the response to biomaterials. Together, the studies discussed in this review suggest that biomaterials should be designed to regulate NET release to avoid maladaptive immune responses and improve the therapeutic potential of tissue-engineered biomaterials and their applications in the clinical setting.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
33
|
Bertelli R, Schena F, Antonini F, Reverberi D, Signa S, Pedemonte N, Consolaro A, Gattorno M, Negrini S, Pupo F, Volpi S, Ghiggeri GM. Neutrophil Extracellular Traps in Systemic Lupus Erythematosus Stimulate IgG2 Production From B Lymphocytes. Front Med (Lausanne) 2021; 8:635436. [PMID: 33912575 PMCID: PMC8072216 DOI: 10.3389/fmed.2021.635436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Circulating autoantibodies of IgG2 isotype predominate in Systemic Lupus Erythematosus (SLE) and concur to the development of the renal lesions characteristic of Lupus Nephritis (LN). Anti-dsDNA and anti-histones IgG2, together with anti-podocyte proteins (i.e., α-enolase) are the major autoantibodies in serum and renal glomeruli of LN patients. The mechanisms underlying autoantibody formation and isotype switching in SLE and LN are unknown. A major issue is how DNA/histones are externalized from cell nucleus, driving the autoimmune response. Neutrophil Extracellular Traps (NETs) have been recently identified as crucial players in this context, representing the main source of DNA and nucleosome proteins. A second key point is what regulates IgG2 isotype switching: in mouse models, T-bet transcription factor has been described as essential for IgG2a class switch. We hypothesized that, in SLE, NET formation is the key mechanism responsible for externalization of autoantigens (i.e., dsDNA, histones 2,3, and α-enolase) and that T-bet is upregulated by NETs, driving, in this way, immunoglobulin class switch recombination (CSR), with production of IgG2 autoantibodies. The data here presented show that NETs, purified from SLE patients, stimulate ex vivo IgG2 isotype class switch possibly through the induction of T-bet. Of note, we observed a prominent effect of NETs on the release of soluble IgG2 in SLE patients', but not in healthy donors' B cells. Our results add important knowledge on the mechanisms of IgG2 class switch in SLE and contribute to further elucidate the role of NETs in LN pathogenesis.
Collapse
Affiliation(s)
- Roberta Bertelli
- Laboratory of Molecular Nephrology, Division of Nephrology and Transplantation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Laboratory of Human Genetics, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Francesca Schena
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Francesca Antonini
- Core Facilities Flow Cytometry and Cell Imaging Lab, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Sara Signa
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics and Maternal and Children's Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Nicoletta Pedemonte
- Complex Operative Unit (UOC) of Medical Genetics, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Alessandro Consolaro
- Pediatric Rheumatology Clinic, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Marco Gattorno
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Simone Negrini
- Department of Internal Medicine, Clinical Immunology and Translational Medicine Unit, Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Francesca Pupo
- Department of Internal Medicine, Clinical Immunology and Translational Medicine Unit, Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Stefano Volpi
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics and Maternal and Children's Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, Division of Nephrology and Transplantation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Division of Nephrology, Dialysis, Transplantation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
34
|
Negreros M, Flores-Suárez LF. A proposed role of neutrophil extracellular traps and their interplay with fibroblasts in ANCA-associated vasculitis lung fibrosis. Autoimmun Rev 2021; 20:102781. [PMID: 33609801 DOI: 10.1016/j.autrev.2021.102781] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
ANCA-associated vasculitides (AAV) comprise three diseases: granulomatosis with polyangiitis, microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis. They are characterised by small vessel inflammation and have a broad range of clinical manifestations and multiorgan involvement which endanger the patient's life. An increasingly recognised complication of AAV, especially in MPA is lung fibrosis, for which no clearcut therapy in this context is available. The release of neutrophil extracellular traps (NETs) in these diseases has been related to the development of fibrosis, but the precise mechanisms are not fully unravelled. This review provides an overview of some of the important proteins known to compose NETs, and proposes some mechanisms by which these remarkable components may exert an impact on the different fibroblastic phenotypes leading to lung fibrosis.
Collapse
Affiliation(s)
- Miguel Negreros
- Primary Systemic Vasculitides Clinic, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Luis F Flores-Suárez
- Primary Systemic Vasculitides Clinic, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.
| |
Collapse
|
35
|
Fatemi A, Alipour R, Khanahmad H, Alsahebfosul F, Andalib A, Pourazar A. The impact of neutrophil extracellular trap from patients with systemic lupus erythematosus on the viability, CD11b expression and oxidative burst of healthy neutrophils. BMC Immunol 2021; 22:12. [PMID: 33546594 PMCID: PMC7863477 DOI: 10.1186/s12865-021-00402-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background NET (neutrophil extracellular trap) has been shown to directly influence inflammation; in SLE (systemic lupus erythematosus), it is reportedly a plausible cause for the broken self-tolerance that contributes to this pathology. Meanwhile, the role of NET is not easily explicable, and there is a serious discrepancy in the role of NET in SLE pathology and generally inflammation; in particular, the interactions of neutrophils with NET have been rarely inspected. This study evaluates the effect of NET on neutrophils in the context of SLE. The neutrophils were incubated by the collected NET (from SLE patients and healthy controls) and their expression of an activation marker, viability and oxidative burst ability were measured. Results The level of cell mortality, CD11b expression and the oxidative burst capacity were elevated in NET-treated neutrophils. Also, the elevation caused by the SLE NET was higher than that produced by the healthy NET. Conclusion The decreased neutrophil viability was not due to the increase in apoptosis; rather, it was because of the augmentation of other inflammatory cell-death modes. The upregulation of CD11b implies that NET causes neutrophils to more actively contribute to inflammation. The increased oxidative burst capacity of neutrophils can play a double role in inflammation. Overall, the effects induced by NET on neutrophils help prolong inflammation; accordingly, the NET collected from SLE patients is stronger than the NET from healthy individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00402-2.
Collapse
Affiliation(s)
- Alimohammad Fatemi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Alipour
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosul
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran
| | - Alireza Andalib
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran
| | - Abbasali Pourazar
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran.
| |
Collapse
|
36
|
Bruschi M, Petretto A, Cama A, Pavanello M, Bartolucci M, Morana G, Ramenghi LA, Garré ML, Ghiggeri GM, Panfoli I, Candiano G. Potential biomarkers of childhood brain tumor identified by proteomics of cerebrospinal fluid from extraventricular drainage (EVD). Sci Rep 2021; 11:1818. [PMID: 33469081 PMCID: PMC7815722 DOI: 10.1038/s41598-020-80647-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
Brain tumors are the most common solid tumors in childhood. There is the need for biomarkers of residual disease, therapy response and recurrence. Cerebrospinal fluid (CSF) is a source of brain tumor biomarkers. We analyzed the proteome of waste CSF from extraventricular drainage (EVD) from 29 children bearing different brain tumors and 17 controls needing EVD insertion for unrelated causes. 1598 and 1526 proteins were identified by liquid chromatography-coupled tandem mass spectrometry proteomics in CSF control and brain tumor patients, respectively, 263 and 191 proteins being exclusive of either condition. Bioinformatic analysis revealed promising protein biomarkers for the discrimination between control and tumor (TATA-binding protein-associated factor 15 and S100 protein B). Moreover, Thymosin beta-4 (TMSB4X) and CD109, and 14.3.3 and HSP90 alpha could discriminate among other brain tumors and low-grade gliomas plus glyoneuronal tumors/pilocytic astrocytoma, or embryonal tumors/medulloblastoma. Biomarkers were validated by ELISA assay. Our method was able to distinguish among brain tumor vs non-tumor/hemorrhagic conditions (controls) and to differentiate two large classes of brain tumors. Further prospective studies may assess whether the biomarkers proposed by our discovery approach can be identified in other bodily fluids, therefore less invasively, and are useful to guide therapy and predict recurrences.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Armando Cama
- Department of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Pavanello
- Department of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Bartolucci
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Morana
- Unit of Neuroradiology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Maria Luisa Garré
- Department of Neuroncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- UO of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Panfoli
- Dipartimento di Farmacia (DIFAR), Università di Genova, V.le Benedetto XV, 3, 16132, Genoa, Italy.
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
37
|
Trivedi A, Khan MA, Bade G, Talwar A. Orchestration of Neutrophil Extracellular Traps (Nets), a Unique Innate Immune Function during Chronic Obstructive Pulmonary Disease (COPD) Development. Biomedicines 2021; 9:53. [PMID: 33435568 PMCID: PMC7826777 DOI: 10.3390/biomedicines9010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Morbidity, mortality and economic burden caused by chronic obstructive pulmonary disease (COPD) is a significant global concern. Surprisingly, COPD is already the third leading cause of death worldwide, something that WHO had not predicted to occur until 2030. It is characterized by persistent respiratory symptoms and airway limitation due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles of gases. Neutrophil is one of the key infiltrated innate immune cells in the lung during the pathogenesis of COPD. Neutrophils during pathogenic attack or injury decide to undergo for a suicidal death by releasing decondensed chromatin entangled with antimicrobial peptides to trap and ensnare pathogens. Casting neutrophil extracellular traps (NETs) has been widely demonstrated to be an effective mechanism against invading microorganisms thus controlling overwhelming infections. However, aberrant and massive NETs formation has been reported in several pulmonary diseases, including chronic obstructive pulmonary disease. Moreover, NETs can directly induce epithelial and endothelial cell death resulting in impairing pulmonary function and accelerating the progression of the disease. Therefore, understanding the regulatory mechanism of NET formation is the need of the hour in order to use NETs for beneficial purpose and controlling their involvement in disease exacerbation. For example, DNA neutralization of NET proteins using protease inhibitors and disintegration with recombinant human DNase would be helpful in controlling excess NETs. Targeting CXC chemokine receptor 2 (CXCR2) would also reduce neutrophilic inflammation, mucus production and neutrophil-proteinase mediated tissue destruction in lung. In this review, we discuss the interplay of NETs in the development and pathophysiology of COPD and how these NETs associated therapies could be leveraged to disrupt NETopathic inflammation as observed in COPD, for better management of the disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Meraj A. Khan
- Translational Medicine, SickKids Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Geetanjali Bade
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Anjana Talwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| |
Collapse
|
38
|
Bruschi M, Moroni G, Sinico RA, Franceschini F, Fredi M, Vaglio A, Cavagna L, Petretto A, Pratesi F, Migliorini P, Manfredi A, Ramirez GA, Esposito P, Negrini S, Trezzi B, Emmi G, Santoro D, Scolari F, Volpi S, Mosca M, Tincani A, Candiano G, Prunotto M, Verrina E, Angeletti A, Ravelli A, Ghiggeri GM. Neutrophil Extracellular Traps in the Autoimmunity Context. Front Med (Lausanne) 2021; 8:614829. [PMID: 33829021 PMCID: PMC8019736 DOI: 10.3389/fmed.2021.614829] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
The formation of neutrophil extracellular traps (NETs) is a strategy utilized by neutrophils for capturing infective agents. Extracellular traps consist in a physical net made of DNA and intracellular proteins externalized from neutrophils, where bacteria and viruses are entrapped and killed by proteolysis. A complex series of events contributes to achieving NET formation: signaling from infectious triggers comes first, followed by decondensation of chromatin and extrusion of the nucleosome components (DNA, histones) from the nucleus and, after cell membrane breakdown, outside the cell. NETs are composed of either DNA or nucleosome proteins and hundreds of cytoplasm proteins, a part of which undergo post-translational modification during the steps leading to NETs. There is a thin balance between the production and the removal of circulating NETs from blood where digestion of DNA by circulating DNases 1 and IL3 has a critical role. A delay in NET removal may have consequences for autoimmunity. Recent studies have shown that circulating NET levels are increased in systemic lupus erythematosus (SLE) for a functional block of NET removal mediated by anti-DNase antibodies or, in rare cases, by DNase IL3 mutations. In SLE, the persistence in circulation of NETs signifies elevated concentrations of either free DNA/nucleosome components and oxidized proteins that, in some cases, are recognized as non-self and presented to B-cells by Toll-like receptor 9 (TLR9). In this way, it is activated as an immunologic response, leading to the formation of IgG2 auto-antibody. Monitoring serum NET levels represents a potential new way to herald the development of renal lesions and has clinical implications. Modulating the balance between NET formation and removal is one of the objectives of basic research that are aimed to design new drugs for SLE. Clinical Trial Registration Number: The Zeus study was registered at https://clinicaltrials.gov (study number: NCT02403115).
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gabriella Moroni
- Division of Nephrology and Dialysis Fondazione IRCCS Ca' Granda Ospedale Maggiore, Milan, Italy
| | | | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST Spedali Civili and Università of Brescia, Brescia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology, ASST Spedali Civili and Università of Brescia, Brescia, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | - Angelo Manfredi
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giuseppe A. Ramirez
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pasquale Esposito
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genoa, Italy
| | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Barbara Trezzi
- Department of Medicine and Surgery, University of Milan, Bicocca, Italy
| | - Giacomo Emmi
- Lupus Clinic Department of Biomedicine, University of Florence, University Hospital Careggi, Florence, Italy
| | - Domenico Santoro
- Nephrology and Dialysis Unit, University of Messina and G. Martino Hospital, Messina, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, University of Brescia and Ospedale di Montichiari, Brescia, Italy
| | - Stefano Volpi
- Division of Paediatric Rheumatology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Mosca
- Rheumatologu Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Angela Tincani
- Rheumatology and Clinical Immunology, ASST Spedali Civili and Università of Brescia, Brescia, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angelo Ravelli
- Division of Paediatric Rheumatology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- *Correspondence: Gian Marco Ghiggeri
| |
Collapse
|
39
|
Ghiggeri GM, Seitz-Polski B, Justino J, Zaghrini C, Payré C, Brglez V, Dolla G, Sinico A, Scolari F, Vaglio A, Prunotto M, Candiano G, Radice A, Bruschi M, Lambeau G. Multi-Autoantibody Signature and Clinical Outcome in Membranous Nephropathy. Clin J Am Soc Nephrol 2020; 15:1762-1776. [PMID: 33257410 PMCID: PMC7769033 DOI: 10.2215/cjn.02500220] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Patients with membranous nephropathy can have circulating autoantibodies against membrane-bound (phospholipase A2 receptor 1 [PLA2R1] and thrombospondin type-1 domain containing 7A [THSD7A]) and intracellular (aldose reductase, SOD2, and α-enolase) podocyte autoantigens. We studied their combined association with clinical outcomes. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Serum levels of anti-PLA2R1, anti-THSD7A, anti-aldose reductase, anti-SOD2, and anti-α-enolase autoantibodies were determined in 285 patients at diagnosis and during follow-up using standardized and homemade assays. An eGFR>60 ml/min per 1.73 m2 and remission of proteinuria (<0.3/<3.5 g per d) after 12 months were the outcomes of interest. RESULTS At diagnosis, 182 (64%), eight (3%), and 95 (33%) patients were anti-PLA2R1+, anti-THSD7A+, and double negative, respectively. The prevalence of a detectable antibody to at least one intracellular antigen was similarly distributed in patients who were anti-PLA2R1+ (n=118, 65%) and double negative (n=64, 67%). Positivity for anti-PLA2R1, anti-SOD2, and anti-α-enolase antibodies and higher titers at diagnosis were associated with poor clinical outcome independently to each other. Combined positivity for anti-PLA2R1, anti-SOD2, and anti-α-enolase was associated with highest risk of poor outcome (odds ratio, 5.5; 95% confidence interval, 1.2 to 24; P=0.01). In Kaplan-Meier analysis, patients who were anti-PLA2R1+/anti-SOD2+ or anti-PLA2R1+/anti-α-enolase+ had lower eGFR at 12 months compared with patients who were anti-PLA2R1+/anti-SOD2- or anti-α-enolase-. Predictive tests (net reclassification index and area under the curve-receiver-operating characteristic analysis) showed that combined assessment of antibodies improved classification of outcome in 22%-34% of cases for partial remission of proteinuria and maintenance of normal eGFR. For patients with nephrotic syndrome at diagnosis, anti-SOD2 positivity and high anti-PLA2R1 titer were associated with a lack of complete remission. Patients who were anti-PLA2R1-/anti-intracellular antigens- had the lowest proteinuria and the highest eGFR at diagnosis and the lowest risk of lower eGFR at 12 months. Epitope spreading was present in 81% of patients who were anti-PLA2R1+ and was associated with increased positivity for intracellular antigens and poor eGFR at diagnosis and 12 months. CONCLUSIONS Combined serological analysis of autoantibodies targeting membrane-bound and intracellular autoantigens identifies patients with poor clinical outcomes.
Collapse
Affiliation(s)
- Gian Marco Ghiggeri
- Department of Pediatric and Hemato-Oncology Science, Institute Giannina Gaslini Scientific Institute for Research, Hospitalization and Healthcare, Nephrology, Dialysis and Transplantation Unit, Genoa, Italy
| | - Barbara Seitz-Polski
- University Côte d'Azur, National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia Antipolis, Nice, France.,Department of Immunology, University Côte d'Azur, Nice Hospital, Nice, France.,Centre de Référence Maladies Rares Syndrome Néphrotique Idiopathique, CHU de Nice, Université Côte d'Azur, Nice, France.,Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Joana Justino
- University Côte d'Azur, National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia Antipolis, Nice, France
| | - Christelle Zaghrini
- University Côte d'Azur, National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia Antipolis, Nice, France
| | - Christine Payré
- University Côte d'Azur, National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia Antipolis, Nice, France
| | - Vesna Brglez
- University Côte d'Azur, National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia Antipolis, Nice, France.,Department of Immunology, University Côte d'Azur, Nice Hospital, Nice, France.,Centre de Référence Maladies Rares Syndrome Néphrotique Idiopathique, CHU de Nice, Université Côte d'Azur, Nice, France.,Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Guillaume Dolla
- University Côte d'Azur, National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia Antipolis, Nice, France
| | - Alberto Sinico
- Department of Medicine and Surgery, University of Bicocca, Milan, Italia
| | - Francesco Scolari
- Nephrology and Dialysis Unit, University of Brescia, Montichiari Hospital, Montichiari, Italy
| | - Augusto Vaglio
- Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Parma, Italy
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Giovanni Candiano
- Institute Giannina Gaslini Scientific Institute for Research, Hospitalization and Healthcare, Molecular Nephrology Laboratory, Genoa, Italy
| | - Antonella Radice
- Microbiology Institute, ASST Santi Paolo e Carlo, S. Carlo Borromeo Hospital, Milan, Italy
| | - Maurizio Bruschi
- Institute Giannina Gaslini Scientific Institute for Research, Hospitalization and Healthcare, Molecular Nephrology Laboratory, Genoa, Italy
| | - Gérard Lambeau
- University Côte d'Azur, National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia Antipolis, Nice, France
| | | |
Collapse
|
40
|
Hofbauer TM, Ondracek AS, Mangold A, Scherz T, Nechvile J, Seidl V, Brostjan C, Lang IM. Neutrophil Extracellular Traps Induce MCP-1 at the Culprit Site in ST-Segment Elevation Myocardial Infarction. Front Cell Dev Biol 2020; 8:564169. [PMID: 33240874 PMCID: PMC7680894 DOI: 10.3389/fcell.2020.564169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Leukocyte-mediated inflammation is crucial in ST-segment elevation myocardial infarction (STEMI). We recently observed that neutrophil extracellular traps (NETs) are increased at the culprit site, promoting activation and differentiation of fibrocytes, cells with mesenchymal and leukocytic properties. Fibrocyte migration is mediated by monocyte chemoattractant protein (MCP)-1 and C-C chemokine receptor type 2 (CCR2). We investigated the interplay between NETs, fibrocyte function, and MCP-1 in STEMI. Methods Culprit site and peripheral blood samples of STEMI patients were drawn during primary percutaneous coronary intervention. MCP-1 and the NET marker citrullinated histone H3 (citH3) were measured by ELISA while double-stranded DNA was stained with a fluorescent dye. The influence of MCP-1 on NET formation in vitro was assessed using isolated healthy donor neutrophils. Human coronary artery endothelial cells (hCAECs) were stimulated with isolated NETs, and MCP-1 gene expression was measured by ELISA and qPCR. CCR2 expression of culprit site and peripheral blood fibrocytes was characterized by flow cytometry. Healthy donor fibrocyte receptor expression and chemotaxis were investigated in response to stimulation with MCP-1 and NETs in vitro. Results NETs and concentrations of MCP-1 were increased at the culprit site of 50 consecutive STEMI patients. NET stimulation of hCAECs induced transcription of ICAM-1, IL-6, and MCP-1, and secretion of MCP-1. MCP-1 promoted NET formation of healthy donor neutrophils in vitro. An increasing MCP-1 gradient correlated with fibrocyte accumulation at the culprit site. Locally increased MCP-1 levels were negatively correlated with CCR2 expression on fibrocytes. MCP-1 and NETs induced CCR2 downregulation on fibrocytes in vitro. NETs did not function as a chemotactic stimulus for fibrocytes or monocytes and could block migration in response to MCP-1 for both cell populations. Conclusion NETs function as signaling scaffolds at the culprit site of STEMI. NETs assist MCP-1 and ICAM-1 release from culprit site coronary artery endothelial cells. MCP-1 facilitates further NETosis. Monocytes enter the culprit site along an MCP-1 gradient, to transdifferentiate into fibrocytes in the presence of NETs.
Collapse
Affiliation(s)
- Thomas M Hofbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Anna S Ondracek
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Andreas Mangold
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherz
- Department of Dermatology and Venereology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Johanna Nechvile
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Veronika Seidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Linnemann C, Venturelli S, Konrad F, Nussler AK, Ehnert S. Bio-impedance measurement allows displaying the early stages of neutrophil extracellular traps. EXCLI JOURNAL 2020; 19:1481-1495. [PMID: 33250682 PMCID: PMC7689246 DOI: 10.17179/excli2020-2868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022]
Abstract
Neutrophils are the most abundant immune cells in the blood. Besides common immune defense mechanisms, releasing their DNA covered with antimicrobial proteases and histones represent another strong defense mechanism: neutrophil extracellular traps. In vitro the two most common inducers of these, so called, NETs are calcium ionophores (CI) and PMA (Phorbol 12-myristate 13-acetate). Following stimulation monitoring of NET release is necessary. For now, the methods of choice are quantification of free DNA by fluorescent dyes or analysis of immunofluorescence images. As a new method we tested bio-impedance monitoring of neutrophils after stimulation with the two inducers PMA and CI in gold-electrode coated plates. Bio-impedance (cell index) was measured over time. Results were compared to the monitoring of NETs by the fluorescent DNA-binding dye Sytox Green and immunofluorescence analysis. Cell index peaked about 25 min faster following CI stimulation than following PMA stimulation. The activation in Sytox Green Assay was significantly later detectable for PMA (+ approx. 90 min) but not for CI stimulation. The earlier and faster activation by CI was also confirmed by immunofluorescence staining. Our data suggest that bio-impedance measurement allows an easy online tracking of early neutrophil activation. This offers new opportunities to monitor early phases and stimuli-dependent dynamics of NETosis.
Collapse
Affiliation(s)
- Caren Linnemann
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tuebingen, Eberhard Karls Universität Tuebingen, Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University Hospital Tuebingen, Tuebingen, Germany
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Franziska Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tuebingen, Eberhard Karls Universität Tuebingen, Tuebingen, Germany
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tuebingen, Eberhard Karls Universität Tuebingen, Tuebingen, Germany
| |
Collapse
|
42
|
Wang J, Li Q, Yin Y, Zhang Y, Cao Y, Lin X, Huang L, Hoffmann D, Lu M, Qiu Y. Excessive Neutrophils and Neutrophil Extracellular Traps in COVID-19. Front Immunol 2020; 11:2063. [PMID: 33013872 PMCID: PMC7461898 DOI: 10.3389/fimmu.2020.02063] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Cases of excessive neutrophil counts in the blood in severe coronavirus disease (COVID-19) patients have drawn significant attention. Neutrophil infiltration was also noted on the pathological findings from autopsies. It is urgent to clarify the pathogenesis of neutrophils leading to severe pneumonia in COVID-19. Methods: A retrospective analysis was performed on 55 COVID-19 patients classified as mild (n = 22), moderate (n = 25), and severe (n = 8) according to the Guidelines released by the National Health Commission of China. Trends relating leukocyte counts and lungs examined by chest CT scan were quantified by Bayesian inference. Transcriptional signatures of host immune cells of four COVID19 patients were analyzed by RNA sequencing of lung specimens and BALF. Results: Neutrophilia occurred in 6 of 8 severe patients at 7-19 days after symptom onset, coinciding with lesion progression. Increasing neutrophil counts paralleled lesion CT values (slope: 0.8 and 0.3-1.2), reflecting neutrophilia-induced lung injury in severe patients. Transcriptome analysis revealed that neutrophil activation was correlated with 17 neutrophil extracellular trap (NET)-associated genes in COVID-19 patients, which was related to innate immunity and interacted with T/NK/B cells, as supported by a protein-protein interaction network analysis. Conclusion: Excessive neutrophils and associated NETs could explain the pathogenesis of lung injury in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Jun Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Qian Li
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yongmei Yin
- Radiology Department, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Yingying Zhang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Yingying Cao
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
| | - Xiaoming Lin
- Radiology Department, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Lihua Huang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
- Department of Infectious Diseases, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Yuanwang Qiu
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
- Radiology Department, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
- Department of Infectious Diseases, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| |
Collapse
|
43
|
Lv D, Xu Y, Cheng H, Ke Y, Zhang X, Ying K. A novel cell-based assay for dynamically detecting neutrophil extracellular traps-induced lung epithelial injuries. Exp Cell Res 2020; 394:112101. [PMID: 32474064 PMCID: PMC7256615 DOI: 10.1016/j.yexcr.2020.112101] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are common lung disorders characterized by alveolar-capillary barrier disruption and dyspnea, which can cause substantial morbidity and mortality. Currently, a cluster of acute respiratory illnesses, known as novel coronavirus (2019-nCoV)-infected pneumonia (NCIP), which allegedly originally occurred in Wuhan, China, has increased rapidly worldwide. The critically ill patients with ARDS have high mortality in subjects with comorbidities. Previously, the excessive recruitment and activation of neutrophils (polymorphonuclear leukocytes [PMNs]), accompanied by neutrophil extracellular traps (NETs) formation were reported being implicated in the pathogenesis of ALI/ARDS. However, the direct visualization of lung epithelial injuries caused by NETs, and the qualitative and quantitative evaluations of this damage are still lacking. Additionally, those already reported methods are limited for their neglect of the pathological role exerted by NETs and focusing only on the morphological features of NETosis. Therefore, we established a cell-based assay for detecting NETs during lung epithelial cells-neutrophils co-culture using the xCELLigence system, a recognized real-time, dynamic, label-free, sensitive, and high-throughput apparatus. Our results demonstrated that lung epithelial injuries, reflected by declines in cell index (CI) values, could be induced by lipopolysaccharide (LPS)-activated PMNs, or NETs in a time and dose-dependent manner. NETs generation was verified to be the major contributor to the cytotoxicity of activated PMNs; protein components of NETs were the prevailing cytotoxic mediators. Moreover, this cell-based assay identified that PMNs from severe pneumonia patients had a high NETs formative potential. Additionally, acetylsalicylic acid (ASA) and acetaminophen (APAP) were discovered alleviating NETs formation. Thus, this study not only presents a new methodology for detecting the pathophysiologic role of NETs but also lays down a foundation for exploring therapeutic interventions in an effort to cure ALI/ARDS in the clinical setting of severe pneumonia, including the emerging of NCIP. A real-time, dynamical and label-free assay for detecting NETs is established using the xCELLigence system. This establishment relies on the co-culture of lung epithelia and neutrophils, focusing on evaluating NETs’ effects. This cell-based assay has feasibility and practicality in clinical applications. This methodology builds a solid foundation for exploring therapies for ALI/ARDS, including the emerging NCIP.
Collapse
Affiliation(s)
- Dandan Lv
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Yiming Xu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Kejing Ying
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
44
|
Romero A, Novoa B, Figueras A. Extracellular traps (ETosis) can be activated through NADPH-dependent and -independent mechanisms in bivalve mollusks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103585. [PMID: 31877326 DOI: 10.1016/j.dci.2019.103585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
In mammals, NETosis is a process in which the activation of neutrophils induces the release of chromatin. This DNA prevents the spread of infection by trapping, neutralizing and killing microorganisms during their interaction with antimicrobial proteins. The release of NETs is usually triggered by stimuli that promote reactive oxygen species production. Although this release of extracellular traps (ETs) has been described in some groups of invertebrates, there is a lack of basic information about them in these animals. In the present study, we describe a robust and reproducible model for the induction, analysis and quantification of ETs production using hemocytes from the bivalve Mytilus galloprovincialis. We analyzed the structure of ETs and the involvement of the ROS in the activation of this process. It was demonstrated that the formation of ETs in hemocytes can be triggered through NOX-dependent and NOX-independent pathways, depending on the stimuli used.
Collapse
Affiliation(s)
- Alejandro Romero
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| |
Collapse
|
45
|
Billing AM, Knudsen KB, Chetwynd AJ, Ellis LJA, Tang SVY, Berthing T, Wallin H, Lynch I, Vogel U, Kjeldsen F. Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS NANO 2020; 14:4096-4110. [PMID: 32167280 PMCID: PMC7498156 DOI: 10.1021/acsnano.9b08818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 05/28/2023]
Abstract
Despite broad application of magnetic nanoparticles in biomedicine and electronics, only a few in vivo studies on biocompatibility are available. In this study, toxicity of magnetic metal oxide nanoparticles on the respiratory system was examined in vivo by single intratracheal instillation in mice. Bronchoalveolar lavage fluid (BALF) samples were collected for proteome analyses by LC-MS/MS, testing Fe3O4 nanoparticles doped with increasing amounts of cobalt (Fe3O4, CoFe2O4 with an iron to cobalt ratio 5:1, 3:1, 1:3, Co3O4) at two doses (54 μg, 162 μg per animal) and two time points (day 1 and 3 days postinstillation). In discovery phase, in-depth proteome profiling of a few representative samples allowed for comprehensive pathway analyses. Clustering of the 681 differentially expressed proteins (FDR < 0.05) revealed general as well as metal oxide specific responses with an overall strong induction of innate immunity and activation of the complement system. The highest expression increase could be found for a cluster of 39 proteins, which displayed strong dose-dependency to iron oxide and can be attributed to neutrophil extracellular trap (NET) formation. In-depth proteome analysis expanded the knowledge of in vivo NET formation. During screening, all BALF samples of the study (n = 166) were measured label-free as single-injections after a short gradient (21 min) LC separation using the Evosep One system, validating the findings from the discovery and defining protein signatures which enable discrimination of lung inflammation. We demonstrate a proteomics-based toxicity screening with high sample throughput easily transferrable to other nanoparticle types. Data are available via ProteomeXchange with identifier PXD016148.
Collapse
Affiliation(s)
- Anja M. Billing
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| | - Kristina B. Knudsen
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Andrew J. Chetwynd
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Laura-Jayne A. Ellis
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | - Trine Berthing
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Håkan Wallin
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Iseult Lynch
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Ulla Vogel
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
- Department
of Health Technology, Technical University
of Denmark, Lyngby 2800, Denmark
| | - Frank Kjeldsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
46
|
Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020; 9:cells9040915. [PMID: 32276504 PMCID: PMC7226846 DOI: 10.3390/cells9040915] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Following fifteen years of research, neutrophil extracellular traps (NETs) are widely reported in a large range of inflammatory infectious and non-infectious diseases. Cumulating evidences from in vitro, in vivo and clinical diagnostics suggest that NETs may play a crucial role in inflammation and autoimmunity in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Most likely, NETs contribute to breaking self-tolerance in autoimmune diseases in several ways. During this review, we discuss the current knowledge on how NETs could drive autoimmune responses. NETs can break self-tolerance by being a source of autoantigens for autoantibodies found in autoimmune diseases, such as anti-citrullinated protein antibodies (ACPAs) in RA, anti-dsDNA in SLE and anti-myeloperoxidase and anti-protein 3 in AAV. Moreover, NET components could accelerate the inflammatory response by mediating complement activation, acting as danger-associated molecular patterns (DAMPs) and inflammasome activators, for example. NETs also can activate other immune cells, such as B cells, antigen-presenting cells and T cells. Additionally, impaired clearance of NETs in autoimmune diseases prolongs the presence of active NETs and their components and, in this way, accelerate immune responses. NETs have not only been implicated as drivers of inflammation, but also are linked to resolution of inflammation. Therefore, NETs may be central regulators of inflammation and autoimmunity, serve as biomarkers, as well as promising targets for future therapeutics of inflammatory autoimmune diseases.
Collapse
|
47
|
Jiang HX, Feng Z, Zhu ZB, Xia CH, Zhang W, Guo J, Liu BL, Wang Y, Liu YN, Liu WJ. Advances of the experimental models of idiopathic membranous nephropathy (Review). Mol Med Rep 2020; 21:1993-2005. [PMID: 32186751 PMCID: PMC7115214 DOI: 10.3892/mmr.2020.11014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Idiopathic membranous nephropathy (IMN) is one of the main types of chronic kidney disease in adults and one of the most common causes of end-stage renal disease. In recent years, the morbidity of IMN among primary glomerular diseases has markedly increased, while the pathogenesis of the disease remains unclear. To address this, a number of experimental models, including Heymann nephritis, anti-thrombospondin type-1 domain-containing 7A antibody-induced IMN, cationic bovine serum albumin, anti-human podocyte antibodies and zymosan-activated serum-induced C5b-9, have been established. This review comprehensively summarized the available animal and cell models for IMN. The limitations and advantages of the current models were discussed and two improved models were introduced to facilitate the selection of an appropriate model for further studies on IMN.
Collapse
Affiliation(s)
- Han Xue Jiang
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing 101200, P.R. China
| | - Ze Bing Zhu
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Chen Hui Xia
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Wenting Zhang
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Jing Guo
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Bao-Li Liu
- Department of Nephrology, Beijing Traditional Chinese Medicine Hospital, Capital Medical University, Beijing 100010, P.R. China
| | - Yaoxian Wang
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yu Ning Liu
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| |
Collapse
|
48
|
Granger V, Peyneau M, Chollet-Martin S, de Chaisemartin L. Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work. Front Immunol 2019; 10:2824. [PMID: 31849989 PMCID: PMC6901596 DOI: 10.3389/fimmu.2019.02824] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) have been initially described as main actors in host defense owing to their ability to immobilize and sometimes kill microorganisms. Subsequent studies have demonstrated their implication in the pathophysiology of various diseases, due to the toxic effects of their main components on surrounding tissues. Several distinct NETosis pathways have been described in response to various triggers. Among these triggers, IgG immune complexes (IC) play an important role since they induce robust NET release upon binding to activating FcγRs on neutrophils. Few in vitro studies have documented the mechanisms of IC-induced NET release and evidence about the partners involved is controversial. In vivo, animal models and clinical studies have strongly suggested the importance of IgG IC-induced NET release for autoimmunity and anaphylaxis. In this review, we will focus on two autoimmune diseases in which NETs are undoubtedly major players, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We will also discuss anaphylaxis as another example of disease recently associated with IC-induced NET release. Understanding the role of IC-induced NETs in these settings will pave the way for new diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Vanessa Granger
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marine Peyneau
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Luc de Chaisemartin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
49
|
Ghiggeri GM, D’Alessandro M, Bartolomeo D, Degl’Innocenti ML, Magnasco A, Lugani F, Prunotto M, Bruschi M. An Update on Antibodies to Necleosome Components as Biomarkers of Sistemic Lupus Erythematosus and of Lupus Flares. Int J Mol Sci 2019; 20:ijms20225799. [PMID: 31752186 PMCID: PMC6888059 DOI: 10.3390/ijms20225799] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with variable clinical expression. It is a potentially devastating condition affecting mostly women and leading to clinically unpredictable outcomes. Remission and flares may, in fact, alternate over time and a mild involvement limited to few articular sites may be followed by severe and widespread organ damage. SLE is the prototype of any autoimmune condition and has, for this reason, attracted the interest of basic immunologists. Therapies have evolved over time and clinical prognosis has, in parallel, been improved. What clinicians still lack is the possibility to use biomarkers of the disease as predictors of outcome and, in this area, several studies are trying to find solutions. Circulating autoantibodies are clearly a milestone of clinical research and the concrete possibility is to integrate, in the future, classical markers of activation (like C3) with target organ autoantibodies. Anti-dsDNA antibodies represent a basic point in any predictive attempt in SLE and should be considered the benchmark for any innovative proposal in the wide field of target organ pathologies related to SLE. DNA is part of the nucleosome that is the basic unit of chromatin. It consists of DNA wrapped around a histone octamer made of 2 copies each of Histone 2A, 2B, 3, and 4. The nucleosome has a plastic organization that varies over time and has the potential to stimulate the formation of antibodies directed to the whole structure (anti-nucleosome) or its parts (anti-dsDNA and anti-Histones). Here, we present an updated review of the literature on antibodies directed to the nucleosome and the nucleosome constituents, i.e., DNA and Histones. Wetriedto merge the data first published more than twenty years ago with more recent results to create a balanced bridge between old dogma and more recent research that could serve as a stimulus to reconsider mechanisms for SLE. The formation of large networks would provide the chance of studying large cohorts of patients and confirm what already presented in small sample size during the last years.
Collapse
Affiliation(s)
- Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto G. Gaslini, Largo G. Gaslini 5, 16147 Genoa, Italy (D.B.); (A.M.)
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS IstitutoGianninaGaslini, 16147 Genoa, Italy; (F.L.); (M.B.)
- Correspondence: ; Tel.: (+39)-010-380742; Fax: (+39)-010-395214
| | - Matteo D’Alessandro
- Division of Nephrology, Dialysis and Transplantation, Istituto G. Gaslini, Largo G. Gaslini 5, 16147 Genoa, Italy (D.B.); (A.M.)
| | - Domenico Bartolomeo
- Division of Nephrology, Dialysis and Transplantation, Istituto G. Gaslini, Largo G. Gaslini 5, 16147 Genoa, Italy (D.B.); (A.M.)
| | - Maria Ludovica Degl’Innocenti
- Division of Nephrology, Dialysis and Transplantation, Istituto G. Gaslini, Largo G. Gaslini 5, 16147 Genoa, Italy (D.B.); (A.M.)
| | - Alberto Magnasco
- Division of Nephrology, Dialysis and Transplantation, Istituto G. Gaslini, Largo G. Gaslini 5, 16147 Genoa, Italy (D.B.); (A.M.)
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS IstitutoGianninaGaslini, 16147 Genoa, Italy; (F.L.); (M.B.)
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland;
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS IstitutoGianninaGaslini, 16147 Genoa, Italy; (F.L.); (M.B.)
- Fondazione per le MalattieRenalinel Bambino, 16100 Genoa, Italy
| |
Collapse
|
50
|
Whittall-García LP, Torres-Ruiz J, Zentella-Dehesa A, Tapia-Rodríguez M, Alcocer-Varela J, Mendez-Huerta N, Gómez-Martín D. Neutrophil extracellular traps are a source of extracellular HMGB1 in lupus nephritis: associations with clinical and histopathological features. Lupus 2019; 28:1549-1557. [PMID: 31619143 DOI: 10.1177/0961203319883936] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to analyze the expression of the high mobility group box-1 (HMGB1) protein in neutrophil extracellular traps (NETs) of patients with lupus nephritis (LN) and its association with clinical and histopathological features of the disease. METHODS Twenty-three patients with biopsy-confirmed LN and 14 systemic lupus erythematosus (SLE) patients with active disease (SLE Disease Activity Index (SLEDAI) score ≥ 6) and no evidence of LN were included. Clinical and laboratory features were recorded. NETs and the expression of HMGB1 were assessed by confocal microscopy, and serum HMGB1 levels were measured by ELISA. RESULTS In comparison to patients without kidney disease, patients with LN had a higher expression of HMGB1 in spontaneous (57 vs. 30.4; p = 0.027) and lipopolysaccharide (LPS)-induced (55.8 vs. 24.9; p = 0.005) NETs. We found a positive correlation between serum HMGB1 and the expression of HMGB1 in LPS-induced NETs (r = 0.447, p = 0.017). The expression of HMGB1 in spontaneous NETs correlated with SLEDAI score (r = 0.514, p = 0.001), anti-dsDNA antibodies (r = 0.467, p = 0.004), the rate of glomerular filtration descent (r = 0.543, p = 0.001), and diverse histopathological components of active nephritis in the kidney biopsy, such as the activity index (r = 0.581, p = 0.004), fibrinoid necrosis (r = 0.603, p = 0.002), and cellular crescents (r = 0.486, p = 0.019). CONCLUSIONS In patients with SLE, NETs are a source of extracellular HMGB1. The expression of HMGB1 in NETs is higher among patients with LN, which correlates with clinical and histopathological features of active nephritis and suggest a possible role of this alarmin in the pathophysiology of kidney damage in SLE.
Collapse
Affiliation(s)
- L P Whittall-García
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Emergency Medicine Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - A Zentella-Dehesa
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M Tapia-Rodríguez
- Microscopy Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - N Mendez-Huerta
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - D Gómez-Martín
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico.,Flow Cytometry Unit, Red de Apoyo a la Investigación. Coordinación de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|