1
|
Zekri MA, Leimhofer C, Drexler N, Lang I. A rapid freezing method to determine tissue layer thickness in drought-stressed leaves. J Microsc 2025; 297:316-324. [PMID: 38282132 PMCID: PMC11808452 DOI: 10.1111/jmi.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Plants have been affected by water stress ever since they settled on dry land. In severe and persisting drought, plant leaves are wilting. However, a documentation at the anatomical level of the minute changes that occur before wilting is challenging. On the other hand, understanding the anatomical alteration in plant leaves with respect to water stress provides a stronger basis to study molecular and submolecular processes through which plants enhance drought tolerance. In this work, we applied an affordable method to visualise mesophyll layers of Arabidopsis thaliana cell lines without preparation steps that would alter the volume of the cells. We rapidly plunge-froze the leaves in liquid nitrogen, cut them while in the N2 bath, and immediately imaged the mesophyll cross sections in a scanning electron microscope. We applied a reduction of watering from 60 to 40 to 20 mL per day and investigated two time points, 7 and 12 days, respectively. Interestingly, the overall thickness of leaves increased in water stress conditions. Our results showed that the palisade and spongy layers behaved differently under varying watering regimes. Moreover, the results showed that this method can be used to image leaf sections after drought stress without the risk of artefacts or swelling caused by contact to liquids as during chemical fixation.
Collapse
Affiliation(s)
- Maryam Alsadat Zekri
- Faculty of Life SciencesDepartment of Functional and Evolutionary Ecology, University of ViennaViennaAustria
| | - Carina Leimhofer
- Faculty of Life SciencesDepartment of Functional and Evolutionary Ecology, University of ViennaViennaAustria
| | | | - Ingeborg Lang
- Faculty of Life SciencesDepartment of Functional and Evolutionary Ecology, University of ViennaViennaAustria
| |
Collapse
|
2
|
Wang Z, White JD, Hockaday WC. Understory Environmental Conditions Drive Leaf Level-Lipid Biosynthesis in a Deciduous and Evergreen Tree Species. PLANT, CELL & ENVIRONMENT 2025; 48:1977-1992. [PMID: 39533677 PMCID: PMC11788954 DOI: 10.1111/pce.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Plants in the understory experience climatic conditions affected by the overstory canopy that influence physiological and biochemical processes. Here, we investigate the relationships of leaf lipid molecular abundances to leaf water content, transmitted irradiance, and free-air temperature (Tair) from deciduous angiosperm (Quercus buckleyi) and evergreen gymnosperm (Juniperus ashei) understory trees across an elevation gradient in a central Texas (USA) woodland. Monthly sampling from 04/2019 to 01/2020 revealed that long-chain leaf waxes (≥ C27) accumulated with leaf water deficit over the growing season for both tree species. Higher transmitted light during the hottest, driest months was due to a decreased leaf area index (LAI) in the canopy as leaf shedding is a common drought response. Isoprenoids (sesqui-, di-terpenoids, phytosterols) in leaves changed by month with changing LAI and transmittance associated with monthly Tair changes. The chain length of n-alkanols in Q. buckleyi shifted with seasonal LAI at different topographic positions. The unsaturation of fatty acids in both tree species decreased with increased seasonal Tair but showed topography sensitivity. Leaf-level metabolites responded to understory microclimatic variables that were influenced by seasonality and topography.
Collapse
Affiliation(s)
- Zhao Wang
- Department of GeosciencesBaylor UniversityWacoTexasUSA
| | | | | |
Collapse
|
3
|
Heredia A, Benítez JJ, González Moreno A, Domínguez E. Revisiting plant cuticle biophysics. THE NEW PHYTOLOGIST 2024; 244:65-73. [PMID: 39061101 DOI: 10.1111/nph.20009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
The plant cuticle is located at the interface of the plant with the environment, thus acting as a protective barrier against biotic and abiotic external stress factors, and regulating water loss. Additionally, it modulates mechanical stresses derived from internal tissues and also from the environment. Recent advances in the understanding of the hydric, mechanical, thermal, and, to a lower extent, optical and electric properties of the cuticle, as well as their phenomenological connections and relationships are reviewed. An equilibrium based on the interaction among the different biophysical properties is essential to ensure plant growth and development. The notable variability reported in cuticle geometry, surface topography, and microchemistry affects the analysis of some biophysical properties of the cuticle. This review aimed to provide an updated view of the plant cuticle, understood as a modification of the cell wall, in order to establish the state-of-the-art biophysics of the plant cuticle, and to serve as an inspiration for future research in the field.
Collapse
Affiliation(s)
- Antonio Heredia
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, E-29010, Málaga, Spain
| | - José J Benítez
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, E-41092, Seville, Spain
| | - Ana González Moreno
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, E-29010, Málaga, Spain
| | - Eva Domínguez
- Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, E-29750, Málaga, Spain
| |
Collapse
|
4
|
Geilfus CM, Zörb C, Jones JJ, Wimmer MA, Schmöckel SM. Water for agriculture: more crop per drop. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:499-507. [PMID: 38773740 DOI: 10.1111/plb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024]
Abstract
Global crop production in agriculture depends on water availability. Future scenarios predict increasing occurrence of flash floods and rapidly developing droughts accompanied by heatwaves in humid regions that rely on rain-fed agriculture. It is challenging to maintain high crop yields, even in arid and drought-prone regions that depend on irrigation. The average water demand of crops varies significantly, depending on plant species, development stage, and climate. Most crops, such as maize and wheat, require relatively more water during the vegetative phase compared to the ripening phase. In this review, we explain WUE and options to improve water use and thus crop yield. Nutrient management might represent another possibility to manipulate water uptake and use by plants. An emerging topic involves agroforest co-cultivation, where trees in the system facilitate water transfer through hydraulic lift, benefiting neighbouring crops. Other options to enhance crop yield per water use are discussed.
Collapse
Affiliation(s)
- C-M Geilfus
- Department of Plant Nutrition and Soil Science, Hochschule Geisenheim University, Geisenheim, Germany
| | - C Zörb
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - J J Jones
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - M A Wimmer
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - S M Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Zhu R, Chen Z, Lv H, Pan Y, Feng X, Chen G, Hu W, Xu T, Fan F, Gong S, Chen P, Chu Q. Another thread to uncover the aging mystery of white tea: Focusing on the natural nanoparticles in tea infusion. Food Chem 2023; 429:136838. [PMID: 37494755 DOI: 10.1016/j.foodchem.2023.136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Aged white tea (WT) has promising medicinal potential, but how to accurately identify aged white tea is still a difficult problem. Inspired by tea cream, the relationship between the characteristics of nanoparticles in tea infusion and aging time was studied. The results showed that with the increase of aging time, the particle size of white tea nanoparticles (WTNs) decreased gradually. Microscopic images showed that the surface structure of WTNs was changed in three aspects: the waxy layer, the cuticle layer and the palisade tissue. Additional in vitro modeling demonstrated a strong correlation between nanoparticle size and protein and tea polyphenol content. The correlation between nanoparticle sizes and aging time was further verified in aged Pu'er raw tea. Starting with the tea infusion's nanoparticles, this study showed that the aging time of WT would impact the nanoparticles' properties, offering a unique way to determine the aging period of WT.
Collapse
Affiliation(s)
- Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Guicai Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Weilian Hu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tianhua Xu
- Zhejiang Esigma Biotechnology Co., Ltd, No.3, Chunchao Rd, Chang'an Town, Haining City 314422, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Abbas K, Li J, Gong B, Lu Y, Wu X, Lü G, Gao H. Drought Stress Tolerance in Vegetables: The Functional Role of Structural Features, Key Gene Pathways, and Exogenous Hormones. Int J Mol Sci 2023; 24:13876. [PMID: 37762179 PMCID: PMC10530793 DOI: 10.3390/ijms241813876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The deleterious effects of drought stress have led to a significant decline in vegetable production, ultimately affecting food security. After sensing drought stress signals, vegetables prompt multifaceted response measures, eventually leading to changes in internal cell structure and external morphology. Among them, it is important to highlight that the changes, including changes in physiological metabolism, signal transduction, key genes, and hormone regulation, significantly influence drought stress tolerance in vegetables. This article elaborates on vegetable stress tolerance, focusing on structural adaptations, key genes, drought stress signaling transduction pathways, osmotic adjustments, and antioxidants. At the same time, the mechanisms of exogenous hormones such as abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) toward improving the adaptive drought tolerance of vegetables were also reviewed. These insights can enhance the understanding of vegetable drought tolerance, supporting vegetable tolerance enhancement by cultivation technology improvements under changing climatic conditions, which provides theoretical support and technical reference for innovative vegetable stress tolerance breeding and food security.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbo Gao
- Key Laboratory of North China Water-Saving Irrigation Engineering, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
7
|
Mo L, Yao X, Tang H, Li Y, Jiao Y, He Y, Jiang Y, Tian S, Lu L. Genome-Wide Investigation and Functional Analysis Reveal That CsKCS3 and CsKCS18 Are Required for Tea Cuticle Wax Formation. Foods 2023; 12:2011. [PMID: 37238828 PMCID: PMC10217411 DOI: 10.3390/foods12102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cuticular wax is a complex mixture of very long-chain fatty acids (VLCFAs) and their derivatives that constitute a natural barrier against biotic and abiotic stresses on the aerial surface of terrestrial plants. In tea plants, leaf cuticular wax also contributes to the unique flavor and quality of tea products. However, the mechanism of wax formation in tea cuticles is still unclear. The cuticular wax content of 108 germplasms (Niaowang species) was investigated in this study. The transcriptome analysis of germplasms with high, medium, and low cuticular wax content revealed that the expression levels of CsKCS3 and CsKCS18 were strongly associated with the high content of cuticular wax in leaves. Hence, silencing CsKCS3 and CsKCS18 using virus-induced gene silencing (VIGS) inhibited the synthesis of cuticular wax and caffeine in tea leaves, indicating that expression of these genes is necessary for the synthesis of cuticular wax in tea leaves. The findings contribute to a better understanding of the molecular mechanism of cuticular wax formation in tea leaves. The study also revealed new candidate target genes for further improving tea quality and flavor and cultivating high-stress-resistant tea germplasms.
Collapse
Affiliation(s)
- Lilai Mo
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Hu Tang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yan Li
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Yujie Jiao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yumei He
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yihe Jiang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Shiyu Tian
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Litang Lu
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Kumar N, Mishra BK, Liu J, Mohan B, Thingujam D, Pajerowska-Mukhtar KM, Mukhtar MS. Network Biology Analyses and Dynamic Modeling of Gene Regulatory Networks under Drought Stress Reveal Major Transcriptional Regulators in Arabidopsis. Int J Mol Sci 2023; 24:ijms24087349. [PMID: 37108512 PMCID: PMC10139068 DOI: 10.3390/ijms24087349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs.
Collapse
Affiliation(s)
- Nilesh Kumar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Bharat K Mishra
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Jinbao Liu
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Binoop Mohan
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Doni Thingujam
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Karolina M Pajerowska-Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Department of Surgery, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Zuo H, Si X, Li P, Li J, Chen Z, Li P, Chen C, Liu Z, Zhao J. Dynamic change of tea (Camellia sinensis) leaf cuticular wax in white tea processing for contribution to tea flavor formation. Food Res Int 2023; 163:112182. [PMID: 36596123 DOI: 10.1016/j.foodres.2022.112182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Despite some studies on tea leaf cuticular wax, their component changes during dehydration and withering treatments in tea processing and suspected relation with tea flavor quality formation remain unknown. Here, we showed that tea leaf cuticular wax changed drastically in tea leaf development, dehydration, or withering treatment during tea processing, which affected tea flavor formation. Caffeine was found as a major component of leaf cuticular wax. Caffeine and inositol contents in leaf cuticular wax increased during dehydration and withering treatments. Comparisons showed that tea varieties with higher leaf cuticular wax loading produced more aroma than these with lower cuticular wax loading, supporting a positive correlation between tea leaf cuticular wax loading and degradation with white tea aroma formation. Dehydration or withering treatment of tea leaves also increased caffeine and inositol levels in leaf cuticular wax and triggered cuticular wax degradation into various molecules, that could be related to tea flavor formation. Thus, tea leaf cuticular waxes not only protect tea plants but also contribute to tea flavor formation. The study provides new insight into the dynamic changes of tea leaf cuticular waxes for tea plant protection and tea flavor quality formation in tea processing.
Collapse
Affiliation(s)
- Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiongyuan Si
- Biotechnology Center, Anhui Agricultural University, Hefei 230036, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
10
|
Lin SR, Lin YH, Ariyawansa HA, Chang YC, Yu SY, Tsai I, Chung CL, Hung TH. Analysis of the Pathogenicity and Phylogeny of Colletotrichum Species Associated with Brown Blight of Tea ( Camellia sinensis) in Taiwan. PLANT DISEASE 2023; 107:97-106. [PMID: 35657715 DOI: 10.1094/pdis-03-22-0509-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brown blight, a destructive foliar disease of tea, has become a highly limiting factor for tea cultivation in Taiwan. To understand the population composition of the causal agents (Colletotrichum spp.), the fungal diversity in the main tea-growing regions all over Taiwan was surveyed from 2017 to 2019. A collection of 139 Colletotrichum isolates was obtained from 14 tea cultivars in 86 tea plantations. Phylogenic analysis using the ribosomal internal transcribed spacer, glutamine synthetase gene, Apn2-Mat1-2 intergenic spacer, β-tubulin, actin, calmodulin, and glyceraldehyde-3-phosphate dehydrogenase genes together with morphological characterization revealed three species associated with brown blight of tea; namely, Colletotrichum camelliae (95.6% of all isolates), C. fructicola (3.7%), and C. aenigma (0.7%). This is the first report of C. aenigma in Taiwan. The optimal growth temperatures were 25°C for C. camelliae and 25 and 30°C for C. fructicola and C. aenigma. Although C. fructicola and C. aenigma were more adapted to high temperature, C. camelliae was the most pathogenic across different temperatures. Regardless of whether spore suspensions or mycelial discs were used, significantly larger lesions and higher disease incidences were observed for wounded than for nonwounded inoculation and for the third and fourth leaves than for the fifth leaves. Wounded inoculation of detached third and fourth tea leaves with mycelial discs was found to be a reliable and efficient method for assessing the pathogenicity of Colletotrichum spp. within 4 days. Preventive application of fungicides or biocontrol agents immediately after tea pruning and at a young leaf stage would help control the disease.
Collapse
Affiliation(s)
- Shiou-Ruei Lin
- Section of Tea Agronomy, Tea Research and Extension Station, Council of Agriculture, Taoyuan City 326011, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| | - Ying-Hong Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung County 912301, Taiwan
| | - Hiran A Ariyawansa
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| | - Yu-Ching Chang
- Section of Tea Agronomy, Tea Research and Extension Station, Council of Agriculture, Taoyuan City 326011, Taiwan
| | - Si-Ying Yu
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung County 912301, Taiwan
| | - Ichen Tsai
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| | - Ting-Hsuan Hung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| |
Collapse
|
11
|
Cahyo AN, Murti RH, Putra ETS, Oktavia F, Ismawanto S, Montoro P. Rubber Genotypes with Contrasting Drought Factor Index Revealed Different Mechanisms for Drought Resistance in Hevea brasiliensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3563. [PMID: 36559675 PMCID: PMC9781094 DOI: 10.3390/plants11243563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
It is predicted that drought will be more frequent and sustained in the future, which may affect the decline of rubber tree production. Therefore, it is critical to research some of the variables related to the drought-resistance mechanism of the rubber tree. As a result, it can be used to guide the selection of new rubber drought-resistance clones. The goal of this study was to identify drought-resistance mechanisms in rubber clones from the high drought factor index (DFI) group using ecophysiological and biochemical variables. The treatments consist of two factors, namely water deficit and contrasting clones based on the DFI variable. The first factor consisted of three levels, namely normal (fraction of transpirable soil water (FTSW) > 0.75), severe water deficit (0.1 < FTSW < 0.20), and recovery condition (FTSW > 0.75 after rewatering). The second factor consisted of seven clones, namely clones G239, GT1 (low DFI), G127, SP 217, PB 260 (moderate DFI), as well as G206 and RRIM 600 (high DFI). RRIM 600 had the highest DFI among the other clones as a drought-tolerance mechanism characteristic. Furthermore, clones RRIM 600, GT1, and G127 had lower stomatal conductance and transpiration rate than drought-sensitive clone PB 260. As a result, as drought avoidance mechanisms, clones RRIM 600, GT1, and G127 consume less water than clone PB 260. These findings indicated that clone RRIM 600 was a drought-resistant clone with drought tolerance and avoidance mechanisms.
Collapse
Affiliation(s)
- Andi Nur Cahyo
- Indonesian Rubber Research Institute, Sembawa, Banyuasin 30953, Indonesia
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Rudi Hari Murti
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Eka Tarwaca Susila Putra
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Fetrina Oktavia
- Indonesian Rubber Research Institute, Sembawa, Banyuasin 30953, Indonesia
| | - Sigit Ismawanto
- Indonesian Rubber Research Institute, Sembawa, Banyuasin 30953, Indonesia
| | - Pascal Montoro
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- CIRAD, INRAE, UMR AGAP Institut, Institut Agro, University Montpellier, F-34398 Montpellier, France
| |
Collapse
|
12
|
Zhu J, Huang K, Cheng D, Zhang C, Li R, Liu F, Wen H, Tao L, Zhang Y, Li C, Liu S, Wei C. Characterization of Cuticular Wax in Tea Plant and Its Modification in Response to Low Temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13849-13861. [PMID: 36268795 DOI: 10.1021/acs.jafc.2c05470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cuticular wax ubiquitously covers the outer layer of plants and protects them against various abiotic and biotic stresses. Nevertheless, the characteristics of cuticular wax and its role in cold resistance in tea plants remain unclear. In our study, cuticular wax from different tissues, cultivars, and leaves during different spatio-temporal growth stages were characterized and compared in tea plants. The composition, distribution pattern, and structural profile of cuticular wax showed considerable tissue specificity, particularly in petals and seeds. During the spatial development of tea leaves, total wax content increased from the first to fifth leaf in June, while a decreasing pattern was observed in September. Additionally, the total wax content and number of wax compounds were enhanced, and the wax composition significantly varied with leaf growth from June to September. Ten cultivars showed considerable differences in total wax content and composition, such as the predominance of saturated fatty acids and primary alcohols in SYH and HJY cultivars, respectively. Correlation analysis suggested that n-hexadecanoic acid is positively related to cold resistance in tea plants. Further transcriptome analysis from cold-sensitive AJBC, cold-tolerant CYQ, and EC 12 cultivars indicated that the inducible expression of wax-related genes was associated with the cold tolerance of different cultivars in response to cold stress. Our results revealed the characterization of cuticular wax in tea plants and provided new insights into its modification in cold tolerance.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Daojie Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Cao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Rui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Fangbin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Huilin Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Youze Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Cuihong Li
- Tianfang Tea Company Limited by Share, Tianfang Industrial Park, Chizhou 245100, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| |
Collapse
|
13
|
Liu LL, Deng YQ, Dong XX, Wang CF, Yuan F, Han GL, Wang BS. ALDH2C4 regulates cuticle thickness and reduces water loss to promote drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111405. [PMID: 35914575 DOI: 10.1016/j.plantsci.2022.111405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, ALDH2C4 encodes coniferaldehyde dehydrogenase, which oxidizes coniferaldehyde to ferulic acid. Drought stress is one of the important abiotic stresses affecting plant growth. However, the role of ferulic acid in drought resistance is unknown. To investigate the contribution of ferulic acid to cuticle composition and drought resistance, we used two Arabidopsis aldh2c4 mutant lines. Compared with wild-type (WT) leaves, ferulic acid contents were significantly lower (by more than 50 %) in mutants. The mutants also had lower amounts of cutin and wax, primarily due to reductions in C18:2 dioic acid and alkanes, respectively. Furthermore, the leaves of the mutant plants exhibited greater rates of water loss and released chlorophyll faster than WT leaves when immersed in 80 % ethanol, indicating a defective cuticle barrier. The growth of aldh2c4 mutants was severely inhibited, and their leaves showed a higher degree of wilting relative to the WT plants under drought conditions. In aldh2c4 complementation lines, the growth inhibition of the mutant plants under drought stress was alleviated. Taken together, our results demonstrate that ferulic acid plays an important role in the composition and structural properties of the cuticle and that a ferulic acid deficiency in the cutin leads to reduced drought tolerance.
Collapse
Affiliation(s)
- Li-Li Liu
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Yun-Quan Deng
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Xin-Xiu Dong
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Cheng-Feng Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Fang Yuan
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Guo-Liang Han
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Bao-Shan Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Zhang H, Zhang S, Li M, Wang J, Wu T. The PoLACS4 Gene May Participate in Drought Stress Resistance in Tree Peony (Paeonia ostii ‘Feng Dan Bai’). Genes (Basel) 2022; 13:genes13091591. [PMID: 36140759 PMCID: PMC9498442 DOI: 10.3390/genes13091591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
The tree peony (Paeonia ostii ‘Feng Dan Bai’) has excellent drought tolerance. Although it has already been reported that the cuticle is an essential barrier against drought stress, the critical genes for cuticle resistance to drought remain unclear. However, the long-chain acyl-CoA synthetases (LACS) family of genes may be significant for the synthesis of cuticle wax. To test whether the LACS gene family is involved in cuticle response to drought stress in tree peony, we measure the thickness of cuticle stems and leaves alongside LACS enzyme activity. It is found that the cuticle thickens and the LACS enzyme increases with the maturation of stems and leaves, and there is a positive correlation between them. The LACS enzyme increases within 12 h under drought stress induced by polyethylene glycol (PEG). The transcriptome sequencing result (BioProject accession number PRJNA317164) is searched for, and a LACS gene with high expression is cloned. This gene has high homology and similarity with LACS4 from Arabidopsis thaliana. The gene is named PoLACS4. It is show to be highly expressed in mature leaves and peaks within 1 h under drought and salt stresses. All these results suggest that the LACS family of genes may be involved in cuticle response to drought stress and that PoLACS4 is a crucial gene which responds rapidly to drought in the tree peony.
Collapse
Affiliation(s)
- Hongye Zhang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
| | - Shan Zhang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
| | - Meng Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
| | - Juan Wang
- Institute of Ecological Development, Southwest Forestry University, Kunming 650224, China
| | - Tian Wu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
- Correspondence:
| |
Collapse
|
15
|
Lee SB, Suh MC. Regulatory mechanisms underlying cuticular wax biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2799-2816. [PMID: 35560199 DOI: 10.1093/jxb/erab509] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 05/24/2023]
Abstract
Plants are sessile organisms that have developed hydrophobic cuticles that cover their aerial epidermal cells to protect them from terrestrial stresses. The cuticle layer is mainly composed of cutin, a polyester of hydroxy and epoxy fatty acids, and cuticular wax, a mixture of very-long-chain fatty acids (>20 carbon atoms) and their derivatives, aldehydes, alkanes, ketones, alcohols, and wax esters. During the last 30 years, forward and reverse genetic, transcriptomic, and biochemical approaches have enabled the identification of key enzymes, transporters, and regulators involved in the biosynthesis of cutin and cuticular waxes. In particular, cuticular wax biosynthesis is significantly influenced in an organ-specific manner or by environmental conditions, and is controlled using a variety of regulators. Recent studies on the regulatory mechanisms underlying cuticular wax biosynthesis have enabled us to understand how plants finely control carbon metabolic pathways to balance between optimal growth and development and defense against abiotic and biotic stresses. In this review, we summarize the regulatory mechanisms underlying cuticular wax biosynthesis at the transcriptional, post-transcriptional, post-translational, and epigenetic levels.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| |
Collapse
|
16
|
Wang T, Wei Q, Wang Z, Liu W, Zhao X, Ma C, Gao J, Xu Y, Hong B. CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:741-755. [PMID: 34889055 DOI: 10.1111/jipb.13201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/08/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major abiotic stress that limits plant growth and development. Adaptive mechanisms have evolved to mitigate drought stress, including the capacity to adjust water loss rate and to modify the morphology and structure of the epidermis. Here, we show that the expression of CmNF-YB8, encoding a nuclear factor Y (NF-Y) B-type subunit, is lower under drought conditions in chrysanthemum (Chrysanthemum morifolium). Transgenic chrysanthemum lines in which transcript levels of CmNF-YB8 were reduced by RNA interference (CmNF-YB8-RNAi) exhibited enhanced drought resistance relative to control lines, whereas lines overexpressing CmNF-YB8 (CmNF-YB8-OX) were less tolerant to drought. Compared to wild type (WT), CmNF-YB8-RNAi plants showed reduced stomatal opening and a thicker epidermal cuticle that correlated with their water loss rate. We also identified genes involved in stomatal adjustment (CBL-interacting protein kinase 6, CmCIPK6) and cuticle biosynthesis (CmSHN3) that are more highly expressed in CmNF-YB8-RNAi lines than in WT, CmCIPK6 being a direct downstream target of CmNF-YB8. Virus-induced gene silencing of CmCIPK6 or CmSHN3 in the CmNF-YB8-RNAi background abolished the effects of CmNF-YB8-RNAi on stomatal closure and cuticle deposition, respectively. CmNF-YB8 thus regulates CmCIPK6 and CmSHN3 expression to alter stomatal movement and cuticle thickness in the leaf epidermis, thereby affecting drought resistance.
Collapse
Affiliation(s)
- Tianle Wang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Wei
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiling Wang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenwen Liu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Zhao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Du Y, Fu X, Chu Y, Wu P, Liu Y, Ma L, Tian H, Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int J Mol Sci 2022; 23:ijms23042332. [PMID: 35216448 PMCID: PMC8875669 DOI: 10.3390/ijms23042332] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Plant sterols are important components of the cell membrane and lipid rafts, which play a crucial role in various physiological and biochemical processes during development and stress resistance in plants. In recent years, many studies in higher plants have been reported in the biosynthesis pathway of plant sterols, whereas the knowledge about the regulation and accumulation of sterols is not well understood. In this review, we summarize and discuss the recent findings in the field of plant sterols, including their biosynthesis, regulation, functions, as well as the mechanism involved in abiotic stress responses. These studies provide better knowledge on the synthesis and regulation of sterols, and the review also aimed to provide new insights for the global role of sterols, which is liable to benefit future research on the development and abiotic stress tolerance in plant.
Collapse
Affiliation(s)
- Yinglin Du
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Xizhe Fu
- The College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310012, China;
| | - Yiyang Chu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Peiwen Wu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Ye Liu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Lili Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Huiqin Tian
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
- Correspondence:
| |
Collapse
|
18
|
Abstract
Drought and waterlogging seriously affect the growth of plants and are considered severe constraints on agricultural and forestry productivity; their frequency and degree have increased over time due to global climate change. The morphology, photosynthetic activity, antioxidant enzyme system and hormone levels of plants could change in response to water stress. The mechanisms of these changes are introduced in this review, along with research on key transcription factors and genes. Both drought and waterlogging stress similarly impact leaf morphology (such as wilting and crimping) and inhibit photosynthesis. The former affects the absorption and transportation mechanisms of plants, and the lack of water and nutrients inhibits the formation of chlorophyll, which leads to reduced photosynthetic capacity. Constitutive overexpression of 9-cis-epoxydioxygenase (NCED) and acetaldehyde dehydrogenase (ALDH), key enzymes in abscisic acid (ABA) biosynthesis, increases drought resistance. The latter forces leaf stomata to close in response to chemical signals, which are produced by the roots and transferred aboveground, affecting the absorption capacity of CO2, and reducing photosynthetic substrates. The root system produces adventitious roots and forms aerenchymal to adapt the stresses. Ethylene (ETH) is the main response hormone of plants to waterlogging stress, and is a member of the ERFVII subfamily, which includes response factors involved in hypoxia-induced gene expression, and responds to energy expenditure through anaerobic respiration. There are two potential adaptation mechanisms of plants (“static” or “escape”) through ETH-mediated gibberellin (GA) dynamic equilibrium to waterlogging stress in the present studies. Plant signal transduction pathways, after receiving stress stimulus signals as well as the regulatory mechanism of the subsequent synthesis of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzymes to produce ethanol under a hypoxic environment caused by waterlogging, should be considered. This review provides a theoretical basis for plants to improve water stress tolerance and water-resistant breeding.
Collapse
|
19
|
Feng JQ, Wang JH, Zhang SB. Leaf physiological and anatomical responses of two sympatric Paphiopedilum species to temperature. PLANT DIVERSITY 2022; 44:101-108. [PMID: 35281120 PMCID: PMC8897187 DOI: 10.1016/j.pld.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 06/14/2023]
Abstract
Paphiopedilum dianthum and P. micranthum are two endangered orchid species, with high ornamental and conservation values. They are sympatric species, but their leaf anatomical traits and flowering period have significant differences. However, it is unclear whether the differences in leaf structure of the two species will affect their adaptabilities to temperature. Here, we investigated the leaf photosynthetic, anatomical, and flowering traits of these two species at three sites with different temperatures (Kunming, 16.7 ± 0.2 °C; Puer, 17.7 ± 0.2 °C; Menglun, 23.3 ± 0.2 °C) in southwest China. Compared with those at Puer and Kunming, the values of light-saturated photosynthetic rate (Pmax), stomatal conductance (gs), leaf thickness (LT), and stomatal density (SD) in both species were lower at Menglun. The values of Pmax, gs, LT, adaxial cuticle thickness (CTad) and SD in P. dianthum were higher than those of P. micranthum at the three sites. Compared with P. dianthum, there were no flowering plants of P. micranthum at Menglun. These results indicated that both species were less resistance to high temperature, and P. dianthum had a stronger adaptability to high-temperature than P. micranthum. Our findings can provide valuable information for the conservation and cultivation of Paphiopedilum species.
Collapse
Affiliation(s)
- Jing-Qiu Feng
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Hua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
20
|
Abhilasha A, Roy Choudhury S. Molecular and Physiological Perspectives of Abscisic Acid Mediated Drought Adjustment Strategies. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122769. [PMID: 34961239 PMCID: PMC8708728 DOI: 10.3390/plants10122769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
Drought is the most prevalent unfavorable condition that impairs plant growth and development by altering morphological, physiological, and biochemical functions, thereby impeding plant biomass production. To survive the adverse effects, water limiting condition triggers a sophisticated adjustment mechanism orchestrated mainly by hormones that directly protect plants via the stimulation of several signaling cascades. Predominantly, water deficit signals cause the increase in the level of endogenous ABA, which elicits signaling pathways involving transcription factors that enhance resistance mechanisms to combat drought-stimulated damage in plants. These responses mainly include stomatal closure, seed dormancy, cuticular wax deposition, leaf senescence, and alteration of the shoot and root growth. Unraveling how plants adjust to drought could provide valuable information, and a comprehensive understanding of the resistance mechanisms will help researchers design ways to improve crop performance under water limiting conditions. This review deals with the past and recent updates of ABA-mediated molecular mechanisms that plants can implement to cope with the challenges of drought stress.
Collapse
|
21
|
Chen M. The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:751547. [PMID: 34659320 PMCID: PMC8519587 DOI: 10.3389/fpls.2021.751547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/30/2021] [Indexed: 05/29/2023]
Abstract
Camellia sinensis (tea tree) is a perennial evergreen woody crop that has been planted in more than 50 countries worldwide; its leaves are harvested to make tea, which is one of the most popular nonalcoholic beverages. The cuticle is the major transpiration barrier to restrict nonstomatal water loss and it affects the drought tolerance of tea plants. The cuticle may also provide molecular cues for the interaction with herbivores and pathogens. The tea-making process almost always includes a postharvest withering treatment to reduce leaf water content, and many studies have demonstrated that withering treatment-induced metabolite transformation is essential to shape the quality of the tea made. Tea leaf cuticle is expected to affect its withering properties and the dynamics of postharvest metabolome remodeling. In addition, it has long been speculated that the cuticle may contribute to the aroma quality of tea. However, concrete experimental evidence is lacking to prove or refute this hypothesis. Even though its relevance to the abiotic and biotic stress tolerance and postharvest processing properties of tea tree, tea cuticle has long been neglected. Recently, there are several studies on the tea cuticle regarding its structure, wax composition, transpiration barrier organization, environmental stresses-induced wax modification, and structure-function relations. This review is devoted to tea cuticle, the recent research progresses were summarized and unresolved questions and future research directions were also discussed.
Collapse
Affiliation(s)
- Mingjie Chen
- College of Life Sciences, Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
| |
Collapse
|
22
|
Vega C, Valbuena-Carabaña M, Gil L, Fernández V. Water Sorption and Desorption of Isolated Cuticles From Three Woody Species With Focus on Ilex aquifolium. FRONTIERS IN PLANT SCIENCE 2021; 12:728627. [PMID: 34671373 PMCID: PMC8522496 DOI: 10.3389/fpls.2021.728627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The cuticle is a lipid-rich layer that protects aerial plant organs against multiple stress factors such as dehydration. In this study, cuticle composition and structure in relation to water loss are examined in a broad ecophysiological context, taking into consideration leaf age and side from Ilex aquifolium (holly) in comparison with Eucalyptus globulus (eucalypt) and Prunus laurocerasus (cherry laurel). Enzymatically isolated cuticular membranes from holly leaves were studied under three treatment conditions: natural (no chemical treatment), after dewaxing, and after methanolysis, and the rate of water loss was assessed. Structural and chemical changes were evaluated using different microscopy techniques and by Fourier transform infrared (FTIR) spectroscopy. The potential mechanisms of solute absorption by holly leaves were additionally evaluated, also testing if its prickly leaf margin may facilitate uptake. The results indicate that the treatment conditions led to structural changes, and that chemical composition was hardly affected because of the occurrence of cutan. Structural changes led to more hydrophilic adaxial surfaces, which retained more water and were more efficient than natural cuticles, while changes were not significant for abaxial surfaces. Across natural cuticles, age was a significant factor for eucalypt but not for holly. Young eucalypt cuticles were the group that absorbed more water and had the lowest water loss rate. When comparing older leaf cuticles of the three species, cherry laurel was found to absorb more water, which was, however, lost more slowly, compared with the other species. Evidence was gained that holly leaves can absorb foliar-applied solutes (traced after calcium chloride application) through the adaxial and abaxial surfaces, the adaxial mid veins, and to a lower extent, the spines. In conclusion, for the species examined, the results show variations in leaf cuticle composition and structure in relation to leaf ontogeny, and water sorption and desorption capacity.
Collapse
|
23
|
Chen M, Zhang Y, Kong X, Du Z, Zhou H, Yu Z, Qin J, Chen C. Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:655799. [PMID: 34276719 PMCID: PMC8278822 DOI: 10.3389/fpls.2021.655799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/07/2021] [Indexed: 06/01/2023]
Abstract
The cuticle plays a major role in restricting nonstomatal water transpiration in plants. There is therefore a long-standing interest to understand the structure and function of the plant cuticle. Although many efforts have been devoted, it remains controversial to what degree the various cuticular parameters contribute to the water transpiration barrier. In this study, eight tea germplasms were grown under normal conditions; cuticle thickness, wax coverage, and compositions were analyzed from the epicuticular waxes and the intracuticular waxes of both leaf surfaces. The cuticular transpiration rates were measured from the individual leaf surface as well as the intracuticular wax layer. Epicuticular wax resistances were also calculated from both leaf surfaces. The correlation analysis between the cuticular transpiration rates (or resistances) and various cuticle parameters was conducted. We found that the abaxial cuticular transpiration rates accounted for 64-78% of total cuticular transpiration and were the dominant factor in the variations for the total cuticular transpiration. On the adaxial surface, the major cuticular transpiration barrier was located on the intracuticular waxes; however, on the abaxial surface, the major cuticular transpiration barrier was located on the epicuticular waxes. Cuticle thickness was not a factor affecting cuticular transpiration. However, the abaxial epicuticular wax coverage was found to be significantly and positively correlated with the abaxial epicuticular resistance. Correlation analysis suggested that the very-long-chain aliphatic compounds and glycol esters play major roles in the cuticular transpiration barrier in tea trees grown under normal conditions. Our results provided novel insights about the complex structure-functional relationships in the tea cuticle.
Collapse
Affiliation(s)
- Mingjie Chen
- College of Life Sciences, Key Laboratory of Tea Biology of Henan Province, Xinyang Normal University, Xinyang, China
| | - Yi Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuan, China
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuan, China
- The Fujian Research Branch of the National Tea Genetic Improvement Center, Fuzhou, China
| | - Zhenghua Du
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiwen Zhou
- College of Life Sciences, Key Laboratory of Tea Biology of Henan Province, Xinyang Normal University, Xinyang, China
| | - Zhaoxi Yu
- College of Life Sciences, Key Laboratory of Tea Biology of Henan Province, Xinyang Normal University, Xinyang, China
| | - Jianheng Qin
- College of Life Sciences, Key Laboratory of Tea Biology of Henan Province, Xinyang Normal University, Xinyang, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuan, China
- The Fujian Research Branch of the National Tea Genetic Improvement Center, Fuzhou, China
| |
Collapse
|
24
|
Structure, Assembly and Function of Cuticle from Mechanical Perspective with Special Focus on Perianth. Int J Mol Sci 2021; 22:ijms22084160. [PMID: 33923850 PMCID: PMC8072621 DOI: 10.3390/ijms22084160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
This review is devoted to the structure, assembly and function of cuticle. The topics are discussed from the mechanical perspective and whenever the data are available a special attention is paid to the cuticle of perianth organs, i.e., sepals, petals or tepals. The cuticle covering these organs is special in both its structure and function and some of these peculiarities are related to the cuticle mechanics. In particular, strengthening of the perianth surface is often provided by a folded cuticle that functionally resembles profiled plates, while on the surface of the petal epidermis of some plants, the cuticle is the only integral continuous layer. The perianth cuticle is distinguished also by those aspects of its mechanics and development that need further studies. In particular, more investigations are needed to explain the formation and maintenance of cuticle folding, which is typical for the perianth epidermis, and also to elucidate the mechanical properties and behavior of the perianth cuticle in situ. Gaps in our knowledge are partly due to technical problems caused by very small thicknesses of the perianth cuticle but modern tools may help to overcome these obstacles.
Collapse
|
25
|
Abstract
With the global climate anomalies and the destruction of ecological balance, the water shortage has become a serious ecological problem facing all mankind, and drought has become a key factor restricting the development of agricultural production. Therefore, it is essential to study the drought tolerance of crops. Based on previous studies, we reviewed the effects of drought stress on plant morphology and physiology, including the changes of external morphology and internal structure of root, stem, and leaf, the effects of drought stress on osmotic regulation substances, drought-induced proteins, and active oxygen metabolism of plants. In this paper, the main drought stress signals and signal transduction pathways in plants are described, and the functional genes and regulatory genes related to drought stress are listed, respectively. We summarize the above aspects to provide valuable background knowledge and theoretical basis for future agriculture, forestry breeding, and cultivation.
Collapse
|
26
|
Zhang Y, Du Z, Han Y, Chen X, Kong X, Sun W, Chen C, Chen M. Plasticity of the Cuticular Transpiration Barrier in Response to Water Shortage and Resupply in Camellia sinensis: A Role of Cuticular Waxes. FRONTIERS IN PLANT SCIENCE 2020; 11:600069. [PMID: 33505410 PMCID: PMC7829210 DOI: 10.3389/fpls.2020.600069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/26/2020] [Indexed: 05/08/2023]
Abstract
The cuticle is regarded as a non-living tissue; it remains unknown whether the cuticle could be reversibly modified and what are the potential mechanisms. In this study, three tea germplasms (Wuniuzao, 0202-10, and 0306A) were subjected to water deprivation followed by rehydration. The epicuticular waxes and intracuticular waxes from both leaf surfaces were quantified from the mature 5th leaf. Cuticular transpiration rates were then measured from leaf drying curves, and the correlations between cuticular transpiration rates and cuticular wax coverage were analyzed. We found that the cuticular transpiration barriers were reinforced by drought and reversed by rehydration treatment; the initial weak cuticular transpiration barriers were preferentially reinforced by drought stress, while the original major cuticular transpiration barriers were either strengthened or unaltered. Correlation analysis suggests that cuticle modifications could be realized by selective deposition of specific wax compounds into individual cuticular compartments through multiple mechanisms, including in vivo wax synthesis or transport, dynamic phase separation between epicuticular waxes and the intracuticular waxes, in vitro polymerization, and retro transportation into epidermal cell wall or protoplast for further transformation. Our data suggest that modifications of a limited set of specific wax components from individual cuticular compartments are sufficient to alter cuticular transpiration barrier properties.
Collapse
Affiliation(s)
- Yi Zhang
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenghua Du
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanting Han
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xiaobing Chen
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuan, China
| | - Weijiang Sun
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuan, China
| | - Mingjie Chen
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
- *Correspondence: Mingjie Chen, ;
| |
Collapse
|