1
|
Fang J, Zhou ZJ, Yuan S, Qiu Y, Ge XY. Lineage classification and selective site identification of Orthoebolavirus zairense. Microbes Infect 2025; 27:105304. [PMID: 38278475 DOI: 10.1016/j.micinf.2024.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
As the high pathogenic species of Filoviridae virus family, Orthoebolavirus zairense (EBOV) shows frequent outbreaks in human in recently years since its first emerging in 1976 in Democratic Republic of the Congo (COD), bringing ongoing risks and burden on public health safety. Here, the phylogenetic relationship among major outbreaks was analyzed. The results showed that EBOV isolates could be divided into four lineages according to spatial and temporal epidemics. Then, the positive selection sites (PSSs) were detected on all proteins of the EBOV, exhibiting lineage characteristic. Particularly, sites in GP and VP24 were identified to be significantly under positive selection, and partial of which were maintained in the latest isolates in 2021. GP and L were found to have high variability between lineages. Substitutions including F443L and F443S in GP, as well as F1610L and I1951V in L could be characteristic of the two large outbreaks in COD (2018) and West Africa (2014), respectively. Further, substitutions of significant PSSs in VP24 and L proteins were visualized for analysis of structural changes, which may affect EBOV pathogenesis. In summary, our results gains insights in genetic characteristic and adaptive evolution of EBOV, which could facilitate gene functional research against EBOV.
Collapse
Affiliation(s)
- Jie Fang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China
| | - Zhi-Jian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China
| | - Shuofeng Yuan
- Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China.
| |
Collapse
|
2
|
Massey SE. The Growing Phenomenon of 'Frozen' Virus Genome Sequences and Their Likely Origin in Research Facility Escapes. Microorganisms 2024; 12:2412. [PMID: 39770614 PMCID: PMC11678153 DOI: 10.3390/microorganisms12122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
'Frozen' virus genome sequences are sampled from outbreaks and have unusually low sequence divergence when compared to genome sequences from historical strains. A growing number of 'frozen' virus genome sequences are being reported as virus genome sequencing becomes more common. Examples of 'frozen' sequences include the 1977 H1N1 'Russian' flu; Venezuelan Equine Encephalitis Virus from Venezuela and Colombia in 1995; E71 sequences from a Hand, Foot and Mouth outbreak in 2007-2009 in China; and a polio strain isolated in 2014 from Anhui, China. The origin of these 'frozen' sequences has been attributed to escapes from research facilities and often appears to be associated with vaccine work. Consequently, a new paradigm for pathogen emergence appears in operation, that involves laboratory research or vaccine production which utilizes 'live' virus isolates of historical strains. The accidental release and re-emergence of such strains are straightforward to detect from their genome sequences and should spur the routine sequencing and publication of all known pathogenic viral strains undergoing experimentation, or being used for vaccine manufacture, in order to facilitate tracing. However, it is noted that novel pathogenic viruses accidentally released into the population from research facilities are harder to detect if their sequence has first not been made public, which should prompt the routine sequencing and reporting of all novel pathogenic viruses before experimentation.
Collapse
Affiliation(s)
- Steven E Massey
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan 00931, Puerto Rico
| |
Collapse
|
3
|
Munjita SM, Mubemba B, Changula K, Tembo J, Hamoonga R, Bates M, Chitanga S, Munsaka S, Simulundu E. Unveiling the hidden threats: a review of pathogen diversity and public health risks from bats, rodents, and non-human primates in Zambia (1990-2022). Front Public Health 2024; 12:1471452. [PMID: 39651468 PMCID: PMC11621629 DOI: 10.3389/fpubh.2024.1471452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Background Infectious disease agents of animal origin, which can cause mild to severe illnesses in humans, are increasingly spilling over into human populations. Southern Africa, particularly Zambia as a regional transport hub, has experienced notable outbreaks of zoonotic pathogens in recent years. This context underscores the importance of research, as numerous studies over the past 33 years have reported various infectious agents with differing zoonotic potential from bats, rodents, and non-human primates (NHPs) in Zambia. However, the data remained unaggregated, hampering comprehensive and organized understanding of these threats. Methods A review spanning January 1990 to December 2022 synthesised data from selected studies conducted in bats, rodents, and NHPs across 14 of Zambia's 116 districts. Results Among the reported pathogens, viruses predominated (62%, 31/50), followed by parasites (20%, 10/50)), and bacteria (18%, 9/50). Notable pathogens included Ebola virus, Marburg virus, Hantavirus, Zika virus, Human parainfluenza virus-3, Anaplasma phagocytophilum, Borrelia faini, Coxiella burnetii, Trypanosoma brucei rhodesiense, Calodium hepaticum, and Trichinella spiralis. Most identified infectious agents came from short term cross-sectional investigations, thus, the temporal dynamics related to abundance and likelihood of outbreaks remain unknown. Conclusion The findings starkly illuminate significant zoonotic public health threats amidst glaring under-surveillance of zoonoses in humans in Zambia. This critical gap calls urgently for enhanced active, passive and syndromic surveillance activities to identify new diseases and provide evidence-based measures to safeguard public health from emerging infectious risks in Zambia and the Southern African sub-region, considering the country's position as a regional transport hub.
Collapse
Affiliation(s)
- Samuel Munalula Munjita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Benjamin Mubemba
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | | | - Matthew Bates
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
- School of Natural Sciences, University of Lincoln, Lincoln, Lincolnshire, United Kingdom
| | - Simbarashe Chitanga
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Preclinical Studies, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | |
Collapse
|
4
|
Clancey E, Nuismer S, Seifert S. Using serosurveys to optimize surveillance for zoonotic pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581274. [PMID: 38562792 PMCID: PMC10983876 DOI: 10.1101/2024.02.22.581274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Zoonotic pathogens pose a significant risk to human health, with spillover into human populations contributing to chronic disease, sporadic epidemics, and occasional pandemics. Despite the widely recognized burden of zoonotic spillover, our ability to identify which animal populations serve as primary reservoirs for these pathogens remains incomplete. This challenge is compounded when prevalence reaches detectable levels only at specific times of year. In these cases, statistical models designed to predict the timing of peak prevalence could guide field sampling for active infections. Thus, we develop a general model that leverages routinely collected serosurveillance data to optimize sampling for elusive pathogens by predicting time windows of peak prevalence. Using simulated data sets, we show that our methodology reliably identifies times when pathogen prevalence is expected to peak. Then, we demonstrate an implementation of our method using publicly available data from two putative Ebolavirus reservoirs, straw-colored fruit bats (Eidolon helvum) and hammer-headed bats (Hypsignathus monstrosus). We envision our method being used to guide the planning of field sampling to maximize the probability of detecting active infections, and in cases when longitudinal data is available, our method can also yield predictions for the times of year that are most likely to produce future spillover events. The generality and simplicity of our methodology make it broadly applicable to a wide range of putative reservoir species where seasonal patterns of birth lead to predictable, but potentially short-lived, pulses of pathogen prevalence.
Collapse
Affiliation(s)
- E. Clancey
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164 USA
| | - S.L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - S.N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
5
|
Cui N, Perez YL, Hume AJ, Nunley BE, Kong K, Mills MG, Xie H, Greninger AL. A high-throughput, polymerase-targeted RT-PCR for broad detection of mammalian filoviruses. Microbiol Spectr 2024; 12:e0101024. [PMID: 39046245 PMCID: PMC11370238 DOI: 10.1128/spectrum.01010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Filoviruses are some of the most lethal viruses in the modern world, and increasing numbers of filovirus species and genera have been discovered in recent years. Despite the potential severity of filovirus outbreaks in the human population, comparably few sensitive pan-filovirus RT-PCR assays have been described that might facilitate early detection and prevention. Here, we present a new pan-filovirus RT-PCR assay targeting the L polymerase gene for detection of all known mammalian filoviruses. We demonstrate the detection of 10 synthetic filovirus RNA templates with analytical sensitivity ranging from 178 to 3,354 copies/mL, without cross-reactivity on 10 non-filoviral human viral species. We verified assay performance on 10 inactivated filovirus isolates, yielding initial sensitivities of 0.012-44.17 TCID50/mL. We coupled this broadly reactive RT-PCR with a deep sequencing workflow that is amenable to high-throughput pooling to maximize detection and discovery potential. In summary, this pan-filovirus RT-PCR assay targets the most conserved filovirus gene, offers the widest breadth of coverage to date, and may help in the detection and discovery of novel filoviruses.IMPORTANCEFiloviruses remain some of the most mysterious viruses known to the world, with extremely high lethality rates and significant pandemic potential. Yet comparably few filovirus species and genera have been discovered to date and questions surround the definitive host species for zoonotic infections. Here, we describe a novel broadly reactive RT-PCR assay targeting the conserved L polymerase gene for high-throughput screening for filoviruses in a variety of clinical and environmental specimens. We demonstrate the assay can detect all known mammalian filoviruses and determine the sensitivity and specificity of the assay on synthetic RNA sequences, inactivated filovirus isolates, and non-filoviral species.
Collapse
Affiliation(s)
- Na Cui
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yael L. Perez
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam J. Hume
- Department of Microbiology/National Emerging Infectious Diseases Laboratories, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - B. Ethan Nunley
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kevin Kong
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Margaret G. Mills
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
6
|
Xie SZ, Yao K, Li B, Peng C, Yang XL, Shi ZL. Development of a Měnglà virus minigenome and comparison of its polymerase complexes with those of other filoviruses. Virol Sin 2024; 39:459-468. [PMID: 38782261 PMCID: PMC11279764 DOI: 10.1016/j.virs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Měnglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.
Collapse
Affiliation(s)
- Shi-Zhe Xie
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Yao
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Li
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Cheng Peng
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| | - Zheng-Li Shi
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
7
|
Akoi Boré J, Timothy JWS, Tipton T, Kekoura I, Hall Y, Hood G, Longet S, Fornace K, Lucien MS, Fehling SK, Koivogui BK, Coggins SA, Laing ED, Broder CC, Magassouba NF, Strecker T, Rossman J, Konde K, Carroll MW. Serological evidence of zoonotic filovirus exposure among bushmeat hunters in Guinea. Nat Commun 2024; 15:4171. [PMID: 38755147 PMCID: PMC11099012 DOI: 10.1038/s41467-024-48587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.
Collapse
Affiliation(s)
| | - Joseph W S Timothy
- Faulty of Infectious & Tropical Diseases, London School of Hygiene Tropical Medicine, London, UK
| | - Tom Tipton
- Centre for Human Genetics & Pandemic Sciences Inst, University of Oxford, Oxford, UK
| | - Ifono Kekoura
- Ministère de la Santé et de l'hygiène publique, Conakry, Guinea
| | - Yper Hall
- UK Health Security Agency, Porton Down, UK
| | - Grace Hood
- Centre for Human Genetics & Pandemic Sciences Inst, University of Oxford, Oxford, UK
| | - Stephanie Longet
- Centre for Human Genetics & Pandemic Sciences Inst, University of Oxford, Oxford, UK
| | - Kimberly Fornace
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | | | | | - Si'Ana A Coggins
- Department of Microbiology and Immunology, Uniformed Services University, MD, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, MD, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, MD, USA
| | | | - Thomas Strecker
- Institute of Virology, Philipps University, Marburg, Germany
| | - Jeremy Rossman
- School of Bioscience, University of Kent, Canterbury, UK
| | - Kader Konde
- Centre for Training and Research on Priority Diseases including Malaria in Guinea, Conakry, Guinea
| | - Miles W Carroll
- Centre for Human Genetics & Pandemic Sciences Inst, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Pinotti F, Lourenço J, Gupta S, Das Gupta S, Henning J, Blake D, Tomley F, Barnett T, Pfeiffer D, Hoque MA, Fournié G. EPINEST, an agent-based model to simulate epidemic dynamics in large-scale poultry production and distribution networks. PLoS Comput Biol 2024; 20:e1011375. [PMID: 38381804 PMCID: PMC10911595 DOI: 10.1371/journal.pcbi.1011375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/04/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
The rapid intensification of poultry production raises important concerns about the associated risks of zoonotic infections. Here, we introduce EPINEST (EPIdemic NEtwork Simulation in poultry Transportation systems): an agent-based modelling framework designed to simulate pathogen transmission within realistic poultry production and distribution networks. We provide example applications to broiler production in Bangladesh, but the modular structure of the model allows for easy parameterization to suit specific countries and system configurations. Moreover, the framework enables the replication of a wide range of eco-epidemiological scenarios by incorporating diverse pathogen life-history traits, modes of transmission and interactions between multiple strains and/or pathogens. EPINEST was developed in the context of an interdisciplinary multi-centre study conducted in Bangladesh, India, Vietnam and Sri Lanka, and will facilitate the investigation of the spreading patterns of various health hazards such as avian influenza, Campylobacter, Salmonella and antimicrobial resistance in these countries. Furthermore, this modelling framework holds potential for broader application in veterinary epidemiology and One Health research, extending its relevance beyond poultry to encompass other livestock species and disease systems.
Collapse
Affiliation(s)
| | - José Lourenço
- Católica Biomedical Research, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | | | - Suman Das Gupta
- School of Veterinary Science, The University of Queensland, Queensland, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Damer Blake
- Royal Veterinary College, London, United Kingdom
| | - Fiona Tomley
- Royal Veterinary College, London, United Kingdom
| | - Tony Barnett
- Royal Veterinary College, London, United Kingdom
- The Firoz Lalji Centre for Africa, London School of Economics and Political Science, London, United Kingdom
| | - Dirk Pfeiffer
- Royal Veterinary College, London, United Kingdom
- City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Md. Ahasanul Hoque
- Chattogram Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Guillaume Fournié
- Royal Veterinary College, London, United Kingdom
- INRAE, VetAgro Sup, UMR EPIA, Université de Lyon, Marcy l’Etoile, 69280, France
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, Saint Genès Champanelle, 63122, France
| |
Collapse
|
9
|
Goletic S, Goletic T, Omeragic J, Supic J, Kapo N, Nicevic M, Skapur V, Rukavina D, Maksimovic Z, Softic A, Alic A. Metagenomic Sequencing of Lloviu Virus from Dead Schreiber's Bats in Bosnia and Herzegovina. Microorganisms 2023; 11:2892. [PMID: 38138036 PMCID: PMC10745292 DOI: 10.3390/microorganisms11122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023] Open
Abstract
Bats are a natural host for a number of viruses, many of which are zoonotic and thus present a threat to human health. RNA viruses of the family Filoviridae, many of which cause disease in humans, have been associated with specific bat hosts. Lloviu virus is a Filovirus which has been connected to mass mortality events in Miniopterus schreibersii colonies in Spain and Hungary, and some studies have indicated its immense zoonotic potential. A die-off has been recorded among Miniopterus schreibersii in eastern Bosnia and Herzegovina for the first time, prompting the investigation to determine the causative agent. Bat carcasses were collected and subjected to pathological examination, after which the lung samples with notable histopathological changes, lung samples with no changes and guano were analyzed using metagenomic sequencing and RT-PCR. A partial Lloviu virus genome was sequenced from lung samples with histopathological changes and found to be closely related to Hungarian and Italian virus sequences. Further accumulation of mutations on the GP gene, coding the glycoprotein responsible for cell tropism and host preference, enhances the need for further characterization and monitoring of this virus to prevent spillover events and protect human health.
Collapse
Affiliation(s)
- Sejla Goletic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Teufik Goletic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Jasmin Omeragic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Jovana Supic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Naida Kapo
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Melisa Nicevic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Vedad Skapur
- University of Sarajevo—Faculty of Agriculture and Food Sciences, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Dunja Rukavina
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Zinka Maksimovic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Adis Softic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Amer Alic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| |
Collapse
|
10
|
Weber N, Nagy M, Markotter W, Schaer J, Puechmaille SJ, Sutton J, Dávalos LM, Dusabe MC, Ejotre I, Fenton MB, Knörnschild M, López-Baucells A, Medellin RA, Metz M, Mubareka S, Nsengimana O, O'Mara MT, Racey PA, Tuttle M, Twizeyimana I, Vicente-Santos A, Tschapka M, Voigt CC, Wikelski M, Dechmann DK, Reeder DM. Robust evidence for bats as reservoir hosts is lacking in most African virus studies: a review and call to optimize sampling and conserve bats. Biol Lett 2023; 19:20230358. [PMID: 37964576 PMCID: PMC10646460 DOI: 10.1098/rsbl.2023.0358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus-bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus-host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human-bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata.
Collapse
Affiliation(s)
- Natalie Weber
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| | - Martina Nagy
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juliane Schaer
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Sébastien J. Puechmaille
- ISEM, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Liliana M. Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, USA
| | | | - Imran Ejotre
- Institute of Biology, Humboldt University, Berlin, Germany
- Muni University, Arua, Uganda
| | - M. Brock Fenton
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Evolutionary Ethology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | | | - Rodrigo A. Medellin
- Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samira Mubareka
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - M. Teague O'Mara
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Bat Conservation International Austin, TX, USA
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | - Paul A. Racey
- Centre for Ecology and Conservation, University of Exeter, Exeter, UK
| | - Merlin Tuttle
- Merlin Tuttle's Bat Conservation, Austin, TX USA
- Department of Integrative Biology, University of Texas, Austin, USA
| | | | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Emory University, Atlanta, GA, USA
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Marco Tschapka
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dina K.N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
11
|
Campbell LK, Peery RM, Magor KE. Evolution and expression of the duck TRIM gene repertoire. Front Immunol 2023; 14:1220081. [PMID: 37622121 PMCID: PMC10445537 DOI: 10.3389/fimmu.2023.1220081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Tripartite motif (TRIM) proteins are involved in development, innate immunity, and viral restriction. TRIM gene repertoires vary between species, likely due to diversification caused by selective pressures from pathogens; however, this has not been explored in birds. We mined a de novo assembled transcriptome for the TRIM gene repertoire of the domestic mallard duck (Anas platyrhynchos), a reservoir host of influenza A viruses. We found 57 TRIM genes in the duck, which represent all 12 subfamilies based on their C-terminal domains. Members of the C-IV subfamily with C-terminal PRY-SPRY domains are known to augment immune responses in mammals. We compared C-IV TRIM proteins between reptiles, birds, and mammals and show that many C-IV subfamily members have arisen independently in these lineages. A comparison of the MHC-linked C-IV TRIM genes reveals expansions in birds and reptiles. The TRIM25 locus with related innate receptor modifiers is adjacent to the MHC in reptile and marsupial genomes, suggesting the ancestral organization. Within the avian lineage, both the MHC and TRIM25 loci have undergone significant TRIM gene reorganizations and divergence, both hallmarks of pathogen-driven selection. To assess the expression of TRIM genes, we aligned RNA-seq reads from duck tissues. C-IV TRIMs had high relative expression in immune relevant sites such as the lung, spleen, kidney, and intestine, and low expression in immune privileged sites such as in the brain or gonads. Gene loss and gain in the evolution of the TRIM repertoire in birds suggests candidate immune genes and potential targets of viral subversion.
Collapse
Affiliation(s)
- Lee K. Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Rhiannon M. Peery
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Katharine E. Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Kalinda C, Temfack E. Closing the gap in our understanding of infectious diseases. BMC Infect Dis 2023; 23:412. [PMID: 37328809 DOI: 10.1186/s12879-023-08389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Systematic reviews (SR) and meta-analyses (MA) have become important in addressing specific questions of clinical importance and presenting evidence from an in-depth analysis of literature and aiding clinical decision-making. The "Systematic Reviews on infectious diseases" collection will address several important questions by summarizing large bodies of evidence in a reproducible and concise approach to advance our knowledge and understanding of infectious diseases.
Collapse
Affiliation(s)
- Chester Kalinda
- University of Global Health Equity (UGHE), Bill and Joyce Cummings Institute of Global Health (IGH), Kigali Heights, Plot 772 KG 7 Ave, PO Box 6955, Kigali, Rwanda.
| | - Elvis Temfack
- Africa Centers for Disease Control and Prevention, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Broni E, Ashley C, Adams J, Manu H, Aikins E, Okom M, Miller WA, Wilson MD, Kwofie SK. Cheminformatics-Based Study Identifies Potential Ebola VP40 Inhibitors. Int J Mol Sci 2023; 24:ijms24076298. [PMID: 37047270 PMCID: PMC10094735 DOI: 10.3390/ijms24076298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina’s capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of −8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 μM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (−46.97 to −118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Joseph Adams
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
| | - Hammond Manu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Ebenezer Aikins
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Mary Okom
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| |
Collapse
|
14
|
Biodiversity: the overlooked source of human health. Trends Mol Med 2023; 29:173-187. [PMID: 36585352 DOI: 10.1016/j.molmed.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Biodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.
Collapse
|
15
|
Abstract
Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.
Collapse
Affiliation(s)
- Oyewale Tomori
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria; ,
| | - Daniel O Oluwayelu
- Department of Veterinary Microbiology and Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Oyo State, Nigeria; ,
| |
Collapse
|
16
|
Bats Are Carriers of Antimicrobial-Resistant Staphylococcaceae in Their Skin. Antibiotics (Basel) 2023; 12:antibiotics12020331. [PMID: 36830242 PMCID: PMC9952117 DOI: 10.3390/antibiotics12020331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bats have emerged as potential carriers of zoonotic viruses and bacteria, including antimicrobial-resistant bacteria. Staphylococcaceae has been isolated from their gut and nasopharynx, but there is little information about Staphylococcaceae on bat skin. Therefore, this study aimed to decipher the Staphylococci species in bat skin and their antimicrobial susceptibility profile. One hundred and forty-seven skin swabs were collected from bats during the spring and summer of 2021 and 2022. Bats were captured in different areas of the Metropolitan Region of São Paulo, Brazil, according to the degree of anthropization: Area 1 (Forested), Area 2 (Rural), Area 3 (Residential-A), Area 4 (Slum-- up to two floors), Area 5 (Residential-B-condo buildings), and Area 6 (Industrial). Swabs were kept in peptone water broth at 37 °C for 12 h when bacterial growth was streaked in Mannitol salt agar and incubated at 37 °C for 24 h. The disc-diffusion test evaluated antimicrobial susceptibility. Staphylococcaceae were isolated from 42.8% of bats, mostly from young, from the rural area, and during summer. M. sciuri was the most frequent species; S. aureus was also isolated. About 95% of isolates were resistant to at least one drug, and most strains were penicillin resistant. Eight isolates were methicillin resistant, and the mecA gene was detected in one isolate (S. haemolyticus). Antimicrobial resistance is a One Health issue that is not evaluated enough in bats. The results indicate that bats are carriers of clinically meaningful S. aureus and antimicrobial-resistant bacteria. Finally, the results suggest that we should intensify action plans to control the spread of resistant bacteria.
Collapse
|
17
|
Adams J, Agyenkwa-Mawuli K, Agyapong O, Wilson MD, Kwofie SK. EBOLApred: A machine learning-based web application for predicting cell entry inhibitors of the Ebola virus. Comput Biol Chem 2022; 101:107766. [DOI: 10.1016/j.compbiolchem.2022.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
|
18
|
Kavulikirwa OK, Sikakulya FK. Recurrent Ebola outbreaks in the eastern Democratic Republic of the Congo: A wake-up call to scale up the integrated disease surveillance and response strategy. One Health 2022; 14:100379. [PMID: 35313715 PMCID: PMC8933533 DOI: 10.1016/j.onehlt.2022.100379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022] Open
Abstract
Ebola virus disease (EVD) is a dangerous viral zoonotic hemorrhagic fever caused by a deadly pathogenic filovirus. Frugivorous bats are recognized as being the natural reservoir, playing a pivotal role in the epidemiological dynamics. Since its discovery in 1976, the disease has been shown to be endemic in the Democratic Republic of the Congo (DRC). So far, thirteen outbreaks have occurred, and EVD has been prioritized in the national surveillance system. Additionally, EVD is targeted by the Integrated Disease Surveillance and Response (IDSR) strategy in DRC. The IDSR strategy is a collaborative, comprehensive and innovative surveillance approach developed and adopted by WHO's African region member states (WHO/Afro) to strengthen their surveillance capacity at all levels for early detection, response and recovery from priority diseases and public health events. We provide an overview of the IDSR strategy and the issues that can prevent its expected outcome (early detection for timely response) in eastern DRC where there are still delays in EVD outbreaks detection and weaknesses in response capacity and health crisis recovery. Therefore, this paper highlights the advantages linked to the implementation of the IDSR and calls for an urgent need to scale up its materialization against the recurrent Ebola outbreaks in eastern DRC. Consequently, the paper advocates for rapidly addressing the obstacles hindering its operationalization and adapting the approach to the local context using implementation science.
Collapse
Affiliation(s)
- Olivier Kambere Kavulikirwa
- Faculty of Veterinary Medicine, Université Catholique du Graben de Butembo, Democratic Republic of the Congo
| | - Franck Katembo Sikakulya
- Faculty of Clinical Medicine and Dentistry, Department of Surgery, Kampala International University Western Campus, Ishaka-Bushenyi, Uganda
- Faculty of Medicine, Université Catholique du Graben de Butembo, Democratic Republic of the Congo
| |
Collapse
|
19
|
Mellors J, Tipton T, Fehling SK, Akoi Bore J, Koundouno FR, Hall Y, Hudson J, Alexander F, Longet S, Taylor S, Gorringe A, Magassouba N, Konde MK, Hiscox J, Strecker T, Carroll M. Complement-Mediated Neutralisation Identified in Ebola Virus Disease Survivor Plasma: Implications for Protection and Pathogenesis. Front Immunol 2022; 13:857481. [PMID: 35493467 PMCID: PMC9039621 DOI: 10.3389/fimmu.2022.857481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The 2013-2016 Ebola virus (EBOV) epidemic in West Africa was unprecedented in case numbers and fatalities, and sporadic outbreaks continue to arise. Antibodies to the EBOV glycoprotein (GP) are strongly associated with survival and their use in immunotherapy is often initially based on their performance in neutralisation assays. Other immune effector functions also contribute to EBOV protection but are more complex to measure. Their interactions with the complement system in particular are comparatively under-researched and commonly excluded from cellular immunoassays. Using EBOV convalescent plasma samples from the 2013-2016 epidemic, we investigated antibody and complement-mediated neutralisation and how these interactions can influence immunity in response to EBOV-GP and its secreted form (EBOV-sGP). We defined two cohorts: one with low-neutralising titres in relation to EBOV-GP IgG titres (LN cohort) and the other with a direct linear relationship between neutralisation and EBOV-GP IgG titres (N cohort). Using flow cytometry antibody-dependent complement deposition (ADCD) assays, we found that the LN cohort was equally efficient at mediating ADCD in response to the EBOV-GP but was significantly lower in response to the EBOV-sGP, compared to the N cohort. Using wild-type EBOV neutralisation assays with a cohort of the LN plasma, we observed a significant increase in neutralisation associated with the addition of pooled human plasma as a source of complement. Flow cytometry ADCD was also applied using the GP of the highly virulent Sudan virus (SUDV) of the Sudan ebolavirus species. There are no licensed vaccines or therapeutics against SUDV and it overlaps in endemicity with EBOV. We found that the LN plasma was significantly less efficient at cross-reacting and mediating ADCD. Overall, we found a differential response in ADCD between LN and N plasma in response to various Ebolavirus glycoproteins, and that these interactions could significantly improve EBOV neutralisation for selected LN plasma samples. Preservation of the complement system in immunoassays could augment our understanding of neutralisation and thus protection against infection.
Collapse
Affiliation(s)
- Jack Mellors
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Joseph Akoi Bore
- Center for Training and Research on Priority Diseases including Malaria in Guinea, Conakry, Guinea.,Department of Research, Ministry of Health Guinea, Conakry, Guinea
| | - Fara Raymond Koundouno
- Department of Research, Ministry of Health Guinea, Conakry, Guinea.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Yper Hall
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Jacob Hudson
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom.,School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Surrey, United Kingdom
| | - Frances Alexander
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Stephanie Longet
- Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Taylor
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Andrew Gorringe
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - N'Faly Magassouba
- Viral Haemorrhagic Fever Reference Department, Projet Laboratoire Fièvres Hémorragiques, Conakry, Guinea
| | - Mandy Kader Konde
- Center for Training and Research on Priority Diseases including Malaria in Guinea, Conakry, Guinea
| | - Julian Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Miles Carroll
- Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Exploring the Role of Innate Lymphocytes in the Immune System of Bats and Virus-Host Interactions. Viruses 2022; 14:v14010150. [PMID: 35062356 PMCID: PMC8781337 DOI: 10.3390/v14010150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system may provide intervention strategies to prevent zoonotic disease transmission and to identify new therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune systems that have evolved to detect and respond to invading pathogens. Bridging these two systems are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells share the characteristics of both innate and adaptive immune cells and are poised to mount rapid effector responses. They are ideally suited as the first line of defense against early stages of viral infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function, and their potential role in host–pathogen interactions. Moreover, given that studies into bat immune systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may aid future research in bat immunity, including the potential use of organoid models to delineate the interplay between innate lymphocytes, bat viruses, and host tolerance.
Collapse
|
21
|
Stout AE, Guo Q, Millet JK, Whittaker1 GR. Viral and Host Attributes Underlying the Origins of Zoonotic Coronaviruses in Bats. Comp Med 2021; 71:442-450. [PMID: 34635199 PMCID: PMC8594259 DOI: 10.30802/aalas-cm-21-000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
With a presumed origin in bats, the COVID-19 pandemic has been a major source of morbidity and mortality in the hu- man population, and the causative agent, SARS-CoV-2, aligns most closely at the genome level with the bat coronaviruses RaBtCoV4991/RaTG13 and RmYN02. The ability of bats to provide reservoirs of numerous viruses in addition to coronaviruses remains an active area of research. Unique aspects of the physiology of the chiropteran immune system may contribute to the ability of bats to serve as viral reservoirs. The coronavirus spike protein plays important roles in viral pathogenesis and the immune response. Although much attention has focused on the spike receptor-binding domain, a unique aspect of SARS-CoV-2 as compared with its closest relatives is the presence of a furin cleavage site in the S1-S2 region of the spike protein. Proteolytic activation is likely an important feature that allows SARS-CoV-2-and other coronaviruses-to overcome the species barriers and thus cause human disease. The diversity of bat species limits the ability to draw broad conclusions about viral pathogenesis, but comparisons across species and with reference to humans and other susceptible mammals may guide future research in this regard.
Collapse
Affiliation(s)
| | - Qinghua Guo
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Gary R Whittaker1
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| |
Collapse
|
22
|
Lee-Cruz L, Lenormand M, Cappelle J, Caron A, De Nys H, Peeters M, Bourgarel M, Roger F, Tran A. Mapping of Ebola virus spillover: Suitability and seasonal variability at the landscape scale. PLoS Negl Trop Dis 2021; 15:e0009683. [PMID: 34424896 PMCID: PMC8425568 DOI: 10.1371/journal.pntd.0009683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 09/08/2021] [Accepted: 07/26/2021] [Indexed: 01/06/2023] Open
Abstract
The unexpected Ebola virus outbreak in West Africa in 2014 involving the Zaire ebolavirus made clear that other regions outside Central Africa, its previously documented niche, were at risk of future epidemics. The complex transmission cycle and a lack of epidemiological data make mapping areas at risk of the disease challenging. We used a Geographic Information System-based multicriteria evaluation (GIS-MCE), a knowledge-based approach, to identify areas suitable for Ebola virus spillover to humans in regions of Guinea, Congo and Gabon where Ebola viruses already emerged. We identified environmental, climatic and anthropogenic risk factors and potential hosts from a literature review. Geographical data layers, representing risk factors, were combined to produce suitability maps of Ebola virus spillover at the landscape scale. Our maps show high spatial and temporal variability in the suitability for Ebola virus spillover at a fine regional scale. Reported spillover events fell in areas of intermediate to high suitability in our maps, and a sensitivity analysis showed that the maps produced were robust. There are still important gaps in our knowledge about what factors are associated with the risk of Ebola virus spillover. As more information becomes available, maps produced using the GIS-MCE approach can be easily updated to improve surveillance and the prevention of future outbreaks. Ebola virus disease is a highly pathogenic disease transmitted from wildlife to humans. It was first described in 1976 and its distribution remained restricted to Central Africa until 2014, when an outbreak in West Africa, causing more than 28,000 cases and more than 11,000 deaths, took place. Anthropogenic factors, such as bushmeat hunting, trade and consumption, and environmental and climatic factors, may promote the contact between humans and infected animals, such as bats, primates and duikers, increasing the risk of virus transmission to the human population. In this study, we used the spatial multicriteria evaluation framework to gather all available information on risk factors and animal species susceptible to infection, and produce maps of areas suitable for Ebola virus spillover in regions in Guinea, Congo and Gabon. The resulting maps highlighted high spatial and temporal variability in the suitability for Ebola virus spillover. Data from reported cases of Ebola virus transmission from wild animals to humans were used to validate the maps. The approach developed is capable of integrating a wide diversity of risk factors, and provides a flexible and simple tool for surveillance, which can be updated as more data and knowledge on risk factors become available.
Collapse
Affiliation(s)
- Larisa Lee-Cruz
- CIRAD, UMR ASTRE, Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR TETIS, Montpellier, France
- TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
| | - Maxime Lenormand
- TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
| | - Julien Cappelle
- CIRAD, UMR ASTRE, Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Alexandre Caron
- CIRAD, UMR ASTRE, Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- Faculdade Veterinaria, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Hélène De Nys
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Harare, Zimbabwe
| | - Martine Peeters
- TransVIHMI, IRD, INSERM, Univ Montpellier, Montpellier, France
| | - Mathieu Bourgarel
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Harare, Zimbabwe
| | - François Roger
- CIRAD, UMR ASTRE, Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Annelise Tran
- CIRAD, UMR ASTRE, Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR TETIS, Montpellier, France
- TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
- * E-mail:
| |
Collapse
|
23
|
Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses. Viruses 2021; 13:v13081509. [PMID: 34452374 PMCID: PMC8402684 DOI: 10.3390/v13081509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Rodents (order Rodentia), followed by bats (order Chiroptera), comprise the largest percentage of living mammals on earth. Thus, it is not surprising that these two orders account for many of the reservoirs of the zoonotic RNA viruses discovered to date. The spillover of these viruses from wildlife to human do not typically result in pandemics but rather geographically confined outbreaks of human infection and disease. While limited geographically, these viruses cause thousands of cases of human disease each year. In this review, we focus on three questions regarding zoonotic viruses that originate in bats and rodents. First, what biological strategies have evolved that allow RNA viruses to reside in bats and rodents? Second, what are the environmental and ecological causes that drive viral spillover? Third, how does virus spillover occur from bats and rodents to humans?
Collapse
|
24
|
Fontes CM, Lipes BD, Liu J, Agans KN, Yan A, Shi P, Cruz DF, Kelly G, Luginbuhl KM, Joh DY, Foster SL, Heggestad J, Hucknall A, Mikkelsen MH, Pieper CF, Horstmeyer RW, Geisbert TW, Gunn MD, Chilkoti A. Ultrasensitive point-of-care immunoassay for secreted glycoprotein detects Ebola infection earlier than PCR. Sci Transl Med 2021; 13:13/588/eabd9696. [PMID: 33827978 DOI: 10.1126/scitranslmed.abd9696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
Ebola virus (EBOV) hemorrhagic fever outbreaks have been challenging to deter due to the lack of health care infrastructure in disease-endemic countries and a corresponding inability to diagnose and contain the disease at an early stage. EBOV vaccines and therapies have improved disease outcomes, but the advent of an affordable, easily accessed, mass-produced rapid diagnostic test (RDT) that matches the performance of more resource-intensive polymerase chain reaction (PCR) assays would be invaluable in containing future outbreaks. Here, we developed and demonstrated the performance of a new ultrasensitive point-of-care immunoassay, the EBOV D4 assay, which targets the secreted glycoprotein of EBOV. The EBOV D4 assay is 1000-fold more sensitive than the U.S. Food and Drug Administration-approved RDTs and detected EBOV infection earlier than PCR in a standard nonhuman primate model. The EBOV D4 assay is suitable for low-resource settings and may facilitate earlier detection, containment, and treatment during outbreaks of the disease.
Collapse
Affiliation(s)
- Cassio M Fontes
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Barbara D Lipes
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jason Liu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Aiwei Yan
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Patricia Shi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniela F Cruz
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kelli M Luginbuhl
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Daniel Y Joh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stephanie L Foster
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Jacob Heggestad
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Angus Hucknall
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Carl F Pieper
- Departments of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Roarke W Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Michael D Gunn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
25
|
Smart U, Cihlar JC, Budowle B. International Wildlife Trafficking: A perspective on the challenges and potential forensic genetics solutions. Forensic Sci Int Genet 2021; 54:102551. [PMID: 34134047 DOI: 10.1016/j.fsigen.2021.102551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
International wildlife trafficking (IWT) is a thriving and pervasive illegal enterprise that adversely affects modern societies. Yet, despite being globally recognized as a threat to biodiversity, national security, economy, and biosecurity, IWT remains largely unabated and is proliferating at an alarming rate. The increase in IWT is generally attributed to a lack of prioritization to curb wildlife crime through legal and scientific infrastructure. This review: (1) lays out the damaging scope and influence of IWT; (2) discusses the potential of DNA marker systems, barcodes, and emerging molecular technologies, such as long-read portable sequencing, to facilitate rapid, in situ identification of species and individuals; and (3) encourages initiatives that promote quality and innovation. Interdisciplinary collaboration promises to be one of the most effective ways forward to surmounting the complex scientific and legal challenges posed by IWT.
Collapse
Affiliation(s)
- Utpal Smart
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp, Bowie Blvd., Fort Worth, TX 76107, USA.
| | - Jennifer Churchill Cihlar
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp, Bowie Blvd., Fort Worth, TX 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp, Bowie Blvd., Fort Worth, TX 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| |
Collapse
|
26
|
Tell JG, Coller BAG, Dubey SA, Jenal U, Lapps W, Wang L, Wolf J. Environmental Risk Assessment for rVSVΔG-ZEBOV-GP, a Genetically Modified Live Vaccine for Ebola Virus Disease. Vaccines (Basel) 2020; 8:vaccines8040779. [PMID: 33352786 PMCID: PMC7767225 DOI: 10.3390/vaccines8040779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
rVSVΔG-ZEBOV-GP is a live, attenuated, recombinant vesicular stomatitis virus (rVSV)-based vaccine for the prevention of Ebola virus disease caused by Zaire ebolavirus. As a replication-competent genetically modified organism, rVSVΔG-ZEBOV-GP underwent various environmental evaluations prior to approval, the most in-depth being the environmental risk assessment (ERA) required by the European Medicines Agency. This ERA, as well as the underlying methodology used to arrive at a sound conclusion about the environmental risks of rVSVΔG-ZEBOV-GP, are described in this review. Clinical data from vaccinated adults demonstrated only infrequent, low-level shedding and transient, low-level viremia, indicating a low person-to-person infection risk. Animal data suggest that it is highly unlikely that vaccinated individuals would infect animals with recombinant virus vaccine or that rVSVΔG-ZEBOV-GP would spread within animal populations. Preclinical studies in various hematophagous insect vectors showed that these species were unable to transmit rVSVΔG-ZEBOV-GP. Pathogenicity risk in humans and animals was found to be low, based on clinical and preclinical data. The overall risk for non-vaccinated individuals and the environment is thus negligible and can be minimized further through defined mitigation strategies. This ERA and the experience gained are relevant to developing other rVSV-based vaccines, including candidates under investigation for prevention of COVID-19.
Collapse
Affiliation(s)
- Joan G. Tell
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
- Correspondence:
| | - Beth-Ann G. Coller
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| | - Sheri A. Dubey
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| | - Ursula Jenal
- Jenal & Partners Biosafety Consulting, 4310 Rheinfelden, Switzerland;
| | - William Lapps
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| | - Liman Wang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| | - Jayanthi Wolf
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| |
Collapse
|