1
|
Eto S, Kato D, Saeki K, Iguchi T, Shiyu Q, Kamoto S, Yoshitake R, Shinada M, Ikeda N, Tsuboi M, Chambers J, Uchida K, Nishimura R, Nakagawa T. Comprehensive Analysis of the Tumour Immune Microenvironment in Canine Urothelial Carcinoma Reveals Immunosuppressive Mechanisms Induced by the COX-Prostanoid Cascade. Vet Comp Oncol 2024; 22:500-512. [PMID: 39179510 DOI: 10.1111/vco.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 08/26/2024]
Abstract
A comprehensive understanding of the tumour immune microenvironment (TIME) is essential for advancing precision medicine and identifying potential therapeutic targets. This study focused on canine urothelial carcinoma (cUC) recognised for its high sensitivity to cyclooxygenase (COX) inhibitors. Using immunohistochemical techniques, we quantified the infiltration of seven immune cell populations within cUC tumour tissue to identify clinicopathological features that characterise the TIME in cUC. Our results revealed several notable factors, including the significantly higher levels of CD3+ T cells and CD8+ T cells within tumour cell nests in cases treated with preoperative COX inhibitors compared to untreated cases. Based on the immunohistochemistry data, we further performed a comparative analysis using publicly available RNA-seq data from untreated cUC tissues (n = 29) and normal bladder tissues (n = 4) to explore the link between COX-prostanoid pathways and the immune response to tumours. We observed increased expression of COX-2, microsomal prostaglandin E2 synthase-1 (mPGES-1) and mPGES-2 in cUC tissues. However, only mPGES-2 showed a negative correlation with the cytotoxic T-cell (CTL)-related genes CD8A and granzyme B (GZMB). In addition, a broader analysis of solid tumours using The Cancer Genome Atlas (TCGA) database revealed similar patterns in several human tumours, suggesting a common mechanism in dogs and humans. Our results suggest that the COX-2/mPGES-2 pathway may act as a cross-species tumour-intrinsic factor that weakens anti-tumour immunity, and that COX inhibitors may convert TIME from a 'cold tumour' to a 'hot tumour' state by counteracting COX/mPGES-2-mediated immunosuppression.
Collapse
Affiliation(s)
- Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Takaaki Iguchi
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Qin Shiyu
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Bryan JN, Maitz CA. Translational History and Hope of Immunotherapy of Canine Tumors. Clin Cancer Res 2024; 30:4272-4285. [PMID: 39042399 PMCID: PMC11444889 DOI: 10.1158/1078-0432.ccr-23-2266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Companion dogs have served an important role in cancer immunotherapy research. Sharing similar environments and diets with humans, dogs naturally develop many of the same cancers. These shared exposures, coupled with dogs' diverse genetic makeup, make them ideal subjects for studying cancer therapies. Tumors like osteosarcoma, hemangiosarcoma, soft-tissue sarcoma, and non-Hodgkin lymphoma occur with greater frequency than their counterpart disease in humans. Canine brain tumors allow the study of therapy strategies with imaging, surgery, and radiotherapy equipment in veterinary patients with near-human geometry. Nonspecific immunostimulants, autologous and allogeneic vaccines, immune checkpoint inhibitors, and cellular therapies used in treating canine cancers have been tested in veterinary clinical trials. These treatments have not only improved outcomes for dogs but have also provided valuable insights for human cancer treatment. Advancements in radiation technology and the development of tools to characterize canine immune responses have further facilitated the ability to translate veterinary clinical trial results to human applications. Advancements in immunotherapy of canine tumors have directly supported translation to human clinical trials leading to approved therapies for patients with cancer around the world. The study of immunotherapy in dogs has been and will continue to be a promising avenue for advancing human cancer treatment.
Collapse
Affiliation(s)
- Jeffrey N. Bryan
- Comparative Oncology, Radiobiology, and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Charles A. Maitz
- Comparative Oncology, Radiobiology, and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| |
Collapse
|
3
|
He X, Gao Y, Deng Y, He J, Nolte I, Murua Escobar H, Yu F. The Comparative Oncology of Canine Malignant Melanoma in Targeted Therapy: A Systematic Review of In Vitro Experiments and Animal Model Reports. Int J Mol Sci 2024; 25:10387. [PMID: 39408717 PMCID: PMC11476434 DOI: 10.3390/ijms251910387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/20/2024] Open
Abstract
Canine malignant melanoma (CMM) is highly aggressive and mostly located in the oral cavity. CMM is the predominant type of canine oral malignancy and shows striking homologies with human mucosal melanoma. In comparative oncology, canine oral melanomas (COMs), as spontaneous tumor models, have the potential to acquire a unique value as a translational model of rare human melanoma subtypes. This review aims to provide a comprehensive summary of targeted therapies for canine malignant melanoma and to enrich the field of comparative oncology. Following the PRISMA guidelines, a comprehensive literature search was conducted across databases for studies from 1976 to April 2024. Studies were selected based on their relevance to targeted treatments. A total of 30 studies met the inclusion criteria. Based on the treatment approaches, the studies were further categorized into immunotherapies, small molecule signaling inhibitors, indirect kinase inhibitors, and other alternative strategies. Some treatments have been shown to result in stable disease or partial response, accounting for 29% (monoclonal antibody) and 76.5% (micro-RNA therapies) in clinical trials. Moreover, in vitro experiments of small molecule inhibitors, including cell signaling inhibitors and indirect kinase inhibitors, have shown the potential to be an effective treatment option for the development of therapeutic strategies in canine malignant melanoma. The observed response in in vitro experiments of CMM (particularly the oral and certain cutaneous subtypes) to drugs used in the treatment of human melanoma underlines the resemblance to human melanoma, therefore supporting the notion that CMM may be a valuable model for understanding rare human melanoma subtypes and exploring potential therapeutic avenues in preclinical trials. Finally, this literature review serves as a valuable resource for the development of therapeutic strategies for CMM and highlights the potential for translating these findings to human cancer treatment.
Collapse
Affiliation(s)
- Xiaohui He
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Yu Gao
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Yuqing Deng
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Junying He
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Feng Yu
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| |
Collapse
|
4
|
Kim MC, Borcherding N, Song WJ, Kolb R, Zhang W. Leveraging single-cell transcriptomic data to uncover immune suppressive cancer cell subsets in triple-negative canine breast cancers. Front Vet Sci 2024; 11:1434617. [PMID: 39376916 PMCID: PMC11457229 DOI: 10.3389/fvets.2024.1434617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Single-cell RNA sequencing (scRNA-seq) has become an essential tool for uncovering the complexities of various physiological and immunopathological conditions in veterinary medicine. However, there is currently limited information on immune-suppressive cancer subsets in canine breast cancers. In this study, we aimed to identify and characterize immune-suppressive subsets of triple-negative canine breast cancer (TNBC) by utilizing integrated scRNA-seq data from published datasets. Methods Published scRNA-seq datasets, including data from six groups of 30 dogs, were subjected to integrated bioinformatic analysis. Results Immune modulatory TNBC subsets were identified through functional enrichment analysis using immune-suppressive gene sets, including those associated with anti-inflammatory and M2-like macrophages. Key immune-suppressive signaling, such as viral infection, angiogenesis, and leukocyte chemotaxis, was found to play a role in enabling TNBC to evade immune surveillance. In addition, interactome analysis revealed significant interactions between distinct subsets of cancer cells and effector T cells, suggesting potential T-cell suppression. Discussion The present study demonstrates a versatile and scalable approach to integrating and analyzing scRNA-seq data, which successfully identified immune-modulatory subsets of canine TNBC. It also revealed potential mechanisms through which TNBC promotes immune evasion in dogs. These findings are crucial for advancing the understanding of the immune pathogenesis of canine TNBC and may aid in the development of new immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Myung-Chul Kim
- Veterinary Laboratory Medicine, Clinical Pathology, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Woo-Jin Song
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Stinson JA, Barbosa MMP, Sheen A, Momin N, Fink E, Hampel J, Selting KA, Kamerer RL, Bailey KL, Wittrup KD, Fan TM. Tumor-Localized Interleukin-2 and Interleukin-12 Combine with Radiation Therapy to Safely Potentiate Regression of Advanced Malignant Melanoma in Pet Dogs. Clin Cancer Res 2024; 30:4029-4043. [PMID: 38980919 PMCID: PMC11398984 DOI: 10.1158/1078-0432.ccr-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Cytokines IL2 and IL12 exhibit potent anticancer activity but suffer a narrow therapeutic window due to off-tumor immune cell activation. Engineering cytokines with the ability to bind and associate with tumor collagen after intratumoral injection potentiated response without toxicity in mice and was previously safe in pet dogs with sarcoma. Here, we sought to test the efficacy of this approach in dogs with advanced melanoma. PATIENTS AND METHODS This study examined 15 client-owned dogs with histologically or cytologically confirmed malignant melanoma that received a single 9-Gy fraction of radiotherapy, followed by six cycles of combined collagen-anchored IL2 and IL12 therapy every 2 weeks. Cytokine dosing followed a 3 + 3 dose escalation design, with the initial cytokine dose chosen from prior evaluation in canine sarcomas. No exclusion criteria for tumor stage or metastatic burden, age, weight, or neuter status were applied for this trial. RESULTS Median survival regardless of the tumor stage or dose level was 256 days, and 10/13 (76.9%) dogs that completed treatment had CT-measured tumor regression at the treated lesion. In dogs with metastatic disease, 8/13 (61.5%) had partial responses across their combined lesions, which is evidence of locoregional response. Profiling by NanoString of treatment-resistant dogs revealed that B2m loss was predictive of poor response to this therapy. CONCLUSIONS Collectively, these results confirm the ability of locally administered tumor-anchored cytokines to potentiate responses at regional disease sites when combined with radiation. This evidence supports the clinical translation of this approach and highlights the utility of comparative investigation in canine cancers.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kim A. Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Rebecca L. Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
6
|
Sergent P, Pinto-Cárdenas JC, Carrillo AJA, Dávalos DL, Pérez MDG, Lechuga DAM, Alonso-Miguel D, Schaafsma E, Cuarenta AJ, Muñoz DC, Zarabanda Y, Palisoul SM, Lewis PJ, Kolling FW, Affonso de Oliveira JF, Steinmetz NF, Rothstein JL, Lines L, Noelle RJ, Fiering S, Arias-Pulido H. An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1. Cells 2024; 13:1478. [PMID: 39273048 PMCID: PMC11394642 DOI: 10.3390/cells13171478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Neoadjuvant intratumoral (IT) therapy could amplify the weak responses to checkpoint blockade therapy observed in breast cancer (BC). In this study, we administered neoadjuvant IT anti-canine PD-1 therapy (IT acPD-1) alone or combined with IT cowpea mosaic virus therapy (IT CPMV/acPD-1) to companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. CMC patients treated weekly with acPD-1 (n = 3) or CPMV/acPD-1 (n = 3) for four weeks or with CPMV/acPD-1 (n = 3 patients not candidates for surgery) for up to 11 weeks did not experience immune-related adverse events. We found that acPD-1 and CPMV/acPD-1 injections resulted in tumor control and a reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of treated dogs. In two metastatic CMC patients, CPMV/acPD-1 treatments resulted in the control and reduction of established lung metastases. CPMV/acPD-1 treatments were associated with altered gene expression related to TLR1-4 signaling and complement pathways. These novel therapies could be effective for CMC patients. Owing to the extensive similarities between CMC and human BC, IT CPMV combined with approved anti-PD-1 therapies could be a novel and effective immunotherapy to treat local BC and suppress metastatic BC.
Collapse
Affiliation(s)
- Petra Sergent
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | - Daniel Luna Dávalos
- VETCONNECT Diagnóstico por imagen, Via Toledo, 2952 Mas Palomas, Monterrey 64780, Nuevo León, Mexico
| | | | | | - Daniel Alonso-Miguel
- Department of Animal Medicine and Surgery, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | | | | | | | | | - Scott M Palisoul
- Department of Pathology and Laboratory Medicine at Dartmouth Hitchcock Health, Center for Clinical Genomics and Advanced Technology, Lebanon, NH 03756, USA
| | - Petra J Lewis
- Department of Radiology Dartmouth Health Geisel School of Medicine, Lebanon, NH 03755, USA
| | - Fred W Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Engineering in Cancer, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Louise Lines
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
7
|
Xia YY, Liao AT, Liu RM, Yang SY, Kuo CC, Ke CH, Lin CS, Lee JJ. Immunotherapeutic allogeneic dendritic cell and autologous tumor cell fusion vaccine alone or combined with radiotherapy in canine oral malignant melanoma is safe and potentially effective. Front Vet Sci 2024; 11:1397518. [PMID: 39229600 PMCID: PMC11368852 DOI: 10.3389/fvets.2024.1397518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Immunotherapy represents a promising breakthrough in cancer management and is being explored in canine melanomas. Dendritic cells (DCs) play a crucial role in priming T-cell-mediated immune reactions through the antigen-presenting function. Combining immunotherapy and radiation therapy may generate more substantial anti-cancer efficacy through immunomodulation. Objectives Our research reported a preliminary result of the safety and outcome of a kind of immunotherapy, the allogeneic dendritic cell and autologous tumor cell fusion vaccine, alone or in combination with hypofractionated radiation therapy, in canine oral malignant melanoma. Methods Two groups of dogs with histopathological diagnoses of oral malignant melanoma were recruited. In group 1 (DCRT), dogs received a combination of DC fusion vaccine and radiotherapy. In group 2 (DC), dogs received DC fusion vaccine alone. DC vaccination was given once every 2 weeks for four doses. Radiotherapy was performed weekly for five fractions. Dogs that received carboplatin were retrospectively collected as a control group (group 3). Results Five dogs were included in group 1 (two stage II, three stage III), 11 in group 2 (three stage I/II, eight stage III/IV), and eight (two stage I/II, six stage III/IV) in the control group. Both DC and DCRT were well-tolerated, with only mild adverse events reported, including mucositis, gastrointestinal discomfort, and injection site reactions. The median progression-free intervals in groups 1, 2, and 3 were 214 (95% CI, NA, due to insufficient data), 100 (95% CI, 27-237), and 42 days (95% CI, NA-170), respectively, which were not significantly different. The 1-year survival rates were 20, 54.5, and 12.5% in groups 1, 2, and 3. Dogs in the DCRT group exhibited significantly higher TGF-β signals than the DC group throughout the treatment course, indicating a possible higher degree of immunosuppression. Conclusion The manuscript demonstrated the safety of dendritic cell/tumor cell fusion vaccine immunotherapy, alone or in combination with radiotherapy. The results support further expansion of this immunotherapy, modification of combination treatment and protocols, and investigation of combining DC vaccine with other treatment modalities. Clinical trial registration Preclinical Trials, PCTE0000475.
Collapse
Affiliation(s)
- Yuan-Yuan Xia
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert TaiChing Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ru-Min Liu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Ya Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chun Kuo
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Jih-Jong Lee
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Mizuno T, Kato M, Tsukui T, Igase M. Development of an in vitro assay for screening programmed death receptor-1/programmed cell death ligand 1 monoclonal antibody therapy in dogs. Vet Immunol Immunopathol 2024; 274:110792. [PMID: 38878679 DOI: 10.1016/j.vetimm.2024.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024]
Abstract
Immunomodulatory antibody drugs that modulate the function of immune checkpoint molecules, such as programmed death receptor-1 (PD-1) and programmed cell death ligand 1 (PD-L1), have been established as new cancer treatments in human medicine. In recent years, there have also been reports on antibodies that inhibit immune checkpoint molecules in dogs, and clinical trials using such antibodies for canine cancer have been gradually increasing in number. Because inhibitory antibodies restore T-cell function by inhibiting the binding of PD-1 on T cells and its ligand PD-L1, the quality of antibody function has been evaluated using activated T cells or peripheral blood mononuclear cells isolated from healthy dogs; however, the assays and dogs used significantly vary. Therefore, in the present study, we developed a reporter gene assay using reporter cells (Jurkat/NFATluc/cPD1) and effector cells (CTAC/OKT3/cPDL1). Jurkat/NFATluc/cPD1 were generated by introducing both of the NFAT-responsive luciferase gene as a marker of T-cell signaling and canine PD-1, into a human T lymphoid cell line, Jurkat. CTAC/OKT3/cPDL1 were generated by introducing single-chain FV (scFV) of anti-human CD3 antibody (OKT3) and canine PD-L1 into a canine thyroid carcinoma cell line, CTAC. Ligation of PD-1 on Jurkat/NFATluc/cPD1 via binding of PD-L1 on CTAC/OKT3/cPDL1 suppressed NFAT luciferase activity induced by CD3 ligation by scFV of OKT3. The addition of anti-canine PD-1 and PD-L1 antibodies, both of which were previously developed in our laboratory, restored this suppression with high sensitivity, although the anti-human PD-L1 antibody atezolizumab induced a very weak restoration. This assay is an useful method for functionally evaluating the inhibition of canine PD-1 and PD-L1 binding.
Collapse
Affiliation(s)
- Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Graduate school of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | - Masahiro Kato
- Nippon Zenyaku Kogyo Co., Ltd., Koriyama, Fukushima, Japan
| | | | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Graduate school of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
9
|
Diehl B, Hansmann F. Immune checkpoint regulation is critically involved in canine cutaneous histiocytoma regression. Front Vet Sci 2024; 11:1371931. [PMID: 38962703 PMCID: PMC11220128 DOI: 10.3389/fvets.2024.1371931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Canine cutaneous histiocytoma (CCH) is a benign tumor frequently occurring in young dogs which is derived from Langerhans cells (LC). Distinguishing features of this tumor are its spontaneous regression following a rapid tumor growth. Impaired control of immune checkpoints during tumor development and progression is a widespread phenomenon which may result in an absent or ineffective immune response. The interaction between the inflammatory response and the expression of immune checkpoint molecules is only partially described in this tumor type. The aim of this study was to identify immune checkpoint molecules and molecules from the interferon-mediated immune response that are involved in the regression of CCH. Methods Forty-eight CCH derived from dogs ≤ 4 years of age were assigned to one of four groups according to the severity and distribution of lymphocyte infiltration. Using immunohistochemistry and whole-slide image scans of consecutive sections the expression of programmed death protein ligand 1 (PD-L1), CD80, CD86, Survivin, forkhead box protein 3, Ki-67, cleaved caspase-3, CD3, and mx1 were investigated. RNA in-situ hybridization was performed for transcripts of mx1 and interferon-γ. Results Neoplastic cells showed an expression of PD-L1, CD80, CD86, and Survivin. The density of CD80 expressing cells was negatively correlated with regression while the density of cleaved caspase-3 positive cells increased with regression. Mx1 transcripts and protein were predominantly localized in neoplastic cells while interferon-γ transcripts were most frequently detected in T-cells. Conclusion The expression of the immune checkpoint molecules CD86 and PD-L1 and particularly the reduced expression of CD80 in groups 3 and 4 indicate an influence of the investigated immune checkpoints on tumor regression. In parallel an activation of the apoptotic cascade during regression is suggested. Finally, the detection of mx1 within the neoplasm pinpoints to a yet undisclosed role of anti-cellular signaling in tumor immunity.
Collapse
Affiliation(s)
| | - Florian Hansmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
10
|
Giuliano A, Pimentel PAB, Horta RS. Checkpoint Inhibitors in Dogs: Are We There Yet? Cancers (Basel) 2024; 16:2003. [PMID: 38893123 PMCID: PMC11171034 DOI: 10.3390/cancers16112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionised cancer treatment in people. Immune checkpoints are important regulators of the body's reaction to immunological stimuli. The most studied immune checkpoint molecules are programmed death (PD-1) with its ligand (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) with its ligands CD80 (B7-1) and CD86 (B7-2). Certain tumours can evade immunosurveillance by activating these immunological checkpoint targets. These proteins are often upregulated in cancer cells and tumour-infiltrating lymphocytes, allowing cancer cells to evade immune surveillance and promote tumour growth. By blocking inhibitory checkpoints, ICI can help restore the immune system to effectively fight cancer. Several studies have investigated the expression of these and other immune checkpoints in human cancers and have shown their potential as therapeutic targets. In recent years, there has been growing interest in studying the expression of immune checkpoints in dogs with cancer, and a few small clinical trials with ICI have already been performed on these species. Emerging studies in veterinary oncology are centred around developing and validating canine-targeted antibodies. Among ICIs, anti-PD-1 and anti-PD-L1 treatments stand out as the most promising, mirroring the success in human medicine over the past decade. Nevertheless, the efficacy of caninized antibodies remains suboptimal, especially for canine oral melanoma. To enhance the utilisation of ICIs, the identification of predictive biomarkers for treatment response and the thorough screening of individual tumours are crucial. Such endeavours hold promise for advancing personalised medicine within veterinary practice, thereby improving treatment outcomes. This article aims to review the current research literature about the expression of immune checkpoints in canine cancer and the current results of ICI treatment in dogs.
Collapse
Affiliation(s)
- Antonio Giuliano
- Department of Veterinary Clinical Science, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Hong Kong, China
- Veterinary Medical Centre, City University of Hong Kong, Hong Kong, China
| | - Pedro A. B. Pimentel
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo S. Horta
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
11
|
Kocikowski M, Dziubek K, Węgrzyn K, Hrabal V, Zavadil-Kokas F, Vojtesek B, Alfaro JA, Hupp T, Parys M. Comparative characterization of two monoclonal antibodies targeting canine PD-1. Front Immunol 2024; 15:1382576. [PMID: 38779661 PMCID: PMC11110041 DOI: 10.3389/fimmu.2024.1382576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
Monoclonal antibodies targeting immune checkpoints have revolutionized oncology. Yet, the effectiveness of these treatments varies significantly among patients, and they are associated with unexpected adverse events, including hyperprogression. The murine research model used in drug development fails to recapitulate both the functional human immune system and the population heterogeneity. Hence, a novel model is urgently needed to study the consequences of immune checkpoint blockade. Dogs appear to be uniquely suited for this role. Approximately 1 in 4 companion dogs dies from cancer, yet no antibodies are commercially available for use in veterinary oncology. Here we characterize two novel antibodies that bind canine PD-1 with sub-nanomolar affinity as measured by SPR. Both antibodies block the clinically crucial PD-1/PD-L1 interaction in a competitive ELISA assay. Additionally, the antibodies were tested with a broad range of assays including Western Blot, ELISA, flow cytometry, immunofluorescence and immunohistochemistry. The antibodies appear to bind two distinct epitopes as predicted by molecular modeling and peptide phage display. Our study provides new tools for canine oncology research and a potential veterinary therapeutic.
Collapse
Affiliation(s)
- Mikolaj Kocikowski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Katarzyna Węgrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Vaclav Hrabal
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Institute of Genetic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Maciej Parys
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
12
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Chon E, Hendricks W, White M, Rodrigues L, Haworth D, Post G. Precision Medicine in Veterinary Science. Vet Clin North Am Small Anim Pract 2024; 54:501-521. [PMID: 38212188 DOI: 10.1016/j.cvsm.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Precision medicine focuses on the clinical management of the individual patient, not on population-based findings. Successes from human precision medicine inform veterinary oncology. Early evidence of success for canines shows how precision medicine can be integrated into practice. Decreasing genomic profiling costs will allow increased utilization and subsequent improvement of knowledge base from which to make better informed decisions. Utility of precision medicine in canine oncology will only increase for improved cancer characterization, enhanced therapy selection, and overall more successful management of canine cancer. As such, practitioners are called to interpret and leverage precision medicine reports for their patients.
Collapse
Affiliation(s)
- Esther Chon
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - William Hendricks
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - Michelle White
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA
| | - Lucas Rodrigues
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA
| | - David Haworth
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - Gerald Post
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA.
| |
Collapse
|
14
|
Xia YY, Chi KH, Liao AT, Lee JJ. Limited Clinical Efficacy with Potential Adverse Events in a Pilot Study of Autologous Adoptive Cell Therapy in Canine Oral Malignant Melanoma. Vet Sci 2024; 11:150. [PMID: 38668417 PMCID: PMC11053650 DOI: 10.3390/vetsci11040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/29/2024] Open
Abstract
Adoptive cell therapy (ACT) has been studied in several human and canine cancers with some promising clinical outcomes but not in canine oral malignant melanoma (OMM). Our manuscript aimed to explore one kind of ACT, the ex vivo-expanded autologous immune cell infusion in canine OMM, as this tumor remains a treatment dilemma. The study recruited dogs with histopathological diagnoses of oral malignant melanoma, generated their peripheral blood mononuclear cells, expanded them into predominantly non-B non-T cells via stimulations of IL-15, IL-2, and IL-21, and then re-infused the cells into tumor-bearing dogs. Ten dogs were enrolled; three dogs did not report any adverse events; three had a mildly altered appetite; one had a mildly increased liver index, while the other three developed suspected anaphylaxis at different levels. The median progression-free interval was 49 days. Dogs with progressive disease during treatment had a shorter survival. This pilot study indicates limited efficacy with potential adverse events of this ACT. Most recruited patients were in a later stage and had macroscopic disease, which might affect the treatment efficacy. Further exploration of this cell therapy in an adjuvant setting, with adequate protocol modification and standardization, could still be considered.
Collapse
Affiliation(s)
- Yuan-Yuan Xia
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipe 10617, Taiwan; (Y.-Y.X.); (A.T.L.)
- National Taiwan University Veterinary Hospital, College of Bioresources and Agriculture, National Taiwan University, Taipei 10672, Taiwan
| | - Kwan-Hwa Chi
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Radiation Therapy & Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Albert Taiching Liao
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipe 10617, Taiwan; (Y.-Y.X.); (A.T.L.)
| | - Jih-Jong Lee
- National Taiwan University Veterinary Hospital, College of Bioresources and Agriculture, National Taiwan University, Taipei 10672, Taiwan
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
15
|
Files R, Okwu V, Topa N, Sousa M, Silva F, Rodrigues P, Delgado L, Prada J, Pires I. Assessment of Tumor-Associated Tissue Eosinophilia (TATE) and Tumor-Associated Macrophages (TAMs) in Canine Transitional Cell Carcinoma of the Urinary Bladder. Animals (Basel) 2024; 14:519. [PMID: 38338162 PMCID: PMC10854732 DOI: 10.3390/ani14030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Transitional cell carcinoma of the urinary bladder is a significant neoplasm in dogs, characterized by a poor prognosis and a high metastatic potential. These canine spontaneous tumors share many characteristics with human transitional cell carcinoma, making them an excellent comparative model. The role of inflammatory infiltration in tumor development and progression is frequently contradictory, especially concerning tumor-associated tissue eosinophils (TATE) and tumor-associated macrophages (TAMs). This study aims to analyze TATE and TAMs in canine transitional cell carcinoma of the urinary bladder. Congo Red staining was used to identify TATE, and immunohistochemistry was performed to detect TAMs in 34 cases of canine transitional cell carcinoma of the bladder carcinomas, categorized into low and high grades. Statistically significant differences were observed between the number of eosinophils and macrophages in the two groups of tumors. The number of TATE was higher in low-grade malignant tumors, but the number of TAMs was higher in high-grade tumors. Our findings suggest the importance of TATEs and TAMs in the aggressiveness of canine transitional cell carcinoma and propose their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Victor Okwu
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Nuno Topa
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Marisa Sousa
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Paula Rodrigues
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Leonor Delgado
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal;
- Pathology Department, INNO Specialized Veterinary Services, 4710-503 Braga, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
16
|
Lee C, Kuo W, Chang Y, Hsu S, Wu C, Chen Y, Chang J, Wang AH. Structure-based development of a canine TNF-α-specific antibody using adalimumab as a template. Protein Sci 2024; 33:e4873. [PMID: 38111376 PMCID: PMC10804672 DOI: 10.1002/pro.4873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
The canine anti-tumor necrosis factor-alpha (TNF-α) monoclonal antibody is a potential therapeutic option for treating canine arthritis. The current treatments for arthritis in dogs have limitations due to side effects, emphasizing the need for safer and more effective therapies. The crystal structure of canine TNF-α (cTNF-α) was successfully determined at a resolution of 1.85 Å, and the protein was shown to assemble as a trimer, with high similarity to the functional quaternary structure of human TNF-α (hTNF-α). Adalimumab (Humira), a known TNF-α inhibitor, effectively targets and neutralizes TNF-α to reduce inflammation and has been used to manage autoimmune conditions such as rheumatoid arthritis. By comparing the structure of cTNF-α with the complex structure of hTNF-α and adalimumab-Fab, the epitope of adalimumab on cTNF-α was identified. The significant structural similarities of epitopes in cTNF-α and hTNF-α indicate the potential of using adalimumab to target cTNF-α. Therefore, a canine/human chimeric antibody, Humivet-R1, was created by grafting the variable domain of adalimumab onto a canine antibody framework derived from ranevetmab. Humivet-R1 exhibits potent neutralizing ability (IC50 = 0.05 nM) and high binding affinity (EC50 = 0.416 nM) to cTNF-α, comparable to that of adalimumab for both hTNF-α and cTNF-α. These results strongly suggest that Humivet-R1 has the potential to provide effective treatment for canine arthritis with reduced side effects. Here, we propose a structure-guided antibody design for the use of a chimeric antibody to treat canine inflammatory disease. Our successful development strategy can speed up therapeutic antibody discovery for animals and has the potential to revolutionize veterinary medicine.
Collapse
Affiliation(s)
- Cheng‐Chung Lee
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Wen‐Chih Kuo
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
| | - Ya‐Wen Chang
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Shu‐Fang Hsu
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Chia‐Hung Wu
- Traditional Chinese Veterinary Medicine, China Medical UniversityTaichungTaiwan
| | - Ya‐Wen Chen
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Jui‐Jen Chang
- Graduate Institute of Integrated Medicine, China Medical UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| | - Andrew H.‐J. Wang
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
17
|
Ouchida T, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Establishment of Anti-Dog Programmed Cell Death Ligand 1 Monoclonal Antibodies for Immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2024; 43:17-23. [PMID: 38237003 DOI: 10.1089/mab.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Immune checkpoint blockade therapy has shown successful clinical outcomes in multiple human cancers. In dogs, several types of tumors resemble human tumors in many respects. Therefore, several groups have developed the anti-dog programmed cell death ligand 1 (dPD-L1) monoclonal antibodies (mAbs) and showed efficacy in several canine tumors. To examine the abundance of dPD-L1 in canine tumors, anti-dPD-L1 diagnostic mAbs for immunohistochemistry are required. In this study, we immunized the peptide in the dPD-L1 intracellular domain, and established anti-dPD-L1 mAbs, L1Mab-352 (mouse IgG1, kappa), and L1Mab-354 (mouse IgG1, kappa). In enzyme-linked immunosorbent assay, L1Mab-352 and L1Mab-354 showed high-binding affinity to the dPD-L1 peptide, and the dissociation constants (KD) were determined as 6.9 × 10-10 M and 7.2 × 10-10 M, respectively. Furthermore, L1Mab-352 and L1Mab-354 were applicable for the detection of dPD-L1 in immunohistochemical analysis in paraffin-embedded dPD-L1-overexpressed cells. These results indicated that L1Mab-352 and L1Mab-354 are useful for detecting dPD-L1 in immunohistochemical analysis.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Chow L, Wheat W, Ramirez D, Impastato R, Dow S. Direct comparison of canine and human immune responses using transcriptomic and functional analyses. Sci Rep 2024; 14:2207. [PMID: 38272935 PMCID: PMC10811214 DOI: 10.1038/s41598-023-50340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The canine spontaneous cancer model is increasingly utilized to evaluate new combined cancer immunotherapy approaches. While the major leukocyte subsets and phenotypes are closely related in dogs and humans, the functionality of T cells and antigen presenting cells in the two species has not been previously compared in detail. Such information would be important in interpreting immune response data and evaluating the potential toxicities of new cancer immunotherapies in dogs. To address this question, we used in vitro assays to compare the transcriptomic, cytokine, and proliferative responses of activated canine and human T cells, and also compared responses in activated macrophages. Transcriptomic analysis following T cell activation revealed shared expression of 515 significantly upregulated genes and 360 significantly downregulated immune genes. Pathway analysis identified 33 immune pathways shared between canine and human activated T cells, along with 34 immune pathways that were unique to each species. Activated human T cells exhibited a marked Th1 bias, whereas canine T cells were transcriptionally less active overall. Despite similar proliferative responses to activation, canine T cells produced significantly less IFN-γ than human T cells. Moreover, canine macrophages were significantly more responsive to activation by IFN-γ than human macrophages, as reflected by co-stimulatory molecule expression and TNF-α production. Thus, these studies revealed overall broad similarity in responses to immune activation between dogs and humans, but also uncovered important key quantitative and qualitative differences, particularly with respect to T cell responses, that should be considered in designing and evaluating cancer immunotherapy studies in dogs.
Collapse
Affiliation(s)
- Lyndah Chow
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
| | - William Wheat
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Dominique Ramirez
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Renata Impastato
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
| |
Collapse
|
19
|
Igase M, Inanaga S, Nishibori S, Itamoto K, Sunahara H, Nemoto Y, Tani K, Horikirizono H, Nakaichi M, Baba K, Kambayashi S, Okuda M, Sakai Y, Sakurai M, Kato M, Tsukui T, Mizuno T. Proof-of-concept study of the caninized anti-canine programmed death 1 antibody in dogs with advanced non-oral malignant melanoma solid tumors. J Vet Sci 2024; 25:e15. [PMID: 38311328 PMCID: PMC10839171 DOI: 10.4142/jvs.23144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The anti-programmed death 1 (PD-1) antibody has led to durable clinical responses in a wide variety of human tumors. We have previously developed the caninized anti-canine PD-1 antibody (ca-4F12-E6) and evaluated its therapeutic properties in dogs with advance-staged oral malignant melanoma (OMM), however, their therapeutic effects on other types of canine tumors remain unclear. OBJECTIVE The present clinical study was carried out to evaluate the safety profile and clinical efficacy of ca-4F12-E6 in dogs with advanced solid tumors except for OMM. METHODS Thirty-eight dogs with non-OMM solid tumors were enrolled prospectively and treated with ca-4F12-E6 at 3 mg/kg every 2 weeks of each 10-week treatment cycle. Adverse events (AEs) and treatment efficacy were graded based on the criteria established by the Veterinary Cooperative Oncology Group. RESULTS One dog was withdrawn, and thirty-seven dogs were evaluated for the safety and efficacy of ca-4F12-E6. Treatment-related AEs of any grade occurred in 13 out of 37 cases (35.1%). Two dogs with sterile nodular panniculitis and one with myasthenia gravis and hypothyroidism were suspected of immune-related AEs. In 30 out of 37 dogs that had target tumor lesions, the overall response and clinical benefit rates were 6.9% and 27.6%, respectively. The median progression-free survival and overall survival time were 70 days and 215 days, respectively. CONCLUSIONS The present study demonstrated that ca-4F12-E6 was well-tolerated in non-OMM dogs, with a small number of cases showing objective responses. This provides evidence supporting large-scale clinical trials of anti-PD-1 antibody therapy in dogs.
Collapse
Affiliation(s)
- Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Sakuya Inanaga
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shoma Nishibori
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazuhito Itamoto
- Laboratory of Veterinary Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hiroshi Sunahara
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Yuki Nemoto
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kenji Tani
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hiro Horikirizono
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Munekazu Nakaichi
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kenji Baba
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Satoshi Kambayashi
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masahiro Kato
- Nippon Zenyaku Kogyo Co., Ltd., Koriyama, Fukushima 963-0196, Japan
| | - Toshihiro Tsukui
- Nippon Zenyaku Kogyo Co., Ltd., Koriyama, Fukushima 963-0196, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|
20
|
Pimenta J, Prada J, Pires I, Cotovio M. Programmed Cell Death-Ligand 1 (PD-L1) Immunohistochemical Expression in Equine Melanocytic Tumors. Animals (Basel) 2023; 14:48. [PMID: 38200779 PMCID: PMC10778310 DOI: 10.3390/ani14010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Currently available treatments for equine melanocytic tumors have limitations, mainly due to mass localization and dimension, or the presence of metastases. Therefore, a search for new therapies is necessary. Programmed cell death-ligand 1 (PD-L1) is expressed by several tumors, blocking T cell-mediated elimination of the tumor cells by binding to programmed cell death protein 1 (PD-1). A novel therapeutic approach using PD-1/PD-L1 blockade in human melanoma resulted in tumor regression and prolonged tumor-free survival. This study aimed to evaluate the immunohistochemical expression of PD-L1 in equine melanocytic tumors. A total of 77 melanocytic tumors were classified as benign or malignant and evaluated by extension of labeling. A total of 59.7% of the tumors showed >50% of immunolabeled cells. Regarding malignant tumors, 24/38 tumors presented >50% of labeled cells, 13 tumors presented between 25-50% and one tumor presented <10%. Regarding benign tumors, 22/39 tumors presented >50% of labeled cells, nine tumors presented 25-50%, three tumors presented 10-25%, two tumors presented <10% and three tumors did not present expression. Our results suggest that PD-L1 blockade may be a potential target for immunotherapy in equine melanocytic tumors and that future clinical research trials into the clinical efficacy of the anti-PD-L1 antibody are necessary.
Collapse
Affiliation(s)
- José Pimenta
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Justina Prada
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
21
|
Yang YT, Engleberg AI, Yuzbasiyan-Gurkan V. Establishment and Characterization of Cell Lines from Canine Metastatic Osteosarcoma. Cells 2023; 13:25. [PMID: 38201229 PMCID: PMC10778184 DOI: 10.3390/cells13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Despite the advancements in treatments for other cancers, the outcomes for osteosarcoma (OSA) patients have not improved in the past forty years, especially in metastatic patients. Moreover, the major cause of death in OSA patients is due to metastatic lesions. In the current study, we report on the establishment of three cell lines derived from metastatic canine OSA patients and their transcriptome as compared to normal canine osteoblasts. All the OSA cell lines displayed significant upregulation of genes in the epithelial mesenchymal transition (EMT) pathway, and upregulation of key cytokines such as CXCL8, CXCL10 and IL6. The two most upregulated genes are MX1 and ISG15. Interestingly, ISG15 has recently been identified as a potential therapeutic target for OSA. In addition, there is notable downregulation of cell cycle control genes, including CDKN2A, CDKN2B and THBS1. At the protein level, p16INK4A, coded by CDKN2A, was undetectable in all the canine OSA cell lines, while expression of the tumor suppressor PTEN was variable, with one cell line showing complete absence and others showing low levels of expression. In addition, the cells express a variety of actionable genes, including KIT, ERBB2, VEGF and immune checkpoint genes. These findings, similar to those reported in human OSA, point to some genes that can be used for prognosis, targeted therapies and novel drug development for both canine and human OSA patients.
Collapse
Affiliation(s)
- Ya-Ting Yang
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Alexander I. Engleberg
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
- Department of Microbiology & Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Heishima K, Aketa N, Heishima M, Kawachi A. Hemangiosarcoma in dogs as a potential non-rodent animal model for drug discovery research of angiosarcoma in humans. Front Oncol 2023; 13:1250766. [PMID: 38130992 PMCID: PMC10733437 DOI: 10.3389/fonc.2023.1250766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Since the domestication of dogs 10,000 years ago, they have shared their living environment with humans and have co-evolved. The breeding process that dogs have undergone in only a few centuries has led to a significant accumulation of specific genetic alterations that could induce particular diseases in certain breeds. These canine diseases are similar to what is found in humans with several differences; therefore, comparing such diseases occurring in humans and dogs can help discover novel disease mechanisms, pathways, and causal genetic factors. Human angiosarcoma (AS) and canine hemangiosarcoma (HSA), which are sarcomas originating from endothelium, are examples of diseases shared between humans and dogs. They exhibit similar characteristics and clinical behaviors, although with some critical differences resulting from evolution. In this review, we will describe the similarities and differences in terms of clinical and molecular characteristics between human AS and canine HSA, and discuss how these similarities and differences can be applied to advance the treatment of these diseases.
Collapse
Affiliation(s)
- Kazuki Heishima
- Institute for Advanced Study (GUiAS), Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Naohiko Aketa
- Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | | | - Asuka Kawachi
- Division of Cancer RNA Research, National Cancer Center, Tokyo, Japan
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
23
|
Sirivisoot S, Boonkrai C, Wongtangprasert T, Phakham T, Muanwein P, Pisitkun T, Sawangmake C, Radtanakatikanon A, Rungsipipat A. Development and characterization of mouse anti-canine PD-L1 monoclonal antibodies and their expression in canine tumors by immunohistochemistry in vitro. Vet Q 2023; 43:1-9. [PMID: 37477617 PMCID: PMC10388796 DOI: 10.1080/01652176.2023.2240380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Immune escape is the hallmark of carcinogenesis. This widely known mechanism is the overexpression of immune checkpoint ligands, such as programmed cell death protein 1 and programmed death-ligand 1 (PD-1/PD-L1), leading to T cell anergy. Therefore, cancer immunotherapy with specific binding to these receptors has been developed to treat human cancers. Due to the lack of cross-reactivity of these antibodies in dogs, a specific canine PD-1/PD-L1 antibody is required. The aim of this study is to develop mouse anti-canine PD-L1 (cPD-L1) monoclonal antibodies and characterize their in vitro properties. Six mice were immunized with recombinant cPD-L1 with a fusion of human Fc tag. The hybridoma clones that successfully generated anti-cPD-L1 antibodies and had neutralizing activity were selected for monoclonal antibody production. Antibody properties were tested by immunosorbent assay, surface plasmon resonance, and immunohistochemistry. Four hybridomas were effectively bound and blocked to recombinant cPD-L1 and cPD-1-His-protein, respectively. Candidate mouse monoclonal antibodies worked efficiently on formalin-fixed paraffin-embedded tissues of canine cancers, including cutaneous T-cell lymphomas, mammary carcinomas, soft tissue sarcomas, squamous cell carcinomas, and malignant melanomas. However, functional assays of these anti-cPD-L1 antibodies need further investigation to prove their abilities as therapeutic drugs in dogs as well as their applications as prognostic markers.
Collapse
Affiliation(s)
- Sirintra Sirivisoot
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tossapon Wongtangprasert
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Excellence Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phijitra Muanwein
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center, Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Araya Radtanakatikanon
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Maekawa N, Konnai S, Hosoya K, Kim S, Kinoshita R, Deguchi T, Owaki R, Tachibana Y, Yokokawa M, Takeuchi H, Kagawa Y, Takagi S, Ohta H, Kato Y, Yamamoto S, Yamamoto K, Suzuki Y, Okagawa T, Murata S, Ohashi K. Safety and clinical efficacy of an anti-PD-L1 antibody (c4G12) in dogs with advanced malignant tumours. PLoS One 2023; 18:e0291727. [PMID: 37792729 PMCID: PMC10550157 DOI: 10.1371/journal.pone.0291727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/02/2023] [Indexed: 10/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been developed for canine tumour treatment, and pilot clinical studies have demonstrated their antitumour efficacy in dogs with oral malignant melanoma (OMM). Although ICIs have been approved for various human malignancies, their clinical benefits in other tumour types remain to be elucidated in dogs. Here, we conducted a clinical study of c4G12, a canine chimeric anti-PD-L1 antibody, to assess its safety and efficacy in dogs with various advanced malignant tumours (n = 12) at the Veterinary Teaching Hospital of Hokkaido University from 2018 to 2023. Dogs with digit or foot pad malignant melanoma (n = 4), osteosarcoma (n = 2), hemangiosarcoma (n = 1), transitional cell carcinoma (n = 1), nasal adenocarcinoma (n = 1), B-cell lymphoma (n = 1), or undifferentiated sarcoma (n = 2) were treated with 2 or 5 mg/kg c4G12 every 2 weeks. Treatment-related adverse events of any grade were observed in eight dogs (66.7%), including elevated aspartate aminotransferase (grade 3) in one dog (8.3%) and thrombocytopenia (grade 4) in another dog (8.3%). Among dogs with target disease at baseline (n = 8), as defined by the response evaluation criteria for solid tumours in dogs (cRECIST), one dog with nasal adenocarcinoma and another with osteosarcoma experienced a partial response (PR), with an objective response rate of 25.0% (2 PR out of 8 dogs; 95% confidence interval: 3.2-65.1%). These results suggest that c4G12 is safe and tolerable and shows antitumor effects in dogs with malignant tumours other than OMM. Further clinical studies are warranted to identify the tumour types that are most likely to benefit from c4G12 treatment.
Collapse
Affiliation(s)
- Naoya Maekawa
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Ryohei Kinoshita
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- Department of Companion Animal Clinical Sciences, Companion Animal Internal Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Ryo Owaki
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Yurika Tachibana
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Madoka Yokokawa
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Hiroto Takeuchi
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
| | | | - Satoshi Takagi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- Department of Veterinary Surgery 1, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hiroshi Ohta
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- Department of Companion Animal Clinical Sciences, Companion Animal Internal Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Yamamoto
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Keiichi Yamamoto
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Yasuhiko Suzuki
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, International Affairs Office, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Cina ML, Venegas J, Young A. Stocking the toolbox-Using preclinical models to understand the development and treatment of immune checkpoint inhibitor-induced immune-related adverse events. Immunol Rev 2023; 318:110-137. [PMID: 37565407 PMCID: PMC10529261 DOI: 10.1111/imr.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Cancer patients treated with immune checkpoint inhibitors (ICIs) are susceptible to a broad and variable array of immune-related adverse events (irAEs). With increasing clinical use of ICIs, defining the mechanism for irAE development is more critical than ever. However, it currently remains challenging to predict when these irAEs occur and which organ may be affected, and for many of the more severe irAEs, inaccessibility to the tissue site hampers mechanistic insight. This lack of understanding of irAE development in the clinical setting emphasizes the need for greater use of preclinical models that allow for improved prediction of biomarkers for ICI-initiated irAEs or that validate treatment options that inhibit irAEs without hampering the anti-tumor immune response. Here, we discuss the utility of preclinical models, ranging from exploring databases to in vivo animal models, focusing on where they are most useful and where they could be improved.
Collapse
Affiliation(s)
- Morgan L Cina
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jessica Venegas
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Arabella Young
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Yamauchi A, Yoshimoto S, Kudo A, Takagi S. Negative Influence of Aging on Differentiation and Proliferation of CD8 + T-Cells in Dogs. Vet Sci 2023; 10:541. [PMID: 37756063 PMCID: PMC10534501 DOI: 10.3390/vetsci10090541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Immunosenescence is an age-related change in the immune system characterized by a reduction in naïve T-cells and an impaired proliferative capacity of CD8+ T-cells in older individuals. Recent research revealed the crucial impact of immunosenescence on the development and control of cancer, and aging is one of the causes that diminish the therapeutic efficacy of cancer immunotherapies targeting CD8+ T-cell activation. Despite dog cancer being defined as an age-related disease, there are few fundamental understandings regarding the relationship between aging and the canine immune system. Therefore, we aimed to elucidate the characteristics of immunosenescence in dogs and analyzed the effects of aging on the differentiation status and proliferation of canine CD8+ T cells using T-cell specific stimulation with anti-canine CD3/CD28 antibody-coated beads and interleukin-2. As a result, we found that older dogs have a lower proliferative capacity of CD8+ T-cells and a reduction in the naïve subset in their peripheral blood. Further analysis showed that older dogs had attenuated proliferation of the effector and central memory subsets. These results indicate the importance of maintaining less differentiated subsets to expand CD8+ T-cells in dogs and provide helpful insight into the development of dog immune therapies that require T-cell expansion ex vivo.
Collapse
Affiliation(s)
- Akinori Yamauchi
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
| | - Sho Yoshimoto
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ayano Kudo
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
| | - Satoshi Takagi
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
| |
Collapse
|
27
|
MAEDA S. Second era of molecular-targeted cancer therapies in dogs. J Vet Med Sci 2023; 85:790-798. [PMID: 37380433 PMCID: PMC10466056 DOI: 10.1292/jvms.23-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
The development of molecular biology and bioinformatics using next-generation sequencing has dramatically advanced the identification of molecules involved in various diseases and the elucidation of their pathogenesis. Consequently, many molecular-targeted therapies have been developed in the medical field. In veterinary medicine, the world's first molecular-targeted drug for animals, masitinib, was approved in 2008, followed by the multikinase inhibitor toceranib in 2009. Toceranib was originally approved for mast cell tumors in dogs but has also been shown to be effective in other tumors because of its ability to inhibit molecules involved in angiogenesis. Thus, toceranib has achieved great success as a molecular-targeted cancer therapy for dogs. Although there has been no progress in the development and commercialization of new molecular-targeted drugs for the treatment of cancer since the success of toceranib, several clinical trials have recently reported the administration of novel agents in the research stage to dogs with tumors. This review provides an overview of molecular-targeted drugs for canine tumors, particularly transitional cell carcinomas, and presents some of our recent data.
Collapse
Affiliation(s)
- Shingo MAEDA
- Department of Veterinary Clinical Pathobiology, Graduate
School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Xu S, Xie J, Wang S, Tang N, Feng J, Su Y, Li G. Reversing stage III oral adenocarcinoma in a dog treated with anti-canine PD-1 therapeutic antibody: a case report. Front Vet Sci 2023; 10:1144869. [PMID: 37252387 PMCID: PMC10219605 DOI: 10.3389/fvets.2023.1144869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Monoclonal antibody targeting programmed cell death-1 (PD-1) is one of the most promising treatment therapies for human cancers. Canine PD-1 antibodies used in clinical trials have also shown efficacy in treating canine cancers. An 11-year-old male intact border collie presented to us for evaluation of left cervical mass. Computed tomography (CT) examination revealed an irregular pharyngeal mass invading the surrounding soft tissue. Histological and immunohistochemical results were consistent with a diagnosis of adenocarcinoma, most likely originating from the minor salivary gland. An anti-canine PD-1 monoclonal antibody was administered. Two months after the initial treatment, the tumor reached partial remission and maintained as such for 6 months. Finally, the patient was euthanized due to reasons unrelated to cancer, with a survival time of 316 days. To our knowledge, this is the first report of response to PD-1 blockade treatment in canine adenocarcinoma.
Collapse
Affiliation(s)
- Shuo Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingshu Xie
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., Beijing, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Na Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junli Feng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Youhong Su
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., Beijing, China
| | - Gebin Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Hambly JN, Ruby CE, Mourich DV, Bracha S, Dolan BP. Potential Promises and Perils of Human Biological Treatments for Immunotherapy in Veterinary Oncology. Vet Sci 2023; 10:336. [PMID: 37235419 PMCID: PMC10224056 DOI: 10.3390/vetsci10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of immunotherapy for the treatment of human cancers has heralded a new era in oncology, one that is making its way into the veterinary clinic. As the immune system of many animal species commonly seen by veterinarians is similar to humans, there is great hope for the translation of human therapies into veterinary oncology. The simplest approach for veterinarians would be to adopt existing reagents that have been developed for human medicine, due to the potential of reduced cost and the time it takes to develop a new drug. However, this strategy may not always prove to be effective and safe with regard to certain drug platforms. Here, we review current therapeutic strategies that could exploit human reagents in veterinary medicine and also those therapies which may prove detrimental when human-specific biological molecules are used in veterinary oncology. In keeping with a One Health framework, we also discuss the potential use of single-domain antibodies (sdAbs) derived from camelid species (also known as Nanobodies™) for therapies targeting multiple veterinary animal patients without the need for species-specific reformulation. Such reagents would not only benefit the health of our veterinary species but could also guide human medicine by studying the effects of outbred animals that develop spontaneous tumors, a more relevant model of human diseases compared to traditional laboratory rodent models.
Collapse
Affiliation(s)
- Jeilene N. Hambly
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Carl E. Ruby
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Dan V. Mourich
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Shay Bracha
- Biotesserae Inc., Corvallis, OR 97331, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
30
|
Oh W, Kim AMJ, Dhawan D, Kirkham PM, Ostafe R, Franco J, Aryal UK, Carnahan RH, Patsekin V, Robinson JP, Knapp DW, Lim SO. Development of an Anti-canine PD-L1 Antibody and Caninized PD-L1 Mouse Model as Translational Research Tools for the Study of Immunotherapy in Humans. CANCER RESEARCH COMMUNICATIONS 2023; 3:860-873. [PMID: 37377896 PMCID: PMC10184575 DOI: 10.1158/2767-9764.crc-22-0468] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/29/2023]
Abstract
Immune checkpoint blockade therapy, one of the most promising cancer immunotherapies, has shown remarkable clinical impact in multiple cancer types. Despite the recent success of immune checkpoint blockade therapy, however, the response rates in patients with cancer are limited (∼20%-40%). To improve the success of immune checkpoint blockade therapy, relevant preclinical animal models are essential for the development and testing of multiple combination approaches and strategies. Companion dogs naturally develop several types of cancer that in many respects resemble clinical cancer in human patients. Therefore, the canine studies of immuno-oncology drugs can generate knowledge that informs and prioritizes new immuno-oncology therapy in humans. The challenge has been, however, that immunotherapeutic antibodies targeting canine immune checkpoint molecules such as canine PD-L1 (cPD-L1) have not been commercially available. Here, we developed a new cPD-L1 antibody as an immuno-oncology drug and characterized its functional and biological properties in multiple assays. We also evaluated the therapeutic efficacy of cPD-L1 antibodies in our unique caninized PD-L1 mice. Together, these in vitro and in vivo data, which include an initial safety profile in laboratory dogs, support development of this cPD-L1 antibody as an immune checkpoint inhibitor for studies in dogs with naturally occurring cancer for translational research. Our new therapeutic antibody and caninized PD-L1 mouse model will be essential translational research tools in raising the success rate of immunotherapy in both dogs and humans. Significance Our cPD-L1 antibody and unique caninized mouse model will be critical research tools to improve the efficacy of immune checkpoint blockade therapy in both dogs and humans. Furthermore, these tools will open new perspectives for immunotherapy applications in cancer as well as other autoimmune diseases that could benefit a diverse and broader patient population.
Collapse
Affiliation(s)
- Wonkyung Oh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Alyssa Min Jung Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Deepika Dhawan
- Department of Veterinary Clinical Science, Purdue University, West Lafayette, Indiana
| | - Perry M. Kirkham
- Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production, Purdue Institute for Inflammation Immunology and Infection Diseases, Purdue University, West Lafayette, Indiana
| | - Jackeline Franco
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Valery Patsekin
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| | - J. Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Deborah W. Knapp
- Department of Veterinary Clinical Science, Purdue University, West Lafayette, Indiana
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Seung-Oe Lim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| |
Collapse
|
31
|
Nishibori S, Kaneko MK, Nakagawa T, Nishigaki K, Kato Y, Igase M, Mizuno T. Development of anti-feline PD-1 antibody and its functional analysis. Sci Rep 2023; 13:6420. [PMID: 37095139 PMCID: PMC10126011 DOI: 10.1038/s41598-023-31543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/14/2023] [Indexed: 04/26/2023] Open
Abstract
Antibodies against immune checkpoint molecules restore T-cell function by inhibiting the binding of PD-1 and PD-L1 and have been shown to exert therapeutic effects in various human cancers. However, to date, no monoclonal antibody that recognizes feline PD-1 or PD-L1 has been reported, and there are many unknowns regarding the expression of immune checkpoint molecules and their potential as therapeutic targets in cats. Here we developed anti-feline PD-1 monoclonal antibody (1A1-2), and found that the monoclonal antibody against anti-canine PD-L1 (G11-6), which was previously developed in our laboratory, cross-reacted with feline PD-L1. Both antibodies inhibited the interaction of feline PD-1 and feline PD-L1 in vitro. These inhibitory monoclonal antibodies augmented the interferon-gamma (IFN-γ) production in activated feline peripheral blood lymphocytes (PBLs). Furthermore, for clinical application in cats, we generated a mouse-feline chimeric mAb by fusing the variable region of clone 1A1-2 with the constant region of feline IgG1 (ch-1A1-2). Ch-1A1-2 also augmented the IFN-γ production in activated feline PBLs. From this study, 1A1-2 is first anti-feline PD-1 monoclonal antibody with the ability to inhibit the interaction of feline PD-1 and PD-L1, and the chimeric antibody, ch-1A1-2 will be a beneficial therapeutic antibody for feline tumors.
Collapse
Affiliation(s)
- Shoma Nishibori
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
32
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
33
|
Pinto C, Aluai-Cunha C, Santos A. The human and animals' malignant melanoma: comparative tumor models and the role of microbiome in dogs and humans. Melanoma Res 2023; 33:87-103. [PMID: 36662668 DOI: 10.1097/cmr.0000000000000880] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, the most progressively occurring incident cancer is melanoma. The mouse is the most popular model in human melanoma research given its various benefits as a laboratory animal. Nevertheless, unlike humans, mice do not develop melanoma spontaneously, so they need to be genetically manipulated. In opposition, there are several reports of other animals, ranging from wild to domesticated animals, that spontaneously develop melanoma and that have cancer pathways that are similar to those of humans. The influence of the gut microbiome on health and disease is being the aim of many recent studies. It has been proven that the microbiome is a determinant of the host's immune status and disease prevention. In human medicine, there is increasing evidence that changes in the microbiome influences malignant melanoma progression and response to therapy. There are several similarities between some animals and human melanoma, especially between canine and human oral malignant melanoma as well as between the gut microbiome of both species. However, microbiome studies are scarce in veterinary medicine, especially in the oncology field. Future studies need to address the relevance of gut and tissue microbiome for canine malignant melanoma development, which results will certainly benefit both species in the context of translational medicine.
Collapse
Affiliation(s)
- Catarina Pinto
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Catarina Aluai-Cunha
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Andreia Santos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
- Animal Science and Study Centre (CECA), Food and Agragrian Sciences and Technologies Institute (ICETA), Apartado, Porto, Portugal
| |
Collapse
|
34
|
Owaki R, Deguchi T, Konnai S, Maekawa N, Okagawa T, Hosoya K, Kim S, Sunaga T, Okumura M. Regulation of programmed death ligand 1 expression by interferon-γ and tumour necrosis factor-α in canine tumour cell lines. Vet Comp Oncol 2023; 21:279-290. [PMID: 36802270 DOI: 10.1111/vco.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Expression of programmed death ligand 1 (PD-L1) on tumour cells provides an immune evasion mechanism by inducing suppression of cytotoxic T cells. Various regulatory mechanisms of PD-L1 expression have been described in human tumours, however, little is known in canine tumours. To investigate whether inflammatory signalling is involved in PD-L1 regulation in canine tumours, the effects of interferon (IFN)-γ and tumour necrosis factor (TNF)-α treatment were examined in canine malignant melanoma cell lines (CMeC and LMeC) and an osteosarcoma cell line (HMPOS). The protein level of PD-L1 expression was upregulated by IFN-γ and TNF-α stimulation. Upon IFN-γ stimulation, all cell lines showed an increase in expression of PD-L1, signal transducer and activator of transcription (STAT)1, STAT3 and genes regulated by STAT activation. Upregulated expression of these genes was suppressed by the addition of a JAK inhibitor, oclacitinib. Contrastingly, upon TNF-α stimulation, all cell lines exhibited higher gene expression of the nuclear factor kappa B (NF-κB) gene RELA and genes regulated by NF-κB activation, whereas expression of PD-L1 was upregulated in LMeC only. Upregulated expression of these genes was suppressed by the addition of an NF-κB inhibitor, BAY 11-7082. The expression level of cell surface PD-L1 induced by IFN-γ and TNF-α treatment was reduced by oclacitinib and BAY 11-7082, respectively, indicating that upregulation of PD-L1 expression by IFN-γ and TNF-α stimulation is regulated via the JAK-STAT and NF-κB signalling pathways, respectively. These results provide insights into the role of inflammatory signalling in PD-L1 regulation in canine tumours.
Collapse
Affiliation(s)
- Ryo Owaki
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
35
|
Canine mammary carcinoma: current therapeutic targets and future perspectives – a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Canine mammary carcinoma (CMC) is the most common neoplasm in bitches, and it shares many biological similarities with breast cancer in humans. Drug resistance, high epigenetic mutations, and relapse rates are among the challenges which eventually urge the need for a veterinary oncologist to discover new therapeutic approaches that are more effective and safer. Therefore, in this review, we also cover the current therapeutic strategies from human medicine for the future perspectives of tumor immunotherapy in veterinary medicine. These strategies have great potential to be employed as therapeutic or prophylactic options due to their ability to modulate a specific and potent immune response against CMC. As we acquire a better understanding of canine tumor immunology, we can move towards a brighter prognosis. Additionally, we report on the recent successful studies in breast cancer that may benefit canines as well.
Collapse
|
36
|
Boss MK, Harrison LG, Gold A, Karam SD, Regan DP. Canine oral squamous cell carcinoma as a spontaneous, translational model for radiation and immunology research. Front Oncol 2023; 12:1033704. [PMID: 36698398 PMCID: PMC9868558 DOI: 10.3389/fonc.2022.1033704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Improving outcomes for oral squamous cell carcinoma (OSCC) patients has been hindered by a lack of effective predictive animal models. Spontaneously occurring canine OSCC could help fill this gap. The objective of this study was to characterize the immune landscape of canine OSCC to advance understanding of how dogs could serve as a surrogate for human OSCC. Methods/Results Canine OSCC contains a heterogenous tumor immune microenvironment. CD3+ T cells were the predominant tumor infiltrating immune cell population; however, there was a wide range CD3+ T cell density across samples. The most common CD3+ T cell micro-anatomical distribution was defined as "pre-existing immunity", but the remaining 20% of tumors were characterized as "immunologically ignorant" or "excluded infiltrates" patterns. When compared to normal oral mucosa, the tumor gene expression pattern suggests that canine OSCC microenvironment is highly inflamed and characterized by the presence of an anti-tumor immune response dominated by cytotoxic\effector T cells and NK cells (CD8a, GZMA, OX40, and HLA-A); however, overexpression of genes associated with effector T cell exhaustion and microenvironmental immunosuppression was also identified (PD-1, LAG3, CXCL2). Correlations between CD3+ T cell density and immune gene expression revealed key genes associated with cytotoxic anti-tumor T cell responses (GZMA, GZMB, PRF1), co-stimulation of T cells (CD27, CD28, ICOS), and other immune processes, including Type I IFN response (TNF, TNFSF10), and T cell exhaustion (CTLA4, PD-1). CD3+ T cell density in canine OSCC was significantly correlated with a cytolytic activity score (mean PRF1 and GZMA expression), suggestive of active effector CD8 T cell function. CD204+ macrophages were the second most abundant tumor infiltrating immune cell, and when comparing to normal oral mucosa, two differently expressed genes linked to tumor associated macrophages and myeloid derived suppressor cells (MDSC) were identified: CXCL2, CD70. Overexpression of CXCL2 was also identified in canine OSCC "T cell-high" tumors compared to "T cell-low" tumors. Discussion This study identified actionable immunotherapy targets which could inform future comparative oncology trials in canine OSCC: CTLA-4, PD-1, CXCL2. These data provide a good first step towards utilizing spontaneous canine OSCC as a comparative model for human OSCC radiation and immuno-oncology research.
Collapse
Affiliation(s)
- Mary-Keara Boss
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lauren G. Harrison
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Alexandra Gold
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel P. Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
37
|
Stevenson VB, Klahn S, LeRoith T, Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front Vet Sci 2023; 9:1046636. [PMID: 36686160 PMCID: PMC9853198 DOI: 10.3389/fvets.2022.1046636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma.
Collapse
Affiliation(s)
- Valentina B. Stevenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Shawna Klahn
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - William R. Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
38
|
Yoshimoto S, Chester N, Xiong A, Radaelli E, Wang H, Brillantes M, Gulendran G, Glassman P, Siegel DL, Mason NJ. Development and pharmacokinetic assessment of a fully canine anti-PD-1 monoclonal antibody for comparative translational research in dogs with spontaneous tumors. MAbs 2023; 15:2287250. [PMID: 38047502 PMCID: PMC10793675 DOI: 10.1080/19420862.2023.2287250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
PD-1 checkpoint inhibitors have revolutionized the treatment of patients with different cancer histologies including melanoma, renal cell carcinoma, and non-small cell lung carcinoma. However, only a subset of patients show a dramatic clinical response to treatment. Despite intense biomarker discovery efforts, no single robust, prognostic correlation has emerged as a valid outcome predictor. Immune competent, pet dogs develop spontaneous tumors that share similar features to human cancers including chromosome aberrations, molecular subtypes, immune signatures, tumor heterogeneity, metastatic behavior, and chemotherapeutic response. As such, they represent a valuable parallel patient population in which to investigate predictive biomarkers of checkpoint inhibition. However, the lack of a validated, non-immunogenic, canine anti-PD-1 antibody for pre-clinical use hinders this comparative approach and prevents potential clinical benefits of PD-1 blockade being realized in the veterinary clinic. To address this, fully canine single-chain variable fragments (scFvs) that bind canine (c)PD-1 were isolated from a comprehensive canine scFv phage display library. Lead candidates were identified that bound with high affinity to cPD-1 and inhibited its interaction with canine PD-L1 (cPD-L1). The lead scFv candidate re-formatted into a fully canine IgGD reversed the inhibitory effects of cPD-1:cPD-L1 interaction on canine chimeric antigen receptor (CAR) T cell function. In vivo administration showed no toxicity and revealed favorable pharmacokinetics for a reasonable dosing schedule. These results pave the way for clinical trials with anti-cPD-1 in canine cancer patients to investigate predictive biomarkers and combination regimens to inform human clinical trials and bring a promising checkpoint inhibitor into the veterinary armamentarium.
Collapse
Affiliation(s)
- Sho Yoshimoto
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ailian Xiong
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Wang
- Vetigenics LLC, B-Labs, Cira Center, Philadelphia, PA, USA
| | | | - Gayathri Gulendran
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Glassman
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Don L. Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola J. Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Minoli L, Licenziato L, Kocikowski M, Cino M, Dziubek K, Iussich S, Fanelli A, Morello E, Martano M, Hupp T, Vojtesek B, Parys M, Aresu L. Development of Monoclonal Antibodies Targeting Canine PD-L1 and PD-1 and Their Clinical Relevance in Canine Apocrine Gland Anal Sac Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14246188. [PMID: 36551672 PMCID: PMC9777308 DOI: 10.3390/cancers14246188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Canine apocrine gland anal sac adenocarcinoma (AGASACA) is an aggressive canine tumor originating from the anal sac glands. Surgical resection, with or without adjuvant chemotherapy, represents the standard of care for this tumor, but the outcome is generally poor, particularly for tumors diagnosed at an advanced stage. For this reason, novel treatment options are warranted, and a few recent reports have suggested the activation of the immune checkpoint axis in canine AGASACA. In our study, we developed canine-specific monoclonal antibodies targeting PD-1 and PD-L1. A total of 41 AGASACAs with complete clinical and follow-up information were then analyzed by immunohistochemistry for the expression of the two checkpoint molecules (PD-L1 and PD-1) and the presence of tumor-infiltrating lymphocytes (CD3 and CD20), which were evaluated within the tumor bulk (intratumor) and in the surrounding stroma (peritumor). Seventeen AGASACAs (42%) expressed PD-L1 in a range between 5% and 95%. The intratumor lymphocytes were predominantly CD3+ T-cells and were positively correlated with the number of PD-1+ intratumor lymphocytes (ρ = 0.36; p = 0.02). The peritumor lymphocytes were a mixture of CD3+ and CD20+ cells with variable PD-1 expression (range 0-50%). PD-L1 expression negatively affected survival only in the subgroup of dogs treated with surgery alone (n = 14; 576 vs. 235 days). The presence of a heterogeneous lymphocytic infiltrate and the expression of PD-1 and PD-L1 molecules support the relevance of the immune microenvironment in canine AGASACAs and the potential value of immune checkpoints as promising therapeutic targets.
Collapse
Affiliation(s)
- Lucia Minoli
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Mikolaj Kocikowski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80822 Gdansk, Poland
| | - Marzia Cino
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, 43100 Parma, Italy
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80822 Gdansk, Poland
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Marina Martano
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, 43100 Parma, Italy
| | - Ted Hupp
- Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
- Correspondence: (M.P.); (L.A.)
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
- Correspondence: (M.P.); (L.A.)
| |
Collapse
|
40
|
Igase M, Inanaga S, Tani K, Nakaichi M, Sakai Y, Sakurai M, Kato M, Tsukui T, Mizuno T. Long-term survival of dogs with stage 4 oral malignant melanoma treated with anti-canine PD-1 therapeutic antibody: A follow-up case report. Vet Comp Oncol 2022; 20:901-905. [PMID: 35535636 DOI: 10.1111/vco.12829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
A monoclonal antibody targeting programmed cell death-1 (PD-1) is one of the most promising treatments for human cancers. Clinical studies in humans demonstrated that the anti-PD-1 antibody provides a long-lasting tumour response. Previously, we established an anti-canine PD-1 therapeutic antibody (ca-4F12-E6), and the pilot clinical study demonstrated that the antibody was effective in dogs with oral malignant melanoma (OMM). However, two OMM cases were still undergoing treatment when the pilot study was published. Here, we describe the long-term follow-up of those two cases. Although both cases showed long-term survival with complete response (CR), the tumour response differed; the effect onset was slow in one case and a durable response was observed in the second case even after treatment discontinuation. Secondary malignant tumours occurred during treatment in both cases. This follow-up study revealed that ca-4F12-E6 maintains CR in dogs for more than 1 year. In addition, the pattern of tumour response was unique compared to conventional therapy. These results indicate that new evaluation criteria for tumour response may be necessary for immunotherapy in veterinary medicine. Long-term follow-up is necessary regardless of the short-term treatment responsiveness.
Collapse
Affiliation(s)
- Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Sakuya Inanaga
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenji Tani
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Munekazu Nakaichi
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahiro Kato
- Nippon Zenyaku Kogyo Co., Ltd., Koriyama, Fukushima, Japan
| | | | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
41
|
Expression profile of immunoregulatory factors in canine tumors. Vet Immunol Immunopathol 2022; 253:110505. [DOI: 10.1016/j.vetimm.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/24/2022]
|
42
|
Pereira Gonçalves J, Fwu Shing T, Augusto Fonseca Alves G, Eduardo Fonseca-Alves C. Immunology of Canine Melanoma. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malignant melanoma is one of the most important tumors in dogs and is highly metastatic and aggressive disease. In recent years, molecular knowledge regarding canine melanoma has increased, and some chromosomal imbalances and tyrosine kinase pathways have been identified to be dysregulated. Mxoreover, canine melanoma is an immunogenic tumor that provides opportunities to administer immunotherapy to the patient. Podoplanin and chondroitin sulfate proteoglycan-4 (CSPG4) are markers against which monoclonal antibodies have been developed and tested in dogs in vivo with promising results. Owing to the importance of canine melanoma in the veterinary oncology field, this chapter reviews the most important aspects related to immunological involvement in the prognosis and treatment of canine melanoma.
Collapse
|
43
|
Costa VR, Soileau AM, Liu CC, Moeller CE, Carossino M, Langohr IM, Withers SS. Exploring the association of intratumoral immune cell infiltrates with histopathologic grade in canine mast cell tumors. Res Vet Sci 2022; 147:83-91. [PMID: 35490489 PMCID: PMC11293894 DOI: 10.1016/j.rvsc.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
Cutaneous canine mast cell tumors (ccMCTs) vary in their biological behavior, treatment, and prognosis, based on their grade. Immune cell infiltration has been associated with prognosis and response to treatments in some human cancers, and immune-targeting therapeutics are increasingly being explored in veterinary oncology. However, currently little is known about the tumor microenvironment (TME) in ccMCTs. Therefore, the objective of this study was to determine the prevalence of T lymphocytes, T regulatory lymphocytes, PD-1+ cells and macrophages in low- and high-grade ccMCTs. Thirty low-grade and 20 high-grade formalin-fixed paraffin-embedded ccMCT samples were included. Immunohistochemistry (IHC) was performed to detect CD3, FOXP3, Iba1, and PD-1 on sequential sections. Three 400x fields with the highest numbers of CD3+ cells were identified for each tumor. The percentage of CD3+, FOXP3+, and Iba1+ cells, and the number of PD-1+ cells, was quantified in each of these three "hot-spot" fields using ImageJ software. Iba1 expression was significantly greater in high-grade compared to low-grade ccMCTs (mean = 12.5% vs. 9.6%, p = 0.043). PD-1 expression was low overall, but a significantly higher number of PD-1-expressing cells was observed in high-grade ccMCTs (median 1 vs. 0, p = 0.001). No significant difference was noted in CD3 and FOXP3 expression between ccMCT grades. Macrophages and PD-1+ cells were more frequent in high-grade, compared to low-grade ccMCTs. Further studies are needed to define the role of macrophages and rare PD-1+ cells in high-grade ccMCTs.
Collapse
Affiliation(s)
- Victoria R Costa
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Aimee M Soileau
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Chin-Chi Liu
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Cambri E Moeller
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana State University, Department of Pathobiological Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA; Louisiana State University, Louisiana Animal Disease Diagnostic Laboratory (LADDL), River Rd, #1043, Baton Rouge, LA 70803, USA
| | - Ingeborg M Langohr
- Louisiana State University, Department of Pathobiological Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA; Louisiana State University, Louisiana Animal Disease Diagnostic Laboratory (LADDL), River Rd, #1043, Baton Rouge, LA 70803, USA
| | - Sita S Withers
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA.
| |
Collapse
|
44
|
Ruiz D, Haynes C, Marable J, Pundkar C, Nance RL, Bedi D, Agarwal P, Suryawanshi AS, Mishra A, Smith BF, Sandey M. Development of OX40 agonists for canine cancer immunotherapy. iScience 2022; 25:105158. [PMID: 36217551 PMCID: PMC9547195 DOI: 10.1016/j.isci.2022.105158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023] Open
Abstract
Recent breakthroughs in cancer immunotherapy have provided unprecedented clinical benefits to human cancer patients. Cancer is also one of the most common causes of death in pet dogs. Thus, canine-specific immune therapies targeting similar signaling pathways can provide better treatment options for canine cancer patients. Here, we describe the development and characterization of two canine-specific anti-OX40 agonists to activate OX40 signaling. We show that canine OX40, like human OX40, is not expressed on resting T cells, and its expression is markedly increased on canine CD4 T cells and Tregs after stimulation with concanavalin A (Con-A). cOX40 is also expressed on tumor-infiltrating lymphocytes (TILs) in canine osteosarcoma patients. The canine-specific OX40 agonists strongly activates cPBMCs by increasing IFN-γ expression and do not require Fc receptor-mediated cross-linking for OX40 agonism. Together, these results suggest that cFcOX40L proteins are potent OX40 agonists and have the potential to enhance antitumor immunity in canine cancer patients.
Collapse
Affiliation(s)
- Damien Ruiz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chloe Haynes
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Jonathan Marable
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rebecca L. Nance
- Scott Ritchy Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Deepa Bedi
- Biomedical Sciences, Tuskegee University, Tuskegee, AL, USA
| | - Payal Agarwal
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Scott Ritchy Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Amol S. Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Bruce F. Smith
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Scott Ritchy Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Corresponding author
| |
Collapse
|
45
|
Inanaga S, Igase M, Sakai Y, Hagimori K, Sunahara H, Horikirizono H, Itamoto K, Baba K, Ohsato Y, Mizuno T. Relationship of microsatellite instability to mismatch repair deficiency in malignant tumors of dogs. J Vet Intern Med 2022; 36:1760-1769. [PMID: 35959511 PMCID: PMC9511092 DOI: 10.1111/jvim.16454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Microsatellite instability (MSI) is a type of genomic instability caused by mismatch repair deficiency (dMMR) in tumors. Studies on dMMR/MSI are limited, and the relationship between dMMR and MSI is unknown in tumors of dogs. OBJECTIVES We aimed to identify the frequency of dMMR/MSI by tumor type and evaluate the relationship between dMMR and MSI in tumors of dogs. ANIMALS In total, 101 dogs with 11 types of malignant tumors were included. METHODS We extracted DNA from fresh normal and tumor tissues. Twelve microsatellite loci from both normal and tumor DNA were amplified by PCR and detected by capillary electrophoresis. Each microsatellite (MS) was defined as MSI if a difference in product size between the tumor and normal DNA was detected. The dMMR was evaluated by immunohistochemistry with formalin-fixed paraffin-embedded tumor tissues. Next, we confirmed whether dMMR induces MSI by serial passaging of MMR gene knockout cell lines for 3 months. RESULTS Microsatellite instability was detected frequently in oral malignant melanoma. The number of MSI-positive markers was higher in cases with dMMR than in those with proficient MMR (P < .0001). Statistical analysis indicated that the occurrence of MSI in FH2305 might have relevance to dMMR. Furthermore, MSI occurred in dMMR cell lines 3 months after passaging. CONCLUSIONS AND CLINICAL IMPORTANCE Microsatellite instability and dMMR more frequently were found in oral malignant melanoma than in other tumors, and dMMR has relevance to MSI in both clinical cases and cell lines.
Collapse
Affiliation(s)
- Sakuya Inanaga
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Hiroshi Sunahara
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiro Horikirizono
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kazuhito Itamoto
- Laboratory of Companion Animal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenji Baba
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
46
|
Maekawa N, Konnai S, Asano Y, Sajiki Y, Deguchi T, Okagawa T, Watari K, Takeuchi H, Takagi S, Hosoya K, Kim S, Ohta H, Kato Y, Suzuki Y, Murata S, Ohashi K. Exploration of serum biomarkers in dogs with malignant melanoma receiving anti-PD-L1 therapy and potential of COX-2 inhibition for combination therapy. Sci Rep 2022; 12:9265. [PMID: 35665759 PMCID: PMC9166720 DOI: 10.1038/s41598-022-13484-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) such as anti-PD-L1 antibodies are widely used to treat human cancers, and growing evidence suggests that ICIs are promising treatments for canine malignancies. However, only some canine oral malignant melanoma (OMM) cases respond to ICIs. To explore biomarkers predictive of survival in dogs with pulmonary metastatic OMM receiving the anti-PD-L1 antibody c4G12 (n = 27), serum concentrations of prostaglandin E2 (PGE2), cytokines, chemokines, and growth factors were measured prior to treatment initiation. Among 12 factors tested, PGE2, interleukin (IL)-12p40, IL-8, monocyte chemotactic protein-1 (MCP-1), and stem cell factor (SCF) were higher in OMM dogs compared to healthy dogs (n = 8). Further, lower baseline serum PGE2, MCP-1, and vascular endothelial growth factor (VEGF)-A concentrations as well as higher IL-2, IL-12, and SCF concentrations predicted prolonged overall survival. These observations suggest that PGE2 confers resistance against anti-PD-L1 therapy through immunosuppression and thus is a candidate target for combination therapy. Indeed, PGE2 suppressed IL-2 and interferon (IFN)-γ production by stimulated canine peripheral blood mononuclear cells (PBMCs), while inhibition of PGE2 biosynthesis using the COX-2 inhibitor meloxicam in combination with c4G12 enhanced Th1 cytokine production by PBMCs. Thus, serum PGE2 may be predictive of c4G12 treatment response, and concomitant use of COX-2 inhibitors may enhance ICI antitumor efficacy.
Collapse
Affiliation(s)
- Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Yumie Asano
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Watari
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroto Takeuchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Takagi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Veterinary Surgery 1, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Ohta
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
47
|
Rebhun RB, York D, Cruz SM, Judge SJ, Razmara AM, Farley LE, Brady RV, Johnson EG, Burton JH, Willcox J, Wittenburg LA, Woolard K, Dunai C, Stewart SL, Sparger EE, Withers SS, Gingrich AA, Skorupski KA, Al-Nadaf S, LeJeune AT, Culp WT, Murphy WJ, Kent MS, Canter RJ. Inhaled recombinant human IL-15 in dogs with naturally occurring pulmonary metastases from osteosarcoma or melanoma: a phase 1 study of clinical activity and correlates of response. J Immunother Cancer 2022; 10:e004493. [PMID: 35680383 PMCID: PMC9174838 DOI: 10.1136/jitc-2022-004493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Although recombinant human interleukin-15 (rhIL-15) has generated much excitement as an immunotherapeutic agent for cancer, activity in human clinical trials has been modest to date, in part due to the risks of toxicity with significant dose escalation. Since pulmonary metastases are a major site of distant failure in human and dog cancers, we sought to investigate inhaled rhIL-15 in dogs with naturally occurring lung metastases from osteosarcoma (OSA) or melanoma. We hypothesized a favorable benefit/risk profile given the concentrated delivery to the lungs with decreased systemic exposure. EXPERIMENTAL DESIGN We performed a phase I trial of inhaled rhIL-15 in dogs with gross pulmonary metastases using a traditional 3+3 cohort design. A starting dose of 10 µg twice daily × 14 days was used based on human, non-human primate, and murine studies. Safety, dose-limiting toxicities (DLT), and maximum tolerated dose (MTD) were the primary objectives, while response rates, progression-free and overall survival (OS), and pharmacokinetic and immune correlative analyses were secondary. RESULTS From October 2018 to December 2020, we enrolled 21 dogs with 18 dogs reaching the 28-day response assessment to be evaluable. At dose level 5 (70 μg), we observed two DLTs, thereby establishing 50 µg twice daily × 14 days as the MTD and recommended phase 2 dose. Among 18 evaluable dogs, we observed one complete response >1 year, one partial response with resolution of multiple target lesions, and five stable disease for an overall clinical benefit rate of 39%. Plasma rhIL-15 quantitation revealed detectable and sustained rhIL-15 concentrations between 1-hour and 6 hour postnebulization. Decreased pretreatment lymphocyte counts were significantly associated with clinical benefit. Cytotoxicity assays of banked peripheral blood mononuclear cells revealed significant increases in peak cytotoxicity against canine melanoma and OSA targets that correlated with OS. CONCLUSIONS In this first-in-dog clinical trial of inhaled rhIL-15 in dogs with advanced metastatic disease, we observed promising clinical activity when administered as a monotherapy for only 14 days. These data have significant clinical and biological implications for both dogs and humans with refractory lung metastases and support exploration of combinatorial therapies using inhaled rhIL-15.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sylvia Margret Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Sean J Judge
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aryana M Razmara
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Lauren E Farley
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Rachel V Brady
- College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Jenna H Burton
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine, Fort Collins, Colorado, USA
| | - Jennifer Willcox
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Luke A Wittenburg
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Kevin Woolard
- Department of Pathology, University of California, Davis, California, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, California, USA
| | - Susan L Stewart
- Department of Public Health Sciences, University of California, Davis, California, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Alicia A Gingrich
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Katherine A Skorupski
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sami Al-Nadaf
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Amandine T LeJeune
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William Tn Culp
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, California, USA
| |
Collapse
|
48
|
Suzuki T, Aoshima K, Yamazaki J, Kobayashi A, Kimura T. Manipulating Histone Acetylation Leads to Antitumor Effects in Hemangiosarcoma Cells. Vet Comp Oncol 2022; 20:805-816. [PMID: 35568976 DOI: 10.1111/vco.12840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Abstract
Canine hemangiosarcoma (HSA) is a malignant tumor derived from endothelial cells. No effective treatment has yet been developed because of the lack of understanding of its pathogenesis. Histone acetylation, an epigenetic modification, is highly associated with cancer pathogenesis. Manipulating histone acetylation by histone deacetylase inhibitors (HDACi) or bromodomain and extraterminal domain inhibitors (BETi) is one approach to treat various cancers. However, the role of histone acetylation in HSA remains unknown. This study aimed to investigate how histone acetylation functions in HSA pathogenesis using two HDACi, suberanilohydroxamic acid (SAHA) and valproic acid (VPA), and one BETi, JQ1, in vitro and in vivo. Histone acetylation levels were high in cell lines and heterogeneous in clinical cases. SAHA and JQ1 induced apoptosis in HSA cell lines. HSA cell lines treated with SAHA and VPA upregulated inflammatory-related genes and attracted macrophage cell line RAW264 cells, which suggests that SAHA and VPA can affect immune responses. JQ1 stimulated autophagy and inhibited the cell cycle in HSA cell lines. Finally, we demonstrated that JQ1 suppressed HSA tumor cell proliferation in vivo although SAHA and VPA did not affect tumor growth. These results suggest that BETi can be alternative drugs for HSA treatment. Although further research is required, our study indicated that dysregulation of histone acetylation is likely to be involved in HSA malignancy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tamami Suzuki
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
49
|
Riccardo F, Tarone L, Camerino M, Giacobino D, Iussich S, Barutello G, Arigoni M, Conti L, Bolli E, Quaglino E, Merighi IF, Morello E, Dentini A, Ferrone S, Buracco P, Cavallo F. Antigen mimicry as an effective strategy to induce CSPG4-targeted immunity in dogs with oral melanoma: a veterinary trial. J Immunother Cancer 2022; 10:e004007. [PMID: 35580930 PMCID: PMC9114861 DOI: 10.1136/jitc-2021-004007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Melanoma is the most lethal form of skin cancer in humans. Conventional therapies have limited efficacy, and overall response is still unsatisfactory considering that immune checkpoint inhibitors induce lasting clinical responses only in a low percentage of patients. This has prompted us to develop a vaccination strategy employing the tumor antigen chondroitin sulfate proteoglycan (CSPG)4 as a target. METHODS To overcome the host's unresponsiveness to the self-antigen CSPG4, we have taken advantage of the conservation of CSPG4 sequence through phylogenetic evolution, so we have used a vaccine, based on a chimeric DNA molecule encompassing both human (Hu) and dog (Do) portions of CSPG4 (HuDo-CSPG4). We have tested its safety and immunogenicity (primary objectives), along with its therapeutic efficacy (secondary outcome), in a prospective, non-randomized, veterinary clinical trial enrolling 80 client-owned dogs with surgically resected, CSPG4-positive, stage II-IV oral melanoma. RESULTS Vaccinated dogs developed anti-Do-CSPG4 and Hu-CSPG4 immune response. Interestingly, the antibody titer in vaccinated dogs was significantly associated with the overall survival. Our data suggest that there may be a contribution of the HuDo-CSPG4 vaccination to the improvement of survival of vaccinated dogs as compared with controls treated with conventional therapies alone. CONCLUSIONS HuDo-CSPG4 adjuvant vaccination was safe and immunogenic in dogs with oral melanoma, with potential beneficial effects on the course of the disease. Thanks to the power of naturally occurring canine tumors as predictive models for cancer immunotherapy response, these data may represent a basis for the translation of this approach to the treatment of human patients with CSPG4-positive melanoma subtypes.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
50
|
Pazzi P, Steenkamp G, Rixon AJ. Treatment of Canine Oral Melanomas: A Critical Review of the Literature. Vet Sci 2022; 9:vetsci9050196. [PMID: 35622724 PMCID: PMC9147014 DOI: 10.3390/vetsci9050196] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Critical appraisal of the available literature for the treatment of canine oral malignant melanoma (OMM) is lacking. This critical review aimed to evaluate the current literature and provide treatment recommendations and possible suggestions for future canine OMM research. PubMed, Web of Science and Google Scholar were searched in June 2021, for terms relevant to treatment of OMM. Inclusion and exclusion criteria were applied and information on clinical response and outcome extracted. Eighty-one studies were included. The overall level of evidence supporting the various canine OMM treatment options was low. The majority of studies included confounding treatment modalities and lacked randomization, control groups and consistency in reporting clinical response and outcomes. Within these limitations, surgery remains the mainstay of therapy. Adjunctive radiotherapy provided good local control and improved median survival times (MST), chemotherapy did not offer survival benefit beyond that of surgery, while electrochemotherapy may offer a potential alternative to radiotherapy. Immunotherapy holds the most promise in extending MST in the surgical adjunctive setting, in particular the combination of gene therapy and autologous vaccination. Prospective, randomized, double-blinded clinical trials, with a lack of confounding factors and reporting based on established guidelines would allow comparison and recommendations for the treatment of canine OMM.
Collapse
|