1
|
Dore R, Sentis SC, Johann K, Lopez-Alcantara N, Resch J, Chandrasekar A, Müller-Fielitz H, Moeller LC, Fuehrer D, Schwaninger M, Obermayer B, Opitz R, Mittag J. Partial Resistance to Thyroid Hormone-Induced Tachycardia and Cardiac Hypertrophy in Mice Lacking Thyroid Hormone Receptor β. Thyroid 2024; 34:796-805. [PMID: 38526409 DOI: 10.1089/thy.2023.0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Background: Thyroid hormones regulate cardiac functions mainly through direct actions in the heart and by binding to the thyroid hormone receptor (TR) isoforms α1 and β. While the role of the most abundantly expressed isoform, TRα1, is widely studied and well characterized, the role of TRβ in regulating heart functions is still poorly understood, primarily due to the accompanying elevation of circulating thyroid hormone in TRβ knockout mice (TRβ-KO). However, their hyperthyroidism is ameliorated at thermoneutrality, which allows studying the role of TRβ without this confounding factor. Methods: Here, we noninvasively monitored heart rate in TRβ-KO mice over several days using radiotelemetry at different housing temperatures (22°C and 30°C) and upon 3,3',5-triiodothyronine (T3) administration in comparison to wild-type animals. Results: TRβ-KO mice displayed normal average heart rate at both 22°C and 30°C with only minor changes in heart rate frequency distribution, which was confirmed by independent electrocardiogram recordings in freely-moving conscious mice. Parasympathetic nerve activity was, however, impaired in TRβ-KO mice at 22°C, and only partly rescued at 30°C. As expected, oral treatment with pharmacological doses of T3 at 30°C led to tachycardia in wild-types, accompanied by broader heart rate frequency distribution and increased heart weight. The TRβ-KO mice, in contrast, showed blunted tachycardia, as well as resistance to changes in heart rate frequency distribution and heart weight. At the molecular level, these observations were paralleled by a blunted cardiac mRNA induction of several important genes, including the pacemaker channels Hcn2 and Hcn4, as well as Kcna7. Conclusions: The phenotyping of TRβ-KO mice conducted at thermoneutrality allows novel insights on the role of TRβ in cardiac functions in the absence of the usual confounding hyperthyroidism. Even though TRβ is expressed at lower levels than TRα1 in the heart, our findings demonstrate an important role for this isoform in the cardiac response to thyroid hormones.
Collapse
Affiliation(s)
- Riccardo Dore
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Sarah Christine Sentis
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Kornelia Johann
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Nuria Lopez-Alcantara
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Julia Resch
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Akila Chandrasekar
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism, and Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Dagmar Fuehrer
- Department of Endocrinology, Diabetes and Metabolism, and Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Opitz
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Mittag
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Vranic M, Ahmed F, Kristófi R, Hetty S, Mokhtari D, Svensson MK, Eriksson JW, Pereira MJ. Subcutaneous adipose tissue dopamine D2 receptor is increased in prediabetes and T2D. Endocrine 2024; 83:378-391. [PMID: 37752366 PMCID: PMC10850013 DOI: 10.1007/s12020-023-03525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE To evaluate the dopaminergic signaling in human adipose tissue in the context of obesity and type 2 diabetes (T2D) and potential direct implications in adipose tissue metabolism. METHODS mRNA and protein expression of dopamine receptors D1 and D2 (DRD1 and DRD2) were determined in subcutaneous adipose tissue from subjects without or with T2D and with different body weight, and correlated with markers of obesity, hyperglycemia, and insulin resistance. Glucose uptake and lipolysis were measured in adipocytes ex vivo following short-term exposure to dopamine, DRD1 receptor agonist (SKF81297), or DRD2 receptor agonist (bromocriptine). RESULTS DRD1 and DRD2 gene expression in subcutaneous adipose tissue correlated positively with clinical markers of insulin resistance (e.g. HOMA-IR, insulin, and triglycerides) and central obesity in subjects without T2D. Protein expression of DRD2 in subcutaneous adipose tissue, but not DRD1, is higher in subjects with impaired fasting glucose and T2D and correlated positively with hyperglycemia, HbA1c, and glucose AUC, independent of obesity status. DRD1 and DRD2 proteins were mainly expressed in adipocytes, compared to stromal vascular cells. Dopamine and dopaminergic agonists did not affect adipocyte glucose uptake ex vivo, but DRD1 and DRD2 agonist treatment inhibited isoproterenol-stimulated lipolysis. CONCLUSION The results suggest that protein expression of DRD2 in subcutaneous adipose tissue is up-regulated with hyperglycemia and T2D. Whether DRD2 protein levels contribute to T2D development or occur as a secondary compensatory mechanism needs further investigation. Additionally, dopamine receptor agonists inhibit adipocyte beta-adrenergic stimulation of lipolysis, which might contribute to the beneficial effects in lipid metabolism as observed in patients taking bromocriptine.
Collapse
Affiliation(s)
- Milica Vranic
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Dariush Mokhtari
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Meng Z, Chen H, Deng C, Meng S. Potential cellular endocrinology mechanisms underlying the effects of Chinese herbal medicine therapy on asthma. Front Endocrinol (Lausanne) 2022; 13:916328. [PMID: 36051395 PMCID: PMC9424672 DOI: 10.3389/fendo.2022.916328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is a complex syndrome with polygenetic tendency and multiple phenotypes, which has variable expiratory airflow limitation and respiratory symptoms that vary over time and in intensity. In recent years, continuous industrial development has seriously impacted the climate and air quality at a global scale. It has been verified that climate change can induce asthma in predisposed individuals and that atmospheric pollution can exacerbate asthma severity. At present, a subset of patients is resistant to the drug therapy for asthma. Hence, it is urgent to find new ideas for asthma prevention and treatment. In this review, we discuss the prescription, composition, formulation, and mechanism of traditional Chinese medicine monomer, traditional Chinese medicine monomer complex, single herbs, and traditional Chinese patent medicine in the treatment of asthma. We also discuss the effects of Chinese herbal medicine on asthma from the perspective of cellular endocrinology in the past decade, emphasizing on the roles as intracellular and extracellular messengers of three substances-hormones, substances secreted by pulmonary neuroendocrine cells, and neuroendocrine-related signaling protein-which provide the theoretical basis for clinical application and new drug development.
Collapse
Affiliation(s)
- Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Shengxi Meng,
| |
Collapse
|
6
|
Yu J, Zhu J, Deng J, Shen J, Du F, Wu X, Chen Y, Li M, Wen Q, Xiao Z, Zhao Y. Dopamine receptor D1 signaling stimulates lipolysis and browning of white adipocytes. Biochem Biophys Res Commun 2021; 588:83-89. [PMID: 34953210 DOI: 10.1016/j.bbrc.2021.12.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Adipocytes express several kinds of catecholamine receptors, including adrenergic receptors, and dopamine receptors. Signaling pathways mediated by catecholamine receptors, such as β3-adrenergic receptor pathway, can induce body energy expenditure via activating thermogenesis of adipose tissue. However, the roles of adipose dopamine receptors on adipocytes are still unclear. Here, we investigate the role of dopamine receptor D1 (DRD1) on adipocytes. To this end, we use DRD1 agonist Fenoldopam and antagonist SCH23390 to stimulate and inhibit DRD1 signaling, respectively. We found that, compared with control group mice, Fenoldopam-treated and SCH23390-treated high-fat-diet (HFD)-fed mice showed smaller and bigger white adipose tissue/adipocyte sizes, respectively. Meanwhile, activating of DRD1 signaling enhanced intracellular levels of cAMP, phosphorylation levels of protein kinase A substrates, and hormone-sensitive lipase, a key enzyme for lipolysis in mature 3T3-L1 adipocytes and white adipose tissue of HFD-fed mice. As a result, the levels of free fatty acid or glycerol were increased, indicating stimulation of lipolysis by DRD1 activation. Moreover, activating DRD1 can induce the browning of adipocytes, as indicated by enhanced phosphorylation of P38 MAP kinase, increased expression of beige cell markers (PGC-1α, UCP-1, and CD81), mitochondrion content, and expression of β-oxidation related genes. All of these effects were reduced after treating with SCH23390 both in vitro and in HFD-fed mice. Collectively, our study indicated that DRD1 signaling stimulates lipolysis and browning of white adipocytes in vitro and in vivo. Understanding the functions of DRD1 on human adipocytes and adipose tissues will help us to design novel strategies to treat obesity.
Collapse
Affiliation(s)
- Jing Yu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Pharmacy, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Jiabing Zhu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jian Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Qinglian Wen
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China; Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China.
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China.
| |
Collapse
|