1
|
Wang YT, Chuang JW, Wu MS, Wang MC, Yang YC, Yang JJ, Chiou ST, Li CH, Lin CY, Huang SC, Tseng SH, Wang DY. A novel selective medium for isolation of Limosilactobacillus reuteri from dietary supplements. J Food Drug Anal 2024; 32:459-471. [PMID: 39752873 PMCID: PMC11698599 DOI: 10.38212/2224-6614.3507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/15/2024] [Indexed: 01/07/2025] Open
Abstract
Limosilactobacillus reuteri is a probiotic bacterium known for its numerous beneficial effects on human health and is commonly utilized in various dietary supplements. Previously, we encountered difficulties in isolating L. reuteri from retail dietary supplements containing complex probiotic compositions by using non-selective media such as de Man, Rogosa, and Sharpe (MRS) agar. Our findings reveal that MRS agar with d-gluconic acid as the carbon source and peptone from soymeal as the nitrogen source provides a growth advantage for L. reuteri. Furthermore, all the tested L. reuteri strains exhibit higher resistance to oxacillin compared with non-L. reuteri strains, and the recovery of L. reuteri is significantly higher than that of non-L. reuteri strains on modified MRS agar (MRS-GSOT agar) supplemented with either 4 or 10 μg/mL oxacillin. Results of spiking tests indicate that MRS-GSOT agar with 10 μg/mL oxacillin can selectively inhibit the growth of species other than L. reuteri in single culture or mixed bacterial broth within food matrices. However, the recovery of L. reuteri is relatively low when subjected to the spiking tests with various ratios of non- L. reuteri. Testing results of 15 retail dietary supplements also show that MRS-GSOT agar could efficiently isolate L. reuteri from retail dietary supplements with complex compositions of probiotic bacteria. In addition, we observe that L. reuteri exhibits two different colony morphologies on MRS-GSOT agar with 10 μg/mL oxacillin, yet they shared a common feature: a noticeable metallic (golden) sheen on the colony surface when the plate is slightly tilted, which can be used to distinguish them from non-L. reuteri species, such as Lactiplantibacillus plantarum subsp. plantarum, Levilactobacillus brevis, and Bifidobacterium longum subsp. longum. In conclusion, we have developed MRS-GSOT agar containing d-gluconic acid, peptone from soymeal, oxacillin, and 2,3,5-triphenyltetrazolium chloride for efficient isolation of L. reuteri from dietary supplements.
Collapse
Affiliation(s)
- Yu-Ting Wang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Jyue-Wei Chuang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Ming-Sian Wu
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Min-Cheng Wang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Yu-Cheng Yang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Jun-Jie Yang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Shih-Ting Chiou
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Chun-Hsien Li
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Che-Yang Lin
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Shou-Chieh Huang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Su-Hsiang Tseng
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| | - Der-Yuan Wang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei,
Taiwan, R.O.C.
| |
Collapse
|
2
|
Park HJ, Yu D, Hong ST, Lee J, Park SJ, Park MS, Lee H, Kim M, Cheon YH, Lee SG, Sohn DH, Jun JB, Kim S, Lee SI. Bifidobacterium longum RAPO Attenuates Dermal and Pulmonary Fibrosis in a Mouse Model of Systemic Sclerosis through Macrophage Modulation and Growth of Short-Chain Fatty Acid Producers. Immune Netw 2024; 24:e41. [PMID: 39801739 PMCID: PMC11711128 DOI: 10.4110/in.2024.24.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease with an unclear etiology and no effective treatments. Recent research has suggested involvement of the microbiome in SSc pathogenesis. This study aimed to identify specific microbial species associated with SSc and explore their therapeutic potential. Serum Abs against 384 intestinal microbial species revealed a significant depletion in Abs against Bifidobacterium longum in patients with SSc compared to healthy controls. In a bleomycin-induced SSc mouse model, oral administration of B. longum strain RAPO attenuated skin and lung fibrosis, accompanied by reduced infiltration of inflammatory monocytes/macrophages and downregulation of pro-inflammatory cytokines and chemoattractant Ccl2 genes in lymph nodes and fibrotic tissues. B. longum RAPO treatment restored fecal microbial diversity and augmented short-chain fatty acid (SCFA)-producing bacteria in the gut, leading to increased fecal butyrate levels and upregulated SCFA receptor Gpr41 in the mesenteric lymph node. In vitro, B. longum RAPO and its culture supernatant suppressed the expressions of pro-inflammatory cytokine genes in macrophages and inhibited myofibroblast differentiation in fibroblasts. These findings highlight the probiotic potential of B. longum RAPO in preventing tissue fibrosis by modulating macrophage activity and promoting the growth of SCFA-producing bacteria, underscoring the therapeutic potential of microbial modulation in SSc.
Collapse
Affiliation(s)
- Hee Jin Park
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Dakyum Yu
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Juyeon Lee
- Research Center, BIFIDO Co, Ltd., Hongcheon 25117, Korea
| | - Sang-Jun Park
- Research Center, BIFIDO Co, Ltd., Hongcheon 25117, Korea
| | | | - Hanna Lee
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Yun-Hong Cheon
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Seung-Geun Lee
- Division of Rheumatology, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Suhee Kim
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| |
Collapse
|
3
|
Sevillano E, Lafuente I, Peña N, Cintas LM, Muñoz-Atienza E, Hernández PE, Borrero J. Isolation, Genomics-Based and Biochemical Characterization of Bacteriocinogenic Bacteria and Their Bacteriocins, Sourced from the Gastrointestinal Tract of Meat-Producing Pigs. Int J Mol Sci 2024; 25:12210. [PMID: 39596276 PMCID: PMC11594732 DOI: 10.3390/ijms252212210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant challenge to animal production due to the widespread use of antibiotics. Therefore, there is an urgent need for alternative antimicrobial strategies to effectively manage bacterial infections, protect animal health, and reduce reliance on antibiotics. This study evaluated the use of emerging approaches and procedures for the isolation, identification, and characterization of bacteriocin-producing bacteria and their bacteriocins, sourced from the gastrointestinal tract (GIT) of meat-producing pigs. Out of 2056 isolates screened against Gram-positive and Gram-negative indicator strains, 20 of the most active antimicrobial isolates were subjected to whole genome sequencing (WGS) for the prediction of coding DNA sequences (CDS) and the identification of bacteriocin gene clusters (BGC) and their functions. The use of an in vitro cell-free protein synthesis (IV-CFPS) protocol and the design of an IV-CFPS coupled to a split-intein mediated ligation (IV-CFPS/SIML) procedure made possible the evaluation of the production and antimicrobial activity of described and putatively novel bacteriocins. A colony MALDI-TOF MS procedure assisted in the identification of class I, II, and III lanthipeptides. MALDI-TOF MS and a targeted proteomics, combined with a massive peptide analysis (LC-MS/MS) approach, has proven valuable for the identification and biochemical characterization of previously described and novel bacteriocins encoded by the isolated bacteriocin-producing strains.
Collapse
Affiliation(s)
| | | | | | | | - Estefanía Muñoz-Atienza
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain; (E.S.); (I.L.); (N.P.); (L.M.C.); (P.E.H.); (J.B.)
| | | | | |
Collapse
|
4
|
Banakar M, Fernandes GVO, Etemad‐Moghadam S, Frankenberger R, Pourhajibagher M, Mehran M, Yazdi MH, Haghgoo R, Alaeddini M. The strategic role of biotics in dental caries prevention: A scoping review. Food Sci Nutr 2024; 12:8651-8674. [PMID: 39620008 PMCID: PMC11606839 DOI: 10.1002/fsn3.4473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/26/2024] [Accepted: 09/06/2024] [Indexed: 01/31/2025] Open
Abstract
Dental caries is a global oral health issue that is prevalent and preventable. Biotics (probiotics, prebiotics, symbiotics, and postbiotics) are recommended as low-cost methods for preventing dental caries. This scoping review aimed to critically review the scientific evidence concerning the role of biotics in caries prevention and maintaining oral health benefits. A systematic search was conducted in several databases from 2012 onward, using specific keywords. The search resulted in 69 articles. While there is limited research on the mechanism of biotics in preventing caries, numerous studies have investigated the impacts of probiotics on decreasing caries risk factors. Probiotics can reduce cariogenic bacteria, reduce acidogenic bacteria, increase pH, and produce antimicrobial compounds. Probiotics can be used as a therapeutic approach to manage caries by restoring eubiosis at the host-microbial interface, which may not be accomplished with traditional therapies. Its positive effect on reducing dental caries is influenced by the choice of potent probiotic strains, appropriate dosage, treatment period, vehicle, and microbial interaction with the host. Specific oral bacteria have also been shown to utilize prebiotics such as urea and arginine, increasing pH levels. This highlights the potential of combining prebiotic and probiotic bacteria for caries prevention. In addition, this review is focused on bacterial-derived compounds, namely postbiotics, due to their valuable effects in preventing caries. Biotics have demonstrated potential in preventing dental caries and maintaining oral health. Further research is needed to optimize their use and explore the potential of postbiotics for caries prevention.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
- Department of Pediatric Dentistry, Faculty of DentistryShahed UniversityTehranIran
| | | | - Shahroo Etemad‐Moghadam
- Dental Research Center, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
| | - Roland Frankenberger
- Department of Operative Dentistry and Endodontics, Dental SchoolUniversity of Marburg and University Medical Center Giessen and MarburgMarburgGermany
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
| | - Majid Mehran
- Department of Pediatric Dentistry, Faculty of DentistryShahed UniversityTehranIran
| | | | - Roza Haghgoo
- Department of Pediatric Dentistry, Faculty of DentistryShahed UniversityTehranIran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Gómez-Mejia A, Orlietti M, Tarnutzer A, Mairpady Shambat S, Zinkernagel AS. Inhibition of Streptococcus pyogenes biofilm by Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus. mSphere 2024; 9:e0043024. [PMID: 39360839 PMCID: PMC11520294 DOI: 10.1128/msphere.00430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
The human pathobiont Streptococcus pyogenes forms biofilms and causes infections, such as pharyngotonsillitis and necrotizing fasciitis. Bacterial biofilms are more resilient to antibiotic treatment, and new therapeutic strategies are needed to control biofilm-associated infections, such as recurrent pharyngotonsillitis. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus are two bacterial commensals used for their probiotic properties. This study aimed to elucidate the anti-biofilm properties of L. plantarum and L. rhamnosus cell-free supernatants (LPSN and LRSN, respectively) on S. pyogenes biofilms grown in vitro in supplemented minimal medium. When planktonic or biofilm S. pyogenes were exposed to LPSN or LRSN, S. pyogenes survival was reduced significantly in a concentration-dependent manner, and the effect was more pronounced on preformed biofilms. Enzymatic digestion of LPSN and LRSN suggested that glycolipid compounds might cause the antimicrobial effect. In conclusion, this study indicates that L. plantarum and L. rhamnosus produce glycolipid bioactive compounds that reduce the viability of S. pyogenes in planktonic and biofilm cultures.IMPORTANCEStreptococcus pyogenes infections are a significant concern for populations at risk, such as children and the elderly, as non-invasive conditions such as impetigo and strep throat can lead to severe invasive diseases such as necrotizing fasciitis. Despite its susceptibility to current antibiotics, the formation of biofilm by this pathogen decreases the efficacy of antibiotic treatment alone. The ability of commensal lactobacillus to kill S. pyogenes has been documented by previous studies using in vitro settings. The relevance of our study is in using a physiological setup and a more detailed understanding of the nature of the lactobacillus molecule affecting the viability of S. pyogenes. This additional knowledge will help for a better comprehension of the molecules' characteristics and kinetics, which in turn will facilitate new avenues of research for its translation to new therapies.
Collapse
Affiliation(s)
- Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Mariano Orlietti
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Derakhshan-Sefidi M, Bakhshi B, Rasekhi A. Vibriocidal efficacy of Bifidobacterium bifidum and Lactobacillus acidophilus cell-free supernatants encapsulated in chitosan nanoparticles against multi-drug resistant Vibrio cholerae O1 El Tor. BMC Infect Dis 2024; 24:905. [PMID: 39223499 PMCID: PMC11367852 DOI: 10.1186/s12879-024-09810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cholera is a diarrheal disease recognized for being caused by toxin-producing Vibrio (V.) cholerae. This study aims to assess the vibriocidal and immunomodulatory properties of derived cell-free supernatants (CFSs) of Bifidobacterium (B.) bifidum and Lactobacillus (L.) acidophilus encapsulated in chitosan nanoparticles (CFSb-CsNPs and CFSa-CsNPs) against clinical multi-drug resistance (MDR) isolates of V. cholerae O1 El Tor. METHODS We synthesized CFSb-CsNPs and CFSa-CsNPs using the ionic gelation technique. The newly nanostructures were characterized for size, surface zeta potential, morphology, encapsulation efficacy (EE), stability in different pH values and temperatures, release profile, and in vitro cytotoxicity. The antimicrobial and antibiofilm effects of the obtained nanocomposites on clinical MDR isolates (N = 5) of V. cholerae E1 Tor O1 were investigated by microbroth dilution assay and crystal violet staining, respectively. We conducted quantitative real-time PCR (qRT-PCR) to analyze the relative gene expressions of Bap, Rbmc, CTXAB, and TCP in response to CFSb-CsNPs and CFSa-CsNPs. Additionally, the immunomodulatory effects of formulated structures on the expression of TLR2 and TLR4 genes in human colorectal adenocarcinoma cells (Caco-2) were studied. RESULTS Nano-characterization analyses indicated that CFSb-CsNPs and CFSa-CsNPs exhibit spherical shapes under scanning electron microscopy (SEM) imaging, with mean diameters of 98.16 ± 0.763 nm and 83.90 ± 0.854 nm, respectively. Both types of nanoparticles possess positive surface charges. The EE% of CFSb-CsNPs was 77 ± 4.28%, whereas that of CFSa-CsNPs was 62.5 ± 7.33%. Chitosan (Cs) encapsulation leads to increased stability of CFSs in simulated pH conditions of the gastrointestinal tract in which the release rates for CFSb-CsNPs and CFSa-CsNPs were reached at 58.00 ± 1.24% and 55.01 ± 1.73%, respectively at pH = 7.4. The synergistic vibriocidal effects observed from the co-administration of both CFSb-CsNPs and CFSa-CsNPs, as evidenced by a fractional inhibitory concentration (FIC) index of 0.57, resulting in a significantly lower MIC of 2.5 ± 0.05 mg/mL (p < 0.0001) compare to individual administration. The combined antibacterial effect of CFSb-CsNPs and CFSa-CsNPs on Bap (0.14 ± 0.05), Rbmc (0.24 ± 0.01), CTXAB (0.30 ± 0.09), and TCP (0.38 ± 0.01) gene expression was significant (p < 0.001). Furthermore, co-administration of CFSb-CsNPs and CFSa-CsNPs also demonstrated the potency of suppressing TLR 2/4 (0.20 ± 0.01 and 0.12 ± 0.02, respectively) gene expression (p = 0.0019) and reduced Caco-2 cells attached bacteria to 526,000 ± 51,46 colony-forming units/mL (11.19%) (p < 0.0001). CONCLUSION Our study revealed that encapsulating CFSs within CsNPs enhances their vibriocidal activity by improving stability and enabling a controlled release mechanism at the site of interaction between the host and bacteria. Additionally, the simultaneous use of CFSb-CsNPs and CFSa-CsNPs exhibited superior vibriocidal potency against MDR V. cholerae O1 El Tor strains, indicating these combinations as a potential new approach against MDR bacteria.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Aliakbar Rasekhi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Yan R, Zeng X, Shen J, Wu Z, Guo Y, Du Q, Tu M, Pan D. New clues for postbiotics to improve host health: a review from the perspective of function and mechanisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6376-6387. [PMID: 38450745 DOI: 10.1002/jsfa.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
Strain activity and stability severely limit the beneficial effects of probiotics in modulating host health. Postbiotics have emerged as a promising alternative as they can provide similar or even enhanced efficacy to probiotics, even under inactivated conditions. This review introduces the ingredients, preparation, and identification techniques of postbiotics, focusing on the comparison of the advantages and limitations between probiotics and postbiotics based on their mechanisms and applications. Inactivation treatment is the most significant difference between postbiotics and probiotics. We highlight the use of emerging technologies to inactivate probiotics, optimize process conditions to maintain the activity of postbiotics, or scale up their production. Postbiotics have high stability which can overcome unfavorable factors, such as easy inactivation and difficult colonization of probiotics after entering the intestine, and are rapidly activated, allowing continuous and rapid optimization of the intestinal microecological environment. They provide unique mechanisms, and multiple targets act on the gut-organ axis, co-providing new clues for the study of the biological functions of postbiotics. We summarize the mechanisms of action of inactivated lactic acid bacteria, highlighting that the NF-κB and MAPK pathways can be used as immune targeting pathways for postbiotic modulation of host health. Generally, we believe that as the classification, composition, and efficacy mechanism of postbiotics become clearer they will be more widely used in food, medicine, and other fields, greatly enriching the dimensions of food innovation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruonan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jiamin Shen
- Zhejiang Shenjinji Food Technology Co., LTD, Huzhou, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Guan C, Li F, Yu P, Chen X, Yin Y, Chen D, Gu R, Zhang C, Pang B. Isolation, Identification and Antibacterial Characteristics of Lacticaseibacillus rhamnosus YT. Foods 2024; 13:2706. [PMID: 39272473 PMCID: PMC11394637 DOI: 10.3390/foods13172706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Pathogenic microorganisms have been detected in fermented food. Combining the enormous class of the pathogens and their continuously appearing mutants or novel species, it is important to select suitable and safe antibacterial agents for fermented food safety. Lactic acid bacteria (LAB) which produce diverse imperative antimicrobial metabolites have an immense number of applications in the food industry. Here, the human-derived strain YT was isolated due to its cell-free supernatant (CFS-YT) and cells (Cs-YT), respectively performed obvious inhibitory ring to Gram-positive and -negative spoilage bacteria. Strain YT was identified as Lacticaseibacillus rhamnosus by the 16s rDNA sequence and morphology. The antibacterial activity of CFS-YT was demonstrated to be growth-dependent, pHs-sensitive, broadly thermostable and enzyme-insensitive. Cs-YT displayed a broad antibacterial spectrum with the action mode of bacteriostasis. The antibacterial activity of Cs-YT was due to substances located at the cell surface which were sensitive to heat, stable at broad pH gradients and sensitive to specific enzymes. These data suggested that L. rhamnosus YT could be used as an alternative antimicrobial agent in fermented food biopreservation.
Collapse
Affiliation(s)
- Chengran Guan
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Feng Li
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Peng Yu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xuan Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dawei Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ruixia Gu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chenchen Zhang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bo Pang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
9
|
Victoria Obayomi O, Folakemi Olaniran A, Olugbemiga Owa S. Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. J Funct Foods 2024; 119:106337. [DOI: 10.1016/j.jff.2024.106337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
10
|
Rutter JW, Dekker L, Clare C, Slendebroek ZF, Owen KA, McDonald JAK, Nair SP, Fedorec AJH, Barnes CP. A bacteriocin expression platform for targeting pathogenic bacterial species. Nat Commun 2024; 15:6332. [PMID: 39068147 PMCID: PMC11283563 DOI: 10.1038/s41467-024-50591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Bacteriocins are antimicrobial peptides that are naturally produced by many bacteria. They hold great potential in the fight against antibiotic resistant bacteria, including ESKAPE pathogens. Engineered live biotherapeutic products (eLBPs) that secrete bacteriocins can be created to deliver targeted bacteriocin production. Here we develop a modular bacteriocin secretion platform that can be used to express and secrete multiple bacteriocins from non-pathogenic Escherichia coli host strains. As a proof of concept we create Enterocin A (EntA) and Enterocin B (EntB) secreting strains that show strong antimicrobial activity against Enterococcus faecalis and Enterococcus faecium in vitro, and characterise this activity in both solid culture and liquid co-culture. We then develop a Lotka-Volterra model that can be used to capture the interactions of these competitor strains. We show that simultaneous exposure to EntA and EntB can delay Enterococcus growth. Our system has the potential to be used as an eLBP to secrete additional bacteriocins for the targeted killing of pathogenic bacteria.
Collapse
Affiliation(s)
- Jack W Rutter
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Linda Dekker
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Chania Clare
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Zoe F Slendebroek
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kimberley A Owen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Julie A K McDonald
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
11
|
Tritean N, Dimitriu L, Dima ȘO, Ghiurea M, Trică B, Nicolae CA, Moraru I, Nicolescu A, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Bioactive Hydrogel Formulation Based on Ferulic Acid-Grafted Nano-Chitosan and Bacterial Nanocellulose Enriched with Selenium Nanoparticles from Kombucha Fermentation. J Funct Biomater 2024; 15:202. [PMID: 39057323 PMCID: PMC11277923 DOI: 10.3390/jfb15070202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Selenium nanoparticles (SeNPs) have specific properties that result from their biosynthesis particularities. Chitosan can prevent pathogenic biofilm development. A wide palette of bacterial nanocellulose (BNC) biological and physical-chemical properties are known. The aim of this study was to develop a hydrogel formulation (SeBNCSFa) based on ferulic acid-grafted chitosan and bacterial nanocellulose (BNC) enriched with SeNPs from Kombucha fermentation (SeNPsK), which could be used as an adjuvant for oral implant integration and other applications. The grafted chitosan and SeBNCSFa were characterized by biochemical and physical-chemical methods. The cell viability and proliferation of HGF-1 gingival fibroblasts were investigated, as well as their in vitro antioxidant activity. The inflammatory response was determined by enzyme-linked immunosorbent assay (ELISA) of the proinflammatory mediators (IL-6, TNF-α, and IL-1β) in cell culture medium. Likewise, the amount of nitric oxide released was measured by the Griess reaction. The antimicrobial activity was also investigated. The grafting degree with ferulic acid was approximately 1.780 ± 0.07% of the total chitosan monomeric units, assuming single-site grafting per monomer. Fourier-transform infrared spectroscopy evidenced a convolution of BNC and grafted chitosan spectra, and X-ray diffraction analysis highlighted an amorphous rearrangement of the diffraction patterns, suggesting multiple interactions. The hydrogel showed a high degree of cytocompatibility, and enhanced antioxidant, anti-inflammatory, and antimicrobial potentials.
Collapse
Affiliation(s)
- Naomi Tritean
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
- Faculty of Biology, University of Bucharest, Spl. Independentei nr. 91-95, Sector 5, 50095 Bucharest, Romania;
| | - Luminița Dimitriu
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Ștefan-Ovidiu Dima
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Marius Ghiurea
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Bogdan Trică
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Cristian-Andi Nicolae
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Ionuț Moraru
- Laboratoarele Medica Srl., Frasinului Str. nr. 11, 075100 Otopeni, Romania;
| | - Alina Nicolescu
- “Petru Poni” Institute for Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania;
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, Spl. Independentei nr. 91-95, Sector 5, 50095 Bucharest, Romania;
| | - Florin Oancea
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Diana Constantinescu-Aruxandei
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| |
Collapse
|
12
|
Mahdizade Ari M, Mirkalantari S, Darban-Sarokhalil D, Darbandi A, Razavi S, Talebi M. Investigating the antimicrobial and anti-inflammatory effects of Lactobacillus and Bifidobacterium spp. on cariogenic and periodontitis pathogens. Front Microbiol 2024; 15:1383959. [PMID: 38881669 PMCID: PMC11177620 DOI: 10.3389/fmicb.2024.1383959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of probiotics is emerging as an innovative approach to managing oral health issues and mediating the immune system. The current study assessed the in vitro impacts of non-orally isolated probiotics on periodontitis and tooth decay pathogens. Methods Briefly, the persistence of probiotics in exposure to oral cavity enzymes, hydrogen peroxide, and saliva samples was examined. It was also investigated the biofilm formation and aggregation ability of probiotics, the adherence of probiotics in human gingival fibroblast cell (HGFC) lines and molar teeth samples, and the potential of probiotics to co-aggregate with oral pathogens. Additionally, the current study evaluated the effects of live probiotics on virulence gene expression, biofilm production of main oral pathogens, and changes in inflammation markers. Results The probiotics remained alive when exposed to enzymes in the oral cavity, hydrogen peroxide, and saliva at baseline, 1, 3, and 5 h after incubation at 37°C (p-value <0.05). Probiotics demonstrated to produce biofilm and aggregation, as well as adherence to HGFCs and maxillary molars (p-value >0.05). They showed significant co-aggregation with oral pathogens, which were recorded as 65.57% for B. bifidum 1001 with S. mutans, 50.06% for B. bifidum 1005 with P. gingivalis, 35.6% for L. plantarum 156 with F. nucleatum, and 18.7% for B. longum 1044 with A. actinomycetemcomitans after 8 h of incubation. A balance between pro-inflammatory and anti-inflammatory cytokines, along with inhibition of biofilm formation and changes in virulence gene transcripts, were observed. However, most of these changes were not statistically significant (p-value >0.05). Conclusion This study demonstrated the direct link between adhesiveness, aggregation, and biofilm formation with probiotic antibacterial activity. In addition to the careful selection of suitable probiotic strains, the concentration and origin of probiotic isolates should be considered.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zhou K, Xie J, Su Y, Fang J. Lactobacillus reuteri for chronic periodontitis: focus on underlying mechanisms and future perspectives. Biotechnol Genet Eng Rev 2024; 40:381-408. [PMID: 36856460 DOI: 10.1080/02648725.2023.2183617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Chronic periodontitis is a common oral disorder caused by pathogenic bacteria. Despite the wide use of antibiotics as the conventional adjunctive treatment, the challenges of increased antibiotic resistance and limited therapeutic effect receive considerable attention and the developments of alternative treatments gain increasing consideration. Growing evidence showed that Lactobacillus reuteri (LR) may represent a promising alternative adjunct for chronic periodontitis. It can attenuate inflammation and reduce tissue disruption. LR-assisted treatment has been shown to be effective and relatively safe in multiple clinical trials, and accumulating evidence suggests its significant biological roles. In the current review, we focus on capturing the underlying mechanisms of LR involved in chronic periodontitis, thereby representing a scientific foundation for LR-assisted therapy. Furthermore, we point out the challenges and future directions for further clinical trials to improve the clinical applicability for LR.
Collapse
Affiliation(s)
- Keyi Zhou
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jiaman Xie
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Yuan Su
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jingxian Fang
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
14
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
15
|
Liu H, Yu Y, Dong A, Elsabahy M, Yang Y, Gao H. Emerging strategies for combating Fusobacterium nucleatum in colorectal cancer treatment: Systematic review, improvements and future challenges. EXPLORATION (BEIJING, CHINA) 2024; 4:20230092. [PMID: 38854496 PMCID: PMC10867388 DOI: 10.1002/exp.20230092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/16/2023] [Indexed: 06/11/2024]
Abstract
Colorectal cancer (CRC) is generally characterized by a high prevalence of Fusobacterium nucleatum (F. nucleatum), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, F. nucleatum can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate F. nucleatum and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat F. nucleatum and F. nucleatum biofilms. This review summarizes the latest advancements in anti-F. nucleatum research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotP. R. China
| | - Mahmoud Elsabahy
- Department of PharmaceuticsFaculty of PharmacyAssiut UniversityAssiutEgypt
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano‐Micro Architecture ChemistryCollege of ChemistryJilin UniversityChangchunP. R. China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| |
Collapse
|
16
|
Wu S, Xu Y, Chen Z, Chen Y, Wei F, Xia C, Zhou Q, Li P, Gu Q. Lactiplantibacillus plantarum ZJ316 Reduces Helicobacter pylori Adhesion and Inflammation by Inhibiting the Expression of Adhesin and Urease Genes. Mol Nutr Food Res 2023; 67:e2300241. [PMID: 37485583 DOI: 10.1002/mnfr.202300241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Indexed: 07/25/2023]
Abstract
SCOPE The present study aims to investigate the anti-Helicobacter pylori (H. pylori) effects of Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) both in vitro and in vivo. METHODS AND RESULTS This study finds that L. plantarum ZJ316 effectively suppresses H. pylori adhesion in inhibition (Pre-ZJ316), competition (Co-ZJ316), and displacement (Post-ZJ316) assays, and Pre-ZJ316 displaying the most potent inhibitory effect with an impressive inhibition ratio of 70.14%. Upon anti-adhesion, L. plantarum ZJ316 significantly downregulates the expression of H. pylori virulence genes, including ureA, ureB, flaA, and sabA, with inhibition ratios of 46.83%, 24.02%, 21.42%, and 62.38% at 2 h, respectively. In addition, L. plantarum ZJ316 is observed to reduce the level of interleukin 8 (IL-8) and improve cell viability in infected AGS cells. Furthermore, in vivo studies show that supplementation with L. plantarum ZJ316 effectively hinders H. pylori colonization and significantly suppresses the infiltration of immune cells and IL-8 production with H. pylori infection, protecting host from inflammatory damage. CONCLUSION L. plantarum ZJ316 exhibits excellent adhesion inhibition on H. pylori, and may be used as a probiotic candidate in the prevention or adjuvant therapy of gastric disease caused by H. pylori.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Yang Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
17
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
18
|
Growth Conditions Influence Lactobacillus Cell-Free Supernatant Impact on Viability, Biofilm Formation, and Co-Aggregation of the Oral Periodontopathogens Fusobacterium nucleatum and Porphyromonas gingivalis. Biomedicines 2023; 11:biomedicines11030859. [PMID: 36979838 PMCID: PMC10045872 DOI: 10.3390/biomedicines11030859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Fusobacterium nucleatum and Porphyromonas gingivalis human periodontopathogens play a leading part in oral squamous cell carcinoma through cell proliferation, invasion, and persistent inflammation promotion and maintenance. To explore how the activity of Lactobacillus-derived cell-free supernatants (CFSs) can be influenced by growth medium components, CFSs were produced both in the standard MRS and the novel animal-derivative-free “Terreno Industriale Lattobacilli” (TIL) media, and in vitro screened for the containment of F. nucleatum and P. gingivalis both single and co-cultured and also for the interference on their co-aggregation. The viability assay demonstrated that the Limosilactobacillus reuteri LRE11 and Ligilactobacillus salivarius LS03 MRS-produced CFSs were significantly more effective against single and co-cultured pathogens. All the other CFSs significantly improved their efficacy when produced in TIL. Both MRS- and TIL-produced CFSs significantly inhibited the single and co-cultured pathogen biofilm formation. Only Levilactobacillus brevis LBR01 CFS in MRS specifically reduced F. nucleatum and P. gingivalis co-aggregation, while viable LBR01, LS03, and LRE11 in MRS significantly co-aggregated with the pathogens, but only LS03 cultivated in TIL improved this effect. This work paves the way to better consider environmental growth conditions when screening for probiotic and postbiotic efficacy as crucial to pathogen aggregation, adhesion to the host’s niches, and exclusion.
Collapse
|
19
|
Aljohani AM, El-Chami C, Alhubail M, Ledder RG, O’Neill CA, McBain AJ. Escherichia coli Nissle 1917 inhibits biofilm formation and mitigates virulence in Pseudomonas aeruginosa. Front Microbiol 2023; 14:1108273. [PMID: 36970701 PMCID: PMC10031955 DOI: 10.3389/fmicb.2023.1108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/31/2023] [Indexed: 03/10/2023] Open
Abstract
In the quest for mitigators of bacterial virulence, cell-free supernatants (CFS) from 25 human commensal and associated bacteria were tested for activity against Pseudomonas aeruginosa. Among these, Escherichia coli Nissle 1917 CFS significantly inhibited biofilm formation and dispersed extant pseudomonas biofilms without inhibiting planktonic bacterial growth. eDNA was reduced in biofilms following exposure to E. coli Nissle CFS, as visualized by confocal microscopy. E. coli Nissle CFS also showed a significant protective effect in a Galleria mellonella-based larval virulence assay when administrated 24 h before challenge with the P. aeruginosa. No inhibitory effects against P. aeruginosa were observed for other tested E. coli strains. According to proteomic analysis, E. coli Nissle CFS downregulated the expression of several P. aeruginosa proteins involved in motility (Flagellar secretion chaperone FliSB, B-type flagellin fliC, Type IV pilus assembly ATPase PilB), and quorum sensing (acyl-homoserine lactone synthase lasI and HTH-type quorum-sensing regulator rhlR), which are associated with biofilm formation. Physicochemical characterization of the putative antibiofilm compound(s) indicates the involvement of heat-labile proteinaceous factors of greater than 30 kDa molecular size.
Collapse
Affiliation(s)
- Ahmad M. Aljohani
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Ministry of Education, Riyadh, Saudi Arabia
| | - Cecile El-Chami
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, United Kingdom
| | - Muna Alhubail
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, United Kingdom
| | - Ruth G. Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Catherine A. O’Neill
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- *Correspondence: Andrew J. McBain,
| |
Collapse
|
20
|
In Vitro Characterization of Limosilactobacillus reuteri Lac Ib01 (OL468126.1) Isolated from Traditional Sheep Dry Sausage and Evaluation of the Activity of Arthrospira platensis or Phycocyanin on Its Growth-Promoting Ability. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The positive impact of probiotic strains on human health is more evident than ever. To achieve the beneficial health effects and desirable functional properties of probiotics, sufficient numbers of these microorganisms must reach the intestinal tract with high survival rates. The purpose of this study was to identify and characterize a novel strain of Limosilactobacillus reuteri isolated from traditional sheep dry sausage and evaluate its growth-promoting ability with the addition of Arthrospira platensis or phycocyanin extract. In vitro experimental approaches were conducted to determine the physiological features of the candidate probiotic isolate, including biochemical identification, 16S rRNA gene sequencing, tolerance assays to acid and bile salts, antimicrobial activities, adherence ability, and antiproliferative assays. The effects of A. platensis or phycocyanin (0, 1, 5, and 8 mg/mL) on the growth of probiotic cultures were studied after 0, 24, 48, and 72 h. Our results showed that the isolated Limosilactobacillus reuteri (OL468126.1) possesses desirable characteristics as a probiotic candidate and can, therefore, be used as an ingredient in functional foods. Furthermore, A. platensis and phycocyanin extract have great potential for enhancing the growth and prolonging the stationary phase of isolated probiotics. Our findings showed that phycocyanin extract not only plays the role of a natural pigment but also acts as a growth promoter of probiotics.
Collapse
|
21
|
Exploration of the Main Antibiofilm Substance of Lactobacillus plantarum ATCC 14917 and Its Effect against Streptococcus mutans. Int J Mol Sci 2023; 24:ijms24031986. [PMID: 36768304 PMCID: PMC9916977 DOI: 10.3390/ijms24031986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Dental plaque, a complex biofilm system established by cariogenic bacteria such as Streptococcus mutans (S. mutans), is the initiator of dental caries. Studies have found that the cell-free supernatant (CFS) of Lactobacilli could inhibit S. mutans biofilm formation. However, the main antibiofilm substance of the Lactobacilli CFS that acts against S. mutans is unclear. The present study found that the CFS of Lactobacillus plantarum (L. plantarum) ATCC 14917 had the strongest antibiofilm effect among the five tested oral Lactobacilli. Further bioassay-guided isolation was performed to identify the main antibiofilm substance. The antibiofilm effect of the end product, named 1-1-4-3, was observed and the structure of it was elucidated by using Q-TOF MS, 2D NMR and HPLC. The results showed that several components in the CFS had an antibiofilm effect; however, the effect of 1-1-4-3 was the strongest, as it could reduce the generation of exopolysaccharides and make the biofilm looser and thinner. After structure elucidation and validation, 1-1-4-3 was identified as a mixture of lactic acid (LA) and valine. Additionally, LA was shown to be the main antibiofilm substance in 1-1-4-3. In summary, this study found that the antibiofilm effect of the L. plantarum CFS against S. mutans was attributable to the comprehensive effect of multiple components, among which LA played a dominant role.
Collapse
|
22
|
Vitale I, Spano M, Puca V, Carradori S, Cesa S, Marinacci B, Sisto F, Roos S, Grompone G, Grande R. Antibiofilm activity and NMR-based metabolomic characterization of cell-free supernatant of Limosilactobacillus reuteri DSM 17938. Front Microbiol 2023; 14:1128275. [PMID: 36891385 PMCID: PMC9986594 DOI: 10.3389/fmicb.2023.1128275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023] Open
Abstract
The microbial biofilm has been defined as a "key virulence factor" for a multitude of microorganisms associated with chronic infections. Its multifactorial nature and variability, as well as an increase in antimicrobial resistance, suggest the need to identify new compounds as alternatives to the commonly used antimicrobials. The aim of this study was to assess the antibiofilm activity of cell-free supernatant (CFS) and its sub-fractions (SurE 10 K with a molecular weight <10 kDa and SurE with a molecular weight <30 kDa), produced by Limosilactobacillus reuteri DSM 17938, vs. biofilm-producing bacterial species. The minimum inhibitory biofilm concentration (MBIC) and the minimum biofilm eradication concentration (MBEC) were determined via three different methods and an NMR metabolomic analysis of CFS and SurE 10K was performed to identify and quantify several compounds. Finally, the storage stability of these postbiotics was evaluated by a colorimetric assay by analyzing changes in the CIEL*a*b parameters. The CFS showed a promising antibiofilm activity against the biofilm developed by clinically relevant microorganisms. The NMR of CFS and SurE 10K identifies and quantifies several compounds, mainly organic acids and amino acids, with lactate being the most abundant metabolite in all the analyzed samples. The CFS and SurE 10 K were characterized by a similar qualitative profile, with the exception of formate and glycine detected only in the CFS. Finally, the CIEL*a*b parameters assess the better conditions to analyze and use these matrices for the correct preservation of bioactive compounds.
Collapse
Affiliation(s)
- Irene Vitale
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mattia Spano
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Valentina Puca
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Cesa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Stefan Roos
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.,BioGaia AB, Stockholm, Sweden
| | | | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
23
|
Karaca B, Haliscelik O, Gursoy M, Kiran F, Loimaranta V, Söderling E, Gursoy UK. Analysis of Chemical Structure and Antibiofilm Properties of Exopolysaccharides from Lactiplantibacillus plantarum EIR/IF-1 Postbiotics. Microorganisms 2022; 10:2200. [PMID: 36363792 PMCID: PMC9693231 DOI: 10.3390/microorganisms10112200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 09/10/2024] Open
Abstract
Previous studies have indicated that the exopolysaccharides of lactic acid bacteria exhibit antibiofilm activity against non-oral bacteria by preventing their initial adhesion to surfaces and by downregulating the expression of genes responsible for their biofilm formation. The aims of this study were to (1) characterize the exopolysaccharides (EPSs) of Lactobacillus plantarum EIR/IF-1 postbiotics, (2) test their antibiofilm effect on dual biofilms, and (3) evaluate their bacterial auto-aggregation, co-aggregation, and hydrocarbon-binding inhibitory activity. The EPSs were characterized by FTIR, HPLC, and thermogravimetric analysis. Bacterial auto- and co-aggregation were tested by Kolenbrander's method and hydrocarbon binding was tested by Rosenberg's method. Dual biofilms were formed by culturing Fusobacterium nucleatum ATCC 25586 with one of the following bacteria: Prevotella denticola ATCC 33185, P. denticola AHN 33266, Porphyromonas gingivalis ATCC 33277, P. gingivalis AHN 24155, and Filifactor alocis ATCC 35896. The EPSs contained fractions with different molecular weights (51 and 841 kDa) and monosaccharides of glucose, galactose, and fructose. The EPSs showed antibiofilm activity in all the biofilm models tested. The EPSs may have inhibited bacterial aggregation and binding to hydrocarbons by reducing bacterial hydrophobicity. In conclusion, the EPSs of L. plantarum EIR/IF-1, which consists of two major fractions, exhibited antibiofilm activity against oral bacteria, which can be explained by the inhibitory effect of EPSs on the auto-aggregation and co-aggregation of bacteria and their binding to hydrocarbons.
Collapse
Affiliation(s)
- Basar Karaca
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Ozan Haliscelik
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Mervi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Oral Health Care, Welfare Division, City of Turku, 20521 Turku, Finland
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Vuokko Loimaranta
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Eva Söderling
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Ulvi Kahraman Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
24
|
Yue W, Han F. Effects of monoglucoside and diglucoside anthocyanins from Yan 73 (Vitis Vinifera L.) and spine grape (Vitis davidii Foex) skin on intestinal microbiota in vitro. Food Chem X 2022; 16:100501. [DOI: 10.1016/j.fochx.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
|
25
|
Cimini D, D’ambrosio S, Stellavato A, Fusco A, Corsaro MM, Dabous A, Casillo A, Donnarumma G, Giori AM, Schiraldi C. Optimization of growth of Levilactobacillus brevis SP 48 and in vitro evaluation of the effect of viable cells and high molecular weight potential postbiotics on Helicobacter pylori. Front Bioeng Biotechnol 2022; 10:1007004. [PMID: 36394050 PMCID: PMC9661962 DOI: 10.3389/fbioe.2022.1007004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/14/2022] [Indexed: 09/29/2023] Open
Abstract
Several Levilactobacillus brevis strains have the potential to be used as probiotics since they provide health benefits due to the interaction of live cells, and of their secreted products, with the host (tissues). Therefore, the development of simple fermentation processes that improve cell viability to reduce industrial production costs, and at the same time the characterization and biological evaluation of cell-free postbiotics that can further promote application, are of great interest. In the present study, small scale batch fermentations on semi defined media, deprived of animal derived raw materials, were used to optimize growth of L. brevis SP48, reaching 1.2 ± 0.4 × 1010 CFU/ml of viable cells after 16 h of growth. Displacement, competition, and inhibition assays compared the effect, on Helicobacter pylori, of L. brevis cells to that of its partially purified potentially postbiotic fraction rich in exopolysaccharides and proteins. The expression of pro and anti-inflammatory biochemical markers indicated that both samples activated antimicrobial defenses and innate immunity in a gastric model. Moreover, these compounds also acted as modulators of the inflammatory response in a gut in vitro model. These data demonstrate that the high molecular weight compounds secreted by L. brevis SP48 can contrast H. pylori and reduce inflammation related to intestinal bowel disease, potentially overcoming issues related to the preservation of probiotic viability.
Collapse
Affiliation(s)
- Donatella Cimini
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Sergio D’ambrosio
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Antonietta Stellavato
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Azza Dabous
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | | | - Chiara Schiraldi
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| |
Collapse
|
26
|
Aggarwal S, Sabharwal V, Kaushik P, Joshi A, Aayushi A, Suri M. Postbiotics: From emerging concept to application. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.887642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microbiome innovation has resulted in an umbrella term, postbiotics, which refers to non-viable microbial cells, metabolic byproducts and their microbial components released after lysis. Postbiotics, modulate immune response, gene expression, inhibit pathogen binding, maintain intestinal barriers, help in controlling carcinogenesis and pathogen infections. Postbiotics have antimicrobial, antioxidant, and immunomodulatory properties with favorable physiological, immunological, neuro-hormonal, regulatory and metabolic reactions. Consumption of postbiotics relieves symptoms of various diseases and viral infections such as SARS-CoV-2. Postbiotics can act as alternatives for pre-probiotic specially in immunosuppressed patients, children and premature neonates. Postbiotics are used to preserve and enhance nutritional properties of food, elimination of biofilms and skin conditioning in cosmetics. Postbiotics have numerous advantages over live bacteria with no risk of bacterial translocation from the gut to blood, acquisition of antibiotic resistance genes. The process of extraction, standardization, transport, and storage of postbiotic is more natural. Bioengineering techniques such as fermentation technology, high pressure etc., may be used for the synthesis of different postbiotics. Safety assessment and quality assurance of postbiotic is important as they may induce stomach discomfort, sepsis and/or toxic shock. Postbiotics are still in their infancy compared to pre- and pro- biotics but future research in this field may contribute to improved physiological functions and host health. The current review comprehensively summarizes new frontiers of research in postbiotics.
Collapse
|
27
|
You I, Mahiddine FY, Park H, Kim MJ. Lactobacillus acidophilus novel strain, MJCD175, as a potential probiotic for oral health in dogs. Front Vet Sci 2022; 9:946890. [PMID: 36118340 PMCID: PMC9478757 DOI: 10.3389/fvets.2022.946890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
The oral cavity is the second-largest habitat for microorganisms, and a well-balanced oral microbiome contributes to preventing dental disorders caused by pathogenic bacteria. Since humans and dogs have different lifestyles and oral microbiome structures, the present study aimed to develop novel probiotics for dogs. A total 53 Lactobacillus spp. were isolated from healthy dogs, and nine isolates were identified as Lactobacillus acidophilus according to 16S rRNA gene sequencing. According to the high antimicrobial activity against the dental caries-causing bacterium Streptococcus mutans, single or three mixed strains were orally administered to dogs for 4 weeks with concentration of 108-109 CFU/day. Intraoral swab samples were collected before and after the administration, and changes of oral pathogen were analyzed using quantitative PCR. Among them, Porphyromonas gingivalis, a critical factor of periodontitis, was significantly reduced in the single-strain administered group. Based on the acid and bile salts tolerance characteristics of isolates, systemic effects were also analyzed by comparing serum immunoglobulin and reproductive ability before and after the administration. However, no significant changes were observed in the serum IgG level and sperm quality. Overall, these in vitro and in vivo results suggest that L. acidophilus isolates from dogs, especially L. acidophilus MJCD175, could be promising probiotic candidates to support oral health without systemic adverse effects in dogs.
Collapse
|
28
|
张 瑾, 徐 欣. [Research Progress in the Relationship Between Lactobacillus and Dental Caries]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:929-934. [PMID: 36224699 PMCID: PMC10408808 DOI: 10.12182/20220960103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 06/16/2023]
Abstract
Lactobacillus is the first microorganism found to be closely associated with dental caries. It demonstrates acidogenicity, aciduricity, and the ability to bind with collagen and to synthesize extracellular polysaccharides to promote bacterial adhesion. Some lactobacilli inhibit the growth of cariogenic bacteria by producing antibacterial compounds or metabolites, competing with cariogenic bacteria for adhesion sites or co-aggregation, or regulating the expression of genes related to cariogenic virulence. Therefore, researchers have, in recent years, experimented with applying Lactobacillusas probiotics in the prevention and control of caries. However, the cariogenic mechanism of Lactobacillus is still not fully understood, and the potential effects, presumably beneficial, of specific Lactobacillus on oral and intestinal microecology remain unknown. More research needs to be done to combine both the cariogenic and probiotic properties of Lactobacillus, and to comprehensively evaluate the effects of Lactobacillus on oral and systemic health. We, herein, summarized research progress in the cariogenicity and caries prevention effect of Lactobacillus, focusing on a discussion of the role of Lactobacillus in cariogenesis, the development of dental caries, and clinical prevention and control of dental caries, in order to provide new ideas and references for the prevention and control of dental caries.
Collapse
Affiliation(s)
- 瑾 张
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 欣 徐
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Organic Acids Secreted by Lactobacillus spp. Isolated from Urine and Their Antimicrobial Activity against Uropathogenic Proteus mirabilis. Molecules 2022; 27:molecules27175557. [PMID: 36080323 PMCID: PMC9457960 DOI: 10.3390/molecules27175557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
The natural microbiota of the urinary tract includes Lactobacillus spp., which secrete molecules with antimicrobial properties and have antagonistic activity against many pathogens. This paper focuses on the antibacterial effect of Lactobacillus strains isolated from urine against clinical strains of Proteus mirabilis isolated from kidney stones and from urine with coexisting urolithiasis. The study involved analyzing the main antimicrobial molecules secreted by Lactobacillus. In order to indicate which agent had the strongest antimicrobial effect, the supernatants were made alkaline and treated with catalase and high temperature. Both treated and untreated supernatants were analyzed for their activity. Exposing uropathogens to all untreated cell-free supernatants of Lactobacillus significantly reduced their growth, and it was established that these properties were related to organic acid secretion by these strains. Using LC–MS/MS and spectrophotometric techniques, lactic, citric, and succinic acids were determined qualitatively and quantitatively. The influence of these acids on the P. mirabilis growth and biofilm formation and their influence on membrane permeability were also investigated. The results indicate that organic acids secreted by Lactobacillus strains have a high antibacterial potential and could be used as novel agents in the treatment of urinary tract infections caused by P. mirabilis.
Collapse
|
30
|
Šurín Hudáková N, Kačírová J, Sondorová M, Šelianová S, Mucha R, Maďar M. Inhibitory Effect of Bacillus licheniformis Strains Isolated from Canine Oral Cavity. Life (Basel) 2022; 12:life12081238. [PMID: 36013417 PMCID: PMC9409769 DOI: 10.3390/life12081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Bacillus licheniformis is used in a broad spectrum of areas, including some probiotic preparations for human and veterinary health. Moreover, B. licheniformis strains are known producers of various bioactive substances with antimicrobial and antibiofilm effects. In searching for new potentially beneficial bacteria for oral health, the inhibitory effect of B. licheniformis strains isolated from canine dental biofilm against pathogenic oral bacteria was evaluated. The antimicrobial effect of neutralized cell-free supernatants (nCFS) was assessed in vitro on polystyrene microtiter plates. Furthermore, molecular and morphological analyses were executed to evaluate the production of bioactive substances. To determine the nature of antimicrobial substance present in nCFS of B. licheniformis A-1-5B-AP, nCFS was exposed to the activity of various enzymes. The nCFS of B. licheniformis A-1-5B-AP significantly (p < 0.0001) reduced the growth of Porphyromonas gulae 3/H, Prevotella intermedia 1/P and Streptococcus mutans ATCC 35668. On the other hand, B. licheniformis A-2-11B-AP only significantly (p < 0.0001) inhibited the growth of P. intermedia 1/P and S. mutans ATCC 35668. However, enzyme-treated nCFS of B. licheniformis A-1-5B-AP did not lose its antimicrobial effect and significantly (p < 0.0001) inhibited the growth of Micrococcus luteus DSM 1790. Further studies are needed for the identification of antimicrobial substances.
Collapse
Affiliation(s)
- Natália Šurín Hudáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Jana Kačírová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Miriam Sondorová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Svetlana Šelianová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of Pavol Jozef Safarik in Kosice, 040 01 Kosice, Slovakia
| | - Rastislav Mucha
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia
| | - Marián Maďar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
- Correspondence: ; Tel.: +421-9-4971-5632
| |
Collapse
|
31
|
Antibacterial Mechanism of Dellaglioa algida against Pseudomonas fluorescens and Pseudomonas fragi. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pseudomonas fluorescens (P. fluorescens) and Pseudomonas fragi (P. fragi), two kinds of psychrotrophic Pseudomonas species with pathogenicity, are likely to contaminate foods and cause diseases even in fairly cold environments, an outcome which should be suppressed. This paper investigates the antibacterial mechanisms of Dellaglioa algida (D. algida), a new type of low-temperature-resistant Lactobacillus, on two such Pseudomonas. By the enzyme treatment approach, the antibacterial substance existing in the cell-free supernatant (CFS) of D. algida is preliminarily determined as organic acid or protein; then, its inhibition effects are assessed under various culture environments, including pH value, salinity, and culture time, where the best antibacterial performance is achieved at pH = 6.00, S = 0%, and culture time = 48 h. A series of experiments on biofilms indicate that D. algida is not only able to inhibit the generation or damage the integrality of the biofilm of the two mentioned Pseudomonas, but also can reduce the motility, including swarming and swimming, of P. fragi and restrain the swarming of P. fluorescens. The aformentioned developed antibacterial mechanisms show the possibility of using D. algida in applications as an inhibitor for psychrotrophic Pseudomonas in the food industry, by virtue of its strong suppression capability, especially in cold environments.
Collapse
|
32
|
Outside the limits of bacterial viability: postbiotics in the management of periodontitis. Biochem Pharmacol 2022; 201:115072. [PMID: 35513043 DOI: 10.1016/j.bcp.2022.115072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/17/2023]
Abstract
Periodontitis is a major cause of tooth loss in adults worldwide and is caused by an unbalanced oral microbiota in a susceptible host, ultimately leading to tissue breakdown and bone loss. Traditionally, the treatment for periodontitis is scaling and root planing; however, some cases require adjuvant therapy, such as antibiotics administration or surgery. Various factors are involved in the pathogenesis and interact in an unpredictable way, increasing the complexity of the disease and making it difficult to manage. In this context, the administration of probiotics aimed at resolving bacterial dysbiosis and the associated dysregulation of the immune system has been employed in clinical trials with encouraging results. However, the use of viable microorganisms is not risk-free, and immunocompromised patients may develop adverse effects. Therefore, the use of inactivated microbial cells, cell fractions, or soluble products and metabolites of probiotics, known as postbiotics, has gained increasing attention. In this commentary, we present the current literature assessing the impact of postbiotics on the growth and metabolism of periodontal pathogens, as well as on the progression of periodontitis in rodents and humans. We also discuss the limitations of the available data and what the scientific community should consider in order to transfer this innovative therapeutic modality from the bench to the bedside.
Collapse
|
33
|
Gut health benefit and application of postbiotics in animal production. J Anim Sci Biotechnol 2022; 13:38. [PMID: 35392985 PMCID: PMC8991504 DOI: 10.1186/s40104-022-00688-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 01/05/2023] Open
Abstract
Gut homeostasis is of importance to host health and imbalance of the gut usually leads to disorders or diseases for both human and animal. Postbiotics have been applied in manipulating of gut health, and utilization of postbiotics threads new lights into the host health. Compared with the application of probiotics, the characteristics such as stability and safety of postbiotics make it a potential alternative to probiotics. Studies have reported the beneficial effects of components derived from postbiotics, mainly through the mechanisms including inhibition of pathogens, strengthen gut barrier, and/or regulation of immunity of the host. In this review, we summarized the characteristics of postbiotics, main compounds of postbiotics, potential mechanisms in gut health, and their application in animal production.
Collapse
|
34
|
Kienesberger B, Obermüller B, Singer G, Arneitz C, Gasparella P, Klymiuk I, Horvath A, Stadlbauer V, Magnes C, Zügner E, López-García P, Trajanoski S, Miekisch W, Fuchs P, Till H, Castellani C. Insights into the Composition of a Co-Culture of 10 Probiotic Strains (OMNi BiOTiC ® AAD10) and Effects of Its Postbiotic Culture Supernatant. Nutrients 2022; 14:1194. [PMID: 35334850 PMCID: PMC8952306 DOI: 10.3390/nu14061194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We aimed to gain insights in a co-culture of 10 bacteria and their postbiotic supernatant. METHODS Abundances and gene expression were monitored by shotgun analysis. The supernatant was characterized by liquid chromatography mass spectroscopy (LC-MS) and gas chromatography mass spectroscopy (GC-MS). Supernatant was harvested after 48 h (S48) and 196 h (S196). Susceptibility testing included nine bacteria and C. albicans. Bagg albino (BALBc) mice were fed with supernatant or culture medium. Fecal samples were obtained for 16S analysis. RESULTS A time-dependent decrease of the relative abundances and gene expression of L. salivarius, L. paracasei, E. faecium and B. longum/lactis and an increase of L. plantarum were observed. Substances in LC-MS were predominantly allocated to groups amino acids/peptides/metabolites and nucleotides/metabolites, relating to gene expression. Fumaric, panthotenic, 9,3-methyl-2-oxovaleric, malic and aspartic acid, cytidine monophosphate, orotidine, phosphoserine, creatine, tryptophan correlated to culture time. Supernatant had no effect against anaerobic bacteria. S48 was reactive against S. epidermidis, L. monocytogenes, P. aeruginosae, E. faecium and C. albicans. S196 against S. epidermidis and Str. agalactiae. In vivo S48/S196 had no effect on alpha/beta diversity. Linear discriminant analysis effect size (LEfSe) and analysis of composition of microbiomes (ANCOM) revealed an increase of Anaeroplasma and Faecalibacterium prausnitzii. CONCLUSIONS The postbiotic supernatant had positive antibacterial and antifungal effects in vitro and promoted the growth of distinct bacteria in vivo.
Collapse
Affiliation(s)
- Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Christoph Arneitz
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Paolo Gasparella
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Ingeborg Klymiuk
- Department of Cell Biology, Histology and Embryology, Medical University of Graz, 8034 Graz, Austria;
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8034 Graz, Austria; (A.H.); (V.S.)
- Center of Biomarker Research (CBmed), 8034 Graz, Austria;
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8034 Graz, Austria; (A.H.); (V.S.)
- Center of Biomarker Research (CBmed), 8034 Graz, Austria;
| | - Christoph Magnes
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research, 8010 Graz, Austria; (C.M.); (E.Z.)
| | - Elmar Zügner
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research, 8010 Graz, Austria; (C.M.); (E.Z.)
| | | | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, 8034 Graz, Austria;
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| |
Collapse
|
35
|
An Evaluation of Aluminum Tolerant Pseudomonas aeruginosa A7 for In Vivo Suppression of Fusarium Wilt of Chickpea Caused by Fusarium oxysporum f. sp. ciceris and Growth Promotion of Chickpea. Microorganisms 2022; 10:microorganisms10030568. [PMID: 35336143 PMCID: PMC8950562 DOI: 10.3390/microorganisms10030568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Chickpea wilt, caused by Fusarium oxysporum f. sp. ciceris, is a disease that decreases chickpea productivity and quality and can reduce its yield by as much as 15%. A newly isolated, moss rhizoid-associated Pseudomonas aeruginosa strain A7, demonstrated strong inhibition of Fusarium oxysporum f. sp. ciceris growth. An in vitro antimicrobial assay revealed A7 to suppress the growth of several fungal and bacterial plant pathogens by secreting secondary metabolites and by producing volatile compounds. In an in vivo pot experiment with Fusarium wilt infection in chickpea, the antagonist A7 exhibited a disease reduction by 77 ± 1.5%, and significantly reduced the disease incidence and severity indexes. Furthermore, A7 promoted chickpea growth in terms of root and shoot length and dry biomass during pot assay. The strain exhibited several traits associated with plant growth promotion, extracellular enzymatic production, and stress tolerance. Under aluminum stress conditions, in vitro growth of chickpea plants by A7 resulted in a significant increase in root length and plant biomass production. Additionally, hallmark genes for antibiotics production were identified in A7. The methanol extract of strain A7 demonstrated antimicrobial activity, leading to the identification of various antimicrobial compounds based on retention time and molecular weight. These findings strongly suggest that the strain’s significant biocontrol potential and plant growth enhancement could be a potential environmentally friendly process in agricultural crop production.
Collapse
|
36
|
Kaewchomphunuch T, Charoenpichitnunt T, Thongbaiyai V, Ngamwongsatit N, Kaeoket K. Cell-free culture supernatants of Lactobacillus spp. and Pediococcus spp. inhibit growth of pathogenic Escherichia coli isolated from pigs in Thailand. BMC Vet Res 2022; 18:60. [PMID: 35093088 PMCID: PMC8800250 DOI: 10.1186/s12917-022-03140-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pathogenic Escherichia coli (E. coli) is an important causative agent for infectious diseases in pigs and causes significant economic loss. The global concern of antimicrobial resistance of bacteria raises awareness of the alternative ways of using antimicrobial peptides (AMPs). The study was aimed to identify and test the efficacy of AMPs from Lactobacillus spp. against the growth of pathogenic E. coli isolated from pigs in Thailand. Briefly, cell-free culture supernatants (CFCS) from 3 strains of lactic acid bacteria (LAB) consisting of Lactobacillus acidophilus (strain KMP), Lactobacillus plantarum (strain KMP), and Pediococcus pentosaceus (strain KMP) were tested against pathogenic E. coli via agar well diffusion assay in quadruplicates. The presence of a zone of inhibition (ZOI) around wells was evaluated at different incubation time. Acid and bile tolerance test was performed for bacterial viability in acid and bile salt conditions. In addition, LAB cross-streaking assay was evaluated for antagonist activity. RESULTS The study showed that CFCS from L. acidophilus KMP, L. plantarum KMP, and P. pentosaceus KMP could inhibit the growth of pathogenic E. coli isolated from pigs in a time-dependent manner. To exemplify, the ZOI of L. plantarum KMP against E. coli (ETEC) at 8, 10, 12, 14, and 16 h incubation, were 26.6 ± 1.1, 24.9 ± 1.9, 22.5 ± 2.4, 20.3 ± 2.9, and 17.9 ± 3.3 mm, respectively. The ZOI was significantly different between 8, 10, 12, 14 h incubation, and the ZOI of the CFCS from L. plantarum KMP was larger than others (P-value < 0.05). Furthermore, L. acidophilus KMP, L. plantarum KMP, and P. pentosaceus KMP showed viability in pH 3.0, 0.3, and 0.5% (w/v) bile salt concentration. They exhibited no antagonist activity among each other. CONCLUSIONS According to the results, the CFCS from LAB including L. acidophilus KMP, L. plantarum KMP and P. pentosaceus KMP can inhibit the growth of pathogenic E. coli, isolated from pigs in Thailand. The antimicrobial activity observed was incubation time dependent.
Collapse
Affiliation(s)
- Thotsapol Kaewchomphunuch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Thunyathorn Charoenpichitnunt
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Varissara Thongbaiyai
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| |
Collapse
|
37
|
Wang T, Ishikawa T, Sasaki M, Chiba T. Oral and Gut Microbial Dysbiosis and Non-alcoholic Fatty Liver Disease: The Central Role of Porphyromonas gingivalis. Front Med (Lausanne) 2022; 9:822190. [PMID: 35308549 PMCID: PMC8924514 DOI: 10.3389/fmed.2022.822190] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota play many important roles, such as the regulation of immunity and barrier function in the intestine, and are crucial for maintaining homeostasis in living organisms. The disruption in microbiota is called dysbiosis, which has been associated with various chronic inflammatory conditions, food allergies, colorectal cancer, etc. The gut microbiota is also affected by several other factors such as diet, antibiotics and other medications, or bacterial and viral infections. Moreover, there are some reports on the oral-gut-liver axis indicating that the disruption of oral microbiota affects the intestinal biota. Non-alcoholic fatty liver disease (NAFLD) is one of the systemic diseases caused due to the dysregulation of the oral-gut-liver axis. NAFLD is the most common liver disease reported in the developed countries. It includes liver damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Recently, accumulating evidence supports an association between NAFLD and dysbiosis of oral and gut microbiota. Periodontopathic bacteria, especially Porphyromonas gingivalis, have been correlated with the pathogenesis and development of NAFLD based on the clinical and basic research, and immunology. P. gingivalis was detected in the liver, and lipopolysaccharide from this bacteria has been shown to be involved in the progression of NAFLD, thereby indicating a direct role of P. gingivalis in NAFLD. Moreover, P. gingivalis induces dysbiosis of gut microbiota, which promotes the progression of NAFLD, through disrupting both metabolic and immunologic pathways. Here, we review the roles of microbial dysbiosis in NAFLD. Focusing on P. gingivalis, we evaluate and summarize the most recent advances in our understanding of the relationship between oral-gut microbiome symbiosis and the pathogenesis and progression of non-alcoholic fatty liver disease, as well as discuss novel strategies targeting both P. gingivalis and microbial dysbiosis.
Collapse
Affiliation(s)
- Ting Wang
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- Ting Wang
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Toshimi Chiba
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- *Correspondence: Toshimi Chiba
| |
Collapse
|
38
|
Sornsenee P, Chatatikun M, Mitsuwan W, Kongpol K, Kooltheat N, Sohbenalee S, Pruksaphanrat S, Mudpan A, Romyasamit C. Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells. PeerJ 2021; 9:e12586. [PMID: 34909285 PMCID: PMC8641486 DOI: 10.7717/peerj.12586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Probiotics can release bioactive substances known as postbiotics, which can inhibit pathogenic microorganisms, improve immunomodulation, reduce antioxidant production, and modulate the gut microbiota. METHODS In this study, we evaluated the in vitro antimicrobial effects, antioxidant activity, and anti-inflammatory potential of 10 lyophilized cell-free supernatants (LCFS) of Lactobacillus isolates. LCFS was obtained via centrifugation and subsequent lyophilization of the supernatant collected from the culture medium ofeach isolate. The antibacterial and antibiofilm activities of the LCFS were determined using broth microdilution. The antioxidant potential was evaluated by measuring the total phenolic and flavonoid contents and 2,2-Diphennyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+) radical scavenging activities. RESULTS All the isolates were able to inhibit the four tested pathogens. The isolates exhibited strong antibiofilm activity and eradicated the biofilms formed by Acinetobacter buamannii and Escherichia coli. All the prepared Lactobacillus LCFS contained phenols and flavonoids and exhibited antioxidant activities in the DPPH and ABTS+ radical scavenging assays. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that LCFS was not cytotoxic to RAW 264.7 cells. In addition, the ten Lactobacillus LCFS decreased the production of nitric oxide. CONCLUSIONS All the isolates have beneficial properties. This research sheds light on the role of postbiotics in functional fermented foods and pharmaceutical products. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Moragot Chatatikun
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Meliodosis (CERM), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Research Center of Excellence in Innovation of Essential Oil, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Akkhraratchakumari Veterinary College, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Kantapich Kongpol
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Nateelak Kooltheat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sasirat Sohbenalee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Supawita Pruksaphanrat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Amron Mudpan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Meliodosis (CERM), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Center of Excellence in Innovation of Essential Oil, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
39
|
Ng E, Tay JRH, Ong MMA, Bostanci N, Belibasakis GN, Seneviratne CJ. Probiotic therapy for periodontal and peri-implant health - silver bullet or sham? Benef Microbes 2021; 12:215-230. [PMID: 34057054 DOI: 10.3920/bm2020.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics are thought to be beneficial microbes that influence health-related outcomes through host immunomodulation and modulation of the bacteriome. Its reported success in the treatment of gastrointestinal disorders has led to further research on its potential applicability within the dental field due to similarities such as a polymicrobial aetiology and disease associated microbial-shifts. Although the literature is replete with studies demonstrating its efficacy, the use of probiotics in dentistry continues to polarise opinion. Here, we explore the evidence for probiotics and its effect on periodontal and peri-implant health. MEDLINE, EMBASE, and CENTRAL were systemically searched from June 2010 to June 2020 based on a formulated search strategy. Of 1,956 potentially relevant articles, we selected 27 double-blinded randomised clinical trials in the areas of gingivitis, periodontitis, residual pockets during supportive periodontal therapy, and peri-implant diseases, and reviewed their efficacy in these clinical situations. We observed substantial variation in treatment results and protocols between studies. Overall, the evidence for probiotic therapy for periodontal and peri-implant health appears unconvincing. The scarcity of trials with adequate power and follow-up precludes any meaningful clinical recommendations. Thus, the routine use of probiotics for these purposes are currently unsubstantiated. Further multi-centre trials encompassing a standardised investigation on the most promising strains and administration methods, with longer observation times are required to confirm the benefits of probiotic therapy for these applications.
Collapse
Affiliation(s)
- E Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - J R H Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - M M A Ong
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore.,Oral Health Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - N Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, P.O. Box 4064, 14104 Huddinge, Sweden
| | - G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, P.O. Box 4064, 14104 Huddinge, Sweden
| | - C J Seneviratne
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore.,Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Centre Singapore, Second Hospital Ave, 168938, Singapore
| |
Collapse
|