1
|
Li H, Wen J, Zhang X, Dai Z, Liu M, Zhang H, Zhang N, Lei R, Luo P, Zhang J. Large-scale genetic correlation studies explore the causal relationship and potential mechanism between gut microbiota and COVID-19-associated risks. BMC Microbiol 2024; 24:292. [PMID: 39103761 DOI: 10.1186/s12866-024-03423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Recent observational studies suggest that gut microorganisms are involved in the onset and development of coronavirus disease 2019 (COVID-19), but the potential causal relationship behind them remains unclear. Exposure data were derived from the MiBioGen consortium, encompassing 211 gut microbiota (n = 18,340). The outcome data were sourced from the COVID-19 host genetics initiative (round 7), including COVID-19 severity (n = 1,086,211), hospitalization (n = 2,095,324), and susceptibility (n = 2,597,856). First, a two-sample Mendelian randomization (TSMR) was performed to investigate the causal effect between gut microbiota and COVID-19 outcomes. Second, a two-step MR was used to explore the potential mediators and underlying mechanisms. Third, several sensitivity analyses were performed to verify the robustness of the results. Five gut microbes were found to have a potential causality with COVID-19 severity, namely Betaproteobacteria (beta = 0.096, p = 0.034), Christensenellaceae (beta = -0.092, p = 0.023), Adlercreutzia (beta = 0.072, p = 0.048), Coprococcus 1 (beta = 0.089, p = 0.032), Eisenbergiella (beta = 0.064, p = 0.024). Seven gut microbes were found to have a potential causality with COVID-19 hospitalization, namely Victivallaceae (beta = 0.037, p = 0.028), Actinomyces (beta = 0.047, p = 0.046), Coprococcus 2 (beta = -0.061, p = 0.031), Dorea (beta = 0.067, p = 0.016), Peptococcus (beta = -0.035, p = 0.049), Rikenellaceae RC9 gut group (beta = 0.034, p = 0.018), and Proteobacteria (beta = -0.069, p = 0.035). Two gut microbes were found to have a potential causality with COVID-19 susceptibility, namely Holdemanella (beta = -0.024, p = 0.023) and Lachnospiraceae FCS020 group (beta = 0.026, p = 0.027). Multi-omics mediation analyses indicate that numerous plasma proteins, metabolites, and immune factors are critical mediators linking gut microbiota with COVID-19 outcomes. Sensitivity analysis suggested no significant heterogeneity or pleiotropy. These findings revealed the causal correlation and potential mechanism between gut microbiota and COVID-19 outcomes, which may improve our understanding of the gut-lung axis in the etiology and pathology of COVID-19 in the future.
Collapse
Affiliation(s)
- He Li
- The Animal Laboratory Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangbin Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingren Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ruoyan Lei
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Alfaifi AA, Holm JB, Wang TW, Lim J, Meiller TF, Rock P, Sultan AS, Jabra-Rizk MA. Oral Microbiota Alterations in Subjects with SARS-CoV-2 Displaying Prevalence of the Opportunistic Fungal Pathogen Candida albicans. Microorganisms 2024; 12:1356. [PMID: 39065125 PMCID: PMC11278750 DOI: 10.3390/microorganisms12071356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The oral cavity remains an underappreciated site for SARS-CoV-2 infection despite the myriad of oral conditions in COVID-19 patients. Recently, SARS-CoV-2 was shown to replicate in the salivary gland cells causing tissue inflammation. Given the established association between inflammation and microbiome disruption, we comparatively profiled oral microbial differences at a metagenomic level in a cohort of hospitalized COVID-19 patients and matched healthy controls. Specifically, we aimed to evaluate colonization by the opportunistic fungal pathogen Candida albicans, the etiologic agent of oral candidiasis. Comprehensive shotgun metagenomic analysis indicated that, overall, COVID-19 patients exhibited significantly reduced bacterial and viral diversity/richness; we identified 12 differentially abundant bacterial species to be negatively associated with COVID-19, and the functional pathways of certain bacteria to be highly associated with COVID-19 status. Strikingly, C. albicans was recovered from approximately half of the COVID-19 subjects but not from any of the healthy controls. The prevalence of Candida is likely linked to immune hypo-dysregulation caused by COVID-19 favoring Candida proliferation, warranting investigations into the interplay between Candida and SARS-CoV2 and potential therapeutic approaches directed toward oral candidiasis. Collectively, our findings prompt a reassessment of oral opportunistic infection risks during COVID-19 disease and their potential long-term impacts on oral health.
Collapse
Affiliation(s)
- Areej A. Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA; (A.A.A.); (T.W.W.); (T.F.M.); (A.S.S.)
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Johanna B. Holm
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.B.H.); (J.L.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Tristan W. Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA; (A.A.A.); (T.W.W.); (T.F.M.); (A.S.S.)
| | - Jonathan Lim
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.B.H.); (J.L.)
| | - Timothy F. Meiller
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA; (A.A.A.); (T.W.W.); (T.F.M.); (A.S.S.)
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Peter Rock
- Department of Anesthesia, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA; (A.A.A.); (T.W.W.); (T.F.M.); (A.S.S.)
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA; (A.A.A.); (T.W.W.); (T.F.M.); (A.S.S.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Galeana-Cadena D, Ramirez-Martínez G, Alberto Choreño-Parra J, Silva-Herzog E, Margarita Hernández-Cárdenas C, Soberón X, Zúñiga J. Microbiome in the nasopharynx: Insights into the impact of COVID-19 severity. Heliyon 2024; 10:e31562. [PMID: 38826746 PMCID: PMC11141365 DOI: 10.1016/j.heliyon.2024.e31562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Background The respiratory tract harbors a variety of microbiota, whose composition and abundance depend on specific site factors, interaction with external factors, and disease. The aim of this study was to investigate the relationship between COVID-19 severity and the nasopharyngeal microbiome. Methods We conducted a prospective cohort study in Mexico City, collecting nasopharyngeal swabs from 30 COVID-19 patients and 14 healthy volunteers. Microbiome profiling was performed using 16S rRNA gene analysis. Taxonomic assignment, classification, diversity analysis, core microbiome analysis, and statistical analysis were conducted using R packages. Results The microbiome data analysis revealed taxonomic shifts within the nasopharyngeal microbiome in severe COVID-19. Particularly, we observed a significant reduction in the relative abundance of Lawsonella and Cutibacterium genera in critically ill COVID-19 patients (p < 0.001). In contrast, these patients exhibited a marked enrichment of Streptococcus, Actinomyces, Peptostreptococcus, Atopobium, Granulicatella, Mogibacterium, Veillonella, Prevotella_7, Rothia, Gemella, Alloprevotella, and Solobacterium genera (p < 0.01). Analysis of the core microbiome across all samples consistently identified the presence of Staphylococcus, Corynebacterium, and Streptococcus. Conclusions Our study suggests that the disruption of physicochemical conditions and barriers resulting from inflammatory processes and the intubation procedure in critically ill COVID-19 patients may facilitate the colonization and invasion of the nasopharynx by oral microorganisms.
Collapse
Affiliation(s)
- David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gustavo Ramirez-Martínez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Eugenia Silva-Herzog
- Unidad de Vinculación Científica Facultad de Medicina UNAM-INMEGEN, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carmen Margarita Hernández-Cárdenas
- Unidad de Cuidados Intensivos y Dirección General, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México, Mexico
| | - Xavier Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
4
|
Galeeva JS, Fedorov DE, Starikova EV, Manolov AI, Pavlenko AV, Selezneva OV, Klimina KM, Veselovsky VA, Morozov MD, Yanushevich OO, Krikheli NI, Levchenko OV, Andreev DN, Sokolov FS, Fomenko AK, Devkota MK, Andreev NG, Zaborovskiy AV, Bely PA, Tsaregorodtsev SV, Evdokimov VV, Maev IV, Govorun VM, Ilina EN. Microbial Signatures in COVID-19: Distinguishing Mild and Severe Disease via Gut Microbiota. Biomedicines 2024; 12:996. [PMID: 38790958 PMCID: PMC11118803 DOI: 10.3390/biomedicines12050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted global healthcare, underscoring the importance of exploring the virus's effects on infected individuals beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the gut, thereby altering the gut microbiota. This study aimed to analyze the gut microbiota composition differences between COVID-19 patients experiencing mild and severe symptoms. We conducted 16S rRNA metagenomic sequencing on fecal samples from 49 mild and 43 severe COVID-19 cases upon hospital admission. Our analysis identified a differential abundance of specific bacterial species associated with the severity of the disease. Severely affected patients showed an association with Enterococcus faecium, Akkermansia muciniphila, and others, while milder cases were linked to Faecalibacterium prausnitzii, Alistipes putredinis, Blautia faecis, and additional species. Furthermore, a network analysis using SPIEC-EASI indicated keystone taxa and highlighted structural differences in bacterial connectivity, with a notable disruption in the severe group. Our study highlights the diverse impacts of SARS-CoV-2 on the gut microbiome among both mild and severe COVID-19 patients, showcasing a spectrum of microbial responses to the virus. Importantly, these findings align, to some extent, with observations from other studies on COVID-19 gut microbiomes, despite variations in methodologies. The findings from this study, based on retrospective data, establish a foundation for future prospective research to confirm the role of the gut microbiome as a predictive biomarker for the severity of COVID-19.
Collapse
Affiliation(s)
- Julia S. Galeeva
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Dmitry E. Fedorov
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Elizaveta V. Starikova
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Alexander I. Manolov
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Alexander V. Pavlenko
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Oksana V. Selezneva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Ksenia M. Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Vladimir A. Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Maxim D. Morozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Oleg O. Yanushevich
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Natella I. Krikheli
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Oleg V. Levchenko
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Dmitry N. Andreev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Filipp S. Sokolov
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Aleksey K. Fomenko
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Mikhail K. Devkota
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Nikolai G. Andreev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Andrey V. Zaborovskiy
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Petr A. Bely
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Sergei V. Tsaregorodtsev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Vladimir V. Evdokimov
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Igor V. Maev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Vadim M. Govorun
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Elena N. Ilina
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| |
Collapse
|
5
|
Massimi L, Cinalli G, Frassanito P, Arcangeli V, Auer C, Baro V, Bartoli A, Bianchi F, Dietvorst S, Di Rocco F, Gallo P, Giordano F, Hinojosa J, Iglesias S, Jecko V, Kahilogullari G, Knerlich-Lukoschus F, Laera R, Locatelli D, Luglietto D, Luzi M, Messing-Jünger M, Mura R, Ragazzi P, Riffaud L, Roth J, Sagarribay A, Pinheiro MS, Spazzapan P, Spennato P, Syrmos N, Talamonti G, Valentini L, Van Veelen ML, Zucchelli M, Tamburrini G. Intracranial complications of sinogenic and otogenic infections in children: an ESPN survey on their occurrence in the pre-COVID and post-COVID era. Childs Nerv Syst 2024; 40:1221-1237. [PMID: 38456922 DOI: 10.1007/s00381-024-06332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND COVID-19 pandemic is thought to have changed the epidemiology of some pediatric neurosurgical disease: among them are the intracranial complications of sinusitis and otitis (ICSO). According to some studies on a limited number of cases, both streptococci-related sinusitis and ICSO would have increased immediately after the pandemic, although the reason is not clear yet (seasonal changes versus pandemic-related effects). The goal of the present survey of the European Society for Pediatric Neurosurgery (ESPN) was to collect a large number of cases from different European countries encompassing the pre-COVID (2017-2019), COVID (2020-2021), and post-COVID period (2022-June 2023) looking for possible epidemiological and/or clinical changes. MATERIAL AND METHODS An English language questionnaire was sent to ESPN members about year of the event, patient's age and gender, presence of immune-deficit or other favoring risk factors, COVID infection, signs and symptoms at onset, site of primary infection, type of intracranial complication, identified germ, type and number of surgical operations, type and duration of medical treatment, clinical and radiological outcome, duration of the follow-up. RESULTS Two hundred fifty-four cases were collected by 30 centers coming from 14 different European countries. There was a statistically significant difference between the post-COVID period (129 children, 86 cases/year, 50.7% of the whole series) and the COVID (40 children, 20 cases/year, 15.7%) or the pre-COVID period (85 children, 28.3 cases/year, 33.5%). Other significant differences concerned the presence of predisposing factors/concurrent diseases (higher in the pre-COVID period) and previous COVID infection (higher in the post-COVID period). No relevant differences occurred as far as demographic, microbiological, clinical, radiological, outcome, morbidity, and mortality data were concerned. Paranasal sinuses and middle ear/mastoid were the most involved primary site of infection (71% and 27%, respectively), while extradural or subdural empyema and brain abscess were the most common ICSO (73% and 17%, respectively). Surgery was required in 95% of cases (neurosurgical and ENT procedure in 71% and 62% of cases, respectively) while antibiotics in 99% of cases. After a 12.4-month follow-up, a full clinical and radiological recovery was obtained in 85% and 84% of cases, respectively. The mortality rate was 2.7%. CONCLUSIONS These results suggest that the occurrence of ICSO was significantly increased after the pandemic. Such an increase seems to be related to the indirect effects of the pandemic (e.g., immunity debt) rather than to a direct effect of COVID infection or to seasonal fluctuations. ICSO remain challenging diseases but the pandemic did not affect the management strategies nor their prognosis. The epidemiological change of sinusitis/otitis and ICSO should alert about the appropriate follow-up of children with sinusitis/otitis.
Collapse
Affiliation(s)
- L Massimi
- Pediatric Neurosurgery, Neuroscience-Sense Organs-Chest Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University Medical School, Rome, Italy
| | - G Cinalli
- Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - P Frassanito
- Pediatric Neurosurgery, Neuroscience-Sense Organs-Chest Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - V Arcangeli
- Clinical Psychology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - C Auer
- Department of Neurosurgery, Johannes Kepler University Linz, Kepler University Hospital GmbH, Linz, Austria
| | - V Baro
- Pediatric and Functional Neurosurgery, Department of Neurosciences, University of Padova, Padua, Italy
| | - A Bartoli
- Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - F Bianchi
- Pediatric Neurosurgery, Neuroscience-Sense Organs-Chest Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - S Dietvorst
- University Hospitals Leuven, Leuven, Belgium
| | - F Di Rocco
- Hôpital Femme-Mère-Enfant, Université de Lyon, Lyon, France
| | - P Gallo
- Birmingham Children's Hospital, Birmingham, UK
| | - F Giordano
- University of Florence, Florence, Italy
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - J Hinojosa
- Hospital Sant Joan de Déu, Barcelona, Spain
| | - S Iglesias
- Hospital Regional Universitario de Malaga, Malaga, Spain
| | - V Jecko
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - G Kahilogullari
- Department of Neurosurgery, Ankara University, Ankara, Turkey
| | - F Knerlich-Lukoschus
- Division Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - R Laera
- Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - D Locatelli
- Neurosurgery Department, Università Dell'Insubria, Ospedale di Circolo e Macchi Foundation, Varese, Italy
| | - D Luglietto
- Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - M Luzi
- Azienda Ospedaliero Universitaria Delle Marche, Ancona, Italy
| | | | - R Mura
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - P Ragazzi
- Department of Pediatric Neurosurgery, Ospedale Infantile Regina Margherita, Città della Salute e della Scienza, Turin, Italy
| | - L Riffaud
- Rennes University Hospital, Rennes, France
| | - J Roth
- Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - A Sagarribay
- Hospital Dona Estefânia-Centro Hospitalar Universitário, Lisboa, Portugal
- Hospital CUF Descobertas, Lisboa, Portugal
| | - M Santos Pinheiro
- Centro Hospitalar Lisboa Norte-Hospital Santa Maria, Lisboa, Portugal
| | - P Spazzapan
- University Medical Center-Ljubljana, Ljubljana, Slovenia
| | - P Spennato
- Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - N Syrmos
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - L Valentini
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M L Van Veelen
- Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - M Zucchelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto Scienze Neurologiche Di Bologna, Boulogne, Italy
| | - G Tamburrini
- Pediatric Neurosurgery, Neuroscience-Sense Organs-Chest Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University Medical School, Rome, Italy
| |
Collapse
|
6
|
Alrezaihi A, Penrice-Randal R, Dong X, Prince T, Randle N, Semple MG, Openshaw PJM, MacGill T, Myers T, Orr R, Zakotnik S, Suljič A, Avšič-Županc T, Petrovec M, Korva M, AlJabr W, Hiscox JA. Enrichment of SARS-CoV-2 sequence from nasopharyngeal swabs whilst identifying the nasal microbiome. J Clin Virol 2024; 171:105620. [PMID: 38237303 DOI: 10.1016/j.jcv.2023.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 03/17/2024]
Abstract
Simultaneously characterising the genomic information of coronaviruses and the underlying nasal microbiome from a single clinical sample would help characterise infection and disease. Metatranscriptomic approaches can be used to sequence SARS-CoV-2 (and other coronaviruses) and identify mRNAs associated with active transcription in the nasal microbiome. However, given the large sequence background, unenriched metatranscriptomic approaches often do not sequence SARS-CoV-2 to sufficient read and coverage depth to obtain a consensus genome, especially with moderate and low viral loads from clinical samples. In this study, various enrichment methods were assessed to detect SARS-CoV-2, identify lineages and define the nasal microbiome. The methods were underpinned by Oxford Nanopore long-read sequencing and variations of sequence independent single primer amplification (SISPA). The utility of the method(s) was also validated on samples from patients infected seasonal coronaviruses. The feasibility of profiling the nasal microbiome using these enrichment methods was explored. The findings shed light on the performance of different enrichment strategies and their applicability in characterising the composition of the nasal microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | - Malcolm G Semple
- University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Alder Hey Children's Hospital, Liverpool, UK
| | | | - Tracy MacGill
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | - Todd Myers
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | - Robert Orr
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | | | - Alen Suljič
- University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Miša Korva
- University of Ljubljana, Ljubljana, Slovenia
| | - Waleed AlJabr
- University of Liverpool, Liverpool, UK; King Fahad Medical City, Riyadh, Saudi Arabia
| | - Julian A Hiscox
- University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
7
|
Siasios P, Giosi E, Ouranos K, Christoforidi M, Dimopoulou I, Leshi E, Exindari M, Anastassopoulou C, Gioula G. Oropharyngeal Microbiome Analysis in Patients with Varying SARS-CoV-2 Infection Severity: A Prospective Cohort Study. J Pers Med 2024; 14:369. [PMID: 38672996 PMCID: PMC11051038 DOI: 10.3390/jpm14040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Patients with COVID-19 infection have distinct oropharyngeal microbiota composition and diversity metrics according to disease severity. However, these findings are not consistent across the literature. We conducted a multicenter, prospective study in patients with COVID-19 requiring outpatient versus inpatient management to explore the microbial abundance of taxa at the phylum, family, genus, and species level, and we utilized alpha and beta diversity indices to further describe our findings. We collected oropharyngeal washing specimens at the time of study entry, which coincided with the COVID-19 diagnosis, to conduct all analyses. We included 43 patients in the study, of whom 16 were managed as outpatients and 27 required hospitalization. Proteobacteria, Actinobacteria, Bacteroidetes, Saccharibacteria TM7, Fusobacteria, and Spirochaetes were the most abundant phyla among patients, while 61 different families were detected, of which the Streptococcaceae and Staphylococcaceae families were the most predominant. A total of 132 microbial genera were detected, with Streptococcus being the predominant genus in outpatients, in contrast to hospitalized patients, in whom the Staphylococcus genus was predominant. LeFSe analysis identified 57 microbial species in the oropharyngeal washings of study participants that could discriminate the severity of symptoms of COVID-19 infections. Alpha diversity analysis did not reveal a difference in the abundance of bacterial species between the groups, but beta diversity analysis established distinct microbial communities between inpatients and outpatients. Our study provides information on the complex association between the oropharyngeal microbiota and SARS-CoV-2 infection. Although our study cannot establish causation, knowledge of specific taxonomic changes with increasing SARS-CoV-2 infection severity can provide us with novel clues for the prognostic classification of COVID-19 patients.
Collapse
Affiliation(s)
- Panagiotis Siasios
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Evangelia Giosi
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Konstantinos Ouranos
- Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Maria Christoforidi
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Ifigenia Dimopoulou
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Enada Leshi
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Maria Exindari
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia Gioula
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| |
Collapse
|
8
|
Bustos IG, Wiscovitch-Russo R, Singh H, Sievers BL, Matsuoka M, Freire M, Tan GS, Cala MP, Guerrero JL, Martin-Loeches I, Gonzalez-Juarbe N, Reyes LF. Major alteration of Lung Microbiome and the Host Reaction in critically ill COVID-19 Patients with high viral load. RESEARCH SQUARE 2024:rs.3.rs-3952944. [PMID: 38496464 PMCID: PMC10942552 DOI: 10.21203/rs.3.rs-3952944/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Patients with COVID-19 under invasive mechanical ventilation are at higher risk of developing ventilator-associated pneumonia (VAP), associated with increased healthcare costs, and unfavorable prognosis. The underlying mechanisms of this phenomenon have not been thoroughly dissected. Therefore, this study attempted to bridge this gap by performing a lung microbiota analysis and evaluating the host immune responses that could drive the development of VAP. Materials and methods In this prospective cohort study, mechanically ventilated patients with confirmed SARS-CoV-2 infection were enrolled. Nasal swabs (NS), endotracheal aspirates (ETA), and blood samples were collected initially within 12 hours of intubation and again at 72 hours post-intubation. Plasma samples underwent cytokine and metabolomic analyses, while NS and ETA samples were sequenced for lung microbiome examination. The cohort was categorized based on the development of VAP. Data analysis was conducted using RStudio version 4.3.1. Results In a study of 36 COVID-19 patients on mechanical ventilation, significant differences were found in the nasal and pulmonary microbiome, notably in Staphylococcus and Enterobacteriaceae, linked to VAP. Patients with VAP showed a higher SARS-CoV-2 viral load, elevated neutralizing antibodies, and reduced inflammatory cytokines, including IFN-δ, IL-1β, IL-12p70, IL-18, IL-6, TNF-α, and CCL4. Metabolomic analysis revealed changes in 22 metabolites in non-VAP patients and 27 in VAP patients, highlighting D-Maltose-Lactose, Histidinyl-Glycine, and various phosphatidylcholines, indicating a metabolic predisposition to VAP. Conclusions This study reveals a critical link between respiratory microbiome alterations and ventilator-associated pneumonia in COVID-19 patients, with elevated SARS-CoV-2 levels and metabolic changes, providing novel insights into the underlying mechanisms of VAP with potential management and prevention implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mónica P Cala
- MetCore- Metabolomics Core Facility, Universidad de Los Andes
| | - Jose L Guerrero
- MetCore- Metabolomics Core Facility, Universidad de Los Andes
| | | | | | | |
Collapse
|
9
|
Xie L, Luo G, Yang Z, Wu WC, Chen J, Ren Y, Zeng Z, Ye G, Pan Y, Zhao WJ, Chen YQ, Hou W, Sun Y, Guo D, Yang Z, Li J, Holmes EC, Li Y, Chen L, Shi M. The clinical outcome of COVID-19 is strongly associated with microbiome dynamics in the upper respiratory tract. J Infect 2024; 88:106118. [PMID: 38342382 DOI: 10.1016/j.jinf.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVES The respiratory tract is the portal of entry for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a variety of respiratory pathogens other than SARS-CoV-2 have been associated with severe cases of COVID-19 disease, the dynamics of the upper respiratory microbiota during disease the course of disease, and how they impact disease manifestation, remain uncertain. METHODS We collected 349 longitudinal upper respiratory samples from a cohort of 65 COVID-19 patients (cohort 1), 28 samples from 28 recovered COVID-19 patients (cohort 2), and 59 samples from 59 healthy controls (cohort 3). All COVID-19 patients originated from the earliest stage of the epidemic in Wuhan. Based on a modified clinical scale, the disease course was divided into five clinical disease phases (pseudotimes): "Healthy" (pseudotime 0), "Incremental" (pseudotime 1), "Critical" (pseudotime 2), "Complicated" (pseudotime 3), "Convalescent" (pseudotime 4), and "Long-term follow-up" (pseudotime 5). Using meta-transcriptomics, we investigated the features and dynamics of transcriptionally active microbes in the upper respiratory tract (URT) over the course of COVID-19 disease, as well as its association with disease progression and clinical outcomes. RESULTS Our results revealed that the URT microbiome exhibits substantial heterogeneity during disease course. Two clusters of microbial communities characterized by low alpha diversity and enrichment for multiple pathogens or potential pathobionts (including Acinetobacter and Candida) were associated with disease progression and a worse clinical outcome. We also identified a series of microbial indicators that classified disease progression into more severe stages. Longitudinal analysis revealed that although the microbiome exhibited complex and changing patterns during COVID-19, a restoration of URT microbiomes from early dysbiosis toward more diverse status in later disease stages was observed in most patients. In addition, a group of potential pathobionts were strongly associated with the concentration of inflammatory indicators and mortality. CONCLUSION This study revealed strong links between URT microbiome dynamics and disease progression and clinical outcomes in COVID-19, implying that the treatment of severe disease should consider the full spectrum of microbial pathogens present.
Collapse
Affiliation(s)
- Linlin Xie
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gengyan Luo
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhongzhou Yang
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wei-Chen Wu
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jintao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuting Ren
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhikun Zeng
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guangming Ye
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunbao Pan
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen-Jing Zhao
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Deying Guo
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Yirong Li
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Liangjun Chen
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Mang Shi
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
10
|
Yadav M, Chauhan NS. Role of gut-microbiota in disease severity and clinical outcomes. Brief Funct Genomics 2024; 23:24-37. [PMID: 36281758 DOI: 10.1093/bfgp/elac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2024] Open
Abstract
A delicate balance of nutrients, antigens, metabolites and xenobiotics in body fluids, primarily managed by diet and host metabolism, governs human health. Human gut microbiota is a gatekeeper to nutrient bioavailability, pathogens exposure and xenobiotic metabolism. Human gut microbiota starts establishing during birth and evolves into a resilient structure by adolescence. It supplements the host's metabolic machinery and assists in many physiological processes to ensure health. Biotic and abiotic stressors could induce dysbiosis in gut microbiota composition leading to disease manifestations. Despite tremendous scientific advancements, a clear understanding of the involvement of gut microbiota dysbiosis during disease onset and clinical outcomes is still awaited. This would be important for developing an effective and sustainable therapeutic intervention. This review synthesizes the present scientific knowledge to present a comprehensive picture of the role of gut microbiota in the onset and severity of a disease.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
11
|
Robledo Gonzalez L, Tat RP, Greaves JC, Robinson CM. Viral-Bacterial Interactions That Impact Viral Thermostability and Transmission. Viruses 2023; 15:2415. [PMID: 38140656 PMCID: PMC10747402 DOI: 10.3390/v15122415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Enteric viruses are significant human pathogens that commonly cause foodborne illnesses worldwide. These viruses initiate infection in the gastrointestinal tract, home to a diverse population of intestinal bacteria. In a novel paradigm, data indicate that enteric viruses utilize intestinal bacteria to promote viral replication and pathogenesis. While mechanisms underlying these observations are not fully understood, data suggest that some enteric viruses bind directly to bacteria, stabilizing the virion to retain infectivity. Here, we discuss the current knowledge of these viral-bacterial interactions and examine the impact of these interactions on viral transmission.
Collapse
Affiliation(s)
- Lorimar Robledo Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.R.G.); (R.P.T.)
| | - Rachel P. Tat
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.R.G.); (R.P.T.)
| | - Justin C. Greaves
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47408, USA;
| | - Christopher M. Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.R.G.); (R.P.T.)
| |
Collapse
|
12
|
Nath S, Sarkar M, Maddheshiya A, De D, Paul S, Dey S, Pal K, Roy SK, Ghosh A, Sengupta S, Paine SK, Biswas NK, Basu A, Mukherjee S. Upper respiratory tract microbiome profiles in SARS-CoV-2 Delta and Omicron infected patients exhibit variant specific patterns and robust prediction of disease groups. Microbiol Spectr 2023; 11:e0236823. [PMID: 37905804 PMCID: PMC10715160 DOI: 10.1128/spectrum.02368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The role of the upper respiratory tract (URT) microbiome in predicting lung health has been documented in several studies. The dysbiosis in COVID patients has been associated with disease outcomes by modulating the host immune system. However, although it has been known that different SARS-CoV-2 variants manifest distinct transmissibility and mortality rates in human populations, their effect on the composition and diversity of the URT microbiome has not been studied to date. Unlike the older variant (Delta), the newer variant (Omicron) have become more transmissible with lesser mortality and the symptoms have also changed significantly. Hence, in the present study, we have investigated the change in the URT microbiome associated with Delta and Omicron variants and identified variant-specific signatures that will be useful in the assessment of lung health and can be utilized for nasal probiotic therapy in the future.
Collapse
Affiliation(s)
- Shankha Nath
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mousumi Sarkar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Debjit De
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Shouvik Paul
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Souradeep Dey
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Kuhu Pal
- Department of Microbiology, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Suman Kr. Roy
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Ayan Ghosh
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Sharmila Sengupta
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Nidhan K. Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Souvik Mukherjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
13
|
Zhou J, Yang X, Yang Y, Wei Y, Lu D, Xie Y, Liang H, Cui P, Ye L, Huang J. Human microbiota dysbiosis after SARS-CoV-2 infection have the potential to predict disease prognosis. BMC Infect Dis 2023; 23:841. [PMID: 38031010 PMCID: PMC10685584 DOI: 10.1186/s12879-023-08784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The studies on SARS-CoV-2 and human microbiota have yielded inconsistent results regarding microbiota α-diversity and key microbiota. To address these issues and explore the predictive ability of human microbiota for the prognosis of SARS-CoV-2 infection, we conducted a reanalysis of existing studies. METHODS We reviewed the existing studies on SARS-CoV-2 and human microbiota in the Pubmed and Bioproject databases (from inception through October 29, 2021) and extracted the available raw 16S rRNA sequencing data of human microbiota. Firstly, we used meta-analysis and bioinformatics methods to reanalyze the raw data and evaluate the impact of SARS-CoV-2 on human microbial α-diversity. Secondly, machine learning (ML) was employed to assess the ability of microbiota to predict the prognosis of SARS-CoV-2 infection. Finally, we aimed to identify the key microbiota associated with SARS-CoV-2 infection. RESULTS A total of 20 studies related to SARS-CoV-2 and human microbiota were included, involving gut (n = 9), respiratory (n = 11), oral (n = 3), and skin (n = 1) microbiota. Meta-analysis showed that in gut studies, when limiting factors were studies ruled out the effect of antibiotics, cross-sectional and case-control studies, Chinese studies, American studies, and Illumina MiSeq sequencing studies, SARS-CoV-2 infection was associated with down-regulation of microbiota α-diversity (P < 0.05). In respiratory studies, SARS-CoV-2 infection was associated with down-regulation of α-diversity when the limiting factor was V4 sequencing region (P < 0.05). Additionally, the α-diversity of skin microbiota was down-regulated at multiple time points following SARS-CoV-2 infection (P < 0.05). However, no significant difference in oral microbiota α-diversity was observed after SARS-CoV-2 infection. ML models based on baseline respiratory (oropharynx) microbiota profiles exhibited the ability to predict outcomes (survival and death, Random Forest, AUC = 0.847, Sensitivity = 0.833, Specificity = 0.750) after SARS-CoV-2 infection. The shared differential Prevotella and Streptococcus in the gut, respiratory tract, and oral cavity was associated with the severity and recovery of SARS-CoV-2 infection. CONCLUSIONS SARS-CoV-2 infection was related to the down-regulation of α-diversity in the human gut and respiratory microbiota. The respiratory microbiota had the potential to predict the prognosis of individuals infected with SARS-CoV-2. Prevotella and Streptococcus might be key microbiota in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Xiping Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Yuecong Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Yiru Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Dongjia Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Yulan Xie
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Nanning, Guangxi, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Nanning, Guangxi, China.
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China.
| |
Collapse
|
14
|
Bourumeau W, Tremblay K, Jourdan G, Girard C, Laprise C. Bacterial Biomarkers of the Oropharyngeal and Oral Cavity during SARS-CoV-2 Infection. Microorganisms 2023; 11:2703. [PMID: 38004715 PMCID: PMC10673573 DOI: 10.3390/microorganisms11112703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Individuals with COVID-19 display different forms of disease severity and the upper respiratory tract microbiome has been suggested to play a crucial role in the development of its symptoms. (2) Methods: The present study analyzed the microbial profiles of the oral cavity and oropharynx of 182 COVID-19 patients compared to 75 unaffected individuals. The samples were obtained from gargle screening samples. 16S rRNA amplicon sequencing was applied to analyze the samples. (3) Results: The present study shows that SARS-CoV-2 infection induced significant differences in bacterial community assemblages, with Prevotella and Veillonella as biomarkers for positive-tested people and Streptococcus and Actinomyces for negative-tested people. It also suggests a state of dysbiosis on the part of the infected individuals due to significant differences in the bacterial community in favor of a microbiome richer in opportunistic pathogens. (4) Conclusions: SARS-CoV-2 infection induces dysbiosis in the upper respiratory tract. The identification of these opportunistic pathogenic biomarkers could be a new screening and prevention tool for people with prior dysbiosis.
Collapse
Affiliation(s)
- William Bourumeau
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada; (W.B.); (C.G.)
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada;
| | - Karine Tremblay
- Pharmacology-Physiology Department, Université de Sherbrooke, Saguenay, QC J1K 2R1, Canada;
- Research Centre of Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay–Lac-Saint-Jean (CIUSSS-SLSJ), Saguenay, QC G7H 7K9, Canada
| | - Guillaume Jourdan
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada;
| | - Catherine Girard
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada; (W.B.); (C.G.)
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada;
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada; (W.B.); (C.G.)
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada;
| |
Collapse
|
15
|
Moreno-Corona NC, López-Ortega O, Pérez-Martínez CA, Martínez-Castillo M, De Jesús-González LA, León-Reyes G, León-Juárez M. Dynamics of the Microbiota and Its Relationship with Post-COVID-19 Syndrome. Int J Mol Sci 2023; 24:14822. [PMID: 37834270 PMCID: PMC10573029 DOI: 10.3390/ijms241914822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Coronavirus disease (COVID-19) is an infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can be asymptomatic or present with multiple organ dysfunction. Many infected individuals have chronic alterations associated with neuropsychiatric, endocrine, gastrointestinal, and musculoskeletal symptoms, even several months after disease onset, developing long-COVID or post-acute COVID-19 syndrome (PACS). Microbiota dysbiosis contributes to the onset and progression of many viral diseases, including COVID-19 and post-COVID-19 manifestations, which could serve as potential diagnostic and prognostic biomarkers. This review aimed to discuss the most recent findings on gut microbiota dysbiosis and its relationship with the sequelae of PACS. Elucidating these mechanisms could help develop personalized and non-invasive clinical strategies to identify individuals at a higher risk of experiencing severe disease progression or complications associated with PACS. Moreover, the review highlights the importance of targeting the gut microbiota composition to avoid dysbiosis and to develop possible prophylactic and therapeutic measures against COVID-19 and PACS in future studies.
Collapse
Affiliation(s)
- Nidia Carolina Moreno-Corona
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France;
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, 75015 Paris, France;
| | | | - Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), México City 16610, Mexico;
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico
| |
Collapse
|
16
|
Haldar S, Jadhav SR, Gulati V, Beale DJ, Balkrishna A, Varshney A, Palombo EA, Karpe AV, Shah RM. Unravelling the gut-lung axis: insights into microbiome interactions and Traditional Indian Medicine's perspective on optimal health. FEMS Microbiol Ecol 2023; 99:fiad103. [PMID: 37656879 PMCID: PMC10508358 DOI: 10.1093/femsec/fiad103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
The microbiome of the human gut is a complex assemblage of microorganisms that are in a symbiotic relationship with one another and profoundly influence every aspect of human health. According to converging evidence, the human gut is a nodal point for the physiological performance matrixes of the vital organs on several axes (i.e. gut-brain, gut-lung, etc). As a result of COVID-19, the importance of gut-lung dysbiosis (balance or imbalance) has been realised. In view of this, it is of utmost importance to develop a comprehensive understanding of the microbiome, as well as its dysbiosis. In this review, we provide an overview of the gut-lung axial microbiome and its importance in maintaining optimal health. Human populations have successfully adapted to geophysical conditions through traditional dietary practices from around the world. In this context, a section has been devoted to the traditional Indian system of medicine and its theories and practices regarding the maintenance of optimally customized gut health.
Collapse
Affiliation(s)
- Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
| | - Snehal R Jadhav
- Consumer-Analytical-Safety-Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Vandana Gulati
- Biomedical Science, School of Science and Technology Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, ACT 2601, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| |
Collapse
|
17
|
Armstrong AJS, Horton DB, Andrews T, Greenberg P, Roy J, Gennaro ML, Carson JL, Panettieri RA, Barrett ES, Blaser MJ. Saliva microbiome in relation to SARS-CoV-2 infection in a prospective cohort of healthy US adults. EBioMedicine 2023; 94:104731. [PMID: 37487417 PMCID: PMC10382861 DOI: 10.1016/j.ebiom.2023.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The clinical outcomes of SARS-CoV-2 infection vary in severity, potentially influenced by the resident human microbiota. There is limited consensus on conserved microbiome changes in response to SARS-CoV-2 infection, with many studies focusing on severely ill individuals. This study aimed to assess the variation in the upper respiratory tract microbiome using saliva specimens in a cohort of individuals with primarily mild to moderate disease. METHODS In early 2020, a cohort of 831 adults without known SARS-CoV-2 infection was followed over a six-month period to assess the occurrence and natural history of SARS-CoV-2 infection. From this cohort, 81 participants with a SARS-CoV-2 infection, along with 57 unexposed counterparts were selected with a total of 748 serial saliva samples were collected for analysis. Total bacterial abundance, composition, population structure, and gene function of the salivary microbiome were measured using 16S rRNA gene and shotgun metagenomic sequencing. FINDINGS The salivary microbiome remained stable in unexposed individuals over the six-month study period, as evidenced by all measured metrics. Similarly, participants with mild to moderate SARS-CoV-2 infection showed microbiome stability throughout and after their infection. However, there were significant reductions in microbiome diversity among SARS-CoV-2-positive participants with severe symptoms early after infection. Over time, the microbiome diversity in these participants showed signs of recovery. INTERPRETATION These findings demonstrate the resilience of the salivary microbiome in relation to SARS-CoV-2 infection. Mild to moderate infections did not significantly disrupt the stability of the salivary microbiome, suggesting its ability to maintain its composition and function. However, severe SARS-CoV-2 infection was associated with temporary reductions in microbiome diversity, indicating the limits of microbiome resilience in the face of severe infection. FUNDING This project was supported in part by Danone North America and grants from the National Institutes of Health, United States.
Collapse
Affiliation(s)
- Abigail J S Armstrong
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Daniel B Horton
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy, and Aging Research, New Brunswick, New Jersey, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Tracy Andrews
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Patricia Greenberg
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Jason Roy
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Maria Laura Gennaro
- Department of Medicine, Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jeffrey L Carson
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
18
|
Sumardi U, Valentino B, Prasetya D, Debora J, Sugianli AK. The Diagnostic Value of Kinetics of NLR to Identify Secondary Pulmonary Bacterial Infection Among COVID-19 Patients at Single Tertiary Hospital in Indonesia. Int J Gen Med 2023; 16:3281-3289. [PMID: 37546238 PMCID: PMC10404039 DOI: 10.2147/ijgm.s417569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose Coronavirus disease 2019 (COVID-19) is a new respiratory tract infection caused by severe acute respiratory syndrome coronavirus-2. The presence of secondary pulmonary bacterial infection (SPBI) made COVID-19 difficult to treat. Neutrophil-lymphocyte count ratio (NLR) is a systemic inflammatory marker used in the diagnosis and prognosis of viral or bacterial infection. At the first 3-5 days after hyperinflammation, it occurs in relation to clinical outcome. Therefore, this study aimed to evaluate the diagnostic value of NLR based on leukocyte kinetics upon admission and after 72 hours among COVID-19 patients with or without SPBI. Patients and Methods This retrospective cross-sectional study analyzed medical records data of admitted patients with COVID-19 according to the International Classification of Disease 10th Revision (ICD-10) between January and December 2021. The list of patients was extracted and followed by a hand search to identify the inclusion or exclusion criteria and stratified into proven and non-proven SPBI based on clinical data. The study distinguished between SPBI by means of a cut-off value (COV) on the first (D1) and third day (D3), assessed using receiver operating characteristics (ROC), as well as determined the magnitude of sensitivity, specificity, and prevalence ratio. Results A screening process was conducted on 2902 COVID-19 patients, of which 236 were included, accounting for 8.1%. Among these patients, 87 (36.9%) were found to have proven SPBI. A considerable difference in NLR value between proven and non-proven SPBI was observed on both D1 (11.1 vs 4.2) and D3 (15.3 vs 5.2), with optimal COV of NLR on D1, D3 was found to be 5.29, 9.47, respectively (p < 0.001). Conclusion NLR on the D1 and D3 distinguished the occurrence of SPBI among COVID-19 patients. The application of NLR assisted in the early determination of bacterial infection and helped in controlling the empirical use of antibiotics.
Collapse
Affiliation(s)
- Uun Sumardi
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| | - Bima Valentino
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| | - Dimmy Prasetya
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| | - Josephine Debora
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| | - Adhi Kristianto Sugianli
- Department of Clinical Pathology, Hasan Sadikin General Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
19
|
Xie L, Chen L, Li X, Zhou J, Tian H, Zhao J, Li Z, Li Y. Analysis of Lung Microbiome in COVID-19 Patients during Time of Hospitalization. Pathogens 2023; 12:944. [PMID: 37513791 PMCID: PMC10386632 DOI: 10.3390/pathogens12070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the pathogenic agent of the rapidly spreading pneumonia called coronavirus disease 2019 (COVID-19), primarily infects the respiratory and digestive tract. Several studies have indicated the alterations of the bacterial microbiome in the lower respiratory tract during viral infection. However, both bacterial and fungal microbiota in the lung of COVID-19 patients remained to be explored. METHODS In this study, we conducted nanopore sequencing analyses of the lower respiratory tract samples from 38 COVID-19 patients and 26 non-COVID-19 pneumonia controls. Both bacterial and fungal microbiome diversities and microbiota abundances in the lung were compared. RESULTS Our results revealed significant differences in lung microbiome between COVID-19 patients and non-COVID-19 controls, which were strongly associated with SARS-CoV-2 infection and clinical status. COVID-19 patients exhibited a notably higher abundance of opportunistic pathogens, particularly Acinetobacter baumannii and Candida spp. Furthermore, the potential pathogens enriched in COVID-19 patients were positively correlated with inflammation indicators. CONCLUSIONS Our study highlights the differences in lung microbiome diversity and composition between COVID-19 patients and non-COVID-19 patients. This may contribute to predicting co-pathogens and selecting optimal treatments for respiratory infections caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Linlin Xie
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinran Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junying Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongpan Tian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Zhao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Tumors, Chinese Academy of Medical Sciences, Wuhan 430071, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan 430071, China
| |
Collapse
|
20
|
Ling L, Lai CK, Lui G, Yeung ACM, Chan HC, Cheuk CHS, Cheung AN, Chang L, Chiu LCS, Zhang J, Wong WT, Hui DSC, Wong CK, Chan PKS, Chen Z. Characterization of upper airway microbiome across severity of COVID-19 during hospitalization and treatment. Front Cell Infect Microbiol 2023; 13:1205401. [PMID: 37469595 PMCID: PMC10352853 DOI: 10.3389/fcimb.2023.1205401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Longitudinal studies on upper respiratory tract microbiome in coronavirus disease 2019 (COVID-19) without potential confounders such as antimicrobial therapy are limited. The objective of this study is to assess for longitudinal changes in the upper respiratory microbiome, its association with disease severity, and potential confounders in adult hospitalized patients with COVID-19. Serial nasopharyngeal and throat swabs (NPSTSs) were taken for 16S rRNA gene amplicon sequencing from adults hospitalized for COVID-19. Alpha and beta diversity was assessed between different groups. Principal coordinate analysis was used to assess beta diversity between groups. Linear discriminant analysis was used to identify discriminative bacterial taxa in NPSTS taken early during hospitalization on need for intensive care unit (ICU) admission. A total of 314 NPSTS samples from 197 subjects (asymptomatic = 14, mild/moderate = 106, and severe/critical = 51 patients with COVID-19; non-COVID-19 mechanically ventilated ICU patients = 11; and healthy volunteers = 15) were sequenced. Among all covariates, antibiotic treatment had the largest effect on upper airway microbiota. When samples taken after antibiotics were excluded, alpha diversity (Shannon, Simpson, richness, and evenness) was similar across severity of COVID-19, whereas beta diversity (weighted GUniFrac and Bray-Curtis distance) remained different. Thirteen bacterial genera from NPSTS taken within the first week of hospitalization were associated with a need for ICU admission (area under the receiver operating characteristic curve, 0.96; 95% CI, 0.91-0.99). Longitudinal analysis showed that the upper respiratory microbiota alpha and beta diversity was unchanged during hospitalization in the absence of antimicrobial therapy.
Collapse
Affiliation(s)
- Lowell Ling
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Christopher K.C. Lai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Grace Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Apple Chung Man Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hiu Ching Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chung Hon Shawn Cheuk
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adonia Nicole Cheung
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lok Ching Chang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lok Ching Sandra Chiu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jack Zhenhe Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai-Tat Wong
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - David S. C. Hui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Roshni J, Sivakumar M, Bahammam FA, Bhandi S, Patil S, Kamath M, Abusharha A, Ahmed SSSJ. New Ways to Protect the Host from SARS-CoV-2? Lung Microbiome Metabolites Inhibit STAT3 and Modulate the Immunological Network. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:237-244. [PMID: 37140561 DOI: 10.1089/omi.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
COVID-19 caused by the SARS-CoV-2 infection is a systemic disease that affects multiple organs, biological pathways, and cell types. A systems biology approach would benefit the study of COVID-19 in the pandemic as well as the endemic state. Notably, patients with COVID-19 have dysbiosis of lung microbiota whose functional relevance to the host is largely unknown. We carried out a systems biology investigation of the impact of lung microbiome-derived metabolites on host immune system during COVID-19. RNAseq was performed to identify the host-specific pro- and anti-inflammatory differentially expressed genes (DEGs) in bronchial epithelium and alveolar cells during SARS-CoV-2 infection. The overlapping DEGs were harnessed to construct an immune network while their key transcriptional regulator was deciphered. We identified 68 overlapping genes from both cell types to construct the immune network, and Signal Transducer and Activator of Transcription 3 (STAT3) was found to regulate the majority of the network proteins. Furthermore, thymidine diphosphate produced from the lung microbiome had the highest affinity with STAT3 (-6.349 kcal/mol) than the known STAT3 inhibitors (n = 410), with an affinity ranging from -5.39 to 1.31 kcal/mol. In addition, the molecular dynamic studies showed distinguishable changes in the behavior of the STAT3 complex when compared with free STAT3. Overall, our results provide new observations on the importance of lung microbiome metabolites that regulate the host immune system in patients with COVID-19, and may open up new avenues for preventive medicine and therapeutics innovation.
Collapse
Affiliation(s)
- Jency Roshni
- Drug Discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Mahema Sivakumar
- Drug Discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Faris Ahmed Bahammam
- Fellow Rhinology and Facial Plastics, Imperial College London, London, United Kingdom
| | - Shilpa Bhandi
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Manjunath Kamath
- Centre for Advance Studies, Sathyabama Institute of Science and Technology, Tamil Nadu, Chennai, India
| | - Ali Abusharha
- Department of Optometry, Applied Medical Sciences College, King Saud University, Riyadh, Saudi Arabia
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
22
|
Zafar H, Saier MH. Understanding the Relationship of the Human Bacteriome with COVID-19 Severity and Recovery. Cells 2023; 12:cells12091213. [PMID: 37174613 PMCID: PMC10177376 DOI: 10.3390/cells12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) first emerged in 2019 in China and has resulted in millions of human morbidities and mortalities across the globe. Evidence has been provided that this novel virus originated in animals, mutated, and made the cross-species jump to humans. At the time of this communication, the Coronavirus disease (COVID-19) may be on its way to an endemic form; however, the threat of the virus is more for susceptible (older and immunocompromised) people. The human body has millions of bacterial cells that influence health and disease. As a consequence, the bacteriomes in the human body substantially influence human health and disease. The bacteriomes in the body and the immune system seem to be in constant association during bacterial and viral infections. In this review, we identify various bacterial spp. In major bacteriomes (oral, nasal, lung, and gut) of the body in healthy humans and compare them with dysbiotic bacteriomes of COVID-19 patients. We try to identify key bacterial spp. That have a positive effect on the functionality of the immune system and human health. These select bacterial spp. Could be used as potential probiotics to counter or prevent COVID-19 infections. In addition, we try to identify key metabolites produced by probiotic bacterial spp. That could have potential anti-viral effects against SARS-CoV-2. These metabolites could be subject to future therapeutic trials to determine their anti-viral efficacies.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA 92093-0116, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Milton H Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA 92093-0116, USA
| |
Collapse
|
23
|
Wu J, Liu W, Zhu L, Li N, Luo G, Gu M, Peng M, Zeng S, Wu S, Zhang S, Chen Q, Cai M, Cao W, Jiang Y, Luo C, Tian D, Shi M, Shu Y, Chang G, Luo H. Dysbiosis of oropharyngeal microbiome and antibiotic resistance in hospitalized COVID-19 patients. J Med Virol 2023; 95:e28727. [PMID: 37185870 DOI: 10.1002/jmv.28727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is ongoing and multiple studies have elucidated its pathogenesis, however, the related- microbiome imbalance caused by SARS-CoV-2 is still not clear. In this study, we have comprehensively compared the microbiome composition and associated function alterations in the oropharyngeal swabs of healthy controls and coronavirus disease 2019 (COVID-19) patients with moderate or severe symptoms by metatranscriptomic sequencing. We did observe a reduced microbiome alpha-diversity but significant enrichment of opportunistic microorganisms in patients with COVID-19 compared with healthy controls, and the microbial homeostasis was rebuilt following the recovery of COVID-19 patients. Correspondingly, less functional genes in multiple biological processes and weakened metabolic pathways such as carbohydrate metabolism, energy metabolism were also observed in COVID-19 patients. We only found higher relative abundance of limited genera such as Lachnoanaerobaculum between severe patients and moderate patients while no worthy-noting microbiome diversity and function alteration were observed. Finally, we noticed that the co-occurrence of antibiotic resistance and virulence was closely related to the microbiome alteration caused by SRAS-CoV-2. Overall, our findings demonstrate that microbial dysbiosis may enhance the pathogenesis of SARS-CoV-2 and the antibiotics treatment should be critically considered.
Collapse
Affiliation(s)
- Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Department of AIDS and STD Control and Prevention, Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Wei Liu
- Department of Immunology, Center for Disease Prevention and Control of PLA, Beijing, China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Gengyan Luo
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ming Gu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Minwu Peng
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shike Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shu Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Meiqi Cai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wei Cao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Jiang
- Environment Health Department, Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Dechao Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guohui Chang
- Department of Immunology, Center for Disease Prevention and Control of PLA, Beijing, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Yasir M, Al-Sharif HA, Al-Subhi T, Sindi AA, Bokhary DH, El-Daly MM, Alosaimi B, Hamed ME, Karim AM, Hassan AM, AlShawdari MM, Alawi M, El-Kafrawy SA, Azhar EI. Analysis of the nasopharyngeal microbiome and respiratory pathogens in COVID-19 patients from Saudi Arabia. J Infect Public Health 2023; 16:680-688. [PMID: 36934642 PMCID: PMC9984237 DOI: 10.1016/j.jiph.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. METHODS A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 6S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. RESULTS No significant (p > 0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p < 0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7 %) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. CONCLUSIONS Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.
Collapse
Affiliation(s)
- Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hessa A Al-Sharif
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tagreed Al-Subhi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anees A Sindi
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Pulmonary & Critical Care Consultant, International Medical Center, Jeddah 21589, Saudi Arabia
| | - Diyaa H Bokhary
- Emergency Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maaweya E Hamed
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Asad Mustafa Karim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, the Republic of Korea
| | - Ahmed M Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mustafa M AlShawdari
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha Alawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Infection Control & Environmental Health Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sherif A El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Enichen E, Harvey C, Demmig-Adams B. COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. Am J Lifestyle Med 2023; 17:231-257. [PMID: 36883129 PMCID: PMC9445631 DOI: 10.1177/15598276221123005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans' physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats' low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Caitlyn Harvey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| |
Collapse
|
26
|
SeyedAlinaghi S, Afzalian A, Pashaei Z, Varshochi S, Karimi A, Mojdeganlou H, Mojdeganlou P, Razi A, Ghanadinezhad F, Shojaei A, Amiri A, Dashti M, Ghasemzadeh A, Dadras O, Mehraeen E, Afsahi AM. Gut microbiota and COVID-19: A systematic review. Health Sci Rep 2023; 6:e1080. [PMID: 36721396 PMCID: PMC9881458 DOI: 10.1002/hsr2.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Background and Aims Alteration in humans' gut microbiota was reported in patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The gut and upper respiratory tract (URT) microbiota harbor a dynamic and complex population of microorganisms and have strong interaction with host immune system homeostasis. However, our knowledge about microbiota and its association with SARS-CoV-2 is still limited. We aimed to systematically review the effects of gut microbiota on the SARS-CoV-2 infection and its severity and the impact that SARS-CoV-2 could have on the gut microbiota. Methods We searched the keywords in the online databases of Web of Science, Scopus, PubMed, and Cochrane on December 31, 2021. After duplicate removal, we performed the screening process in two stages; title/abstract and then full-text screening. The data of the eligible studies were extracted into a pre-designed word table. This study adhered to the PRISMA checklist and Newcastle-Ottawa Scale Bias Assessment tool. Results Sixty-three publications were included in this review. Our study shows that among COVID-19 patients, particularly moderate to severe cases, the gut and lung microbiota was different compared to healthy individuals. In addition, the severity, and viral load of COVID-19 disease would probably also be influenced by the gut, and lung microbiota's composition. Conclusion Our study concludes that there was a significant difference in the composition of the URT, and gut microbiota in COVID-19 patients compared to the general healthy individuals, with an increase in opportunistic pathogens. Further, research is needed to investigate the probable bidirectional association of COVID-19 and human microbiome.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Arian Afzalian
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Zahra Pashaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Sanaz Varshochi
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Amirali Karimi
- School of MedicineTehran University of Medical SciencesTehranIran
| | | | | | - Armin Razi
- School of MedicineTehran University of Medical SciencesTehranIran
| | | | - Alireza Shojaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Ava Amiri
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Mohsen Dashti
- Department of RadiologyTabriz University of Medical SciencesTabrizIran
| | | | - Omid Dadras
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | - Esmaeil Mehraeen
- Department of Health Information TechnologyKhalkhal University of Medical SciencesKhalkhalIran
| | - Amir Masoud Afsahi
- Department of RadiologyUniversity of California, San Diego (UCSD)CaliforniaUSA
| |
Collapse
|
27
|
Hernández-Terán A, Vega-Sánchez AE, Mejía-Nepomuceno F, Serna-Muñoz R, Rodríguez-Llamazares S, Salido-Guadarrama I, Romero-Espinoza JA, Guadarrama-Pérez C, Sandoval-Gutierrez JL, Campos F, Mondragón-Rivero EN, Ramírez-Venegas A, Castillejos-López M, Téllez-Navarrete NA, Pérez-Padilla R, Vázquez-Pérez JA. Microbiota composition in the lower respiratory tract is associated with severity in patients with acute respiratory distress by influenza. Virol J 2023; 20:19. [PMID: 36726151 PMCID: PMC9891757 DOI: 10.1186/s12985-023-01979-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Several factors are associated with the severity of the respiratory disease caused by the influenza virus. Although viral factors are one of the most studied, in recent years the role of the microbiota and co-infections in severe and fatal outcomes has been recognized. However, most of the work has focused on the microbiota of the upper respiratory tract (URT), hindering potential insights from the lower respiratory tract (LRT) that may help to understand the role of the microbiota in Influenza disease. In this work, we characterized the microbiota of the LRT of patients with Influenza A using 16S rRNA sequencing. We tested if patients with different outcomes (deceased/recovered) and use of antibiotics differ in their microbial community composition. We found important differences in the diversity and composition of the microbiota between deceased and recovered patients. In particular, we detected a high abundance of opportunistic pathogens such as Granulicatella, in patients either deceased or with antibiotic treatment. Also, we found antibiotic treatment correlated with lower diversity of microbial communities and with lower probability of survival in Influenza A patients. Altogether, the loss of microbial diversity could generate a disequilibrium in the community, potentially compromising the immune response increasing viral infectivity, promoting the growth of potentially pathogenic bacteria that, together with altered biochemical parameters, can be leading to severe forms of the disease. Overall, the present study gives one of the first characterizations of the diversity and composition of microbial communities in the LRT of Influenza patients and its relationship with clinical variables and disease severity.
Collapse
Affiliation(s)
- Alejandra Hernández-Terán
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Angel E. Vega-Sánchez
- grid.419179.30000 0000 8515 3604Servicio de Urgencias Médicas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Fidencio Mejía-Nepomuceno
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Ricardo Serna-Muñoz
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Sebastián Rodríguez-Llamazares
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Iván Salido-Guadarrama
- grid.419218.70000 0004 1773 5302Departamento de Bioinformática y Análisis Estadísticos, Instituto Nacional de Perinatología Isidro Espinosa De los Reyes, INPER, Ciudad de Mexico, Mexico
| | - Jose A. Romero-Espinoza
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Cristobal Guadarrama-Pérez
- grid.419179.30000 0000 8515 3604Servicio de Urgencias Médicas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Jose L. Sandoval-Gutierrez
- grid.419179.30000 0000 8515 3604Servicio Auxiliar de Diagnóstico y Paramédicos, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Fernando Campos
- grid.419179.30000 0000 8515 3604Unidad de Terapia Intensiva, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Erika N. Mondragón-Rivero
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Alejandra Ramírez-Venegas
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Manuel Castillejos-López
- grid.419179.30000 0000 8515 3604Departamento de Unidad de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Norma A. Téllez-Navarrete
- grid.419179.30000 0000 8515 3604Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Rogelio Pérez-Padilla
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| | - Joel A. Vázquez-Pérez
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Ciudad de Mexico, Mexico
| |
Collapse
|
28
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
29
|
Mancabelli L, Ciociola T, Lugli GA, Tarracchini C, Fontanta F, Viappiani A, Turroni F, Ticinesi A, Meschi T, Conti S, Ventura M, Milani C. Guideline for the analysis of the microbial communities of the human upper airways. J Oral Microbiol 2022; 14:2103282. [PMID: 35923899 PMCID: PMC9341376 DOI: 10.1080/20002297.2022.2103282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Leonardo Mancabelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontanta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Francesca Turroni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Ventura
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
30
|
Neag MA, Vulturar DM, Gherman D, Burlacu CC, Todea DA, Buzoianu AD. Gastrointestinal microbiota: A predictor of COVID-19 severity? World J Gastroenterol 2022; 28:6328-6344. [PMID: 36533107 PMCID: PMC9753053 DOI: 10.3748/wjg.v28.i45.6328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by a severe acute respiratory syndrome coronavirus 2 infection, has raised serious concerns worldwide over the past 3 years. The severity and clinical course of COVID-19 depends on many factors (e.g., associated comorbidities, age, etc) and may have various clinical and imaging findings, which raises management concerns. Gut microbiota composition is known to influence respiratory disease, and respiratory viral infection can also influence gut microbiota. Gut and lung microbiota and their relationship (gut-lung axis) can act as modulators of inflammation. Modulating the intestinal microbiota, by improving its composition and diversity through nutraceutical agents, can have a positive impact in the prophylaxis/treatment of COVID-19.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| | - Damiana-Maria Vulturar
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400332, Romania
| | - Diana Gherman
- Department of Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Codrin-Constantin Burlacu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Doina Adina Todea
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400332, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| |
Collapse
|
31
|
Yadav A, Pandey R. Viral infectious diseases severity: co-presence of transcriptionally active microbes (TAMs) can play an integral role for disease severity. Front Immunol 2022; 13:1056036. [PMID: 36532032 PMCID: PMC9755851 DOI: 10.3389/fimmu.2022.1056036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Humans have been challenged by infectious diseases for all of their recorded history, and are continually being affected even today. Next-generation sequencing (NGS) has enabled identification of, i) culture independent microbes, ii) emerging disease-causing pathogens, and iii) understanding of the genome architecture. This, in turn, has highlighted that pathogen/s are not a monolith, and thereby allowing for the differentiation of the wide-ranging disease symptoms, albeit infected by a primary pathogen. The conventional 'one disease - one pathogen' paradigm has been positively revisited by considering limited yet important evidence of the co-presence of multiple transcriptionally active microbes (TAMs), potential pathogens, in various infectious diseases, including the COVID-19 pandemic. The ubiquitous microbiota presence inside humans gives reason to hypothesize that the microbiome, especially TAMs, contributes to disease etiology. Herein, we discuss current evidence and inferences on the co-infecting microbes particularly in the diseases caused by the RNA viruses - Influenza, Dengue, and the SARS-CoV-2. We have highlighted that the specific alterations in the microbial taxonomic abundances (dysbiosis) is functionally connected to the exposure of primary infecting pathogen/s. The microbial presence is intertwined with the differential host immune response modulating differential disease trajectories. The microbiota-host interactions have been shown to modulate the host immune responses to Influenza and SARS-CoV-2 infection, wherein the active commensal microbes are involved in the generation of virus-specific CD4 and CD8 T-cells following the influenza virus infection. Furthermore, COVID-19 dysbiosis causes an increase in inflammatory cytokines such as IL-6, TNF-α, and IL-1β, which might be one of the important predisposing factors for severe infection. Through this article, we aim to provide a comprehensive view of functional microbiomes that can have a significant regulatory impact on predicting disease severity (mild, moderate and severe), as well as clinical outcome (survival and mortality). This can offer fresh perspectives on the novel microbial biomarkers for stratifying patients for severe disease symptoms, disease prevention and augmenting treatment regimens.
Collapse
Affiliation(s)
- Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Durán-Manuel EM, Loyola-Cruz MÁ, Cruz-Cruz C, Ibáñez-Cervantes G, Gaytán-Cervantes J, González-Torres C, Quiroga-Vargas E, Calzada-Mendoza CC, Cureño-Díaz MA, Fernández-Sánchez V, Castro-Escarpulli G, Bello-López JM. Massive sequencing of the V3-V4 hypervariable region of bronchoalveolar lavage from patients with COVID-19 and VAP reveals the collapse of the pulmonary microbiota. J Med Microbiol 2022; 71. [PMID: 36748614 DOI: 10.1099/jmm.0.001634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a predisposing factor for the development of healthcare-associated infections, of which ventilator-associated pneumonia (VAP) is one.Hypothesis. VAP is caused by ESKAPE bacteria and other pathogens not detected by microbiological culture.Aim. To elucidate the bacterial pathogens of severe coronavirus disease 2019 (COVID-19) and VAP patients by massive sequencing and to predict their degree of relationship with the age and sex of the patients.Methods. Analysis of ribosomal libraries of the V3-V4 hypervariable region obtained by Illumina sequencing of bronchoalveolar lavages from COVID-19 and VAP (first wave) patients from Hospital Juárez de México.Results. Acinetobacter and Pseudomonas were the main bacterial genera in the bronchoalveolar lavages (BALs) analysed. Other members of the ESKAPE group, such as Enterococcus and Klebsiella, were also identified. Taxonomic composition per patient showed that non-ESKAPE genera were present with significant relative abundances, such as Prevotella, Stenotrophomas, Enterococcus, Mycoplasma, Serratia and Corynebacterium. Kruskal-Wallis analysis proved that VAP acquisition is an adverse event that is not influenced by the sex and age of COVID-19 patients.Discussion. Metagenomic findings in COVID-19/VAP patients highlight the importance of implementing comprehensive microbiological diagnostics by including alternative tools for the detection of the causal agents of healthcare-associated infections (HAIs).Conclusions. Timely identification of bacteria 'not sought' in diagnostic bacteriology laboratories will allow specific and targeted treatments. Implications for the restricted diagnosis of VAP causative agents in COVID-19 patients and the presence of pathogens not detected by classical microbiology are analysed and discussed.
Collapse
Affiliation(s)
- Emilio Mariano Durán-Manuel
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Clemente Cruz-Cruz
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
| | - Gabriela Ibáñez-Cervantes
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | | | - Claudia Camelia Calzada-Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
33
|
Iša P, Taboada B, García-López R, Boukadida C, Ramírez-González JE, Vázquez-Pérez JA, Hernández-Terán A, Romero-Espinoza JÁ, Muñoz-Medina JE, Grajales-Muñiz C, Rincón-Rubio A, Matías-Florentino M, Sanchez-Flores A, Mendieta-Condado E, Barrera-Badillo G, López S, Hernández-Rivas L, López-Martínez I, Ávila-Ríos S, Arias CF. Metagenomic analysis reveals differences in the co-occurrence and abundance of viral species in SARS-CoV-2 patients with different severity of disease. BMC Infect Dis 2022; 22:792. [PMID: 36261802 PMCID: PMC9580447 DOI: 10.1186/s12879-022-07783-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background SARS-CoV-2 infections have a wide spectrum of clinical manifestations whose causes are not completely understood. Some human conditions predispose to severe outcome, like old age or the presence of comorbidities, but many other facets, including coinfections with other viruses, remain poorly characterized.
Methods In this study, the eukaryotic fraction of the respiratory virome of 120 COVID-19 patients was characterized through whole metagenomic sequencing. Results Genetic material from respiratory viruses was detected in 25% of all samples, whereas human viruses other than SARS-CoV-2 were found in 80% of them. Samples from hospitalized and deceased patients presented a higher prevalence of different viruses when compared to ambulatory individuals. Small circular DNA viruses from the Anneloviridae (Torque teno midi virus 8, TTV-like mini virus 19 and 26) and Cycloviridae families (Human associated cyclovirus 10), Human betaherpesvirus 6, were found to be significantly more abundant in samples from deceased and hospitalized patients compared to samples from ambulatory individuals. Similarly, Rotavirus A, Measles morbillivirus and Alphapapilomavirus 10 were significantly more prevalent in deceased patients compared to hospitalized and ambulatory individuals. Conclusions Results show the suitability of using metagenomics to characterize a broader peripheric virological landscape of the eukaryotic virome in SARS-CoV-2 infected patients with distinct disease outcomes. Identified prevalent viruses in hospitalized and deceased patients may prove important for the targeted exploration of coinfections that may impact prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07783-8.
Collapse
Affiliation(s)
- Pavel Iša
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Blanca Taboada
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rodrigo García-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Celia Boukadida
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | | | | | - José Esteban Muñoz-Medina
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Concepción Grajales-Muñiz
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alma Rincón-Rubio
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Margarita Matías-Florentino
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Edgar Mendieta-Condado
- Instituto de Diagnóstico y Referencia Epidemiológicos, Dirección General de Epidemiología, Ciudad de Mexico, Mexico
| | - Gisela Barrera-Badillo
- Instituto de Diagnóstico y Referencia Epidemiológicos, Dirección General de Epidemiología, Ciudad de Mexico, Mexico
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lucía Hernández-Rivas
- Instituto de Diagnóstico y Referencia Epidemiológicos, Dirección General de Epidemiología, Ciudad de Mexico, Mexico
| | - Irma López-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológicos, Dirección General de Epidemiología, Ciudad de Mexico, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
34
|
Weiss-Tessbach M, Ratzinger F, Obermueller M, Burgmann H, Staudinger T, Robak O, Schmid M, Roessler B, Jilma B, Kussmann M, Traby L. Biomarkers for differentiation of coronavirus disease 2019 or extracorporeal membrane oxygenation related inflammation and bacterial/fungal infections in critically ill patients: A prospective observational study. Front Med (Lausanne) 2022; 9:917606. [PMID: 36275812 PMCID: PMC9582266 DOI: 10.3389/fmed.2022.917606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Secondary infections in coronavirus disease 2019 (COVID-19) patients are difficult to distinguish from inflammation associated with COVID-19 and/or extracorporeal membrane oxygenation (ECMO). Therefore, highly specific and sensitive biomarkers are needed to identify patients in whom antimicrobial therapy can be safely withheld. In this prospective monocentric study, 66 COVID-19 patients admitted to the intensive care unit (ICU) for ECMO evaluation were included. A total of 46 (70%) patients with secondary infections were identified by using broad microbiological and virological panels and standardized diagnostic criteria. Various laboratory parameters including C-reactive protein (CRP), interleukin (IL)-6, procalcitonin (PCT), and IL-10 were determined at time of study inclusion. The best test performance for differentiating bacterial/fungal secondary infections and COVID-19 and/or ECMO associated inflammation was achieved by IL-10 (ROC-AUC 0.84) and a multivariant step-wise regression model including CRP, IL-6, PCT, and IL-10 (ROC-AUC 0.93). Data obtained in the present study highlights the use of IL-10 to differentiate secondary bacterial/fungal infections from COVID-19 and/or ECMO associated inflammation in severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Matthias Weiss-Tessbach
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Franz Ratzinger
- Ihr Labor, Medical Diagnostics Laboratories, Vienna, Austria
| | - Markus Obermueller
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thomas Staudinger
- Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, Vienna, Austria
| | - Oliver Robak
- Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, Vienna, Austria
| | - Monika Schmid
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bernhard Roessler
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical Simulation and Emergency Management Research Group, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Kussmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria,*Correspondence: Manuel Kussmann,
| | - Ludwig Traby
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria,Ludwig Traby,
| |
Collapse
|
35
|
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance. MICROBIOME 2022; 10:165. [PMID: 36195943 PMCID: PMC9532226 DOI: 10.1186/s40168-022-01342-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 infection causes COVID-19 disease, which can result in consequences ranging from undetectable to fatal, focusing attention on the modulators of outcomes. The respiratory tract microbiome is thought to modulate the outcomes of infections such as influenza as well as acute lung injury, raising the question to what degree does the airway microbiome influence COVID-19? Here, we review the results of 56 studies examining COVID-19 and the respiratory tract microbiome, summarize the main generalizations, and point to useful avenues for further research. Although the results vary among studies, a few consistent findings stand out. The diversity of bacterial communities in the oropharynx typically declined with increasing disease severity. The relative abundance of Haemophilus and Neisseria also declined with severity. Multiple microbiome measures tracked with measures of systemic immune responses and COVID outcomes. For many of the conclusions drawn in these studies, the direction of causality is unknown-did an alteration in the microbiome result in increased COVID severity, did COVID severity alter the microbiome, or was some third factor the primary driver, such as medication use. Follow-up mechanistic studies can help answer these questions. Video Abstract.
Collapse
Affiliation(s)
- Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ronald G. Collman
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
36
|
Subagdja MFM, Sugianli AK, Prodjosoewojo S, Hartantri Y, Parwati I. Antibiotic Resistance in COVID-19 with Bacterial Infection: Laboratory-Based Surveillance Study at Single Tertiary Hospital in Indonesia. Infect Drug Resist 2022; 15:5849-5856. [PMID: 36217341 PMCID: PMC9547599 DOI: 10.2147/idr.s379324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose Coronavirus disease 2019 (COVID-19) is a new pandemic affecting the respiratory system and caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to the increased use of antibiotics, the length of stay of hospitalized patients affects the risk of bacterial infections among the COVID-19 patients. However, this pandemic has interrupted antibiotic surveillance activity and led to an information gap about the prevalence and characteristics of bacterial infection. This study aims to describe the antibiotic resistance in COVID-19 patients with culture-proven bacterial infection using a laboratory-based surveillance approach. Patients and Methods A retrospective study with a cross-sectional design was conducted on adult patients that confirmed positive for COVID-19 according to the International Classification of Diseases 10th Revision (ICD-10). From March 2020 to October 2021, data were obtained from the hospital information system and merged with the culture and antibiotic susceptibility test from laboratory information system at Hasan Sadikin General Hospital. The outcome is the prevalence percentage of resistance to selected antibiotics in patients with COVID-19. The resistance percentage is considered high when equal to or more than 20%. Results There was 2786 adult patient confirmed for COVID-19 according to the ICD-10, and 26.3% (n = 733) of them submitted clinical specimen for culture. The prevalence of bacterial infection among COVID-19 patients was 16.4%, predominating Gram-negative bacteria (GNB). The respiratory specimen dominated the positive growth culture. The GNB were predominantly discovered among the respiratory and non-respiratory specimens. High range resistance to ampicillin-sulbactam (24-100%), ceftriaxone (22-81%), cefotaxime (22-73%) and ciprofloxacin (20-86%) are observed among the GNB. Conclusion There is high resistance to fluoroquinolone and cephalosporins in identified isolate, commonly used as the first-line empirical treatment for respiratory and non-respiratory infection in Indonesia. The continuous antibiotic surveillance is mandatory and crucial to prevent the long-term effects of the COVID-19 pandemic, particularly bacterial infection.
Collapse
Affiliation(s)
| | - Adhi Kristianto Sugianli
- Department of Clinical Pathology Faculty of Medicine Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Susantina Prodjosoewojo
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Yovita Hartantri
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Ida Parwati
- Department of Clinical Pathology Faculty of Medicine Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
37
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
38
|
Chakraborty C, Sharma AR, Bhattacharya M, Dhama K, Lee SS. Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity. World J Gastroenterol 2022; 28:2802-2822. [PMID: 35978881 PMCID: PMC9280735 DOI: 10.3748/wjg.v28.i25.2802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/19/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to a severe respiratory illness and alters the gut microbiota, which dynamically interacts with the human immune system. Microbiota alterations include decreased levels of beneficial bacteria and augmentation of opportunistic pathogens. Here, we describe critical factors affecting the microbiota in coronavirus disease 2019 (COVID-19) patients. These include, such as gut microbiota imbalance and gastrointestinal symptoms, the pattern of altered gut microbiota composition in COVID-19 patients, and crosstalk between the microbiome and the gut-lung axis/gut-brain-lung axis. Moreover, we have illustrated the hypoxia state in COVID-19 associated gut microbiota alteration. The role of ACE2 in the digestive system, and control of its expression using the gut microbiota is discussed, highlighting the interactions between the lungs, the gut, and the brain during COVID-19 infection. Similarly, we address the gut microbiota in elderly or co-morbid patients as well as gut microbiota dysbiosis of in severe COVID-19. Several clinical trials to understand the role of probiotics in COVID-19 patients are listed in this review. Augmented inflammation is one of the major driving forces for COVID-19 symptoms and gut microbiome disruption and is associated with disease severity. However, understanding the role of the gut microbiota in immune modulation during SARS-CoV-2 infection may help improve therapeutic strategies for COVID-19 treatment.
Collapse
Affiliation(s)
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University, Chuncheon-si 24252, South Korea
| | | | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University, Chuncheon-si 24252, South Korea
| |
Collapse
|
39
|
Devi P, Maurya R, Mehta P, Shamim U, Yadav A, Chattopadhyay P, Kanakan A, Khare K, Vasudevan JS, Sahni S, Mishra P, Tyagi A, Jha S, Budhiraja S, Tarai B, Pandey R. Increased Abundance of Achromobacter xylosoxidans and Bacillus cereus in Upper Airway Transcriptionally Active Microbiome of COVID-19 Mortality Patients Indicates Role of Co-Infections in Disease Severity and Outcome. Microbiol Spectr 2022; 10:e0231121. [PMID: 35579429 PMCID: PMC9241827 DOI: 10.1128/spectrum.02311-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
The modulators of severe COVID-19 have emerged as the most intriguing features of SARS-CoV-2 pathogenesis. This is especially true as we are encountering variants of concern (VOC) with increased transmissibility and vaccination breakthroughs. Microbial co-infections are being investigated as one of the crucial factors for exacerbation of disease severity and complications of COVID-19. A key question remains whether early transcriptionally active microbial signature/s in COVID-19 patients can provide a window for future disease severity susceptibility and outcome? Using complementary metagenomics sequencing approaches, respiratory virus oligo panel (RVOP) and Holo-seq, our study highlights the possible functional role of nasopharyngeal early resident transcriptionally active microbes in modulating disease severity, within recovered patients with sub-phenotypes (mild, moderate, severe) and mortality. The integrative analysis combines patients' clinical parameters, SARS-CoV-2 phylogenetic analysis, microbial differential composition, and their functional role. The clinical sub-phenotypes analysis led to the identification of transcriptionally active bacterial species associated with disease severity. We found significant transcript abundance of Achromobacter xylosoxidans and Bacillus cereus in the mortality, Leptotrichia buccalis in the severe, Veillonella parvula in the moderate, and Actinomyces meyeri and Halomonas sp. in the mild COVID-19 patients. Additionally, the metabolic pathways, distinguishing the microbial functional signatures between the clinical sub-phenotypes, were also identified. We report a plausible mechanism wherein the increased transcriptionally active bacterial isolates might contribute to enhanced inflammatory response and co-infections that could modulate the disease severity in these groups. Current study provides an opportunity for potentially using these bacterial species for screening and identifying COVID-19 patient sub-groups with severe disease outcome and priority medical care. IMPORTANCE COVID-19 is invariably a disease of diverse clinical manifestation, with multiple facets involved in modulating the progression and outcome. In this regard, we investigated the role of transcriptionally active microbial co-infections as possible modulators of disease pathology in hospital admitted SARS-CoV-2 infected patients. Specifically, can there be early nasopharyngeal microbial signatures indicative of prospective disease severity? Based on disease severity symptoms, the patients were segregated into clinical sub-phenotypes: mild, moderate, severe (recovered), and mortality. We identified significant presence of transcriptionally active isolates, Achromobacter xylosoxidans and Bacillus cereus in the mortality patients. Importantly, the bacterial species might contribute toward enhancing the inflammatory responses as well as reported to be resistant to common antibiotic therapy, which together hold potential to alter the disease severity and outcome.
Collapse
Affiliation(s)
- Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Uzma Shamim
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aanchal Yadav
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Kriti Khare
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Shweta Sahni
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Sujeet Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
40
|
Giugliano R, Sellitto A, Ferravante C, Rocco T, D'Agostino Y, Alexandrova E, Lamberti J, Palumbo D, Galdiero M, Vaccaro E, Pagliano P, Weisz A, Giurato G, Franci G, Rizzo F. NGS analysis of nasopharyngeal microbiota in SARS-CoV-2 positive patients during the first year of the pandemic in the Campania Region of Italy. Microb Pathog 2022; 165:105506. [PMID: 35358660 PMCID: PMC8958261 DOI: 10.1016/j.micpath.2022.105506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
|
41
|
Neutrophil Extracellular Traps in Severe SARS-CoV-2 Infection: A Possible Impact of LPS and (1→3)-β-D-glucan in Blood from Gut Translocation. Cells 2022; 11:cells11071103. [PMID: 35406667 PMCID: PMC8997739 DOI: 10.3390/cells11071103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to limited data on the link between gut barrier defects (leaky gut) and neutrophil extracellular traps (NETs) in coronavirus disease 2019 (COVID-19), blood samples of COVID-19 cases—mild (upper respiratory tract symptoms without pneumonia; n = 27), moderate (pneumonia without hypoxia; n = 28), and severe (pneumonia with hypoxia; n = 20)—versus healthy control (n = 15) were evaluated, together with in vitro experiments. Accordingly, neutrophil counts, serum cytokines (IL-6 and IL-8), lipopolysaccharide (LPS), bacteria-free DNA, and NETs parameters (fluorescent-stained nuclear morphology, dsDNA, neutrophil elastase, histone–DNA complex, and myeloperoxidase–DNA complex) were found to differentiate COVID-19 severity, whereas serum (1→3)-β-D-glucan (BG) was different between the control and COVID-19 cases. Despite non-detectable bacteria-free DNA in the blood of healthy volunteers, using blood bacteriome analysis, proteobacterial DNA was similarly predominant in both control and COVID-19 cases (all severities). In parallel, only COVID-19 samples from moderate and severe cases, but not mild cases, were activated in vitro NETs, as determined by supernatant dsDNA, Peptidyl Arginine Deiminase 4, and nuclear morphology. With neutrophil experiments, LPS plus BG (LPS + BG) more prominently induced NETs, cytokines, NFκB, and reactive oxygen species, when compared with the activation by each molecule alone. In conclusion, pathogen molecules (LPS and BG) from gut translocation along with neutrophilia and cytokinemia in COVID-19-activated, NETs-induced hyperinflammation.
Collapse
|
42
|
Shilts MH, Rosas-Salazar C, Strickland BA, Kimura KS, Asad M, Sehanobish E, Freeman MH, Wessinger BC, Gupta V, Brown HM, Boone HH, Patel V, Barbi M, Bottalico D, O’Neill M, Akbar N, Rajagopala SV, Mallal S, Phillips E, Turner JH, Jerschow E, Das SR. Severe COVID-19 Is Associated With an Altered Upper Respiratory Tract Microbiome. Front Cell Infect Microbiol 2022; 11:781968. [PMID: 35141167 PMCID: PMC8819187 DOI: 10.3389/fcimb.2021.781968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background The upper respiratory tract (URT) is the portal of entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and SARS-CoV-2 likely interacts with the URT microbiome. However, understanding of the associations between the URT microbiome and the severity of coronavirus disease 2019 (COVID-19) is still limited. Objective Our primary objective was to identify URT microbiome signature/s that consistently changed over a spectrum of COVID-19 severity. Methods Using data from 103 adult participants from two cities in the United States, we compared the bacterial load and the URT microbiome between five groups: 20 asymptomatic SARS-CoV-2-negative participants, 27 participants with mild COVID-19, 28 participants with moderate COVID-19, 15 hospitalized patients with severe COVID-19, and 13 hospitalized patients in the ICU with very severe COVID-19. Results URT bacterial load, bacterial richness, and within-group microbiome composition dissimilarity consistently increased as COVID-19 severity increased, while the relative abundance of an amplicon sequence variant (ASV), Corynebacterium_unclassified.ASV0002, consistently decreased as COVID-19 severity increased. Conclusions We observed that the URT microbiome composition significantly changed as COVID-19 severity increased. The URT microbiome could potentially predict which patients may be more likely to progress to severe disease or be modified to decrease severity. However, further research in additional longitudinal cohorts is needed to better understand how the microbiome affects COVID-19 severity.
Collapse
Affiliation(s)
- Meghan H. Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian Rosas-Salazar
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Britton A. Strickland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kyle S. Kimura
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammad Asad
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Esha Sehanobish
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael H. Freeman
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bronson C. Wessinger
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Veerain Gupta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Hunter M. Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Helen H. Boone
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Viraj Patel
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mali Barbi
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Danielle Bottalico
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Meaghan O’Neill
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nadeem Akbar
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elizabeth Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Justin H. Turner
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elina Jerschow
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Suman R. Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
43
|
Cure MC, Cure E. Prolonged NHE Activation may be both Cause and Outcome of Cytokine Release Syndrome in COVID-19. Curr Pharm Des 2022; 28:1815-1822. [PMID: 35838211 DOI: 10.2174/1381612828666220713121741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
The release of cytokines and chemokines such as IL-1β, IL-2, IL-6, IL-7, IL-10, TNF-α, IFN-γ, CCL2, CCL3, and CXCL10 is increased in critically ill patients with COVID-19. Excessive cytokine release during COVID-19 is related to increased morbidity and mortality. Several mechanisms are put forward for cytokine release syndrome during COVID-19. Here we have mentioned novel pathways. SARS-CoV-2 increases angiotensin II levels by rendering ACE2 nonfunctional. Angiotensin II causes cytokine release via AT1 and AT2 receptors. Moreover, angiotensin II potently stimulates the Na+/H+ exchanger (NHE). It is a pump found in the membranes of many cells that pumps Na+ inward and H+ outward. NHE has nine isoforms. NHE1 is the most common isoform found in endothelial cells and many cells. NHE is involved in keeping the intracellular pH within physiological limits. When the intracellular pH is acidic, NHE is activated, bringing the intracellular pH to physiological levels, ending its activity. Sustained NHE activity is highly pathological and causes many problems. Prolonged NHE activation in COVID-19 may cause a decrease in intracellular pH through H+ ion accumulation in the extracellular area and subsequent redox reactions. The activation reduces the intracellular K+ concentration and leads to Na+ and Ca2+ overload. Increased ROS can cause intense cytokine release by stimulating NF-κB and NLRP3 inflammasomes. Cytokines also cause overstimulation of NHE. As the intracellular pH decreases, SARS-CoV-2 rapidly infects new cells, increasing the viral load. This vicious circle increases morbidity and mortality in patients with COVID-19. On the other hand, SARS-CoV-2 interaction with NHE3 in intestinal tissue is different from other tissues. SARS-CoV-2 can trigger CRS via NHE3 inhibition by disrupting the intestinal microbiota. This review aimed to help develop new treatment models against SARS-CoV-2- induced CRS by revealing the possible effects of SARS-CoV-2 on the NHE.
Collapse
Affiliation(s)
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul, Turkey
| |
Collapse
|
44
|
Nasopharyngeal Microbiota as an early severity biomarker in COVID-19 hospitalised patients: a retrospective cohort study in a Mediterranean area. J Infect 2021; 84:329-336. [PMID: 34963638 PMCID: PMC8709923 DOI: 10.1016/j.jinf.2021.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to analyse the diversity and taxonomic composition of the nasopharyngeal microbiota, to determine its association with COVID-19 clinical outcome. To study the microbiota, we utilized 16S rRNA sequencing of 177 samples that came from a retrospective cohort of COVID-19 hospitalized patients. Raw sequences were processed by QIIME2. The associations between microbiota, invasive mechanical ventilation (IMV), and all-cause mortality were analysed by multiple logistic regression, adjusted for age, gender, and comorbidity. The microbiota α diversity indexes were lower in patients with a fatal outcome, whereas the β diversity analysis showed a significant clustering in these patients. After multivariate adjustment, the presence of Selenomonas spp., Filifactor spp., Actinobacillus spp., or Chroococcidiopsis spp., was associated with a reduction of more than 90% of IMV. Higher diversity and the presence of certain genera in the nasopharyngeal microbiota seem to be early biomarkers of a favourable clinical evolution in hospitalized COVID-19 patients.
Collapse
|