1
|
Kawka L, Fabacher T, Sauleau E, Coury F, Arnaud L. Factors associated with severity and mortality of COVID-19 in patients with connective tissue diseases and rheumatoid arthritis: A nation-wide, population-based analysis of the French national medico-administrative SNDS database. Joint Bone Spine 2024; 92:105818. [PMID: 39551152 DOI: 10.1016/j.jbspin.2024.105818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVES To investigate the risk and predictors of severity and mortality of COVID-19 infection in patients with Connective Tissue Diseases (CTDs). METHODS Using the French nationwide claims and hospitalization database, we assembled a nation-wide exhaustive cohort of adult CTD patients with rheumatoid arthritis, systemic lupus, Sjögren's disease, inflammatory myopathies, systemic sclerosis. We analyzed the rates of hospitalization, severe inpatient stays (intensive care unit [ICU] admissions or in-hospital mortality), and in-hospital mortality with COVID-19 from January 1st to December 31st, 2020. RESULTS The study included 329,276 CTD patients (75.5% female, mean age 65.2±15.3 years). Among these, 3,389 (1.03%) were hospitalized, with COVID-19 infection, 973 (0.29%) required admission to ICU and 713 (0.22%) died. Patients who were hospitalized had severe inpatient stays, or died were predominantly male, older and with comorbidities (P<0.0001 for all). The risk of hospitalization, severe inpatient stay, and death was significantly higher in patients treated with glucocorticoids, leflunomide, sulfasalazine, mycophenolate derivatives, and rituximab (P<0.05 for all). TNF inhibitors were associated with reduced hospitalizations and severe inpatient stays (P<0.05 for all) and methotrexate use was associated with decreased mortality (P<0.01). CONCLUSION In CTD patients with COVID-19, use of glucocorticoids, rituximab, and certain immunosuppressants was associated with severity and mortality, while TNF inhibitors and methotrexate were protective. These findings can guide clinical and public health decisions for this highly vulnerable group.
Collapse
Affiliation(s)
- Lou Kawka
- Department of Rheumatology, National Reference Center for Autoimmune Diseases (RESO), hôpitaux universitaires de Strasbourg, Inserm UMR-S 1109, Strasbourg, France
| | - Thibaut Fabacher
- Public Health, Strasbourg University hospital, Strasbourg, France; Engineering science, computer science and imaging laboratory (ICube), UMR CNRS 7357, Strasbourg, France
| | - Erik Sauleau
- Public Health, Strasbourg University hospital, Strasbourg, France; Engineering science, computer science and imaging laboratory (ICube), UMR CNRS 7357, Strasbourg, France
| | - Fabienne Coury
- Department of Rheumatology, Lyon Sud Hospital, Lyon Immunopathology Federation (LIFe), hospices civils de Lyon, University of Lyon, Inserm UMR 1033, Lyon, France
| | - Laurent Arnaud
- Department of Rheumatology, National Reference Center for Autoimmune Diseases (RESO), hôpitaux universitaires de Strasbourg, Inserm UMR-S 1109, Strasbourg, France.
| |
Collapse
|
2
|
Webber CJ, van de Spek SJF, Cruz AL, Puri S, Zhang C, Aw JTM, Papadimitriou GZ, Roberts R, Jiang K, Tran TN, Zhang L, Taylor A, Wang Z, Porter J, Sotiropoulos I, Emili A, Silva J, Li H, Wolozin B. TIA1 Mediates Divergent Inflammatory Responses to Tauopathy in Microglia and Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622325. [PMID: 39574689 PMCID: PMC11580906 DOI: 10.1101/2024.11.06.622325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The RNA binding protein TIA1 is known to regulate stress responses. Here we show that TIA1 plays a much broader role in inflammatory cells, being required for the microglial sensome. We crossed TIA1 cKO mice (using a CX3CR1 driven cre element) to PS19 MAPT P301S tauopathy mice. The peripheral macrophages of TIA1 cKO mice exhibited a hyper-inflammatory phenotype with increased cytokine signaling, as expected. Surprisingly, the brains of these mice showed striking reductions in inflammation, including decreases in microglial inflammatory cytokines (TNFα and IL-1β) and sensome markers (CLEC7A, TREM2, ITGAX); these reductions were accompanied by corresponding decreases in tau pathology. Analysis of the brain TIA1 protein interactome identified brain selective TIA1 protein mediated pathways, including strong interactions with the microglial protein C1q, which directs pruning of dystrophic neurons. These results uncover a previously unknown regulatory role for TIA1 in microglial activation in the context of neurodegenerative disease and highlights the divergent regulation of two mononuclear phagocytic lineages: microglia and macrophages.
Collapse
Affiliation(s)
- Chelsea J. Webber
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
- Dept. of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Sophie J. F. van de Spek
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Anna Lourdes Cruz
- Dept. of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
- Dept. of Neuroscience, Johns Hopkins Medical Center, Baltimore, MD
| | - Sambhavi Puri
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Cheng Zhang
- Dept. of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Jacqueline T. M. Aw
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Georgia-Zeta Papadimitriou
- Laboratory of Brain Exosomes & Pathology, Institute of Biosciences & Applications, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Rebecca Roberts
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Kiki Jiang
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Thuc Nhan Tran
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Lushuang Zhang
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Alexandria Taylor
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Zihan Wang
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Jacob Porter
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, OR
| | - Ionnis Sotiropoulos
- Laboratory of Brain Exosomes & Pathology, Institute of Biosciences & Applications, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andrew Emili
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, OR
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hu Li
- Dept. of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Benjamin Wolozin
- Dept. of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
- Dept. of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, OR
| |
Collapse
|
3
|
Medina MA, Fuentes-Villalobos F, Quevedo C, Aguilera F, Riquelme R, Rioseco ML, Barria S, Pinos Y, Calvo M, Burbulis I, Kossack C, Alvarez RA, Garrido JL, Barria MI. Longitudinal transcriptional changes reveal genes from the natural killer cell-mediated cytotoxicity pathway as critical players underlying COVID-19 progression. eLife 2024; 13:RP94242. [PMID: 39470726 PMCID: PMC11521369 DOI: 10.7554/elife.94242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Patients present a wide range of clinical severities in response severe acute respiratory syndrome coronavirus 2 infection, but the underlying molecular and cellular reasons why clinical outcomes vary so greatly within the population remains unknown. Here, we report that negative clinical outcomes in severely ill patients were associated with divergent RNA transcriptome profiles in peripheral immune cells compared with mild cases during the first weeks after disease onset. Protein-protein interaction analysis indicated that early-responding cytotoxic natural killer cells were associated with an effective clearance of the virus and a less severe outcome. This innate immune response was associated with the activation of select cytokine-cytokine receptor pathways and robust Th1/Th2 cell differentiation profiles. In contrast, severely ill patients exhibited a dysregulation between innate and adaptive responses affiliated with divergent Th1/Th2 profiles and negative outcomes. This knowledge forms the basis of clinical triage that may be used to preemptively detect high-risk patients before life-threatening outcomes ensue.
Collapse
Affiliation(s)
- Matias A Medina
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | | | - Claudio Quevedo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Raul Riquelme
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Maria Luisa Rioseco
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Sebastian Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | | | - Mario Calvo
- Instituto de Medicina, Facultad de Medicina, Universidad AustralValdiviaChile
| | - Ian Burbulis
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Camila Kossack
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Raymond A Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jose Luis Garrido
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Maria Ines Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| |
Collapse
|
4
|
Merchant M, Ashraf J, Masood KI, Yameen M, Hussain R, Nasir A, Hasan Z. SARS-CoV-2 variants induce increased inflammatory gene expression but reduced interferon responses and heme synthesis as compared with wild type strains. Sci Rep 2024; 14:25734. [PMID: 39468120 PMCID: PMC11519399 DOI: 10.1038/s41598-024-76401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
SARS-CoV-2 variants of concern (VOC) have been associated with increased viral transmission and disease severity. We investigated the mechanisms of pathogenesis caused by variants using a host blood transcriptome profiling approach. We analysed transcriptional signatures of COVID-19 patients comparing those infected with wildtype (wt), alpha, delta or omicron strains seeking insights into infection in Asymptomatic cases.Comparison of transcriptional profiles of Symptomatic and Asymptomatic COVID-19 cases showed increased differentially regulated gene (DEGs) of inflammatory, apoptosis and blood coagulation pathways, with decreased T cell and Interferon stimulated genes (ISG) activation. Between SARS-CoV-2 strains, an increasing number of DEGs occurred in comparisons between wt and alpha (196), delta (1425) or, omicron (2313) infections. COVID-19 cases with alpha or, delta variants demonstrated suppression transcripts of innate immune pathways. EGR1 and CXCL8 were highly upregulated in those infected with VOC; heme biosynthetic pathway genes (ALAS2, HBB, HBG1, HBD9) and ISGs were downregulated. Delta and omicron infections upregulated ribosomal pathways, reflecting increased viral RNA translation. Asymptomatic COVID-19 cases infected with delta infections showed increased cytokines and ISGs expression. Overall, increased inflammation, with reduced host heme synthesis was associated with infections caused by VOC infections, with raised type I interferon in cases with less severe disease.
Collapse
Affiliation(s)
- Mariam Merchant
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Javaria Ashraf
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Maliha Yameen
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Rabia Hussain
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
5
|
Paran FJ, Oyama R, Khasawneh A, Ai T, Ismanto HS, Sherif AA, Saputri DS, Ono C, Saita M, Takei S, Horiuchi Y, Yagi K, Matsuura Y, Okazaki Y, Takahashi K, Standley DM, Tabe Y, Naito T. BCR, not TCR, repertoire diversity is associated with favorable COVID-19 prognosis. Front Immunol 2024; 15:1405013. [PMID: 39530088 PMCID: PMC11550956 DOI: 10.3389/fimmu.2024.1405013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The SARS-CoV-2 pandemic has had a widespread and severe impact on society, yet there have also been instances of remarkable recovery, even in critically ill patients. Materials and methods In this study, we used single-cell RNA sequencing to analyze the immune responses in recovered and deceased COVID-19 patients during moderate and critical stages. Results Expanded T cell receptor (TCR) clones were predominantly SARS-CoV-2-specific, but represented only a small fraction of the total repertoire in all patients. In contrast, while deceased patients exhibited monoclonal B cell receptor (BCR) expansions without COVID-19 specificity, survivors demonstrated diverse and specific BCR clones. These findings suggest that neither TCR diversity nor BCR monoclonal expansions are sufficient for viral clearance and subsequent recovery. Differential gene expression analysis revealed that protein biosynthetic processes were enriched in survivors, but that potentially damaging mitochondrial ATP metabolism was activated in the deceased. Conclusion This study underscores that BCR repertoire diversity, but not TCR diversity, correlates with favorable outcomes in COVID-19.
Collapse
MESH Headings
- Humans
- COVID-19/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- SARS-CoV-2/immunology
- Prognosis
- Male
- Female
- Middle Aged
- Aged
- Single-Cell Analysis
- Adult
- B-Lymphocytes/immunology
Collapse
Affiliation(s)
- Faith Jessica Paran
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Rieko Oyama
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Abdullah Khasawneh
- Leading Center for the Development and Research of Cancer Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University, Urayasu Hospital, Chiba, Japan
| | - Hendra Saputra Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Dianita Susilo Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Mizue Saita
- Department of General Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Satomi Takei
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ken Yagi
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN, Yokohama, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN, Yokohama, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of General Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
6
|
Ren J, Gao Q, Zhou X, Chen L, Guo W, Feng K, Hu J, Huang T, Cai YD. Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach. Vaccine 2024; 42:126253. [PMID: 39182316 DOI: 10.1016/j.vaccine.2024.126253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Viral infections significantly impact the immune system, and impact will persist until recovery. However, the influence of severe acute respiratory syndrome coronavirus 2 infection on the homeostatic immune status and secondary immune response in recovered patients remains unclear. To investigate these persistent alterations, we employed five feature-ranking algorithms (LASSO, MCFS, RF, CATBoost, and XGBoost), incremental feature selection, synthetic minority oversampling technique and two classification algorithms (decision tree and k-nearest neighbors) to analyze multi-omics data (surface proteins and transcriptome) from coronavirus disease 2019 (COVID-19) recovered patients and healthy controls post-influenza vaccination. The single-cell multi-omics dataset was divided into five subsets corresponding to five immune cell subtypes: B cells, CD4+ T cells, CD8+ T cells, Monocytes, and Natural Killer cells. Each cell was represented by 28,402 scRNA-seq (RNA) features, 3 Hash Tag Oligo (HTO) features, 138 Cellular indexing of transcriptomes and epitopes by sequencing (CITE) features and 23,569 Single Cell Transform (SCT) features. Some multi-omics markers were identified and effective classifiers were constructed. Our findings indicate a distinct immune status in COVID-19 recovered patients, characterized by low expression of ribosomal protein (RPS26) and high expression of immune cell surface proteins (CD33, CD48). Notably, TMEM176B, a membrane protein, was highly expressed in monocytes of COVID-19 convalescent patients. These observations aid in discerning molecular differences among immune cell subtypes and contribute to understanding the prolonged effects of COVID-19 on the immune system, which is valuable for treating infectious diseases like COVID-19.
Collapse
Affiliation(s)
- JingXin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Qian Gao
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - XianChao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Jerry Hu
- Department of Natural Sciences and Mathematics, College of Natural and Applied Science, University of Houston - Victoria, Victoria, TX 77901, USA.
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Compeer B, Neijzen TR, van Lelyveld SFL, Martina BEE, Russell CA, Goeijenbier M. Uncovering the Contrasts and Connections in PASC: Viral Load and Cytokine Signatures in Acute COVID-19 versus Post-Acute Sequelae of SARS-CoV-2 (PASC). Biomedicines 2024; 12:1941. [PMID: 39335455 PMCID: PMC11428903 DOI: 10.3390/biomedicines12091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The recent global COVID-19 pandemic has had a profound and enduring impact, resulting in substantial loss of life. The scientific community has responded unprecedentedly by investigating various aspects of the crisis, particularly focusing on the acute phase of COVID-19. The roles of the viral load, cytokines, and chemokines during the acute phase and in the context of patients who experienced enduring symptoms upon infection, so called Post-Acute Sequelae of COVID-19 or PASC, have been studied extensively. Here, in this review, we offer a virologist's perspective on PASC, highlighting the dynamics of SARS-CoV-2 viral loads, cytokines, and chemokines in different organs of patients across the full clinical spectrum of acute-phase disease. We underline that the probability of severe or critical disease progression correlates with increased viral load levels detected in the upper respiratory tract (URT), lower respiratory tract (LRT), and plasma. Acute-phase viremia is a clear, although not unambiguous, predictor of PASC development. Moreover, both the quantity and diversity of functions of cytokines and chemokines increase with acute-phase disease severity. Specific cytokines remain or become elevated in the PASC phase, although the driving factor of ongoing inflammation found in patients with PASC remains to be investigated. The key findings highlighted in this review contribute to a further understanding of PASC and their differences and overlap with acute disease.
Collapse
Affiliation(s)
- Brandon Compeer
- Artemis Bioservices B.V., 2629 JD Delft, The Netherlands
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Tobias R Neijzen
- Department of Intensive Care Medicine, Spaarne Gasthuis, 2035 RC Haarlem, The Netherlands
| | | | | | - Colin A Russell
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
- Department of Intensive Care, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Pechous RD, Malaviarachchi PA, Banerjee SK, Byrum SD, Alkam DH, Ghaffarieh A, Kurten RC, Kennedy JL, Zhang X. An ex vivo human precision-cut lung slice platform provides insight into SARS-CoV-2 pathogenesis and antiviral drug efficacy. J Virol 2024; 98:e0079424. [PMID: 38940558 PMCID: PMC11265413 DOI: 10.1128/jvi.00794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has claimed millions of lives since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and lung disease appears the primary cause of death in COVID-19 patients. However, the underlying mechanisms of COVID-19 pathogenesis remain elusive, and there is no existing model where human disease can be faithfully recapitulated and conditions for the infection process can be experimentally controlled. Herein we report the establishment of an ex vivo human precision-cut lung slice (hPCLS) platform for studying SARS-CoV-2 pathogenicity and innate immune responses, and for evaluating the efficacy of antiviral drugs against SARS-CoV-2. We show that while SARS-CoV-2 continued to replicate during the course of infection of hPCLS, infectious virus production peaked within 2 days, and rapidly declined thereafter. Although most proinflammatory cytokines examined were induced by SARS-CoV-2 infection, the degree of induction and types of cytokines varied significantly among hPCLS from individual donors. Two cytokines in particular, IP-10 and IL-8, were highly and consistently induced, suggesting a role in the pathogenesis of COVID-19. Histopathological examination revealed focal cytopathic effects late in the infection. Transcriptomic and proteomic analyses identified molecular signatures and cellular pathways that are largely consistent with the progression of COVID-19 in patients. Furthermore, we show that homoharringtonine, a natural plant alkaloid derived from Cephalotoxus fortunei, not only inhibited virus replication but also production of pro-inflammatory cytokines, and thus ameliorated the histopathological changes caused by SARS-CoV-2 infection, demonstrating the usefulness of the hPCLS platform for evaluating antiviral drugs. IMPORTANCE Here, established an ex vivo human precision-cut lung slice platform for assessing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, viral replication kinetics, innate immune response, disease progression, and antiviral drugs. Using this platform, we identified early induction of specific cytokines, especially IP-10 and IL-8, as potential predictors for severe coronavirus disease 2019 (COVID-19), and uncovered a hitherto unrecognized phenomenon that while infectious virus disappears at late times of infection, viral RNA persists and lung histopathology commences. This finding may have important clinical implications for both acute and post-acute sequelae of COVID-19. This platform recapitulates some of the characteristics of lung disease observed in severe COVID-19 patients and is therefore a useful platform for understanding mechanisms of SARS-CoV-2 pathogenesis and for evaluating the efficacy of antiviral drugs.
Collapse
Affiliation(s)
- Roger D. Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Priyangi A. Malaviarachchi
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Srijon K. Banerjee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Duah H. Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Alireza Ghaffarieh
- Department of Ophthalmology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Richard C. Kurten
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Lung Cell Biology Laboratory, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Joshua L. Kennedy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Lung Cell Biology Laboratory, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Armignacco R, Carlier N, Jouinot A, Birtolo MF, de Murat D, Tubach F, Hausfater P, Simon T, Gorochov G, Pourcher V, Beurton A, Goulet H, Manivet P, Bertherat J, Assié G. Whole blood transcriptome signature predicts severe forms of COVID-19: Results from the COVIDeF cohort study. Funct Integr Genomics 2024; 24:107. [PMID: 38772950 PMCID: PMC11108918 DOI: 10.1007/s10142-024-01359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
COVID-19 is associated with heterogeneous outcome. Early identification of a severe progression of the disease is essential to properly manage the patients and improve their outcome. Biomarkers reflecting an increased inflammatory response, as well as individual features including advanced age, male gender, and pre-existing comorbidities, are risk factors of severe COVID-19. Yet, these features show limited accuracy for outcome prediction. The aim was to evaluate the prognostic value of whole blood transcriptome at an early stage of the disease. Blood transcriptome of patients with mild pneumonia was profiled. Patients with subsequent severe COVID-19 were compared to those with favourable outcome, and a molecular predictor based on gene expression was built. Unsupervised classification discriminated patients who would later develop a COVID-19-related severe pneumonia. The corresponding gene expression signature reflected the immune response to the viral infection dominated by a prominent type I interferon, with IFI27 among the most over-expressed genes. A 48-genes transcriptome signature predicting the risk of severe COVID-19 was built on a training cohort, then validated on an external independent cohort, showing an accuracy of 81% for predicting severe outcome. These results identify an early transcriptome signature of severe COVID-19 pneumonia, with a possible relevance to improve COVID-19 patient management.
Collapse
Affiliation(s)
- Roberta Armignacco
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France.
| | - Nicolas Carlier
- Service de Pneumologie, AP-HP, Hôpital Cochin, 75014, Paris, France
| | - Anne Jouinot
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, 75014, Paris, France
| | | | - Daniel de Murat
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie Et de Santé Publique, AP-HP, 1901, F-75013, Paris, France
| | - Pierre Hausfater
- Emergency Department, APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, GRC-14 BIOSFAST, CIMI, UMR 1135, Sorbonne Université, Paris, France
| | - Tabassome Simon
- Service de Pharmacologie, Plateforme de Recherche Clinique URC-CRC-CRB de L'Est Parisien, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Sorbonne Université, Paris, France
| | - Guy Gorochov
- Centre d'Immunologie Et Des Maladies Infectieuses (CIMI), Department of Immunology, Sorbonne Université, Inserm, Hôpital Pitié Salpêtrière, Groupe Hospitalo-Universitaire Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Valérie Pourcher
- Department of Infectious Diseases, Hôpital Pitié Salpêtrière, Groupe Hospitalo-Universitaire Assistance Publique - Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Alexandra Beurton
- Service de Médecine Intensive Réanimation EOLE - Département R3S - Sorbonne, Université - Hôpital Universitaire Pitié - Salpêtrière - Assistance Publique Hôpitaux de Paris - 83 Boulevard de L'Hôpital, 75013, Paris, France
- UMRS 1158 Inserm-Sorbonne Université "Neurophysiologie Respiratoire Expérimentale Et Clinique'' Intensive Care Unit, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hélène Goulet
- Emergency Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Manivet
- INSERM UMR 1141 "NeuroDiderot", Université Paris Cité, FHU I2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Jérôme Bertherat
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, 75014, Paris, France
| | - Guillaume Assié
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France.
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|
10
|
Pei J, Zhang J, Yu C, Luo J, Wen S, Hua Y, Wei G. Transcriptomics-based identification of TYROBP and TLR8 as novel macrophage-related biomarkers for the diagnosis of acute rejection after kidney transplantation. Biochem Biophys Res Commun 2024; 709:149790. [PMID: 38564938 DOI: 10.1016/j.bbrc.2024.149790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Macrophages play an important role in the development and progression of acute rejection after kidney transplantation. The study aims to investigate the biological role and significance of macrophage-associated genes (MAG) in acute rejection after kidney transplantation. We utilized transcriptome sequencing results from public databases related to acute rejection of kidney transplantation for comprehensive analysis and validation in animal experiments. We found that a large number of immune-related signaling pathways are activated in acute rejection. PPI protein interaction networks and machine learning were used to establish a Hub gene consisting of TYROBP and TLR8 for the diagnosis of acute rejection. The single-gene GSEA enrichment analysis and immune cell correlation analysis revealed a close correlation between the expression of Hub genes and immune-related biological pathways as well as the expression of multiple immune cells. In addition, the study of TF, miRNAs, and drugs provided a theoretical basis for regulating and treating the Hub genes in acute rejection. Finally, the animal experiments demonstrated once again that acute rejection can aggravate kidney tissue damage, apoptosis level, and increase the release of inflammatory factors. We established and validated a macrophage-associated diagnostic model for acute rejection after kidney transplantation, which can accurately diagnose the biological alterations in acute rejection after kidney transplantation.
Collapse
Affiliation(s)
- Jun Pei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jie Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Chengjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jin Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Sheng Wen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi Hua
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China.
| |
Collapse
|
11
|
Antia A, Alvarado DM, Zeng Q, Casorla-Perez LA, Davis DL, Sonnek NM, Ciorba MA, Ding S. SARS-CoV-2 Omicron BA.1 Variant Infection of Human Colon Epithelial Cells. Viruses 2024; 16:634. [PMID: 38675974 PMCID: PMC11055019 DOI: 10.3390/v16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - David M. Alvarado
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - Luis A. Casorla-Perez
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Deanna L. Davis
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Naomi M. Sonnek
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Matthew A. Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| |
Collapse
|
12
|
Wang Y, Thaler M, Salgado‐Benvindo C, Ly N, Leijs AA, Ninaber DK, Hansbro PM, Boedijono F, van Hemert MJ, Hiemstra PS, van der Does AM, Faiz A. SARS-CoV-2-infected human airway epithelial cell cultures uniquely lack interferon and immediate early gene responses caused by other coronaviruses. Clin Transl Immunology 2024; 13:e1503. [PMID: 38623540 PMCID: PMC11017760 DOI: 10.1002/cti2.1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/22/2023] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
Objectives Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of a class of highly pathogenic coronaviruses. The large family of coronaviruses, however, also includes members that cause only mild symptoms, like human coronavirus-229E (HCoV-229E) or OC43 (HCoV-OC43). Unravelling how molecular (and cellular) pathophysiology differs between highly and low pathogenic coronaviruses is important for the development of therapeutic strategies. Methods Here, we analysed the transcriptome of primary human bronchial epithelial cells (PBEC), differentiated at the air-liquid interface (ALI) after infection with SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV and HCoV-229E using bulk RNA sequencing. Results ALI-PBEC were efficiently infected by all viruses, and SARS-CoV, MERS-CoV and HCoV-229E infection resulted in a largely similar transcriptional response. The response to SARS-CoV-2 infection differed markedly as it uniquely lacked the increase in expression of immediate early genes, including FOS, FOSB and NR4A1 that was observed with all other coronaviruses. This finding was further confirmed in publicly available experimental and clinical datasets. Interfering with NR4A1 signalling in Calu-3 lung epithelial cells resulted in a 100-fold reduction in extracellular RNA copies of SARS-CoV-2 and MERS-CoV, suggesting an involvement in virus replication. Furthermore, a lack in induction of interferon-related gene expression characterised the main difference between the highly pathogenic coronaviruses and low pathogenic viruses HCoV-229E and HCoV-OC43. Conclusion Our results demonstrate a previously unknown suppression of a host response gene set by SARS-CoV-2 and confirm a difference in interferon-related gene expression between highly pathogenic and low pathogenic coronaviruses.
Collapse
Affiliation(s)
- Ying Wang
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Melissa Thaler
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Nathan Ly
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| | - Anouk A Leijs
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dennis K Ninaber
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Philip M Hansbro
- Centre for InflammationCentenary Institute and University of Technology Sydney, Faculty of ScienceSydneyNSWAustralia
| | - Fia Boedijono
- Centre for InflammationCentenary Institute and University of Technology Sydney, Faculty of ScienceSydneyNSWAustralia
| | - Martijn J van Hemert
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Pieter S Hiemstra
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anne M van der Does
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
13
|
Tanneti NS, Patel AK, Tan LH, Marques AD, Perera RAPM, Sherrill-Mix S, Kelly BJ, Renner DM, Collman RG, Rodino K, Lee C, Bushman FD, Cohen NA, Weiss SR. Comparison of SARS-CoV-2 variants of concern in primary human nasal cultures demonstrates Delta as most cytopathic and Omicron as fastest replicating. mBio 2024; 15:e0312923. [PMID: 38477472 PMCID: PMC11005367 DOI: 10.1128/mbio.03129-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses, including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation, and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN-stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper respiratory tract and least favorable in the lower respiratory cell line, and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals. IMPORTANCE Comparative analysis of infections by SARS-CoV-2 ancestral virus and variants of concern, including Alpha, Beta, Delta, and Omicron, indicated that variants were selected for efficiency in replication. In infections of patient-derived primary nasal cultures grown at air-liquid interface to model upper respiratory infection, Omicron reached the highest titers at early time points, a finding that was confirmed by parallel population sampling studies. While all infections overcame dsRNA-mediated host responses, infections with Omicron induced the strongest interferon and interferon-stimulated gene response. In both primary nasal cultures and lower respiratory cell line, infections by Delta were most damaging to the cells as indicated by syncytia formation, loss of cell barrier integrity, and nasal ciliary function.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anant K. Patel
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Li Hui Tan
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew D. Marques
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ranawaka A. P. M. Perera
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brendan J. Kelly
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle Rodino
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carole Lee
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Noam A. Cohen
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Shahbaz MA, Kuivanen S, Lampinen R, Mussalo L, Hron T, Závodná T, Ojha R, Krejčík Z, Saveleva L, Tahir NA, Kalapudas J, Koivisto AM, Penttilä E, Löppönen H, Singh P, Topinka J, Vapalahti O, Chew S, Balistreri G, Kanninen KM. Human-derived air-liquid interface cultures decipher Alzheimer's disease-SARS-CoV-2 crosstalk in the olfactory mucosa. J Neuroinflammation 2023; 20:299. [PMID: 38098019 PMCID: PMC10722731 DOI: 10.1186/s12974-023-02979-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Suvi Kuivanen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Virology, 10117, Berlin, Germany
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Laura Mussalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Tomáš Hron
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Numan Ahmad Tahir
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
- Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | | | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- The Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
16
|
de Pablo N, Meana C, Martínez‐García J, Martínez‐Vicente P, Albert M, Guerra S, Angulo A, Balsinde J, Balboa MA. Lipin-2 regulates the antiviral and anti-inflammatory responses to interferon. EMBO Rep 2023; 24:e57238. [PMID: 37929625 PMCID: PMC10702840 DOI: 10.15252/embr.202357238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Interferons (IFN) are crucial antiviral and immunomodulatory cytokines that exert their function through the regulation of a myriad of genes, many of which are not yet characterized. Here, we reveal that lipin-2, a phosphatidic acid phosphatase whose mutations produce an autoinflammatory syndrome known as Majeed syndrome in humans, is regulated by IFN in a STAT-1-dependent manner. Lipin-2 inhibits viral replication both in vitro and in vivo. Moreover, lipin-2 also acts as a regulator of inflammation in a viral context by reducing the signaling through TLR3 and the generation of ROS and release of mtDNA that ultimately activate the NLRP3 inflammasome. Inhibitors of mtDNA release from mitochondria restrict IL-1β production in lipin-2-deficient animals in a model of viral infection. Finally, analyses of databases from COVID-19 patients show that LPIN2 expression levels negatively correlate with the severity of the disease. Overall, these results uncover novel regulatory mechanisms of the IFN response driven by lipin-2 and open new perspectives for the future management of patients with LPIN2 mutations.
Collapse
Affiliation(s)
- Nagore de Pablo
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
| | - Clara Meana
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Javier Martínez‐García
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Pablo Martínez‐Vicente
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Manuel Albert
- Departamento de Medicina Preventiva y Salud Pública, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
| | - Susana Guerra
- Departamento de Medicina Preventiva y Salud Pública, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Jesús Balsinde
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - María A Balboa
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
17
|
Potamias G, Gkoublia P, Kanterakis A. The two-stage molecular scenery of SARS-CoV-2 infection with implications to disease severity: An in-silico quest. Front Immunol 2023; 14:1251067. [PMID: 38077337 PMCID: PMC10699200 DOI: 10.3389/fimmu.2023.1251067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction The two-stage molecular profile of the progression of SARS-CoV-2 (SCOV2) infection is explored in terms of five key biological/clinical questions: (a) does SCOV2 exhibits a two-stage infection profile? (b) SARS-CoV-1 (SCOV1) vs. SCOV2: do they differ? (c) does and how SCOV2 differs from Influenza/INFL infection? (d) does low viral-load and (e) does COVID-19 early host response relate to the two-stage SCOV2 infection profile? We provide positive answers to the above questions by analyzing the time-series gene-expression profiles of preserved cell-lines infected with SCOV1/2 or, the gene-expression profiles of infected individuals with different viral-loads levels and different host-response phenotypes. Methods Our analytical methodology follows an in-silico quest organized around an elaborate multi-step analysis pipeline including: (a) utilization of fifteen gene-expression datasets from NCBI's gene expression omnibus/GEO repository; (b) thorough designation of SCOV1/2 and INFL progression stages and COVID-19 phenotypes; (c) identification of differentially expressed genes (DEGs) and enriched biological processes and pathways that contrast and differentiate between different infection stages and phenotypes; (d) employment of a graph-based clustering process for the induction of coherent groups of networked genes as the representative core molecular fingerprints that characterize the different SCOV2 progression stages and the different COVID-19 phenotypes. In addition, relying on a sensibly selected set of induced fingerprint genes and following a Machine Learning approach, we devised and assessed the performance of different classifier models for the differentiation of acute respiratory illness/ARI caused by SCOV2 or other infections (diagnostic classifiers), as well as for the prediction of COVID-19 disease severity (prognostic classifiers), with quite encouraging results. Results The central finding of our experiments demonstrates the down-regulation of type-I interferon genes (IFN-1), interferon induced genes (ISGs) and fundamental innate immune and defense biological processes and molecular pathways during the early SCOV2 infection stages, with the inverse to hold during the later ones. It is highlighted that upregulation of these genes and pathways early after infection may prove beneficial in preventing subsequent uncontrolled hyperinflammatory and potentially lethal events. Discussion The basic aim of our study was to utilize in an intuitive, efficient and productive way the most relevant and state-of-the-art bioinformatics methods to reveal the core molecular mechanisms which govern the progression of SCOV2 infection and the different COVID-19 phenotypes.
Collapse
Affiliation(s)
- George Potamias
- Computational Biomedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Polymnia Gkoublia
- Computational Biomedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
- Graduate Bioinformatics Program, School of Medicine, University of Crete, Heraklion, Greece
| | - Alexandros Kanterakis
- Computational Biomedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| |
Collapse
|
18
|
Al-Zahrani MH, Alghamdi RA, Tarbiah NI, Alkhattabi NA, Joharjy HM, Khalifa RA. Role of CD27 and SAMHD1 and their genetic susceptibility to COVID-19. Saudi J Biol Sci 2023; 30:103821. [PMID: 38020556 PMCID: PMC10666556 DOI: 10.1016/j.sjbs.2023.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
SARS-CoV-2, which initiated the worldwide COVID-19 epidemic in 2019, has rapidly emerged and spread, resulting in significant public health challenges worldwide. The COVID-19 severity signs and their association with specific genes have been investigated to better comprehend this phenomenon. In this study, several genes were investigated to see whether they correspond with COVID-19 sickness severity. This research aims to determine and evaluate certain gene expression levels associated with the immune system, as these genes were reported to play important roles in immune control during the COVID-19 outbreak. We analyzed two immunity-linked genes: CD27 and SAMHD1 in COVID-19 patients' samples using RT-PCR, compared them to the samples from recovered, immunized, and healthy individuals. These data were examined to determine the potential relationships between clinical patterns, illness severity, and progression, and SARS-CoV-2 infection immunology. We observed that CD27 gene expression was higher in COVID-19 vaccinated and control groups, but lower in active and recovered COVID-19 patients. On the other hand, SAMHD1 gene expression was elevated in infected and recovered COVID-19 groups. According to our study, the proteins CD27 and SAMHD1 are essential for controlling the immunological response to COVID-19. Changes in their expression levels could increase the susceptibility of patients to severe complications associated with the disease. Therefore, the gene expression level of these proteins could serve as viable prognostic markers for COVID-19.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rana A. Alghamdi
- Department of Chemistry, Sciences and Arts College, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Nesrin I. Tarbiah
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nuha A. Alkhattabi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Husam M. Joharjy
- Infection Control Department, King Abdulaziz Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Reham A. Khalifa
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo 11371, Egypt
| |
Collapse
|
19
|
Bahgat MM, Nadeem R, Nasraa MH, Amer K, Hassan WA, ELGarhy FM, Reda S, Abd-Elshafy DN. Proinflammatory Cytokine Profiles in Both Mild Symptomatic and Asymptomatic SARS-CoV-2-Infected Egyptian Individuals and a Proposed Relationship to Post-COVID-19 Sequela. Viral Immunol 2023; 36:600-609. [PMID: 37831918 DOI: 10.1089/vim.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection is associated with proinflammatory cytokine release as mediators of host antiviral response to the infection. Cytokine persistent elevation leads to post-Coronavirus disease-2019 (COVID-19) post-COVID-19 sequela (PCS) reported in about 60% of patients affecting individual's normal life after recovery. This study evaluates relationship of cytokines and chemokines pattern during and postinfection to PCS events. Serum samples collected from 82 individuals with symptomatic, asymptomatic, or no SARS-CoV-2 infection were classified as recently or formerly infected groups according to levels of anti-2019nCoV Immunoglobulin G/Immunoglobulin M. Levels of interleukin (IL)-1α, IL-1β, IL-6, IL-8, interferon alpha (IFN-α), tumor necrosis factor alpha (TNF-α), granulocyte macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein-1 were assessed via ELISA for each individual. All asymptomatic groups showed nonsignificant differences in cytokines' levels than control group. Significant elevation of IFN-α, TNF-α, and GM-CSF levels were observed in recent symptomatic, while IFN-α and TNF-α levels were significant in former symptomatic groups. We observed an association between fever with IL-1α and IFN-α levels, fatigue with TNF-α and GM-CSF, dyspnea with IFN-α, TNF-α, and GM-CSF, and chest-wheezing with GM-CSF. Individuals were surveyed 12 months postsampling for PCS events. Among 35 responders to survey, 8 (22.8%) reported PCS events, 6 of which were females. Upon studying PCS events, IL-8, IFN-α, TNF-α, and GM-CSF levels showed significant elevation in active infection, that was not seen in a resolved state of infection. Cytokines patterns suggest that either a persistent elevation in levels or damage caused during infection contributes to PCS. Although with the limited sample size, our study emphasizes the importance to conduct medical approaches targeting the associated cytokines to improve the PCS symptoms.
Collapse
Affiliation(s)
- Mahmoud M Bahgat
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, The National Research Centre, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Cairo, Egypt
| | - Rola Nadeem
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, The National Research Centre, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Cairo, Egypt
| | - Mohamed H Nasraa
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, The National Research Centre, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Cairo, Egypt
| | - Khaled Amer
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Wael A Hassan
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Fadya M ELGarhy
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Salem Reda
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Dina N Abd-Elshafy
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Cairo, Egypt
- Department of Water Pollution Research, Environmental and Climate Change Research Institute, The National Research Centre, Cairo, Egypt
| |
Collapse
|
20
|
Shoraka S, Mohebbi SR, Hosseini SM, Zali MR. Comparison of plasma mitochondrial DNA copy number in asymptomatic and symptomatic COVID-19 patients. Front Microbiol 2023; 14:1256042. [PMID: 37869674 PMCID: PMC10587688 DOI: 10.3389/fmicb.2023.1256042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Since the beginning of the COVID-19 pandemic, a wide clinical spectrum, from asymptomatic infection to mild or severe disease and death, have been reported in COVID-19 patients. Studies have suggested several possible factors, which may affect the clinical outcome of COVID-19. A pro-inflammatory state and impaired antiviral response have been suggested as major contributing factors in severe COVID-19. Considering that mitochondria have an important role in regulating the immune responses to pathogens, pro-inflammatory signaling, and cell death, it has received much attention in SARS-CoV-2 infection. Recent studies have demonstrated that high levels of cell-free mitochondrial DNA (cf-mtDNA) are associated with an increased risk of COVID-19 intensive care unit (ICU) admission and mortality. However, there have been few studies on cf-mtDNA in SARS-CoV-2 infection, mainly focusing on critically ill COVID-19 cases. In the present study, we investigated cf-mtDNA copy number in COVID-19 patients and compared between asymptomatic and symptomatic cases, and assessed the clinical values. We also determined the cf-nuclear DNA (cf-nDNA) copy number and mitochondrial transcription factor A (TFAM) mRNA level in the studied groups. Materials and methods Plasma and buffy coat samples were collected from 37 COVID-19 patients and 33 controls. Briefly, after total DNA extraction, plasma cf-mtDNA, and cf-nDNA copy numbers were measured by absolute qPCR using a standard curve method. Furthermore, after total RNA extraction from buffy coat and cDNA synthesis, TFAM mRNA levels were evaluated by qPCR. Results The results showed that cf-mtDNA levels in asymptomatic COVID-19 patients were statistically significantly higher than in symptomatic cases (p value = 0.01). However, cf-nDNA levels were higher in symptomatic patients than in asymptomatic cases (p value = 0.00). There was no significant difference between TFAM levels in the buffy coat of these two groups (p value > 0.05). Also, cf-mtDNA levels showed good diagnostic potential in COVID-19 subgroups. Conclusion cf-mtDNA is probably important in the outcome of SARS-CoV-2 infection due to its role in inflammation and immune response. It can also be a promising candidate biomarker for the diagnosis of COVID-19 subgroups. Further investigation will help understanding the COVID-19 pathophysiology and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Banerjee U, Chunchanur S, R A, Balaji KN, Singh A, Chakravortty D, Chandra N. Systems-level profiling of early peripheral host-response landscape variations across COVID-19 severity states in an Indian cohort. Genes Immun 2023; 24:183-193. [PMID: 37438430 DOI: 10.1038/s41435-023-00210-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Host immune response to COVID-19 plays a significant role in regulating disease severity. Although big data analysis has provided significant insights into the host biology of COVID-19 across the world, very few such studies have been performed in the Indian population. This study utilizes a transcriptome-integrated network analysis approach to compare the immune responses between asymptomatic or mild and moderate-severe COVID-19 patients in an Indian cohort. An immune suppression phenotype is observed in the early stages of moderate-severe COVID-19 manifestation. A number of pathways are identified that play crucial roles in the host control of the disease such as the type I interferon response and classical complement pathway which show different activity levels across the severity spectrum. This study also identifies two transcription factors, IRF7 and ESR1, to be important in regulating the severity of COVID-19. Overall this study provides a deep understanding of the peripheral immune landscape in the COVID-19 severity spectrum in the Indian genetic background and opens up future research avenues to compare immune responses across global populations.
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Sneha Chunchanur
- Bangalore Medical College and Research Institute (BMCRI), Bengaluru, India
| | - Ambica R
- Bangalore Medical College and Research Institute (BMCRI), Bengaluru, India
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
22
|
Chen T, Chen H, Chen P, Zhu L, Mao W, Yao Y. High expression of IL6 and decrease in immune cells in COVID-19 patients combined with myocardial injury. Front Immunol 2023; 14:1190644. [PMID: 37564653 PMCID: PMC10410153 DOI: 10.3389/fimmu.2023.1190644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose Myocardial injury, as a serious complication of coronavirus disease-2019 (COVID-19), increases the occurrence of adverse outcomes. Identification of key regulatory molecules of myocardial injury may help formulate corresponding treatment strategies and improve the prognosis of COVID-19 patients. Methods Gene Set Enrichment Analysis (GSEA) was conducted to identify co-regulatory pathways. Differentially expressed genes (DEGs) in GSE150392 and GSE169241 were screened and an intersection analysis with key genes of the co-regulatory pathway was conducted. A protein-protein interaction (PPI) network was constructed to screen for key regulatory genes. Preliminarily screened genes were verified using other datasets to identify genes with consistent expression. Based on the hierarchical cluster, we divided the patients from GSE177477 into high- and low-risk groups and compared the proportion of immune cells. A total of 267 COVID-19 patients from the Zhejiang Provincial Hospital of Chinese Medicine from December 26, 2022, to January 11, 2023, were enrolled to verify the bioinformatics results. Univariate and multivariate analyses were performed to analyze the risk factors for myocardial injury. According to high-sensitivity troponin (hsTnI) levels, patients with COVID-19 were divided into high- and low-sensitivity groups, and interleukin 6 (IL6) expression and lymphocyte subsets were compared. Patients were also divided into high and low groups according to the IL6 expression, and hsTnI levels were compared. Results Interleukin signaling pathway and GPCR ligand binding were shown to be co-regulatory pathways in myocardial injury associated with COVID-19. According to the hierarchical cluster analysis of seven genes (IL6, NFKBIA, CSF1, CXCL1, IL1R1, SOCS3, and CASP1), patients with myocardial injury could be distinguished from those without myocardial injury. Age, IL6 levels, and hospital stay may be factors influencing myocardial injury caused by COVID-19. Compared with COVID-19 patients without myocardial injury, the levels of IL6 in patients with myocardial injury increased, while the number of CD4+ T cells, CD8+ T cells, B cells, and NK cells decreased (P<0.05). The hsTnI levels in COVID-19 patients with high IL6 levels were higher than those in patients with low IL6 (P<0.05). Conclusions The COVID-19 patients with myocardial injury had elevated IL6 expression and decreased lymphocyte counts. IL6 may participate in myocardial injury through the interleukin signaling pathway.
Collapse
Affiliation(s)
- Tingting Chen
- Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Haixin Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Chen
- Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Linchao Zhu
- Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wei Mao
- Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital Zhejiang University School of Medicine), Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yimin Yao
- Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
23
|
Hoang HD, Naeli P, Alain T, Jafarnejad SM. Mechanisms of impairment of interferon production by SARS-CoV-2. Biochem Soc Trans 2023; 51:1047-1056. [PMID: 37199495 PMCID: PMC10317165 DOI: 10.1042/bst20221037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Interferons (IFNs) are crucial components of the cellular innate immune response to viral infections. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown a remarkable capacity to suppress the host IFN production to benefit viral replication and spread. Thus far, of the 28 known virus-encoded proteins, 16 have been found to impair the host's innate immune system at various levels ranging from detection and signaling to transcriptional and post-transcriptional regulation of expression of the components of the cellular antiviral response. Additionally, there is evidence that the viral genome encodes non-protein-coding microRNA-like elements that could also target IFN-stimulated genes. In this brief review, we summarise the current state of knowledge regarding the factors and mechanisms by which SARS-CoV-2 impairs the production of IFNs and thereby dampens the host's innate antiviral immune response.
Collapse
Affiliation(s)
- Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Parisa Naeli
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, U.K
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, U.K
| |
Collapse
|
24
|
Petrone V, Fanelli M, Giudice M, Toschi N, Conti A, Maracchioni C, Iannetta M, Resta C, Cipriani C, Miele MT, Amati F, Andreoni M, Sarmati L, Rogliani P, Novelli G, Garaci E, Rasi G, Sinibaldi-Vallebona P, Minutolo A, Matteucci C, Balestrieri E, Grelli S. Expression profile of HERVs and inflammatory mediators detected in nasal mucosa as a predictive biomarker of COVID-19 severity. Front Microbiol 2023; 14:1155624. [PMID: 37283924 PMCID: PMC10239953 DOI: 10.3389/fmicb.2023.1155624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Our research group and others demonstrated the implication of the human endogenous retroviruses (HERVs) in SARS-CoV-2 infection and their association with disease progression, suggesting HERVs as contributing factors in COVID-19 immunopathology. To identify early predictive biomarkers of the COVID-19 severity, we analyzed the expression of HERVs and inflammatory mediators in SARS-CoV-2-positive and -negative nasopharyngeal/oropharyngeal swabs with respect to biochemical parameters and clinical outcome. Methods Residuals of swab samples (20 SARS-CoV-2-negative and 43 SARS-CoV-2-positive) were collected during the first wave of the pandemic and expression levels of HERVs and inflammatory mediators were analyzed by qRT-Real time PCR. Results The results obtained show that infection with SARS-CoV-2 resulted in a general increase in the expression of HERVs and mediators of the immune response. In particular, SARS-CoV-2 infection is associated with increased expression of HERV-K and HERV-W, IL-1β, IL-6, IL-17, TNF-α, MCP-1, INF-γ, TLR-3, and TLR-7, while lower levels of IL-10, IFN-α, IFN-β, and TLR-4 were found in individuals who underwent hospitalization. Moreover, higher expression of HERV-W, IL-1β, IL-6, IFN-α, and IFN-β reflected the respiratory outcome of patients during hospitalization. Interestingly, a machine learning model was able to classify hospitalized vs not hospitalized patients with good accuracy based on the expression levels of HERV-K, HERV-W, IL-6, TNF-a, TLR-3, TLR-7, and the N gene of SARS-CoV-2. These latest biomarkers also correlated with parameters of coagulation and inflammation. Discussion Overall, the present results suggest HERVs as contributing elements in COVID-19 and early genomic biomarkers to predict COVID-19 severity and disease outcome.
Collapse
Affiliation(s)
- Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, United States
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Resta
- Respiratory Medicine Unit, Policlinic of Tor Vergata, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Respiratory Medicine Unit, Policlinic of Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuromed IRCCS Institute, Pozzilli, IS, Italy
- University of Nevada, Department of Pharmacology, Reno, NV, United States
| | | | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, Italy
| |
Collapse
|
25
|
Pechous RD, Malaviarachchi PA, Banerjee SK, Byrum SD, Alkam DH, Ghaffarieh A, Kurten RC, Kennedy JL, Zhang X. An ex vivo human precision-cut lung slice platform provides insight into SARS-CoV-2 pathogenesis and antiviral drug efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537373. [PMID: 37131640 PMCID: PMC10153187 DOI: 10.1101/2023.04.18.537373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
COVID-19 has claimed millions of lives since the emergence of SARS-CoV-2, and lung disease appears the primary cause of the death in COVID-19 patients. However, the underlying mechanisms of COVID-19 pathogenesis remain elusive, and there is no existing model where the human disease can be faithfully recapitulated and conditions for the infection process can be experimentally controlled. Herein we report the establishment of an ex vivo human precision-cut lung slice (hPCLS) platform for studying SARS-CoV-2 pathogenicity and innate immune responses, and for evaluating the efficacy of antiviral drugs against SARS-CoV-2. We show that while SARS-CoV-2 continued to replicate during the course of infection of hPCLS, infectious virus production peaked within 2 days, and rapidly declined thereafter. Although most proinflammatory cytokines examined were induced by SARS-CoV-2 infection, the degree of induction and types of cytokines varied significantly among hPCLS from individual donors, reflecting the heterogeneity of human populations. In particular, two cytokines (IP-10 and IL-8) were highly and consistently induced, suggesting a role in the pathogenesis of COVID-19. Histopathological examination revealed focal cytopathic effects late in the infection. Transcriptomic and proteomic analyses identified molecular signatures and cellular pathways that are largely consistent with the progression of COVID-19 in patients. Furthermore, we show that homoharringtonine, a natural plant alkaloid derived from Cephalotoxus fortunei , not only inhibited virus replication but also production of pro-inflammatory cytokines, and ameliorated the histopathological changes of the lungs caused by SARS-CoV-2 infection, demonstrating the usefulness of the hPCLS platform for evaluating antiviral drugs. SIGNIFICANCE Here we established an ex vivo human precision-cut lung slice platform for assessing SARS-CoV-2 infection, viral replication kinetics, innate immune response, disease progression, and antiviral drugs. Using this platform, we identified early induction of specific cytokines, especially IP-10 and IL-8, as potential predictors for severe COVID-19, and uncovered a hitherto unrecognized phenomenon that while infectious virus disappears at late times of infection, viral RNA persists and lung histopathology commences. This finding may have important clinical implications for both acute and post-acute sequelae of COVID-19. This platform recapitulates some of the characteristics of lung disease observed in severe COVID-19 patients and is therefore a useful platform for understanding mechanisms of SARS-CoV-2 pathogenesis and for evaluating the efficacy of antiviral drugs.
Collapse
|
26
|
Hersi F, Sebastian A, Tarazi H, Srinivasulu V, Mostafa A, Allayeh AK, Zeng C, Hachim IY, Liu SL, Abu-Yousef IA, Majdalawieh AF, Zaher DM, Omar HA, Al-Tel TH. Discovery of novel papain-like protease inhibitors for potential treatment of COVID-19. Eur J Med Chem 2023; 254:115380. [PMID: 37075625 PMCID: PMC10106510 DOI: 10.1016/j.ejmech.2023.115380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.
Collapse
Affiliation(s)
- Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, Environment and Climate Change Institute, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Cong Zeng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Ibrahim Y Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
27
|
Wang X, Wang H, Yin G, Zhang YD. Network-based drug repurposing for the treatment of COVID-19 patients in different clinical stages. Heliyon 2023; 9:e14059. [PMID: 36855680 PMCID: PMC9951095 DOI: 10.1016/j.heliyon.2023.e14059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
In the severe acute respiratory coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need to develop effective treatments. Through a network-based drug repurposing approach, several effective drug candidates are identified for treating COVID-19 patients in different clinical stages. The proposed approach takes advantage of computational prediction methods by integrating publicly available clinical transcriptome and experimental data. We identify 51 drugs that regulate proteins interacted with SARS-CoV-2 protein through biological pathways against COVID-19, some of which have been experimented in clinical trials. Among the repurposed drug candidates, lovastatin leads to differential gene expression in clinical transcriptome for mild COVID-19 patients, and estradiol cypionate mainly regulates hormone-related biological functions to treat severe COVID-19 patients. Multi-target mechanisms of drug candidates are also explored. Erlotinib targets the viral protein interacted with cytokine and cytokine receptors to affect SARS-CoV-2 attachment and invasion. Lovastatin and testosterone block the angiotensin system to suppress the SARS-CoV-2 infection. In summary, our study has identified effective drug candidates against COVID-19 for patients in different clinical stages and provides comprehensive understanding of potential drug mechanisms.
Collapse
Affiliation(s)
- Xin Wang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China
| | - Han Wang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China
| | - Guosheng Yin
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China.,Department of Mathematics, Imperial College London, London, The United Kingdom
| | - Yan Dora Zhang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China.,Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
28
|
Calzari L, Zanotti L, Inglese E, Scaglione F, Cavagnola R, Ranucci F, Di Blasio AM, Stefanini G, Carlo G, Parati G, Gentilini D. Role of epigenetics in the clinical evolution of COVID-19 disease. Epigenome-wide association study identifies markers of severe outcome. Eur J Med Res 2023; 28:81. [PMID: 36800980 PMCID: PMC9936487 DOI: 10.1186/s40001-023-01032-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND COVID-19 has a wide spectrum of clinical manifestations and given its impact on morbidity and mortality, there is an unmet medical need to discover endogenous cellular and molecular biomarkers that predict the expected clinical course of the disease. Recently, epigenetics and especially DNA methylation have been pointed out as a promising tool for outcome prediction in several diseases. METHODS AND RESULTS Using the Illumina Infinium Methylation EPIC BeadChip850K, we investigated genome-wide differences in DNA methylation in an Italian Cohort of patients with comorbidities and compared severe (n = 64) and mild (123) prognosis. Results showed that the epigenetic signature, already present at the time of Hospital admission, can significantly predict risk of severe outcomes. Further analyses provided evidence of an association between age acceleration and a severe prognosis after COVID-19 infection. The burden of Stochastic Epigenetic Mutation (SEMs) has been significantly increased in patients with poor prognosis. Results have been replicated in silico considering COVID-19 negative subjects and available previously published datasets. CONCLUSIONS Using original methylation data and taking advantage of already published datasets, we confirmed in the blood that epigenetics is actively involved in immune response after COVID-19 infection, allowing the identification of a specific signature able to discriminate the disease evolution. Furthermore, the study showed that epigenetic drift and age acceleration are associated with severe prognosis. All these findings prove that host epigenetics undergoes notable and specific rearrangements to respond to COVID-19 infection which can be used for a personalized, timely, and targeted management of COVID-19 patients during the first stages of hospitalization.
Collapse
Affiliation(s)
- Luciano Calzari
- grid.418224.90000 0004 1757 9530Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Lucia Zanotti
- grid.418224.90000 0004 1757 9530Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
| | - Elvira Inglese
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy ,Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Francesco Scaglione
- Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Rebecca Cavagnola
- grid.418224.90000 0004 1757 9530Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy ,grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Francesco Ranucci
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Anna Maria Di Blasio
- grid.418224.90000 0004 1757 9530Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Giulio Stefanini
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy ,grid.417728.f0000 0004 1756 8807IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Gaetano Carlo
- grid.511455.1Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Gianfranco Parati
- grid.418224.90000 0004 1757 9530Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy ,grid.7563.70000 0001 2174 1754Department of Medicine and Surgery, University of Milan‐Bicocca, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy. .,Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy.
| |
Collapse
|
29
|
Lei H. A two-gene marker for the two-tiered innate immune response in COVID-19 patients. PLoS One 2023; 18:e0280392. [PMID: 36649304 PMCID: PMC9844909 DOI: 10.1371/journal.pone.0280392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
For coronavirus disease 2019 (COVID-19), a pandemic disease characterized by strong immune dysregulation in severe patients, convenient and efficient monitoring of the host immune response is critical. Human hosts respond to viral and bacterial infections in different ways, the former is characterized by the activation of interferon stimulated genes (ISGs) such as IFI27, while the latter is characterized by the activation of anti-bacterial associated genes (ABGs) such as S100A12. This two-tiered innate immune response has not been examined in COVID-19. In this study, the activation patterns of this two-tiered innate immune response represented by IFI27 and S100A12 were explored based on 1421 samples from 17 transcriptome datasets derived from the blood of COVID-19 patients and relevant controls. It was found that IFI27 activation occurred in most of the symptomatic patients and displayed no correlation with disease severity, while S100A12 activation was more restricted to patients under severe and critical conditions with a stepwise activation pattern. In addition, most of the S100A12 activation was accompanied by IFI27 activation. Furthermore, the activation of IFI27 was most pronounced within the first week of symptom onset, but generally waned after 2-3 weeks. On the other hand, the activation of S100A12 displayed no apparent correlation with disease duration and could last for several months in certain patients. These features of the two-tiered innate immune response can further our understanding on the disease mechanism of COVID-19 and may have implications to the clinical triage. Development of a convenient two-gene protocol for the routine serial monitoring of this two-tiered immune response will be a valuable addition to the existing laboratory tests.
Collapse
Affiliation(s)
- Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
30
|
Barmania F, Mellet J, Holborn MA, Pepper MS. Genetic Associations with Coronavirus Susceptibility and Disease Severity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:119-140. [PMID: 37378764 DOI: 10.1007/978-3-031-28012-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global public health emergency, and the disease it causes is highly variable in its clinical presentation. Host genetic factors are increasingly recognised as a determinant of infection susceptibility and disease severity. Several initiatives and groups have been established to analyse and review host genetic epidemiology associated with COVID-19 outcomes. Here, we review the genetic loci associated with COVID-19 susceptibility and severity focusing on the common variants identified in genome-wide association studies.
Collapse
Affiliation(s)
- Fatima Barmania
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Megan A Holborn
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
31
|
Baldassarri M, Zguro K, Tomati V, Pastorino C, Fava F, Croci S, Bruttini M, Picchiotti N, Furini S, Pedemonte N, Gabbi C, Renieri A, Fallerini C. Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes. Cells 2022; 11:4096. [PMID: 36552859 PMCID: PMC9776607 DOI: 10.3390/cells11244096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19.
Collapse
Affiliation(s)
- Margherita Baldassarri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Kristina Zguro
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Cristina Pastorino
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16148 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Nicola Picchiotti
- Department of Mathematics, University of Pavia, 27100 Pavia, Italy
- University of Siena, DIISM-SAILAB, 53100 Siena, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | | | - Chiara Gabbi
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
32
|
Mailem RC, Tayo LL. Drug Repurposing Using Gene Co-Expression and Module Preservation Analysis in Acute Respiratory Distress Syndrome (ARDS), Systemic Inflammatory Response Syndrome (SIRS), Sepsis, and COVID-19. BIOLOGY 2022; 11:biology11121827. [PMID: 36552336 PMCID: PMC9775208 DOI: 10.3390/biology11121827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 infections are highly correlated with the overexpression of pro-inflammatory cytokines in what is known as a cytokine storm, leading to high fatality rates. Such infections are accompanied by SIRS, ARDS, and sepsis, suggesting a potential link between the three phenotypes. Currently, little is known about the transcriptional similarity between these conditions. Herein, weighted gene co-expression network analysis (WGCNA) clustering was applied to RNA-seq datasets (GSE147902, GSE66890, GSE74224, GSE177477) to identify modules of highly co-expressed and correlated genes, cross referenced with dataset GSE160163, across the samples. To assess the transcriptome similarities between the conditions, module preservation analysis was performed and functional enrichment was analyzed in DAVID webserver. The hub genes of significantly preserved modules were identified, classified into upregulated or downregulated, and used to screen candidate drugs using Connectivity Map (CMap) to identify repurposed drugs. Results show that several immune pathways (chemokine signaling, NOD-like signaling, and Th1 and Th2 cell differentiation) are conserved across the four diseases. Hub genes screened using intramodular connectivity show significant relevance with the pathogenesis of cytokine storms. Transcriptomic-driven drug repurposing identified seven candidate drugs (SB-202190, eicosatetraenoic-acid, loratadine, TPCA-1, pinocembrin, mepacrine, and CAY-10470) that targeted several immune-related processes. These identified drugs warrant further study into their efficacy for treating cytokine storms, and in vitro and in vivo experiments are recommended to confirm the findings of this study.
Collapse
Affiliation(s)
- Ryan Christian Mailem
- School of Chemical, Biological, and Materials Engineering and Sciences and School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences and School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
- School of Health Sciences, Mapúa University, Manila City 1002, Philippines
- Correspondence: ; Tel.: +63-02-247-5000 (ext. 3300)
| |
Collapse
|
33
|
Liu Y, Zhai G, Fu W, Zhang X, Xu J. A randomized, double-blind, placebo-controlled phase I trial of inhalation treatment of recombinant TFF2-IFN protein: A multifunctional candidate for the treatment of COVID-19. Front Pharmacol 2022; 13:1063106. [PMID: 36578554 PMCID: PMC9790930 DOI: 10.3389/fphar.2022.1063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives: Coronavirus disease 2019 (COVID-19) has caused global pandemics in the last 3 years, and the development of new therapeutics is urgently needed. This study aimed to assess the safety, tolerated, and prolonged retention of recombinant protein trefoil factor 2 (TFF2)- interferon (IFN) in the respiratory tract of healthy volunteers. Methods: We conducted a randomized, double-blind, placebo-controlled, single-dose, dose-escalation phase I study to evaluate safety, tolerability, pharmacokinetics (PK), and cytokine responses after administration of recombinant TFF2-IFN proteins. Healthy volunteers were informed, enrolled, and randomized into four groups with a dose escalation of 0.2, 1, 2, and 4 mg and then inhaled the investigation product or placebo. Thirty-two eligible participants were finally enrolled; eight were assigned to the placebo group and 24 to the TFF2-IFN group, with six participants per group. Data were collected from 19 November 2021, to 4 January 2022. Results: All 32 participants completed the study. Of the participants who received the recombinant TFF2-IFN protein, 41.7% (10/24) reported 11 adverse events (AEs) during treatment and 62.5% (5/8) of those who received a placebo reported six AEs. Sixteen of the 17 AEs were grade 1. Only one grade 3 AE occurred in the placebo group and no worse event occurred as a serious adverse event. The pharmacokinetics was analyzed for times and concentrations of the investigation products in 0.2, 1, 2, and 4 mg groups in 24 recipients of TFF2-IFN, and the results showed that TFF2-IFN was retained in the lung for at least 6-8 h. Only the highest dose group (4 mg) had a transient detectable concentration in serum, while all other dose groups had a level below the lower limit of quantification. Conclusion: In this study, the recombinant TFF2-IFN protein was a well-tolerated and safe therapeutic when administered by nebulization, characterized by prolonged retention in the respiratory tract, which would be greatly beneficial in combating respiratory viral infection. Systematic Review Registration: [http://www.chictr.org.cn], identifier [ChiCTR2000035633].
Collapse
Affiliation(s)
- Yan Liu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China,National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanxing Zhai
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Weihui Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Xiaoyan Zhang, ; Jianqing Xu,
| | - Jianqing Xu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Xiaoyan Zhang, ; Jianqing Xu,
| |
Collapse
|
34
|
Lu L, Li Y, Ao X, Huang J, Liu B, Wu L, Li D. The risk of COVID-19 can be predicted by a nomogram based on m6A-related genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 106:105389. [PMID: 36460278 PMCID: PMC9707050 DOI: 10.1016/j.meegid.2022.105389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND The expression of m6A-related genes and their significance in COVID-19 patients are still unknown. METHODS The GSE177477 and GSE157103 datasets of the Gene Expression Omnibus were used to extract RNA-seq data. The expression of 26 m6A-related genes and immune cell infiltration in COVID-19 patients were analyzed. Finally, we built and validated a nomogram model to predict the risk of COVID-19 infection. RESULTS There were significant differences in 11 m6A regulatory factors between patients with COVID-19 and healthy individuals. The classification of disease subtypes based on m6A-related gene levels can be distinguished. COVID-19 patients in GSE177477 were classified into two categories based on m6A-related genes. The patients in cluster A were all symptomatic, while those in cluster B were asymptomatic. A significant correlation was also found between immune cells and m6A-related genes. Finally, seven m6A-related disease-characteristic genes, HNRNPA2B1, ELAVL1, RBM15, RBM15B, YTHDC1, HNRNPC, and WTAP, were screened to construct a nomogram model for predicting risk. The calibration curve, decision curve analysis, and clinical impact curve analysis were used to show that the nomogram model was effective and had a high net efficacy for risk prediction. CONCLUSIONS m6A-related genes were correlated with immune cells. The nomogram model effectively predicted COVID-19 risk. Moreover, m6A-related genes may be associated with the presence or absence of symptoms in COVID-19 patients.
Collapse
Affiliation(s)
- Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China,Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Yijing Li
- Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China
| | - Xiulan Ao
- Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Jiaofeng Huang
- Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Bang Liu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China,Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Liqing Wu
- Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Dongliang Li
- Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China,Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China,Corresponding author at: Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital of Joint Logistics Support Force. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| |
Collapse
|
35
|
Vitamin D enhances type I IFN signaling in COVID-19 patients. Sci Rep 2022; 12:17778. [PMID: 36273032 PMCID: PMC9588043 DOI: 10.1038/s41598-022-22307-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023] Open
Abstract
The ability of Vitamin D (VitD) to modulate antiviral responses through induction of antimicrobial peptide is well established. However, the effect of VitD on host responses to SARS-CoV-2 is not well investigated. We here report the ability of VitD to enhance host IFN-alpha/beta (a/β) signaling both in vitro and among severe COVID-19 patients treated with VitD. Blood and saliva specimens were obtained from severe COVID-19 patients treated (43 patients), or not (37 patients), with vitD, during their stay in intensive care unit. Patients were followed up to 29 days following admission, and patient survival outcomes were collected. Higher activity levels of RIG-1/MDA-5 and JAK-STAT signaling pathways were observed with significantly higher gene and protein levels of antiviral interferon stimulating genes (ISGs) such as MX-1 and ISG-15; both in vitro, following treatment of PBMCs with vitD, and in whole blood and saliva specimens of VitD treated patients. Moreover, VitD treated patients had lower risk of all-cause mortality by day 29 compared to untreated patients (adjusted hazard ratio, 0.37, 95% confidence interval of 0.14-0.94; P = 0.038). The herein uncovered regulatory role of VitD on type I IFNs suggests the importance of insuring a normal level of VitD for the prevention and probably treatment of SARS-CoV-2 infection. Additional mechanistic studies, however, are needed to fully elucidate the antiviral effects of VitD particularly in the setting of COVID-19 infection.
Collapse
|
36
|
Proinflammatory Innate Cytokines and Distinct Metabolomic Signatures Shape the T Cell Response in Active COVID-19. Vaccines (Basel) 2022; 10:vaccines10101762. [PMID: 36298628 PMCID: PMC9609972 DOI: 10.3390/vaccines10101762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
The underlying factors contributing to the evolution of SARS-CoV-2-specific T cell responses during COVID-19 infection remain unidentified. To address this, we characterized innate and adaptive immune responses with metabolomic profiling longitudinally at three different time points (0–3, 7–9, and 14–16 days post-COVID-19 positivity) from young, mildly symptomatic, active COVID-19 patients infected during the first wave in mid-2020. We observed that anti-RBD IgG and viral neutralization are significantly reduced against the delta variant, compared to the ancestral strain. In contrast, compared to the ancestral strain, T cell responses remain preserved against the delta and omicron variants. We determined innate immune responses during the early stage of active infection, in response to TLR 3/7/8-mediated activation in PBMCs and serum metabolomic profiling. Correlation analysis indicated PBMCs-derived proinflammatory cytokines, IL-18, IL-1β, and IL-23, and the abundance of plasma metabolites involved in arginine biosynthesis were predictive of a robust SARS-CoV-2-specific Th1 response at a later stage (two weeks after PCR positivity). These observations may contribute to designing effective vaccines and adjuvants that promote innate immune responses and metabolites to induce a long-lasting anti-SARS-CoV-2-specific T cell response.
Collapse
|
37
|
Zhang Z. Genomic Biomarker Heterogeneities between SARS-CoV-2 and COVID-19. Vaccines (Basel) 2022; 10:1657. [PMID: 36298522 PMCID: PMC9608907 DOI: 10.3390/vaccines10101657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Genes functionally associated with SARS-CoV-2 infection and genes functionally related to the COVID-19 disease can be different, whose distinction will become the first essential step for successfully fighting against the COVID-19 pandemic. Unfortunately, this first step has not been completed in all biological and medical research. Using a newly developed max-competing logistic classifier, two genes, ATP6V1B2 and IFI27, stand out to be critical in the transcriptional response to SARS-CoV-2 infection with differential expressions derived from NP/OP swab PCR. This finding is evidenced by combining these two genes with another gene in predicting disease status to achieve better-indicating accuracy than existing classifiers with the same number of genes. In addition, combining these two genes with three other genes to form a five-gene classifier outperforms existing classifiers with ten or more genes. These two genes can be critical in fighting against the COVID-19 pandemic as a new focus and direction with their exceptional predicting accuracy. Comparing the functional effects of these genes with a five-gene classifier with 100% accuracy identified and tested from blood samples in our earlier work, the genes and their transcriptional response and functional effects on SARS-CoV-2 infection, and the genes and their functional signature patterns on COVID-19 antibodies, are significantly different. We will use a total of fourteen cohort studies (including breakthrough infections and omicron variants) with 1481 samples to justify our results. Such significant findings can help explore the causal and pathological links between SARS-CoV-2 infection and the COVID-19 disease, and fight against the disease with more targeted genes, vaccines, antiviral drugs, and therapies.
Collapse
Affiliation(s)
- Zhengjun Zhang
- Department of Statistics, School of Computer, Data & Information Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
38
|
Abstract
An effective innate immune response to virus infection requires the induction of type I interferons and up-regulation of hundreds of interferon-stimulated genes (ISGs) that instruct antiviral functions and immune regulation. Deciphering the regulatory mechanisms that direct expression of the ISG network is critical for understanding the fundamental organization of the innate immune response and the development of antiviral therapies. We define a regulatory role for the primate-specific long noncoding RNA CHROMR in coordinating ISG transcription. CHROMR sequesters the interferon regulatory factor (IRF)-2/IRF2BP2 complex that restrains ISG transcription and thus is required to restrict influenza virus replication. These data identify a novel regulator of the antiviral gene program in humans and provide insights into the multilayered regulatory network that controls the innate immune response. Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.
Collapse
|
39
|
Sufriyana H, Salim HM, Muhammad AR, Wu YW, Su ECY. Blood biomarkers representing maternal-fetal interface tissues used to predict early-and late-onset preeclampsia but not COVID-19 infection. Comput Struct Biotechnol J 2022; 20:4206-4224. [PMID: 35966044 PMCID: PMC9359600 DOI: 10.1016/j.csbj.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Endothelial dysfunction misleads blood marker discovery by differential expression. Blood-derived surrogate transcriptome of target-tissue avoids the false discovery. ITGA5 implies polymicrobial infection of maternal-fetal interface in preeclampsia. ITGA5 and IRF6 implies viral co-infection in early-onset preeclampsia. ITGA5, IRF6, and P2RX7 differ imminent preeclampsia from COVID-19 infection.
Background A well-known blood biomarker (soluble fms-like tyrosinase-1 [sFLT-1]) for preeclampsia, i.e., a pregnancy disorder, was found to predict severe COVID-19, including in males. True biomarker may be masked by more-abrupt changes related to endothelial instead of placental dysfunction. This study aimed to identify blood biomarkers that represent maternal-fetal interface tissues for predicting preeclampsia but not COVID-19 infection. Methods The surrogate transcriptome of tissues was determined by that in maternal blood, utilizing four datasets (n = 1354) which were collected before the COVID-19 pandemic. Applying machine learning, a preeclampsia prediction model was chosen between those using blood transcriptome (differentially expressed genes [DEGs]) and the blood-derived surrogate for tissues. We selected the best predictive model by the area under the receiver operating characteristic (AUROC) using a dataset for developing the model, and well-replicated in datasets both with and without an intervention. To identify eligible blood biomarkers that predicted any-onset preeclampsia from the datasets but that were not positive in the COVID-19 dataset (n = 47), we compared several methods of predictor discovery: (1) the best prediction model; (2) gene sets of standard pipelines; and (3) a validated gene set for predicting any-onset preeclampsia during the pandemic (n = 404). We chose the most predictive biomarkers from the best method with the significantly largest number of discoveries by a permutation test. The biological relevance was justified by exploring and reanalyzing low- and high-level, multiomics information. Results A prediction model using the surrogates developed for predicting any-onset preeclampsia (AUROC of 0.85, 95 % confidence interval [CI] 0.77 to 0.93) was the only that was well-replicated in an independent dataset with no intervention. No model was well-replicated in datasets with a vitamin D intervention. None of the blood biomarkers with high weights in the best model overlapped with blood DEGs. Blood biomarkers were transcripts of integrin-α5 (ITGA5), interferon regulatory factor-6 (IRF6), and P2X purinoreceptor-7 (P2RX7) from the prediction model, which was the only method that significantly discovered eligible blood biomarkers (n = 3/100 combinations, 3.0 %; P =.036). Most of the predicted events (73.70 %) among any-onset preeclampsia were cluster A as defined by ITGA5 (Z-score ≥ 1.1), but were only a minority (6.34 %) among positives in the COVID-19 dataset. The remaining were predicted events (26.30 %) among any-onset preeclampsia or those among COVID-19 infection (93.66 %) if IRF6 Z-score was ≥-0.73 (clusters B and C), in which none was the predicted events among either late-onset preeclampsia (LOPE) or COVID-19 infection if P2RX7 Z-score was <0.13 (cluster C). Greater proportions of predicted events among LOPE were cluster A (82.85 % vs 70.53 %) compared to early-onset preeclampsia (EOPE). The biological relevance by multiomics information explained the biomarker mechanism, polymicrobial infection in any-onset preeclampsia by ITGA5, viral co-infection in EOPE by ITGA5-IRF6, a shared prediction with COVID-19 infection by ITGA5-IRF6-P2RX7, and non-replicability in datasets with a vitamin D intervention by ITGA5. Conclusions In a model that predicts preeclampsia but not COVID-19 infection, the important predictors were genes in maternal blood that were not extremely expressed, including the proposed blood biomarkers. The predictive performance and biological relevance should be validated in future experiments.
Collapse
Affiliation(s)
- Herdiantri Sufriyana
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan.,Department of Medical Physiology, Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, 57 Raya Jemursari Road, Surabaya 60237, Indonesia
| | - Hotimah Masdan Salim
- Department of Molecular Biology, Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, 57 Raya Jemursari Road, Surabaya 60237, Indonesia
| | - Akbar Reza Muhammad
- Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, 57 Raya Jemursari Road, Surabaya 60237, Indonesia
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan.,Clinical Big Data Research Center, Taipei Medical University Hospital, 250 Wu-Xing Street, Taipei 11031, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan.,Clinical Big Data Research Center, Taipei Medical University Hospital, 250 Wu-Xing Street, Taipei 11031, Taiwan.,Research Center for Artificial Intelligence in Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan
| |
Collapse
|
40
|
SARS-CoV-2 impairs interferon production via NSP2-induced repression of mRNA translation. Proc Natl Acad Sci U S A 2022; 119:e2204539119. [PMID: 35878012 PMCID: PMC9371684 DOI: 10.1073/pnas.2204539119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A robust antiviral innate immune response is indispensable for combating infections. However, an exacerbated response can result in pathological inflammation and tissue damage. mRNA translational control mechanisms play a crucial role in maintaining the appropriate magnitude and duration of the immune response. We show that the GIGYF2/4EHP translational repressor complex represses translation of Ifnb1 mRNA, which encodes type I interferon β (IFN-β). We also demonstrate that the NSP2 protein encoded by SARS-CoV-2 virus further impedes translation of Ifnb1 mRNA through coopting the GIGYF2/4EHP complex, leading to evasion of a cellular innate immune response. The knowledge of the mechanism of action of NSP2-mediated IFN-β suppression provides valuable information for development of treatments for infections of SARS-CoV-2 and other coronaviruses. Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a mechanism by which the SARS-CoV-2 virus coopts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-β. We reveal that the SARS-CoV-2 encoded nonstructural protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-β production, which inhibits SARS-CoV-2 replication. Our findings reveal a target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.
Collapse
|
41
|
Lidocaine reinforces the anti-inflammatory action of dexamethasone on myeloid and epithelial cells activated by inflammatory cytokines or SARS-CoV-2 infection. Biomed J 2022; 46:81-92. [PMID: 35948250 PMCID: PMC9357286 DOI: 10.1016/j.bj.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022] Open
Abstract
Background Severe cases of Coronavirus Disease 2019 (COVID-19) that require admission to the Intensive Care Unit (ICU) and mechanical ventilation assistance show a high mortality rate with currently few therapeutic options available. Severe COVID-19 is characterized by a systemic inflammatory condition, also called “cytokine storm”, which can lead to various multi-organ complications and ultimately death. Lidocaine, a safe local anesthetic that given intravenously is used to treat arrhythmias, has long been reported to have an anti-inflammatory and pro-homeostatic activity. Methods We studied the capacity of lidocaine to modulate cytokine secretion of mouse and human myeloid cell lines activated by different cytokines or Toll Like Receptor (TLR) ligands (flagellin (FliC), Lipopolysaccharide (LPS), Polyinosinic:polycytidylic acid (Poly I:C) and N-Palmitoyl-S- [2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteinyl-(S)-seryl-(S)-lysyl-(S)-lysyl-(S)-lysyl-(S)-lysine x 3HCl (Pam3Cys-SKKKK)) or by Severe acute respiratory syndromecoronavirus 2 (SARS-CoV-2) infection to epithelial cells. Reporter cell lines were used to study modulation of lidocaine of specific signaling pathways. Results Lidocaine used in combination with dexamethasone, had an additive effect in the modulation of cellular inflammatory response triggered by Tumoral Necrosis Factor alpha (TNFα), Interleukin 1 beta (IL-1β) as well as different TLR ligands. We also found that lidocaine in combination with dexamethasone modulates the Nuclear factor kappa B (NF-κB) pathway, inflammasome activation as well as interferon gamma receptor (IFNγR) signaling without affecting the type I interferons (Type I IFNs) pathway. Furthermore, we showed that lidocaine and dexamethasone treatment of epithelial cells infected with SARS-CoV-2 modulated the expression of chemokines that contribute to pro-inflammatory effects in severe COVID. Conclusions We reported for the first time in vitro anti-inflammatory capacity of lidocaine on SARS-CoV-2 triggered immune pathways. These results indicated the potential of lidocaine to treat COVID-19 patients and add tools to the therapeutic options available for these concerning cases.
Collapse
|
42
|
Pacheco-Hernández LM, Ramírez-Noyola JA, Gómez-García IA, Ignacio-Cortés S, Zúñiga J, Choreño-Parra JA. Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. J Interferon Cytokine Res 2022; 42:369-392. [PMID: 35674675 PMCID: PMC9422807 DOI: 10.1089/jir.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that determine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and individualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those molecules more attractive for translational medicine and drug development.
Collapse
Affiliation(s)
- Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
43
|
Tveita A, Murphy SL, Holter JC, Kildal AB, Michelsen AE, Lerum TV, Kaarbø M, Heggelund L, Holten AR, Finbråten AK, Müller KE, Mathiessen A, Bøe S, Fevang B, Granerud BK, Tonby K, Lind A, Dudman SG, Henriksen KN, Müller F, Skjønsberg OH, Trøseid M, Barratt-Due A, Dyrhol-Riise AM, Aukrust P, Halvorsen B, Dahl TB, Ueland T. High Circulating Levels of the Homeostatic Chemokines CCL19 and CCL21 Predict Mortality and Disease Severity in COVID-19. J Infect Dis 2022; 226:2150-2160. [PMID: 35876699 PMCID: PMC9384496 DOI: 10.1093/infdis/jiac313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Immune dysregulation is a major factor in the development of severe coronavirus disease 2019 (COVID-19). The homeostatic chemokines CCL19 and CCL21 have been implicated as mediators of tissue inflammation, but data on their regulation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is limited. We thus investigated the levels of these chemokines in COVID-19 patients. METHODS Serial blood samples were obtained from patients hospitalized with COVID-19 (n = 414). Circulating CCL19 and CCL21 levels during hospitalization and 3-month follow-up were analyzed. In vitro assays and analysis of RNAseq data from public repositories were performed to further explore possible regulatory mechanisms. RESULTS A consistent increase in circulating levels of CCL19 and CCL21 was observed, with high levels correlating with disease severity measures, including respiratory failure, need for intensive care, and 60-day all-cause mortality. High levels of CCL21 at admission were associated with persisting impairment of pulmonary function at the 3-month follow-up. CONCLUSIONS Our findings highlight CCL19 and CCL21 as markers of immune dysregulation in COVID-19. This may reflect aberrant regulation triggered by tissue inflammation, as observed in other chronic inflammatory and autoimmune conditions. Determination of the source and regulation of these chemokines and their effects on lung tissue is warranted to further clarify their role in COVID-19. CLINICAL TRIALS REGISTRATION NCT04321616 and NCT04381819.
Collapse
Affiliation(s)
- Anders Tveita
- Correspondence: Anders Tveita, MD, PhD, Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, 1346 Gjettum, Norway ()
| | | | | | - Anders Benjamin Kildal
- Department of Anesthesiology and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Annika E Michelsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tøri Vigeland Lerum
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Mari Kaarbø
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Aleksander Rygh Holten
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Karl Erik Müller
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | | | - Simen Bøe
- Department of Anesthesiology and Intensive Care, Hammerfest County Hospital, Hammerfest, Norway
| | - Børre Fevang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Beathe Kiland Granerud
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Susanne Gjeruldsen Dudman
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Katerina Nezvalova Henriksen
- Department of Hematology, Oslo University Hospital, Oslo, Norway,Hospital Pharmacies, South-Eastern Norway Enterprise, Oslo, Norway
| | - Fredrik Müller
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Ole Henning Skjønsberg
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Marius Trøseid
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Andreas Barratt-Due
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway,Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pål Aukrust
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | | |
Collapse
|
44
|
de Seabra Rodrigues Dias IR, Cao Z, Kwok HF. Adamalysins in COVID-19 - Potential mechanisms behind exacerbating the disease. Biomed Pharmacother 2022; 150:112970. [PMID: 35658218 PMCID: PMC9010236 DOI: 10.1016/j.biopha.2022.112970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is a current pandemic that has resulted in nearly 250 million cases and over 5 million deaths. While vaccines have been developed to prevent infection, and most COVID-19 cases end up being fairly light, there are severe cases of COVID-19 that may end up in death, even with adequate healthcare treatment. New options to combat this disease's effects, therefore, could prove to be invaluable in saving lives. Adamalysins are proteins that have several roles in regulating different functions in the human body but are also known to have functions in inflammation. They are also known to have roles in several different diseases, including COVID-19, where ADAM17, in particular, is now well-known to have a prominent role, but also several diseases which include comorbidities that may worsen cases of COVID-19. Therefore, investigating the functions of adamalysins in disease may give us clues to the molecular workings of COVID-19 as well as potentially new therapeutic targets. Understanding these molecular mechanisms may also allow for an understanding of the mechanisms behind the rare severe side effects that occur in response to current COVID-19 vaccines, which may lead to better monitoring measures for people who may be more at risk of developing these side effects. This review investigates the known roles and functions of adamalysins in disease, including what is currently known of their involvement in COVID-19, and how these functions might be involved.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Zhijian Cao
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China,Co-corresponding author
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Corresponding author at: Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| |
Collapse
|
45
|
Nln I, Fernandez-Ruiz R, Muskardin TLW, Paredes JL, Blazer AD, Tuminello S, Attur M, Iturrate E, Petrilli CM, Abramson SB, Chakravarti A, Niewold TB. Interferon pathway lupus risk alleles modulate risk of death from acute COVID-19. Transl Res 2022; 244:47-55. [PMID: 35114420 PMCID: PMC8802623 DOI: 10.1016/j.trsl.2022.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Type I interferon (IFN) is critical in our defense against viral infections. Increased type I IFN pathway activation is a genetic risk factor for systemic lupus erythematosus (SLE), and a number of common risk alleles contribute to the high IFN trait. We hypothesized that these common gain-of-function IFN pathway alleles may be associated with protection from mortality in acute COVID-19. We studied patients admitted with acute COVID-19 (756 European-American and 398 African-American ancestry). Ancestral backgrounds were analyzed separately, and mortality after acute COVID-19 was the primary outcome. In European-American ancestry, we found that a haplotype of interferon regulatory factor 5 (IRF5) and alleles of protein kinase cGMP-dependent 1 (PRKG1) were associated with mortality from COVID-19. Interestingly, these were much stronger risk factors in younger patients (OR = 29.2 for PRKG1 in ages 45-54). Variants in the IRF7 and IRF8 genes were associated with mortality from COVID-19 in African-American subjects, and these genetic effects were more pronounced in older subjects. Combining genetic information with blood biomarker data such as C-reactive protein, troponin, and D-dimer resulted in significantly improved predictive capacity, and in both ancestral backgrounds the risk genotypes were most relevant in those with positive biomarkers (OR for death between 14 and 111 in high risk genetic/biomarker groups). This study confirms the critical role of the IFN pathway in defense against COVID-19 and viral infections, and supports the idea that some common SLE risk alleles exert protective effects in antiviral immunity.
Collapse
Affiliation(s)
- Ilona Nln
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York
| | - Ruth Fernandez-Ruiz
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York
| | | | - Jacqueline L Paredes
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York
| | - Ashira D Blazer
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York
| | - Stephanie Tuminello
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, New York
| | - Mukundan Attur
- Divison of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, New York, New York
| | - Eduardo Iturrate
- Department of Medicine, NYU Grossman School of Medicine, New York, New York
| | | | - Steven B Abramson
- Department of Medicine, NYU Grossman School of Medicine, New York, New York
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, New York
| | - Timothy B Niewold
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York.
| |
Collapse
|
46
|
Liu P, Fang M, Luo Y, Zheng F, Jin Y, Cheng F, Zhu H, Jin X. Rare Variants in Inborn Errors of Immunity Genes Associated With Covid-19 Severity. Front Cell Infect Microbiol 2022; 12:888582. [PMID: 35694544 PMCID: PMC9184678 DOI: 10.3389/fcimb.2022.888582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Host genetic factors have been shown to play an important role in SARS-CoV-2 infection and the course of Covid-19 disease. The genetic contributions of common variants influencing Covid-19 susceptibility and severity have been extensively studied in diverse populations. However, the studies of rare genetic defects arising from inborn errors of immunity (IEI) are relatively few, especially in the Chinese population. To fill this gap, we used a deeply sequenced dataset of nearly 500 patients, all of Chinese descent, to investigate putative functional rare variants. Specifically, we annotated rare variants in our call set and selected likely deleterious missense (LDM) and high-confidence predicted loss-of-function (HC-pLoF) variants. Further, we analyzed LDM and HC-pLoF variants between non-severe and severe Covid-19 patients by (a) performing gene- and pathway-level association analyses, (b) testing the number of mutations in previously reported genes mapped from LDM and HC-pLoF variants, and (c) uncovering candidate genes via protein-protein interaction (PPI) network analysis of Covid-19-related genes and genes defined from LDM and HC-pLoF variants. From our analyses, we found that (a) pathways Tuberculosis (hsa:05152), Primary Immunodeficiency (hsa:05340), and Influenza A (hsa:05164) showed significant enrichment in severe patients compared to the non-severe ones, (b) HC-pLoF mutations were enriched in Covid-19-related genes in severe patients, and (c) several candidate genes, such as IL12RB1, TBK1, TLR3, and IFNGR2, are uncovered by PPI network analysis and worth further investigation. These regions generally play an essential role in regulating antiviral innate immunity responses to foreign pathogens and in responding to many inflammatory diseases. We believe that our identified candidate genes/pathways can be potentially used as Covid-19 diagnostic markers and help distinguish patients at higher risk.
Collapse
Affiliation(s)
- Panhong Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Mingyan Fang
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- Beijing Genomeics Institute In Singapore, BGI-Singapore, Singapore, Singapore
| | - Yuxue Luo
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Zhu
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- *Correspondence: Xin Jin, ; Huanhuan Zhu,
| | - Xin Jin
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- Beijing Genomeics Institute In Singapore, BGI-Singapore, Singapore, Singapore
- School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Xin Jin, ; Huanhuan Zhu,
| |
Collapse
|
47
|
|