1
|
Guichet C, Roger É, Attyé A, Achard S, Mermillod M, Baciu M. Midlife dynamics of white matter architecture in lexical production. Neurobiol Aging 2024; 144:138-152. [PMID: 39357455 DOI: 10.1016/j.neurobiolaging.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
We aimed to examine the white matter changes associated with lexical production difficulties, beginning in midlife with increased naming latencies. To delay lexical production decline, middle-aged adults may rely on domain-general and language-specific compensatory mechanisms proposed by the LARA model (Lexical Access and Retrieval in Aging). However, the white matter changes supporting these mechanisms remains largely unknown. Using data from the CAMCAN cohort, we employed an unsupervised and data-driven methodology to examine the relationships between diffusion-weighted imaging and lexical production. Our findings indicate that midlife is marked by alterations in brain structure within distributed dorsal, ventral, and anterior cortico-subcortical networks, marking the onset of lexical production decline around ages 53-54. Middle-aged adults may initially adopt a "semantic strategy" to compensate for lexical production challenges, but this strategy seems compromised later (ages 55-60) as semantic control declines. These insights underscore the interplay between domain-general and language-specific processes in the trajectory of lexical production performance in healthy aging and hint at potential biomarkers for language-related neurodegenerative pathologies.
Collapse
Affiliation(s)
- Clément Guichet
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble 38000, France
| | - Élise Roger
- Institut Universitaire de Gériatrie de Montréal, Communication and Aging Lab, Montreal, Quebec, Canada; Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Sophie Achard
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble 38000, France
| | | | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble 38000, France; Neurology Department, CMRR, Grenoble Hospital, Grenoble 38000, France.
| |
Collapse
|
2
|
Abellaneda-Pérez K, Potash RM, Pascual-Leone A, Sacchet MD. Neuromodulation and meditation: A review and synthesis toward promoting well-being and understanding consciousness and brain. Neurosci Biobehav Rev 2024; 166:105862. [PMID: 39186992 DOI: 10.1016/j.neubiorev.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
The neuroscience of meditation is providing insight into meditation's beneficial effects on well-being and informing understanding of consciousness. However, further research is needed to explicate mechanisms linking brain activity and meditation. Non-invasive brain stimulation (NIBS) presents a promising approach for causally investigating neural mechanisms of meditation. Prior NIBS-meditation research has predominantly targeted frontal and parietal cortices suggesting that it might be possible to boost the behavioral and neural effects of meditation with NIBS. Moreover, NIBS has revealed distinct neural signatures in long-term meditators. Nonetheless, methodological variations in NIBS-meditation research contributes to challenges for definitive interpretation of previous results. Future NIBS studies should further investigate core substrates of meditation, including specific brain networks and oscillations, and causal neural mechanisms of advanced meditation. Overall, NIBS-meditation research holds promise for enhancing meditation-based interventions in support of well-being and resilience in both non-clinical and clinical populations, and for uncovering the brain-mind mechanisms of meditation and consciousness.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain.
| | - Ruby M Potash
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
3
|
Han W, Wu X, Wang L, Qu C, Dou L, Fang Y, Sun P. Altered brain function in treatment-resistant depression patients: A resting-state functional magnetic resonance imaging study. Neurosci Lett 2024; 842:138004. [PMID: 39341331 DOI: 10.1016/j.neulet.2024.138004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND It has been established that there are functional changes in the brain of treatment-resistant depression (TRD) patients, but previous studies of functional connectivity (FC) usually involved selection of regions of interest based on accumulated a priori knowledge of the disorder. In this study, we combine amplitude of low-frequency fluctuation (ALFF) and FC; this approach, based on the abnormal ALFF, may provide some insights into the neural basis of the disease in terms of fMRI signals of low-frequency fluctuations. METHODS A total of 16 TRD patients, who visited the Qingdao Mental Health Center, Shandong Province, China between March 2023 and January 2024, along with 16 normal subjects, were enrolled into this study for functional imaging. In this study, we first explored the ALFF changes of TRD patients at a baseline resting state. Second, we selected the regions that were significantly changed in the ALFF as seeds and calculated the regional activity and functional connectivity (FC) of these regions using a seed-based approach. We also calculated correlations between the percent change in the PDQ-5D scores and ALFF values in brain regions with differing activity for TRD patients. RESULTS During the baseline resting state, by using the ALFF, we found a significantly decreased or increased ALFF in the TRD patients relative to the controls. These regions were located in the left/right postcentral gyrus (PoCG.L/PoCG.R), right cuneus(CUN.R). We found that the ALFF values of the right hippocampus (HIP.R) in the TRD group were negatively correlated with the PDQ-5D score. Then, we selected these brain regions as seeds to investigate the FC changes in brains of TRD patients. We found abnormal functional connectivity in left/right middle frontal gyrus(MFG.L/MFG.R), the right Inferior frontal gyrus, opercular part (IFGoperc.R), the left/right Anterior cingulate and paracingulate gyri (ACC.L/ACC.R), the right supramarginal gyrus (SMG.R), and the right Calcarine fissure and surrounding cortex (CAL.R). CONCLUSION We found a larger range of altered brain regions in TRD patients compared to healthy controls, especially in the central executive network (CEN), salience network (SN) and default mode network (DMN).
Collapse
Affiliation(s)
- Weijian Han
- Qingdao University Medical College, Qingdao 266000, China; Qingdao Mental Health Center, Qingdao 266034, China
| | - Xiaohui Wu
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ligang Wang
- Qingdao Mental Health Center, Qingdao 266034, China
| | - Chunhui Qu
- Qingdao Mental Health Center, Qingdao 266034, China
| | - Liqiang Dou
- Qingdao Pingdu Mental Health Center, Qingdao 266700, China
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Neuroscience, Shanghai Institute for Biological Sciences, CAS, Shanghai 200031, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China.
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao 266034, China.
| |
Collapse
|
4
|
Andrade K, Pacella V. The unique role of anosognosia in the clinical progression of Alzheimer's disease: a disorder-network perspective. Commun Biol 2024; 7:1384. [PMID: 39448784 PMCID: PMC11502706 DOI: 10.1038/s42003-024-07076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Alzheimer's disease (AD) encompasses a long continuum from a preclinical phase, characterized by neuropathological alterations albeit normal cognition, to a symptomatic phase, marked by its clinical manifestations. Yet, the neural mechanisms responsible for cognitive decline in AD patients remain poorly understood. Here, we posit that anosognosia, emerging from an error-monitoring failure due to early amyloid-β deposits in the posterior cingulate cortex, plays a causal role in the clinical progression of AD by preventing patients from being aware of their deficits and implementing strategies to cope with their difficulties, thus fostering a vicious circle of cognitive decline.
Collapse
Affiliation(s)
- Katia Andrade
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, Pitié-Salpêtrière Hospital, 75013, Paris, France.
- FrontLab, Paris Brain Institute (Institut du Cerveau, ICM), AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France.
| | - Valentina Pacella
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, Pavia, 27100, Italy
- Brain Connectivity and Behaviour Laboratory, Paris, France
| |
Collapse
|
5
|
Leon C, Kaur S, Sagar R, Tayade P, Sharma R. Default at fault? Exploring neural correlates of default mode network in children with ADHD, their unaffected siblings versus neurotypical controls: A quantitative EEG study. Asian J Psychiatr 2024; 102:104291. [PMID: 39488947 DOI: 10.1016/j.ajp.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Sustained activation of default mode network has been implicated for momentary lapses of attention and higher errors during performance of cognitive tasks in attention deficit hyperactive disorder (ADHD) children. Despite emerging evidence indicating the genetic basis of ADHD, there is paucity of literature investigating the alteration of DMN in children with ADHD and their unaffected siblings. AIM To study the cortical sources of DMN in children with ADHD compared to their siblings and neurotypical controls. METHODS Eighty-six participants (35 ADHD (12.4(±2.7) years), 16 unaffected siblings (11.8(±4.3) years) and 35 matched neurotypical controls (12.6 (±3.6) years) participated in the study. 128 channel EEG data was acquired during rest and Stroop cognitive task and analyzed for cortical source estimation using LORETA software. RESULTS Higher activation of DMN and DMN associated areas were observed during encoding of the color-word stimuli in children with ADHD. Sustained activation of core DMN areas namely medial frontal gyrus, posterior cingulate gyrus, parahippocampal gyrus and inferior parietal lobule was observed across all groups. Among the three groups, distinct cortical source activation differences were identified solely in the DMN and its associated areas among children with ADHD during the task encoding phase compared to baseline. In contrast, both siblings and neurotypical controls displayed activation in fronto-parieto-temporal areas subserving executive function were also observed. CONCLUSION Sustained activity of DMN areas with minimal activity in executive network in ADHD children and unaffected siblings during encoding of stimulus implies potential endophenotypic marker in children with ADHD compared to neurotypical controls.
Collapse
Affiliation(s)
- Chaithanya Leon
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Prashant Tayade
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
6
|
Sheldrake E, Nishat E, Wheeler AL, Goldstein BI, Reed N, Scratch SE. Functional network disruptions in youth with concussion using the Adolescent Brain Cognitive Development study. Brain Inj 2024:1-12. [PMID: 39415428 DOI: 10.1080/02699052.2024.2416545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVE This study aimed to compare psychosocial outcomes and functional neuroimaging among youth with concussion, youth with anxiety, and age- and sex-matched controls. METHODS Using archival data from the Adolescent Brain Cognitive DevelopmentSM Study, we analyzed between-group differences in psychosocial outcomes measured by the Child Behavior Checklist's internalizing and externalizing problem scales, and assessed brain function using resting-state fMRI network-region connectivity (specifically frontoparietal network (FPN) and default mode network (DMN) connectivity with the amygdala). RESULTS Significant differences in psychosocial outcomes were found across all groups, with the anxiety group reporting the most internalizing problems, followed by the concussion group which significantly differed from controls. Additionally, FPN-amygdala connectivity was significantly reduced in the concussion group only; this reduced connectivity did not predict psychosocial outcomes across groups. CONCLUSION This study provided preliminary findings that brain connectivity is reduced exclusively in individuals with concussion. Although disruptions were observed in the concussion group, further investigation is warranted to understand how disruptions may be associated with concussion symptoms. Studies that utilize well-defined control and study groups, and comprehensive cognitive and mental health measures will offer a deeper understanding of the relationship between brain function and psychosocial outcomes.
Collapse
Affiliation(s)
- Elena Sheldrake
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Eman Nishat
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nick Reed
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Occupational Science & Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Shannon E Scratch
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Brouillard A, Davignon LM, Vachon-Presseau É, Roy M, Marin MF. Starting the pill during adolescence: Age of onset and duration of use influence morphology of the hippocampus and ventromedial prefrontal cortex. Eur J Neurosci 2024; 60:5876-5899. [PMID: 39245916 DOI: 10.1111/ejn.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
From adolescence, women become more likely to experience fear dysregulation. Oral contraceptives (OCs) can modulate the brain regions involved in fear processes. OCs are generally used for years and often initiated during adolescence, a sensitive period where certain brain regions involved in the fear circuitry are still undergoing important reorganization. It remains unknown whether OC use during adolescence may induce long-lasting changes in the fear circuitry. This study aimed to examine whether age of onset moderated the relationship between duration of use and fear-related brain structures. We collected structural MRI data in 98 healthy adult women (61 current users, 37 past users) and extracted grey matter volumes (GMV) and cortical thickness (CT) of key regions of the fear circuitry. Non-linear multiple regressions revealed interaction effects between age of onset and quadratic duration of use on GMV of the right hippocampus and right ventromedial prefrontal cortex (vmPFC). Among women who initiated OCs earlier in adolescence, a short duration of use was associated with smaller hippocampal GMV and thicker vmPFC compared to a longer duration of use. For both GMV and CT of the right vmPFC, women with an early OC onset had more grey matter at a short duration of use than those with a later onset. Our results suggest that OC use earlier in adolescence may induce lasting effects on structural correlates of fear learning and its regulation. These findings support further investigation into the timing of OC use to better comprehend how OCs could disrupt normal brain development processes.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
8
|
Girn M, Setton R, Turner GR, Spreng RN. The "limbic network," comprising orbitofrontal and anterior temporal cortex, is part of an extended default network: Evidence from multi-echo fMRI. Netw Neurosci 2024; 8:860-882. [PMID: 39355434 PMCID: PMC11398723 DOI: 10.1162/netn_a_00385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/23/2024] [Indexed: 10/03/2024] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) investigations have provided a view of the default network (DN) as composed of a specific set of frontal, parietal, and temporal cortical regions. This spatial topography is typically defined with reference to an influential network parcellation scheme that designated the DN as one of seven large-scale networks (Yeo et al., 2011). However, the precise functional organization of the DN is still under debate, with studies arguing for varying subnetwork configurations and the inclusion of subcortical regions. In this vein, the so-called limbic network-defined as a distinct large-scale network comprising the bilateral temporal poles, ventral anterior temporal lobes, and orbitofrontal cortex-is of particular interest. A large multi-modal and multi-species literature on the anatomical, functional, and cognitive properties of these regions suggests a close relationship to the DN. Notably, these regions have poor signal quality with conventional fMRI acquisition, likely obscuring their network affiliation in most studies. Here, we leverage a multi-echo fMRI dataset with high temporal signal-to-noise and whole-brain coverage, including orbitofrontal and anterior temporal regions, to examine the large-scale network resting-state functional connectivity of these regions and assess their associations with the DN. Consistent with our hypotheses, our results support the inclusion of the majority of the orbitofrontal and anterior temporal cortex as part of the DN and reveal significant heterogeneity in their functional connectivity. We observed that left-lateralized regions within the temporal poles and ventral anterior temporal lobes, as well as medial orbitofrontal regions, exhibited the greatest resting-state functional connectivity with the DN, with heterogeneity across DN subnetworks. Overall, our findings suggest that, rather than being a functionally distinct network, the orbitofrontal and anterior temporal regions comprise part of a larger, extended default network.
Collapse
Affiliation(s)
- Manesh Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | | | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Hari E, Ulasoglu-Yildiz C, Kurt E, Bayram A, Gurvit H, Demiralp T. Volumetric and functional connectivity changes of the thalamic nuclei in different stages of Alzheimer's disease. Clin Neurophysiol 2024; 165:127-137. [PMID: 39029273 DOI: 10.1016/j.clinph.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/04/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Memory processes known to be impaired in Alzheimer's disease (AD) are maintained by a large-scale neurocognitive network with subcortical components, including the thalamus. Therefore, we aimed to examine the volumetric and functional changes of the thalamic nuclei at different scales across AD stages. METHODS MRI data of patients diagnosed with 20 AD dementia (ADD), 30 amnestic mild cognitive impairment (MCI), and 30 subjective cognitive impairment (SCI) were used. Volumetric and functional connectivity analyzes were performed by dividing the thalamus into anterior, medial, posterior, lateral and intralaminar nucleus groups and their specific subnuclei. RESULTS In the course of AD, the volume of the medial group nuclei, especially the mediodorsal medial magnocellular (MDm) nucleus, decreases. Medial group nuclei and MDm functional connectivity with frontal areas were decreased both in ADD and MCI compared to SCI group, while both of them increased their functional connectivity with visual areas in the ADD group compared to the MCI group. CONCLUSIONS Our study suggests that the medial group of the thalamus, and specifically the MDm, may be affected in AD. SIGNIFICANCE Specific thalamic nuclei may be a critical anatomical region for investigating structural and functional changes in AD.
Collapse
Affiliation(s)
- Emre Hari
- Graduate School of Health Sciences, Istanbul University, 34216 Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Cigdem Ulasoglu-Yildiz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Elif Kurt
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Hakan Gurvit
- Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey.
| | - Tamer Demiralp
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| |
Collapse
|
10
|
Bohnen NI, Marusic U, Roytman S, Paalanen R, Michalakis F, Brown T, Scott PJH, Carli G, Albin RL, Kanel P. Dynamic balance and gait impairments in Parkinson's disease: novel cholinergic patterns. Brain Commun 2024; 6:fcae286. [PMID: 39252998 PMCID: PMC11382145 DOI: 10.1093/braincomms/fcae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
The cholinergic system has been implicated in postural deficits, in particular falls, in Parkinson's disease (PD). Falls and freezing of gait typically occur during dynamic and challenging balance and gait conditions, such as when initiating gait, experiencing postural perturbations, or making turns. However, the precise cholinergic neural substrate underlying dynamic postural and gait changes remains poorly understood. The aim of this study was to investigate whether brain vesicular acetylcholine transporter binding, as measured with [18F]-fluoroethoxybenzovesamicol binding PET, correlates with dynamic gait and balance impairments in 125 patients with PD (mean age 66.89 ± 7.71 years) using the abbreviated balance evaluation systems test total and its four functional domain sub-scores (anticipatory postural control, reactive postural control, dynamic gait, and sensory integration). Whole brain false discovery-corrected (P < 0.05) correlations for total abbreviated balance evaluation systems test scores included the following bilateral or asymmetric hemispheric regions: gyrus rectus, orbitofrontal cortex, anterior part of the dorsomedial prefrontal cortex, dorsolateral prefrontal cortex, cingulum, frontotemporal opercula, insula, fimbria, right temporal pole, mesiotemporal, parietal and visual cortices, caudate nucleus, lateral and medial geniculate bodies, thalamus, lingual gyrus, cerebellar hemisphere lobule VI, left cerebellar crus I, superior cerebellar peduncles, flocculus, and nodulus. No significant correlations were found for the putamen or anteroventral putamen. The four domain-specific sub-scores demonstrated overlapping cholinergic topography in the metathalamus, fimbria, thalamus proper, and prefrontal cortices but also showed distinct topographic variations. For example, reactive postural control functions involved the right flocculus but not the upper brainstem regions. The anterior cingulum associated with reactive postural control whereas the posterior cingulum correlated with anticipatory control. The spatial extent of associated cholinergic system changes were least for dynamic gait and sensory orientation functional domains compared to the anticipatory and reactive postural control functions. We conclude that specific aspects of dynamic balance and gait deficits in PD associate with overlapping but also distinct patterns of cerebral cholinergic system changes in numerous brain regions. Our study also presents novel evidence of cholinergic topography involved in dynamic balance and gait in PD that have not been typically associated with mobility disturbances, such as the right anterior temporal pole, right anterior part of the dorsomedial prefrontal cortex, gyrus rectus, fimbria, lingual gyrus, flocculus, nodulus, and right cerebellar hemisphere lobules VI and left crus I.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105-9755, USA
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, 6000 Koper, Slovenia, EU
- Department of Health Sciences, Alma Mater Europaea University, 2000 Maribor, Slovenia, EU
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105-9755, USA
| | - Rebecca Paalanen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48105-9755, USA
| | - Fotini Michalakis
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48105-9755, USA
| | - Taylor Brown
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105-9755, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105-9755, USA
| | - Giulia Carli
- Department of Neurology, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48105-9755, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105-9755, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48105-9755, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48105-9755, USA
| |
Collapse
|
11
|
Lai PH, Hu RY, Huang X. Alterations in dynamic regional homogeneity within default mode network in patients with thyroid-associated ophthalmopathy. Neuroreport 2024; 35:702-711. [PMID: 38829952 DOI: 10.1097/wnr.0000000000002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a significant autoimmune eye disease known for causing exophthalmos and substantial optic nerve damage. Prior investigations have solely focused on static functional MRI (fMRI) scans of the brain in TAO patients, neglecting the assessment of temporal variations in local brain activity. This study aimed to characterize alterations in dynamic regional homogeneity (dReHo) in TAO patients and differentiate between TAO patients and healthy controls using support vector machine (SVM) classification. Thirty-two patients with TAO and 32 healthy controls underwent resting-state fMRI scans. We calculated dReHo using sliding-window methods to evaluate changes in regional brain activity and compared these findings between the two groups. Subsequently, we employed SVM, a machine learning algorithm, to investigate the potential use of dReHo maps as diagnostic markers for TAO. Compared to healthy controls, individuals with active TAO demonstrated significantly higher dReHo values in the right angular gyrus, left precuneus, right inferior parietal as well as the left superior parietal gyrus. The SVM model demonstrated an accuracy ranging from 65.62 to 68.75% in distinguishing between TAO patients and healthy controls based on dReHo variability in these identified brain regions, with an area under the curve of 0.70 to 0.76. TAO patients showed increased dReHo in default mode network-related brain regions. The accuracy of classifying TAO patients and healthy controls based on dReHo was notably high. These results offer new insights for investigating the pathogenesis and clinical diagnostic classification of individuals with TAO.
Collapse
Affiliation(s)
- Ping-Hong Lai
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Rui-Yang Hu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
12
|
Stieger JR, Pinheiro-Chagas P, Fang Y, Li J, Lusk Z, Perry CM, Girn M, Contreras D, Chen Q, Huguenard JR, Spreng RN, Edlow BL, Wagner AD, Buch V, Parvizi J. Cross-regional coordination of activity in the human brain during autobiographical self-referential processing. Proc Natl Acad Sci U S A 2024; 121:e2316021121. [PMID: 39078679 PMCID: PMC11317603 DOI: 10.1073/pnas.2316021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
For the human brain to operate, populations of neurons across anatomical structures must coordinate their activity within milliseconds. To date, our understanding of such interactions has remained limited. We recorded directly from the hippocampus (HPC), posteromedial cortex (PMC), ventromedial/orbital prefrontal cortex (OFC), and the anterior nuclei of the thalamus (ANT) during two experiments of autobiographical memory processing that are known from decades of neuroimaging work to coactivate these regions. In 31 patients implanted with intracranial electrodes, we found that the presentation of memory retrieval cues elicited a significant increase of low frequency (LF < 6 Hz) activity followed by cross-regional phase coherence of this LF activity before select populations of neurons within each of the four regions increased high-frequency (HF > 70 Hz) activity. The power of HF activity was modulated by memory content, and its onset followed a specific temporal order of ANT→HPC/PMC→OFC. Further, we probed cross-regional causal effective interactions with repeated electrical pulses and found that HPC stimulations cause the greatest increase in LF-phase coherence across all regions, whereas the stimulation of any region caused the greatest LF-phase coherence between that particular region and ANT. These observations support the role of the ANT in gating, and the HPC in synchronizing, the activity of cortical midline structures when humans retrieve self-relevant memories of their past. Our findings offer a fresh perspective, with high temporal fidelity, about the dynamic signaling and underlying causal connections among distant regions when the brain is actively involved in retrieving self-referential memories from the past.
Collapse
Affiliation(s)
- James R. Stieger
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Pedro Pinheiro-Chagas
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
| | - Ying Fang
- School of Psychology, South China Normal University, Guangzhou510631, China
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Zoe Lusk
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Claire M. Perry
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Manesh Girn
- Montreal Neurological Institute, Department Neurology and Neurosurgery, McGill University, Montreal, QCH3G 1A4, Canada
| | - Diego Contreras
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA19104
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou510631, China
| | - John R. Huguenard
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford, CA94305
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department Neurology and Neurosurgery, McGill University, Montreal, QCH3G 1A4, Canada
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Anthony D. Wagner
- Wu Tsai Neurosciences Institute, Stanford, CA94305
- Department of Psychology, Stanford University, Stanford, CA94305
| | - Vivek Buch
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Stanford, CA94305
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford, CA94305
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Stanford, CA94305
| |
Collapse
|
13
|
Mograbi DC, Rodrigues R, Bienemann B, Huntley J. Brain Networks, Neurotransmitters and Psychedelics: Towards a Neurochemistry of Self-Awareness. Curr Neurol Neurosci Rep 2024; 24:323-340. [PMID: 38980658 PMCID: PMC11258181 DOI: 10.1007/s11910-024-01353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Self-awareness can be defined as the capacity of becoming the object of one's own awareness and, increasingly, it has been the target of scientific inquiry. Self-awareness has important clinical implications, and a better understanding of the neurochemical basis of self-awareness may help clarifying causes and developing interventions for different psychopathological conditions. The current article explores the relationship between neurochemistry and self-awareness, with special attention to the effects of psychedelics. RECENT FINDINGS The functioning of self-related networks, such as the default-mode network and the salience network, and how these are influenced by different neurotransmitters is discussed. The impact of psychedelics on self-awareness is reviewed in relation to specific processes, such as interoception, body ownership, agency, metacognition, emotional regulation and autobiographical memory, within a framework based on predictive coding. Improved outcomes in emotional regulation and autobiographical memory have been observed in association with the use of psychedelics, suggesting higher-order self-awareness changes, which can be modulated by relaxation of priors and improved coping mechanisms linked to cognitive flexibility. Alterations in bodily self-awareness are less consistent, being potentially impacted by doses employed, differences in acute/long-term effects and the presence of clinical conditions. Future studies investigating the effects of different molecules in rebalancing connectivity between resting-state networks may lead to novel therapeutic approaches and the refinement of existing treatments.
Collapse
Affiliation(s)
- Daniel C Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Rafael Rodrigues
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bheatrix Bienemann
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
14
|
Zhao Y, Kirschenhofer T, Harvey M, Rainer G. Mediodorsal thalamus and ventral pallidum contribute to subcortical regulation of the default mode network. Commun Biol 2024; 7:891. [PMID: 39039239 PMCID: PMC11263694 DOI: 10.1038/s42003-024-06531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Humans and other animals readily transition from externally to internally focused attention, and these transitions are accompanied by activation of the default mode network (DMN). The DMN was considered a cortical network, yet recent evidence suggests subcortical structures are also involved. We investigated the role of ventral pallidum (VP) and mediodorsal thalamus (MD) in DMN regulation in tree shrew, a close relative of primates. Electrophysiology and deep learning-based classification of behavioral states revealed gamma oscillations in VP and MD coordinated with gamma in anterior cingulate (AC) cortex during DMN states. Cross-frequency coupling between gamma and delta oscillations was higher during DMN than other behaviors, underscoring the engagement of MD, VP and AC. Our findings highlight the importance of VP and MD in DMN regulation, extend homologies in DMN regulation among mammals, and underline the importance of thalamus and basal forebrain to the regulation of DMN.
Collapse
Affiliation(s)
- Yilei Zhao
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Tobias Kirschenhofer
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Harvey
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gregor Rainer
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
15
|
Tu PC, Chang WC, Su TP, Lin WC, Li CT, Bai YM, Tsai SJ, Chen MH. Thalamocortical functional connectivity and rapid antidepressant and antisuicidal effects of low-dose ketamine infusion among patients with treatment-resistant depression. Mol Psychiatry 2024:10.1038/s41380-024-02640-3. [PMID: 38971895 DOI: 10.1038/s41380-024-02640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Previous studies have shown an association between the thalamocortical dysconnectivity and treatment-resistant depression (TRD). Whether a single subanesthetic dose of ketamine may change thalamocortical connectivity among patients with TRD is unclear. Whether these changes in thalamocortical connectivity is associated with the antidepressant and antisuicidal effects of ketamine treatment is also unclear. Two resting-state functional MRIs were collected in two clinical trials of 48 patients with TRD (clinical trial 1; 32 receiving ketamine, 16 receiving a normal saline placebo) and 48 patients with TRD and strong suicidal ideation (clinical trial 2; 24 receiving ketamine, 24 receiving midazolam), respectively. All participants underwent rs-fMRI before and 3 days after infusion. Seed-based functional connectivity (FC) was analyzed in the left/right thalamus. FCs between the bilateral thalamus and right middle frontal cortex (BA46) and between the left thalamus and left anterior paracingulate gyrus (BA8) increased among patients in the ketamine group in clinical trials 1 and 2, respectively. FCs between the right thalamus and bilateral frontal pole (BA9) and between the right thalamus and left rostral paracingulate gyrus (BA10) decreased among patients in the ketamine group in clinical trials 1 and 2, respectively. However, the associations between those FC changes and clinical symptom changes did not survive statistical significance after multiple comparison corrections. Whether ketamine-related changes in thalamocortical connectivity may be associated with ketamine's antidepressant and antisuicidal effects would need further investigation. Clinical trials registration: UMIN Clinical Trials Registry (UMIN-CTR): Registration number: UMIN000016985 and UMIN000033916.
Collapse
Affiliation(s)
- Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Chen Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of biomedical engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
16
|
Tansey R, Graff K, Rai S, Merrikh D, Godfrey KJ, Vanderwal T, Bray S. Development of human visual cortical function: A scoping review of task- and naturalistic-fMRI studies through the interactive specialization and maturational frameworks. Neurosci Biobehav Rev 2024; 162:105729. [PMID: 38763178 DOI: 10.1016/j.neubiorev.2024.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Overarching theories such as the interactive specialization and maturational frameworks have been proposed to describe human functional brain development. However, these frameworks have not yet been systematically examined across the fMRI literature. Visual processing is one of the most well-studied fields in neuroimaging, and research in this area has recently expanded to include naturalistic paradigms that facilitate study in younger age ranges, allowing for an in-depth critical appraisal of these frameworks across childhood. To this end, we conducted a scoping review of 94 developmental visual fMRI studies, including both traditional experimental task and naturalistic studies, across multiple sub-domains (early visual processing, category-specific higher order processing, naturalistic visual processing). We found that across domains, many studies reported progressive development, but few studies describe regressive or emergent changes necessary to fit the maturational or interactive specialization frameworks. Our findings suggest a need for the expansion of developmental frameworks and clearer reporting of both progressive and regressive changes, along with well-powered, longitudinal studies.
Collapse
Affiliation(s)
- Ryann Tansey
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Kirk Graff
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Shefali Rai
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daria Merrikh
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate J Godfrey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Dagnino PC, Galadí JA, Càmara E, Deco G, Escrichs A. Inducing a meditative state by artificial perturbations: A mechanistic understanding of brain dynamics underlying meditation. Netw Neurosci 2024; 8:517-540. [PMID: 38952817 PMCID: PMC11168722 DOI: 10.1162/netn_a_00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 07/03/2024] Open
Abstract
Contemplative neuroscience has increasingly explored meditation using neuroimaging. However, the brain mechanisms underlying meditation remain elusive. Here, we implemented a mechanistic framework to explore the spatiotemporal dynamics of expert meditators during meditation and rest, and controls during rest. We first applied a model-free approach by defining a probabilistic metastable substate (PMS) space for each condition, consisting of different probabilities of occurrence from a repertoire of dynamic patterns. Moreover, we implemented a model-based approach by adjusting the PMS of each condition to a whole-brain model, which enabled us to explore in silico perturbations to transition from resting-state to meditation and vice versa. Consequently, we assessed the sensitivity of different brain areas regarding their perturbability and their mechanistic local-global effects. Overall, our work reveals distinct whole-brain dynamics in meditation compared to rest, and how transitions can be induced with localized artificial perturbations. It motivates future work regarding meditation as a practice in health and as a potential therapy for brain disorders.
Collapse
Affiliation(s)
- Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier A. Galadí
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
18
|
Fehr T, Mehrens S, Haag MC, Amelung A, Gloy K. Changes in Spatiotemporal Dynamics of Default Network Oscillations between 19 and 29 Years of Age. Brain Sci 2024; 14:671. [PMID: 39061412 PMCID: PMC11274777 DOI: 10.3390/brainsci14070671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The exploration of functional resting-state brain developmental parameters and measures can help to improve scientific, psychological, and medical applications. The present work focussed on both traditional approaches, such as topographical power analyses at the signal space level, and advanced approaches, such as the exploration of age-related dynamics of source space data. The results confirmed the expectation that the third life decade would show a kind of stability in oscillatory signal and source-space-related parameters. However, from a source dynamics perspective, different frequency ranges appear to develop quite differently, as reflected in age-related sequential network communication profiles. Among other discoveries, the left anterior cingulate source location could be shown to reduce bi-directional network communication in the lower alpha band, whereas it differentiated its uni- and bidirectional communication dynamics to sub-cortical and posterior brain locations. Higher alpha oscillations enhanced communication dynamics between the thalamus and particularly frontal areas. In conclusion, resting-state data appear to be, at least in part, functionally reorganized in the default mode network, while quantitative measures, such as topographical power and regional source activity, did not correlate with age in the third life decade. In line with other authors, we suggest the further development of a multi-perspective approach in biosignal analyses.
Collapse
Affiliation(s)
- Thorsten Fehr
- Institute for Psychology, University of Bremen, 28357 Bremen, Germany (K.G.)
- Center for Advanced Imaging, University of Bremen, 28357 Bremen, Germany
| | - Sophia Mehrens
- Institute for Psychology, University of Bremen, 28357 Bremen, Germany (K.G.)
| | | | - Anneke Amelung
- Institute for Psychology, University of Bremen, 28357 Bremen, Germany (K.G.)
| | - Kilian Gloy
- Institute for Psychology, University of Bremen, 28357 Bremen, Germany (K.G.)
| |
Collapse
|
19
|
Del Moro L, Pirovano E, Rota E. Mind the Metabolic Gap: Bridging Migraine and Alzheimer's disease through Brain Insulin Resistance. Aging Dis 2024:AD.2024.0351. [PMID: 38913047 DOI: 10.14336/ad.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Brain insulin resistance has recently been described as a metabolic abnormality of brain glucose homeostasis that has been proven to downregulate insulin receptors, both in astrocytes and neurons, triggering a reduction in glucose uptake and glycogen synthesis. This condition may generate a mismatch between brain's energy reserve and expenditure, mainly during high metabolic demand, which could be involved in the chronification of migraine and, in the long run, at least in certain subsets of patients, in the prodromic phase of Alzheimer's disease, along a putative metabolic physiopathological continuum. Indeed, the persistent disruption of glucose homeostasis and energy supply to neurons may eventually impair protein folding, an energy-requiring process, promoting pathological changes in Alzheimer's disease, such as amyloid-β deposition and tau hyperphosphorylation. Hopefully, the "neuroenergetic hypothesis" presented herein will provide further insight on there being a conceivable metabolic bridge between chronic migraine and Alzheimer's disease, elucidating novel potential targets for the prophylactic treatment of both diseases.
Collapse
Affiliation(s)
- Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elenamaria Pirovano
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Eugenia Rota
- Neurology Unit, San Giacomo Hospital, Novi Ligure, ASL AL, Italy
| |
Collapse
|
20
|
Skandalakis GP, Linn W, Yeh F, Kazim SF, Komaitis S, Neromyliotis E, Dimopoulos D, Drosos E, Hadjipanayis CG, Kongkham PN, Zadeh G, Stranjalis G, Koutsarnakis C, Kogan M, Evans LT, Kalyvas A. Unveiling the axonal connectivity between the precuneus and temporal pole: Structural evidence from the cingulum pathways. Hum Brain Mapp 2024; 45:e26771. [PMID: 38925589 PMCID: PMC11199201 DOI: 10.1002/hbm.26771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies have consistently demonstrated concurrent activation of the human precuneus and temporal pole (TP), both during resting-state conditions and various higher-order cognitive functions. However, the precise underlying structural connectivity between these brain regions remains uncertain despite significant advancements in neuroscience research. In this study, we investigated the connectivity of the precuneus and TP by employing parcellation-based fiber micro-dissections in human brains and fiber tractography techniques in a sample of 1065 human subjects and a sample of 41 rhesus macaques. Our results demonstrate the connectivity between the posterior precuneus area POS2 and the areas 35, 36, and TG of the TP via the fifth subcomponent of the cingulum (CB-V) also known as parahippocampal cingulum. This finding contributes to our understanding of the connections within the posteromedial cortices, facilitating a more comprehensive integration of anatomy and function in both normal and pathological brain processes. PRACTITIONER POINTS: Our investigation delves into the intricate architecture and connectivity patterns of subregions within the precuneus and temporal pole, filling a crucial gap in our knowledge. We revealed a direct axonal connection between the posterior precuneus (POS2) and specific areas (35, 35, and TG) of the temporal pole. The direct connections are part of the CB-V pathway and exhibit a significant association with the cingulum, SRF, forceps major, and ILF. Population-based human tractography and rhesus macaque fiber tractography showed consistent results that support micro-dissection outcomes.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Section of NeurosurgeryDartmouth Hitchcock Medical CenterLebanonNew HampshireUSA
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Wen‐Jieh Linn
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Fang‐Cheng Yeh
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Syed Faraz Kazim
- Department of NeurosurgeryUniversity of New Mexico HospitalAlbuquerqueNew MexicoUSA
| | - Spyridon Komaitis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Eleftherios Neromyliotis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Dimitrios Dimopoulos
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Evangelos Drosos
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | | | - Paul N. Kongkham
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| | - Gelareh Zadeh
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| | - George Stranjalis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Christos Koutsarnakis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Michael Kogan
- Department of NeurosurgeryUniversity of New Mexico HospitalAlbuquerqueNew MexicoUSA
| | - Linton T. Evans
- Section of NeurosurgeryDartmouth Hitchcock Medical CenterLebanonNew HampshireUSA
| | - Aristotelis Kalyvas
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| |
Collapse
|
21
|
Fujimoto SH, Fujimoto A, Elorette C, Seltzer A, Andraka E, Verma G, Janssen WGM, Fleysher L, Folloni D, Choi KS, Russ BE, Mayberg HS, Rudebeck PH. Deep brain stimulation induces white matter remodeling and functional changes to brain-wide networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598710. [PMID: 38915600 PMCID: PMC11195276 DOI: 10.1101/2024.06.13.598710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Deep brain stimulation (DBS) is an emerging therapeutic option for treatment resistant neurological and psychiatric disorders, most notably depression. Despite this, little is known about the anatomical and functional mechanisms that underlie this therapy. Here we targeted stimulation to the white matter adjacent to the subcallosal anterior cingulate cortex (SCC-DBS) in macaques, modeling the location in the brain proven effective for depression. We demonstrate that SCC-DBS has a selective effect on white matter macro- and micro-structure in the cingulum bundle distant to where stimulation was delivered. SCC-DBS also decreased functional connectivity between subcallosal and posterior cingulate cortex, two areas linked by the cingulum bundle and implicated in depression. Our data reveal that white matter remodeling as well as functional effects contribute to DBS's therapeutic efficacy.
Collapse
Affiliation(s)
- Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Adela Seltzer
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Emma Andraka
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Gaurav Verma
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West Hospital; New York, NY 10019, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - William GM Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Davide Folloni
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West Hospital; New York, NY 10019, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute; Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University at Langone; New York, NY 10016, USA
| | - Helen S. Mayberg
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West Hospital; New York, NY 10019, USA
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
22
|
Lahijanian M, Aghajan H, Vahabi Z. Auditory gamma-band entrainment enhances default mode network connectivity in dementia patients. Sci Rep 2024; 14:13153. [PMID: 38849418 PMCID: PMC11161471 DOI: 10.1038/s41598-024-63727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Dementia, and in particular Alzheimer's disease (AD), can be characterized by disrupted functional connectivity in the brain caused by beta-amyloid deposition in neural links. Non-pharmaceutical treatments for dementia have recently explored interventions involving the stimulation of neuronal populations in the gamma band. These interventions aim to restore brain network functionality by synchronizing rhythmic energy through various stimulation modalities. Entrainment, a newly proposed non-invasive sensory stimulation method, has shown promise in improving cognitive functions in dementia patients. This study investigates the effectiveness of entrainment in terms of promoting neural synchrony and spatial connectivity across the cortex. EEG signals were recorded during a 40 Hz auditory entrainment session conducted with a group of elderly participants with dementia. Phase locking value (PLV) between different intraregional and interregional sites was examined as an attribute of network synchronization, and connectivity of local and distant links were compared during the stimulation and rest trials. Our findings demonstrate enhanced neural synchrony between the frontal and parietal regions, which are key components of the brain's default mode network (DMN). The DMN operation is known to be impacted by dementia's progression, leading to reduced functional connectivity across the parieto-frontal pathways. Notably, entrainment alone significantly improves synchrony between these DMN components, suggesting its potential for restoring functional connectivity.
Collapse
Affiliation(s)
- Mojtaba Lahijanian
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid Aghajan
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Sanda P, Hlinka J, van den Berg M, Skoch A, Bazhenov M, Keliris GA, Krishnan GP. Cholinergic modulation supports dynamic switching of resting state networks through selective DMN suppression. PLoS Comput Biol 2024; 20:e1012099. [PMID: 38843298 PMCID: PMC11185486 DOI: 10.1371/journal.pcbi.1012099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 04/23/2024] [Indexed: 06/19/2024] Open
Abstract
Brain activity during the resting state is widely used to examine brain organization, cognition and alterations in disease states. While it is known that neuromodulation and the state of alertness impact resting-state activity, neural mechanisms behind such modulation of resting-state activity are unknown. In this work, we used a computational model to demonstrate that change in excitability and recurrent connections, due to cholinergic modulation, impacts resting-state activity. The results of such modulation in the model match closely with experimental work on direct cholinergic modulation of Default Mode Network (DMN) in rodents. We further extended our study to the human connectome derived from diffusion-weighted MRI. In human resting-state simulations, an increase in cholinergic input resulted in a brain-wide reduction of functional connectivity. Furthermore, selective cholinergic modulation of DMN closely captured experimentally observed transitions between the baseline resting state and states with suppressed DMN fluctuations associated with attention to external tasks. Our study thus provides insight into potential neural mechanisms for the effects of cholinergic neuromodulation on resting-state activity and its dynamics.
Collapse
Affiliation(s)
- Pavel Sanda
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hlinka
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Giri P. Krishnan
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Malik MA, Weber AM, Lang D, Vanderwal T, Zwicker JG. Changes in cortical grey matter volume with Cognitive Orientation to daily Occupational Performance intervention in children with developmental coordination disorder. Front Hum Neurosci 2024; 18:1316117. [PMID: 38841123 PMCID: PMC11150831 DOI: 10.3389/fnhum.2024.1316117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Cognitive Orientation to daily Occupational Performance (CO-OP) is a cognitive-based, task-specific intervention recommended for children with developmental coordination disorder (DCD). We recently showed structural and functional brain changes after CO-OP, including increased cerebellar grey matter. This study aimed to determine whether CO-OP intervention induced changes in cortical grey matter volume in children with DCD, and if these changes were associated with improvements in motor performance and movement quality. Methods This study is part of a randomized waitlist-control trial (ClinicalTrials.gov ID: NCT02597751). Children with DCD (N = 78) were randomized to either a treatment or waitlist group and underwent three MRIs over 6 months. The treatment group received intervention (once weekly for 10 weeks) between the first and second scan; the waitlist group received intervention between the second and third scan. Cortical grey matter volume was measured using voxel-based morphometry (VBM). Behavioral outcome measures included the Performance Quality Rating Scale (PQRS) and Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2). Of the 78 children, 58 were excluded (mostly due to insufficient data quality), leaving a final N = 20 for analyses. Due to the small sample size, we combined both groups to examine treatment effects. Cortical grey matter volume differences were assessed using a repeated measures ANOVA, controlling for total intracranial volume. Regression analyses examined the relationship of grey matter volume changes to BOT-2 (motor performance) and PQRS (movement quality). Results After CO-OP, children had significantly decreased grey matter in the right superior frontal gyrus and middle/posterior cingulate gyri. We found no significant associations of grey matter volume changes with PQRS or BOT-2 scores. Conclusion Decreased cortical grey matter volume generally reflects greater brain maturity. Decreases in grey matter volume after CO-OP intervention were in regions associated with self-regulation and motor control, consistent with our other studies. Decreased grey matter volume may be due to focal increases in synaptic pruning, perhaps as a result of strengthening networks in the brain via the repeated learning and actions in therapy. Findings from this study add to the growing body of literature demonstrating positive neuroplastic changes in the brain after CO-OP intervention.
Collapse
Affiliation(s)
- Myrah Anum Malik
- Graduate Programs in Rehabilitation Science, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Mark Weber
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Donna Lang
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Tamara Vanderwal
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jill G. Zwicker
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Occupational Science and Occupational Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
James C, Müller D, Müller C, Van De Looij Y, Altenmüller E, Kliegel M, Van De Ville D, Marie D. Randomized controlled trials of non-pharmacological interventions for healthy seniors: Effects on cognitive decline, brain plasticity and activities of daily living-A 23-year scoping review. Heliyon 2024; 10:e26674. [PMID: 38707392 PMCID: PMC11066598 DOI: 10.1016/j.heliyon.2024.e26674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 05/07/2024] Open
Abstract
Little is known about the simultaneous effects of non-pharmacological interventions (NPI) on healthy older adults' behavior and brain plasticity, as measured by psychometric instruments and magnetic resonance imaging (MRI). The purpose of this scoping review was to compile an extensive list of randomized controlled trials published from January 1, 2000, to August 31, 2023, of NPI for mitigating and countervailing age-related physical and cognitive decline and associated cerebral degeneration in healthy elderly populations with a mean age of 55 and over. After inventorying the NPI that met our criteria, we divided them into six classes: single-domain cognitive, multi-domain cognitive, physical aerobic, physical non-aerobic, combined cognitive and physical aerobic, and combined cognitive and physical non-aerobic. The ultimate purpose of these NPI was to enhance individual autonomy and well-being by bolstering functional capacity that might transfer to activities of daily living. The insights from this study can be a starting point for new research and inform social, public health, and economic policies. The PRISMA extension for scoping reviews (PRISMA-ScR) checklist served as the framework for this scoping review, which includes 70 studies. Results indicate that medium- and long-term interventions combining non-aerobic physical exercise and multi-domain cognitive interventions best stimulate neuroplasticity and protect against age-related decline and that outcomes may transfer to activities of daily living.
Collapse
Affiliation(s)
- C.E. James
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
| | - D.M. Müller
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - C.A.H. Müller
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - Y. Van De Looij
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 6 Rue Willy Donzé, 1205 Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Animal Imaging and Technology Section, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH F1 - Station 6, 1015, Lausanne, Switzerland
| | - E. Altenmüller
- Hannover University of Music, Drama and Media, Institute for Music Physiology and Musicians' Medicine, Neues Haus 1, 30175, Hannover, Germany
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - M. Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Chemin de Pinchat 22, 1207, Carouge, Switzerland
| | - D. Van De Ville
- Ecole polytechnique fédérale de Lausanne (EPFL), Neuro-X Institute, Campus Biotech, 1211 Geneva, Switzerland
- University of Geneva, Department of Radiology and Medical Informatics, Faculty of Medecine, Campus Biotech, 1211 Geneva, Switzerland
| | - D. Marie
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Cognitive and Affective Neuroimaging Section, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
26
|
Jang SH, Yeo SS, Cho MJ, Chung WK. Correlation between Thalamocortical Tract and Default Mode Network with Consciousness Levels in Hypoxic-Ischemic Brain Injury Patients: A Comparative Study Using the Coma Recovery Scale-Revised. Med Sci Monit 2024; 30:e943802. [PMID: 38741355 PMCID: PMC11409902 DOI: 10.12659/msm.943802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The thalamocortical tract (TCT) links nerve fibers between the thalamus and cerebral cortex, relaying motor/sensory information. The default mode network (DMN) comprises bilateral, symmetrical, isolated cortical regions of the lateral and medial parietal and temporal brain cortex. The Coma Recovery Scale-Revised (CRS-R) is a standardized neurobehavioral assessment of disorders of consciousness (DOC). In the present study, 31 patients with hypoxic-ischemic brain injury (HI-BI) were compared for changes in the TCT and DMN with consciousness levels assessed using the CRS-R. MATERIAL AND METHODS In this retrospective study, 31 consecutive patients with HI-BI (17 DOC,14 non-DOC) and 17 age- and sex-matched normal control subjects were recruited. Magnetic resonance imaging was used to diagnose HI-BI, and the CRS-R was used to evaluate consciousness levels at the time of diffusion tensor imaging (DTI). The fractional anisotropy (FA) values and tract volumes (TV) of the TCT and DMN were compared. RESULTS In patients with DOC, the FA values and TV of both the TCT and DMN were significantly lower compared to those of patients without DOC and the control subjects (p<0.05). When comparing the non-DOC and control groups, the TV of the TCT and DMN were significantly lower in the non-DOC group (p<0.05). Moreover, the CRS-R score had strong positive correlations with the TV of the TCT (r=0.501, p<0.05), FA of the DMN (r=0.532, p<0.05), and TV of the DMN (r=0.501, p<0.05) in the DOC group. CONCLUSIONS This study suggests that both the TCT and DMN exhibit strong correlations with consciousness levels in DOC patients with HI-BI.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Sang Seok Yeo
- Department of Physical Therapy, College of Health Sciences, Dankook University, Cheonan, South Korea
| | - Min Jye Cho
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - William K Chung
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
27
|
Edlow BL, Olchanyi M, Freeman HJ, Li J, Maffei C, Snider SB, Zöllei L, Iglesias JE, Augustinack J, Bodien YG, Haynes RL, Greve DN, Diamond BR, Stevens A, Giacino JT, Destrieux C, van der Kouwe A, Brown EN, Folkerth RD, Fischl B, Kinney HC. Multimodal MRI reveals brainstem connections that sustain wakefulness in human consciousness. Sci Transl Med 2024; 16:eadj4303. [PMID: 38691619 DOI: 10.1126/scitranslmed.adj4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Consciousness is composed of arousal (i.e., wakefulness) and awareness. Substantial progress has been made in mapping the cortical networks that underlie awareness in the human brain, but knowledge about the subcortical networks that sustain arousal in humans is incomplete. Here, we aimed to map the connectivity of a proposed subcortical arousal network that sustains wakefulness in the human brain, analogous to the cortical default mode network (DMN) that has been shown to contribute to awareness. We integrated data from ex vivo diffusion magnetic resonance imaging (MRI) of three human brains, obtained at autopsy from neurologically normal individuals, with immunohistochemical staining of subcortical brain sections. We identified nodes of the proposed default ascending arousal network (dAAN) in the brainstem, hypothalamus, thalamus, and basal forebrain. Deterministic and probabilistic tractography analyses of the ex vivo diffusion MRI data revealed projection, association, and commissural pathways linking dAAN nodes with one another and with DMN nodes. Complementary analyses of in vivo 7-tesla resting-state functional MRI data from the Human Connectome Project identified the dopaminergic ventral tegmental area in the midbrain as a widely connected hub node at the nexus of the subcortical arousal and cortical awareness networks. Our network-based autopsy methods and connectivity data provide a putative neuroanatomic architecture for the integration of arousal and awareness in human consciousness.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark Olchanyi
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Holly J Freeman
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Chiara Maffei
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Samuel B Snider
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - J Eugenio Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jean Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bram R Diamond
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Allison Stevens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Christophe Destrieux
- UMR 1253, iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032, Tours, France
- CHRU de Tours, 2 Boulevard Tonnellé, Tours, France
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Hannah C Kinney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Lee Y, Chahal R, Gotlib IH. The default mode network is associated with changes in internalizing and externalizing problems differently in adolescent boys and girls. Dev Psychopathol 2024; 36:834-843. [PMID: 36847268 DOI: 10.1017/s0954579423000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Internalizing and externalizing problems that emerge during adolescence differentially increase boys' and girls' risk for developing psychiatric disorders. It is not clear, however, whether there are sex differences in the intrinsic functional architecture of the brain that underlie changes in the severity of internalizing and externalizing problems in adolescents. Using resting-state fMRI data and self-reports of behavioral problems obtained from 128 adolescents (73 females; 9-14 years old) at two timepoints, we conducted multivoxel pattern analysis to identify resting-state functional connectivity markers at baseline that predict changes in the severity of internalizing and externalizing problems in boys and girls 2 years later. We found sex-differentiated involvement of the default mode network in changes in internalizing and externalizing problems. Whereas changes in internalizing problems were associated with the dorsal medial subsystem in boys and with the medial temporal subsystem in girls, changes in externalizing problems were predicted by hyperconnectivity between core nodes of the DMN and frontoparietal network in boys and hypoconnectivity between the DMN and affective networks in girls. Our results suggest that different neural mechanisms predict changes in internalizing and externalizing problems in adolescent boys and girls and offer insights concerning mechanisms that underlie sex differences in the expression of psychopathology in adolescence.
Collapse
Affiliation(s)
- Yoonji Lee
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Kim HJ, Bang M, Pae C, Lee SH. Multimodal neural correlates of dispositional resilience among healthy individuals. Sci Rep 2024; 14:9875. [PMID: 38684873 PMCID: PMC11059361 DOI: 10.1038/s41598-024-60619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Resilient individuals are less likely to develop psychiatric disorders despite extreme psychological distress. This study investigated the multimodal structural neural correlates of dispositional resilience among healthy individuals. Participants included 92 healthy individuals. The Korean version of the Connor-Davidson Resilience Scale and other psychological measures were used. Gray matter volumes (GMVs), cortical thickness, local gyrification index (LGI), and white matter (WM) microstructures were analyzed using voxel-based morphometry, FreeSurfer, and tract-based spatial statistics, respectively. Higher resilient individuals showed significantly higher GMVs in the inferior frontal gyrus (IFG), increased LGI in the insula, and lower fractional anisotropy values in the superior longitudinal fasciculus II (SLF II). These resilience's neural correlates were associated with good quality of life in physical functioning or general health and low levels of depression. Therefore, the GMVs in the IFG, LGI in the insula, and WM microstructures in the SLF II can be associated with resilience that contributes to emotional regulation, empathy, and social cognition.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
| | - Chongwon Pae
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea.
| |
Collapse
|
30
|
Zou Y, Tong C, Peng W, Qiu Y, Li J, Xia Y, Pei M, Zhang K, Li W, Xu M, Liang Z. Cell-type-specific optogenetic fMRI on basal forebrain reveals functional network basis of behavioral preference. Neuron 2024; 112:1342-1357.e6. [PMID: 38359827 DOI: 10.1016/j.neuron.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
The basal forebrain (BF) is a complex structure that plays key roles in regulating various brain functions. However, it remains unclear how cholinergic and non-cholinergic BF neurons modulate large-scale functional networks and their relevance in intrinsic and extrinsic behaviors. With an optimized awake mouse optogenetic fMRI approach, we revealed that optogenetic stimulation of four BF neuron types evoked distinct cell-type-specific whole-brain BOLD activations, which could be attributed to BF-originated low-dimensional structural networks. Additionally, optogenetic activation of VGLUT2, ChAT, and PV neurons in the BF modulated the preference for locomotion, exploration, and grooming, respectively. Furthermore, we uncovered the functional network basis of the above BF-modulated behavioral preference through a decoding model linking the BF-modulated BOLD activation, low-dimensional structural networks, and behavioral preference. To summarize, we decoded the functional network basis of differential behavioral preferences with cell-type-specific optogenetic fMRI on the BF and provided an avenue for investigating mouse behaviors from a whole-brain view.
Collapse
Affiliation(s)
- Yijuan Zou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Chuanjun Tong
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wanling Peng
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yue Qiu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200032, China
| | - Jiangxue Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xia
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengchao Pei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwei Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weishuai Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhifeng Liang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
31
|
Seoane S, van den Heuvel M, Acebes Á, Janssen N. The subcortical default mode network and Alzheimer's disease: a systematic review and meta-analysis. Brain Commun 2024; 6:fcae128. [PMID: 38665961 PMCID: PMC11043657 DOI: 10.1093/braincomms/fcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The default mode network is a central cortical brain network suggested to play a major role in several disorders and to be particularly vulnerable to the neuropathological hallmarks of Alzheimer's disease. Subcortical involvement in the default mode network and its alteration in Alzheimer's disease remains largely unknown. We performed a systematic review, meta-analysis and empirical validation of the subcortical default mode network in healthy adults, combined with a systematic review, meta-analysis and network analysis of the involvement of subcortical default mode areas in Alzheimer's disease. Our results show that, besides the well-known cortical default mode network brain regions, the default mode network consistently includes subcortical regions, namely the thalamus, lobule and vermis IX and right Crus I/II of the cerebellum and the amygdala. Network analysis also suggests the involvement of the caudate nucleus. In Alzheimer's disease, we observed a left-lateralized cluster of decrease in functional connectivity which covered the medial temporal lobe and amygdala and showed overlap with the default mode network in a portion covering parts of the left anterior hippocampus and left amygdala. We also found an increase in functional connectivity in the right anterior insula. These results confirm the consistency of subcortical contributions to the default mode network in healthy adults and highlight the relevance of the subcortical default mode network alteration in Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Seoane
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
| | - Martijn van den Heuvel
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Ángel Acebes
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Department of Basic Medical Sciences, University of La Laguna, Tenerife 38200, Spain
| | - Niels Janssen
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
- Department of Cognitive, Social and Organizational Psychology, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
32
|
De Waegenaere S, van den Berg M, Keliris GA, Adhikari MH, Verhoye M. Early altered directionality of resting brain network state transitions in the TgF344-AD rat model of Alzheimer's disease. Front Hum Neurosci 2024; 18:1379923. [PMID: 38646161 PMCID: PMC11026683 DOI: 10.3389/fnhum.2024.1379923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in memory loss and cognitive decline. Synaptic dysfunction is an early hallmark of the disease whose effects on whole-brain functional architecture can be identified using resting-state functional MRI (rsfMRI). Insights into mechanisms of early, whole-brain network alterations can help our understanding of the functional impact of AD's pathophysiology. Methods Here, we obtained rsfMRI data in the TgF344-AD rat model at the pre- and early-plaque stages. This model recapitulates the major pathological and behavioral hallmarks of AD. We used co-activation pattern (CAP) analysis to investigate if and how the dynamic organization of intrinsic brain functional networks states, undetectable by earlier methods, is altered at these early stages. Results We identified and characterized six intrinsic brain states as CAPs, their spatial and temporal features, and the transitions between the different states. At the pre-plaque stage, the TgF344-AD rats showed reduced co-activation of hub regions in the CAPs corresponding to the default mode-like and lateral cortical network. Default mode-like network activity segregated into two distinct brain states, with one state characterized by high co-activation of the basal forebrain. This basal forebrain co-activation was reduced in TgF344-AD animals mainly at the pre-plaque stage. Brain state transition probabilities were altered at the pre-plaque stage between states involving the default mode-like network, lateral cortical network, and basal forebrain regions. Additionally, while the directionality preference in the network-state transitions observed in the wild-type animals at the pre-plaque stage had diminished at the early-plaque stage, TgF344-AD animals continued to show directionality preference at both stages. Discussion Our study enhances the understanding of intrinsic brain state dynamics and how they are impacted at the early stages of AD, providing a nuanced characterization of the early, functional impact of the disease's neurodegenerative process.
Collapse
Affiliation(s)
- Sam De Waegenaere
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Monica van den Berg
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Mohit H. Adhikari
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Guichet C, Banjac S, Achard S, Mermillod M, Baciu M. Modeling the neurocognitive dynamics of language across the lifespan. Hum Brain Mapp 2024; 45:e26650. [PMID: 38553863 PMCID: PMC10980845 DOI: 10.1002/hbm.26650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Healthy aging is associated with a heterogeneous decline across cognitive functions, typically observed between language comprehension and language production (LP). Examining resting-state fMRI and neuropsychological data from 628 healthy adults (age 18-88) from the CamCAN cohort, we performed state-of-the-art graph theoretical analysis to uncover the neural mechanisms underlying this variability. At the cognitive level, our findings suggest that LP is not an isolated function but is modulated throughout the lifespan by the extent of inter-cognitive synergy between semantic and domain-general processes. At the cerebral level, we show that default mode network (DMN) suppression coupled with fronto-parietal network (FPN) integration is the way for the brain to compensate for the effects of dedifferentiation at a minimal cost, efficiently mitigating the age-related decline in LP. Relatedly, reduced DMN suppression in midlife could compromise the ability to manage the cost of FPN integration. This may prompt older adults to adopt a more cost-efficient compensatory strategy that maintains global homeostasis at the expense of LP performances. Taken together, we propose that midlife represents a critical neurocognitive juncture that signifies the onset of LP decline, as older adults gradually lose control over semantic representations. We summarize our findings in a novel synergistic, economical, nonlinear, emergent, cognitive aging model, integrating connectomic and cognitive dimensions within a complex system perspective.
Collapse
Affiliation(s)
| | - Sonja Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105GrenobleFrance
| | - Sophie Achard
- LJK, UMR CNRS 5224, Université Grenoble AlpesGrenobleFrance
| | | | - Monica Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105GrenobleFrance
| |
Collapse
|
34
|
Hudgins SN, Curtin A, Tracy J, Ayaz H. Impaired Cortico-Thalamo-Cerebellar Integration Across Schizophrenia, Bipolar II, and Attention Deficit Hyperactivity Disorder Patients Suggests Potential Neural Signatures for Psychiatric Illness. RESEARCH SQUARE 2024:rs.3.rs-4145883. [PMID: 38586053 PMCID: PMC10996788 DOI: 10.21203/rs.3.rs-4145883/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Understanding aberrant functional changes between brain regions has shown promise for characterizing and differentiating the symptoms associated with progressive psychiatric disorders. The functional integration between the thalamus and cerebellum significantly influences learning and memory in cognition. Observed in schizophrenic patients, dysfunction within the corticalthalamocerebellar (CTC) circuitry is linked to challenges in prioritizing, processing, coordinating, and responding to information. This study explored whether abnormal CTC functional network connectivity patterns are present across schizophrenia (SCHZ) patients, bipolar II disorder (BIPOL) patients, and ADHD patients by examining both task- and task-free conditions compared to healthy volunteers (HC). Leveraging fMRI data from 135 participants (39 HC, 27 SCHZ patients, 38 BIPOL patients, and 31 ADHD patients), we analyzed functional network connectivity (FNC) patterns across 115 cortical, thalamic, subcortical, and cerebellar regions of interest (ROIs). Guiding our investigation: First, do the brain regions of the CTC circuit exhibit distinct abnormal patterns at rest in SCHZ, ADHD, and BIPOL? Second, do working memory tasks in these patients engage common regions of the circuit in similar or unique patterns? Consistent with previous findings, our observations revealed FNC patterns constrained in the cerebellar, thalamic, striatal, hippocampal, medial prefrontal and insular cortices across all three psychiatric cohorts when compared to controls in both task and task-free conditions. Post hoc analysis suggested a predominance in schizophrenia and ADHD patients during rest, while the task condition demonstrated effects across all three disorders. Factor-by-covariance GLM MANOVA further specified regions associated with clinical symptoms and trait assessments. Our study provides evidence suggesting that dysfunctional CTC circuitry in both task-free and task-free conditions may be an important broader neural signature of psychiatric illness.
Collapse
|
35
|
Piani MC, Gerber BS, Koenig T, Morishima Y, Nordgaard J, Jandl M. Mapping the pre-reflective experience of "self" to the brain - An ERP study. Conscious Cogn 2024; 119:103654. [PMID: 38422760 DOI: 10.1016/j.concog.2024.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The neural underpinnings of selfhood encompass pre-reflective and reflective self-experience. The former refers to a basic, immediate experience of being a self, while the latter involves cognition and introspection. Although neural correlates of reflective self-experience have been studied, the pre-reflective remains underinvestigated. This research aims to bridge this gap by comparatively investigating ERP correlates of reading first- vs. third-person pronouns - approximating pre-reflective self-experience - and self- vs. other-related adjectives - approximating reflective self-experience - in 30 healthy participants. We found differential neural engagement between pre-reflective and reflective self-experience at 254-310 ms post-stimulus onset. Source estimation suggested that our sensor-level results could be plausibly explained by the involvement of cortical midline structures and default mode network in the general sense of self but selective recruitment of anterior cingulate and top-down dorsal attention network in the pre-reflective self. These findings offer a deeper understanding of the experiential self, especially pre-reflective, providing a foundation for investigating self-disorders.
Collapse
Affiliation(s)
- Maria Chiara Piani
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy Bern UPD, Bolligenstrasse 111, 3000 Bern, Switzerland; Graduate School of Health Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Bettina Salome Gerber
- Institute of Psychology, University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy Bern UPD, Bolligenstrasse 111, 3000 Bern, Switzerland.
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy Bern UPD, Bolligenstrasse 111, 3000 Bern, Switzerland
| | - Julie Nordgaard
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Martin Jandl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy Bern UPD, Bolligenstrasse 111, 3000 Bern, Switzerland
| |
Collapse
|
36
|
Ramasubbu R, Brown EC, Mouches P, Moore JA, Clark DL, Molnar CP, Kiss ZHT, Forkert ND. Multimodal imaging measures in the prediction of clinical response to deep brain stimulation for refractory depression: A machine learning approach. World J Biol Psychiatry 2024; 25:175-187. [PMID: 38185882 DOI: 10.1080/15622975.2023.2300795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES This study compared machine learning models using unimodal imaging measures and combined multi-modal imaging measures for deep brain stimulation (DBS) outcome prediction in treatment resistant depression (TRD). METHODS Regional brain glucose metabolism (CMRGlu), cerebral blood flow (CBF), and grey matter volume (GMV) were measured at baseline using 18F-fluorodeoxy glucose (18F-FDG) positron emission tomography (PET), arterial spin labelling (ASL) magnetic resonance imaging (MRI), and T1-weighted MRI, respectively, in 19 patients with TRD receiving subcallosal cingulate (SCC)-DBS. Responders (n = 9) were defined by a 50% reduction in HAMD-17 at 6 months from the baseline. Using an atlas-based approach, values of each measure were determined for pre-selected brain regions. OneR feature selection algorithm and the naïve Bayes model was used for classification. Leave-out-one cross validation was used for classifier evaluation. RESULTS The performance accuracy of the CMRGlu classification model (84%) was greater than CBF (74%) or GMV (74%) models. The classification model using the three image modalities together led to a similar accuracy (84%0 compared to the CMRGlu classification model. CONCLUSIONS CMRGlu imaging measures may be useful for the development of multivariate prediction models for SCC-DBS studies for TRD. The future of multivariate methods for multimodal imaging may rest on the selection of complementing features and the developing better models.Clinical Trial Registration: ClinicalTrials.gov (#NCT01983904).
Collapse
Affiliation(s)
- Rajamannar Ramasubbu
- Department of Psychiatry, Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elliot C Brown
- School of Health and Care Management, Arden University, Berlin, Germany
| | - Pauline Mouches
- Department of Radiology, Clinical Neurosciences, Hotchkiss Brain Institute, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jasmine A Moore
- Department of Radiology, Clinical Neurosciences, Hotchkiss Brain Institute, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada
| | - Darren L Clark
- Department of Psychiatry, Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christine P Molnar
- Department of Radiology, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H T Kiss
- Department of Psychiatry, Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nils D Forkert
- Department of Radiology, Clinical Neurosciences, Hotchkiss Brain Institute, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
37
|
van Gool R, Far A, Drenthen GS, Jansen JFA, Goijen CP, Backes WH, Linden DEJ, Merkies ISJ, Faber CG, Upadhyay J, Hoeijmakers JGJ. Peripheral Pain Captured Centrally: Altered Brain Morphology on MRI in Small Fiber Neuropathy Patients With and Without an SCN9A Gene Variant. THE JOURNAL OF PAIN 2024; 25:730-741. [PMID: 37921732 DOI: 10.1016/j.jpain.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The current study aims to characterize brain morphology of pain as reported by small fiber neuropathy (SFN) patients with or without a gain-of-function variant involving the SCN9A gene and compare these with findings in healthy controls without pain. The Neuropathic Pain Scale was used in patients with idiopathic SFN (N = 20) and SCN9A-associated SFN (N = 12) to capture pain phenotype. T1-weighted, structural magnetic resonance imaging (MRI) data were collected in patients and healthy controls (N = 21) to 1) compare cortical thickness and subcortical volumes and 2) quantify the association between severity, quality, and duration of pain with morphological properties. SCN9A-associated SFN patients showed significant (P < .017, Bonferroni corrected) higher cortical thickness in sensorimotor regions, compared to idiopathic SFN patients, while lower cortical thickness was found in more functionally diverse regions (eg, posterior cingulate cortex). SFN patient groups combined demonstrated a significant (Spearman's ρ = .44-.55, P = .005-.049) correlation among itch sensations (Neuropathic Pain Scale-7) and thickness of the left precentral gyrus, and midcingulate cortices. Significant associations were found between thalamic volumes and duration of pain (left: ρ = -.37, P = .043; right: ρ = -.40, P = .025). No associations were found between morphological properties and other pain qualities. In conclusion, in SCN9A-associated SFN, profound morphological alterations anchored within the pain matrix are present. The association between itch sensations of pain and sensorimotor and midcingulate structures provides a novel basis for further examining neurobiological underpinnings of itch in SFN. PERSPECTIVE: Cortical thickness and subcortical volume alterations in SFN patients were found in pain hubs, more profound in SCN9A-associated neuropathy, and correlated with itch and durations of pain. These findings contribute to our understanding of the pathophysiological pathways underlying chronic neuropathic pain and symptoms of itch in SFN.
Collapse
Affiliation(s)
- Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Amir Far
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Gerhard S Drenthen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, North Brabant, The Netherlands
| | - Celine P Goijen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Ingemar S J Merkies
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands; Department of Neurology, Curaçao Medical Center, Willemstad, Kingdom of the Netherlands, Curaçao
| | - Catharina G Faber
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Janneke G J Hoeijmakers
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| |
Collapse
|
38
|
Biesbroek JM, Verhagen MG, van der Stigchel S, Biessels GJ. When the central integrator disintegrates: A review of the role of the thalamus in cognition and dementia. Alzheimers Dement 2024; 20:2209-2222. [PMID: 38041861 PMCID: PMC10984498 DOI: 10.1002/alz.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 12/04/2023]
Abstract
The thalamus is a complex neural structure with numerous anatomical subdivisions and intricate connectivity patterns. In recent decades, the traditional view of the thalamus as a relay station and "gateway to the cortex" has expanded in recognition of its role as a central integrator of inputs from sensory systems, cortex, basal ganglia, limbic systems, brain stem nuclei, and cerebellum. As such, the thalamus is critical for numerous aspects of human cognition, mood, and behavior, as well as serving sensory processing and motor functions. Thalamus pathology is an important contributor to cognitive and functional decline, and it might be argued that the thalamus has been somewhat overlooked as an important player in dementia. In this review, we provide a comprehensive overview of thalamus anatomy and function, with an emphasis on human cognition and behavior, and discuss emerging insights on the role of thalamus pathology in dementia.
Collapse
Affiliation(s)
- J. Matthijs Biesbroek
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of NeurologyDiakonessenhuis HospitalUtrechtThe Netherlands
| | - Marieke G. Verhagen
- VIB Center for Brain and DiseaseLeuvenBelgium
- Department of NeurosciencesKatholieke Universiteit (KU) LeuvenLeuvenBelgium
| | - Stefan van der Stigchel
- Department of Experimental PsychologyHelmholtz InstituteUtrecht UniversityUtrechtThe Netherlands
| | - Geert Jan Biessels
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
39
|
Rabini G, Funghi G, Meli C, Pierotti E, Saviola F, Jovicich J, Dodich A, Papagno C, Turella L. Functional alterations in resting-state networks for Theory of Mind in Parkinson's disease. Eur J Neurosci 2024; 59:1213-1226. [PMID: 37670685 DOI: 10.1111/ejn.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
In Parkinson's disease (PD), impairment of Theory of Mind (ToM) has recently attracted an increasing number of neuroscientific investigations. If and how functional connectivity of the ToM network is altered in PD is still an open question. First, we explored whether ToM network connectivity shows potential PD-specific functional alterations when compared to healthy controls (HC). Second, we tested the role of the duration of PD in the evolution of functional alterations in the ToM network. Between-group connectivity alterations were computed adopting resting-state functional magnetic resonance imaging (rs-fMRI) data of four groups: PD patients with short disease duration (PD-1, n = 72); PD patients with long disease duration (PD-2, n = 22); healthy controls for PD-1 (HC-1, n = 69); healthy controls for PD-2 (HC-2, n = 22). We explored connectivity differences in the ToM network within and between its three subnetworks: Affective, Cognitive and Core. PD-1 presented a global pattern of decreased functional connectivity within the ToM network, compared to HC-1. The alterations mainly involved the Cognitive and Affective ToM subnetworks and their reciprocal connections. PD-2-those with longer disease duration-showed an increased connectivity spanning the entire ToM network, albeit less consistently in the Core ToM network, compared to both the PD-1 and the HC-2 groups. Functional connectivity within the ToM network is altered in PD. The alterations follow a graded pattern, with decreased connectivity at short disease duration, which broadens to a generalized increase with longer disease duration. The alterations involve both the Cognitive and Affective subnetworks of ToM.
Collapse
Affiliation(s)
- Giuseppe Rabini
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Giulia Funghi
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Claudia Meli
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Enrica Pierotti
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Francesca Saviola
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | | | - Costanza Papagno
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Luca Turella
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
40
|
Mitchell RHB, Grigorian A, Robertson A, Toma S, Luciw NJ, Karthikeyan S, Mutsaerts HJMM, Fiksenbaum L, Metcalfe AWS, MacIntosh BJ, Goldstein BI. Sex differences in cerebral blood flow among adolescents with bipolar disorder. Bipolar Disord 2024; 26:33-43. [PMID: 37217255 DOI: 10.1111/bdi.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Abnormalities in cerebral blood flow (CBF) are common in bipolar disorder (BD). Despite known differences in CBF between healthy adolescent males and females, sex differences in CBF among adolescents with BD have never been studied. OBJECTIVE To examine sex differences in CBF among adolescents with BD versus healthy controls (HC). METHODS CBF images were acquired using arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) in 123 adolescents (72 BD: 30M, 42F; 51 HC: 22M, 29F) matched for age (13-20 years). Whole brain voxel-wise analysis was performed in a general linear model with sex and diagnosis as fixed factors, sex-diagnosis interaction effect, and age as a covariate. We tested for main effects of sex, diagnosis, and their interaction. Results were thresholded at cluster forming p = 0.0125, with posthoc Bonferroni correction (p = 0.05/4 groups). RESULTS A main effect of diagnosis (BD > HC) was observed in the superior longitudinal fasciculus (SLF), underlying the left precentral gyrus (F =10.24 (3), p < 0.0001). A main effect of sex (F > M) on CBF was detected in the precuneus/posterior cingulate cortex (PCC), left frontal and occipital poles, left thalamus, left SLF, and right inferior longitudinal fasciculus (ILF). No regions demonstrated a significant sex-by-diagnosis interaction. Exploratory pairwise testing in regions with a main effect of sex revealed greater CBF in females with BD versus HC in the precuneus/PCC (F = 7.1 (3), p < 0.01). CONCLUSION Greater CBF in female adolescents with BD versus HC in the precuneus/PCC may reflect the role of this region in the neurobiological sex differences of adolescent-onset BD. Larger studies targeting underlying mechanisms, such as mitochondrial dysfunction or oxidative stress, are warranted.
Collapse
Affiliation(s)
- Rachel H B Mitchell
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Andrew Robertson
- Department of Kinesiology, Research Institute for Aging, University of Waterloo, Ontario, Canada
| | - Simina Toma
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nicholas J Luciw
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sudhir Karthikeyan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Henri J M M Mutsaerts
- Radiology and Nuclear Medicine Vrje Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Lisa Fiksenbaum
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Ontario, Canada
| | - Arron W S Metcalfe
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program , Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program , Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Arciniegas DB, Gurin LJ, Zhang B. Structural and Functional Neuroanatomy of Core Consciousness: A Primer for Disorders of Consciousness Clinicians. Phys Med Rehabil Clin N Am 2024; 35:35-50. [PMID: 37993192 DOI: 10.1016/j.pmr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Understanding the structural and functional neuroanatomy of core consciousness (ie, wakefulness and awareness) is an asset to clinicians caring for persons with disorders of consciousness. This article provides a primer on the structural and functional neuroanatomy of wakefulness and awareness. The neuroanatomical structures supporting these elements of core consciousness functions are reviewed first, after which brief description of the clinically evaluable relationships between disruption of these structures and disorders of consciousness (ie, brain-behavior relationships) are outlined. Consideration of neuroanatomy at the mesoscale (ie, the mesocircuit hypothesis) as well as in relation to several large-scale neural networks is offered.
Collapse
Affiliation(s)
- David B Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Lindsey J Gurin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10017, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Physical Medicine & Rehabilitation, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bei Zhang
- Division of Physical Medicine and Rehabilitation, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
42
|
Hildebrand L, Huskey A, Dailey N, Jankowski S, Henderson-Arredondo K, Trapani C, Patel SI, Chen AYC, Chou YH, Killgore WDS. Transcranial Magnetic Stimulation of the Default Mode Network to Improve Sleep in Individuals With Insomnia Symptoms: Protocol for a Double-Blind Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e51212. [PMID: 38277210 PMCID: PMC10858423 DOI: 10.2196/51212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Cortical hyperarousal and ruminative thinking are common aspects of insomnia that have been linked with greater connectivity in the default mode network (DMN). Therefore, disrupting network activity within the DMN may reduce cortical and cognitive hyperarousal and facilitate better sleep. OBJECTIVE This trial aims to establish a novel, noninvasive method for treating insomnia through disruption of the DMN with repetitive transcranial magnetic stimulation, specifically with continuous theta burst stimulation (cTBS). This double-blind, pilot randomized controlled trial will assess the efficacy of repetitive transcranial magnetic stimulation as a novel, nonpharmacological approach to improve sleep through disruption of the DMN prior to sleep onset for individuals with insomnia. Primary outcome measures will include assessing changes in DMN functional connectivity before and after stimulation. METHODS A total of 20 participants between the ages of 18 to 50 years with reported sleep disturbances will be recruited as a part of the study. Participants will then conduct an in-person screening and follow-on enrollment visit. Eligible participants then conduct at-home actigraphic collection until their first in-residence overnight study visit. In a double-blind, counterbalanced, crossover study design, participants will receive a 40-second stimulation to the left inferior parietal lobule of the DMN during 2 separate overnight in-residence visits. Participants are randomized to the order in which they receive the active stimulation and sham stimulation. Study participants will undergo a prestimulation functional magnetic resonance imaging scan and a poststimulation functional magnetic resonance imaging scan prior to sleep for each overnight study visit. Sleep outcomes will be measured using clinical polysomnography. After their first in-residence study visit, participants conduct another at-home actigraphic collection before returning for their second in-residence overnight study visit. RESULTS Our study was funded in September 2020 by the Department of Defense (W81XWH2010173). We completed the enrollment of our target study population in the October 2022 and are currently working on neuroimaging processing and analysis. We aim to publish the results of our study by 2024. Primary neuroimaging outcome measures will be tested using independent components analysis, seed-to-voxel analyses, and region of interest to region of interest analyses. A repeated measures analysis of covariance (ANCOVA) will be used to assess the effects of active and sham stimulation on sleep variables. Additionally, we will correlate changes in functional connectivity to polysomnography-graded sleep. CONCLUSIONS The presently proposed cTBS protocol is aimed at establishing the initial research outcomes of the effects of a single burst of cTBS on disrupting the network connectivity of the DMN to improve sleep. If effective, future work could determine the most effective stimulation sites and administration schedules to optimize this potential intervention for sleep problems. TRIAL REGISTRATION ClinicalTrials.gov NCT04953559; https://clinicaltrials.gov/ct2/show/NCT04953559. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/51212.
Collapse
Affiliation(s)
- Lindsey Hildebrand
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Alisa Huskey
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Natalie Dailey
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Samantha Jankowski
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | | | | | - Salma Imran Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona, Tucson, AZ, United States
| | | | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|
43
|
Sundermann B, Feldmann R, Mathys C, Rau JMH, Garde S, Braje A, Weglage J, Pfleiderer B. Functional connectivity of cognition-related brain networks in adults with fetal alcohol syndrome. BMC Med 2023; 21:496. [PMID: 38093292 PMCID: PMC10720228 DOI: 10.1186/s12916-023-03208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) can result in cognitive dysfunction. Cognitive functions affected are subserved by few functional brain networks. Functional connectivity (FC) in these networks can be assessed with resting-state functional MRI (rs-fMRI). Alterations of FC have been reported in children and adolescents prenatally exposed to alcohol. Previous reports varied substantially regarding the exact nature of findings. The purpose of this study was to assess FC of cognition-related networks in young adults with FAS. METHODS Cross-sectional rs-fMRI study in participants with FAS (n = 39, age: 20.9 ± 3.4 years) and healthy participants without prenatal alcohol exposure (n = 44, age: 22.2 ± 3.4 years). FC was calculated as correlation between cortical regions in ten cognition-related sub-networks. Subsequent modelling of overall FC was based on linear models comparing FC between FAS and controls. Results were subjected to a hierarchical statistical testing approach, first determining whether there is any alteration of FC in FAS in the full cognitive connectome, subsequently resolving these findings to the level of either FC within each network or between networks based on the Higher Criticism (HC) approach for detecting rare and weak effects in high-dimensional data. Finally, group differences in single connections were assessed using conventional multiple-comparison correction. In an additional exploratory analysis, dynamic FC states were assessed. RESULTS Comparing FAS participants with controls, we observed altered FC of cognition-related brain regions globally, within 7 out of 10 networks, and between networks employing the HC statistic. This was most obvious in attention-related network components. Findings also spanned across subcomponents of the fronto-parietal control and default mode networks. None of the single FC alterations within these networks yielded statistical significance in the conventional high-resolution analysis. The exploratory time-resolved FC analysis did not show significant group differences of dynamic FC states. CONCLUSIONS FC in cognition-related networks was altered in adults with FAS. Effects were widely distributed across networks, potentially reflecting the diversity of cognitive deficits in FAS. However, no altered single connections could be determined in the most detailed analysis level. Findings were pronounced in networks in line with attentional deficits previously reported.
Collapse
Affiliation(s)
- Benedikt Sundermann
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Oldenburg, Germany
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Reinhold Feldmann
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Johanna M H Rau
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stefan Garde
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Anna Braje
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Josef Weglage
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Bettina Pfleiderer
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
44
|
Zhang AR, Bell RP, An C, Tang R, Hall SA, Chan C, Al-Khalil K, Meade CS. Cocaine Use Prediction With Tensor-Based Machine Learning on Multimodal MRI Connectome Data. Neural Comput 2023; 36:107-127. [PMID: 38052079 PMCID: PMC11075092 DOI: 10.1162/neco_a_01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 12/07/2023]
Abstract
This letter considers the use of machine learning algorithms for predicting cocaine use based on magnetic resonance imaging (MRI) connectomic data. The study used functional MRI (fMRI) and diffusion MRI (dMRI) data collected from 275 individuals, which was then parcellated into 246 regions of interest (ROIs) using the Brainnetome atlas. After data preprocessing, the data sets were transformed into tensor form. We developed a tensor-based unsupervised machine learning algorithm to reduce the size of the data tensor from 275 (individuals) × 2 (fMRI and dMRI) × 246 (ROIs) × 246 (ROIs) to 275 (individuals) × 2 (fMRI and dMRI) × 6 (clusters) × 6 (clusters). This was achieved by applying the high-order Lloyd algorithm to group the ROI data into six clusters. Features were extracted from the reduced tensor and combined with demographic features (age, gender, race, and HIV status). The resulting data set was used to train a Catboost model using subsampling and nested cross-validation techniques, which achieved a prediction accuracy of 0.857 for identifying cocaine users. The model was also compared with other models, and the feature importance of the model was presented. Overall, this study highlights the potential for using tensor-based machine learning algorithms to predict cocaine use based on MRI connectomic data and presents a promising approach for identifying individuals at risk of substance abuse.
Collapse
Affiliation(s)
- Anru R Zhang
- Department of Biostatistics and Bioinformatics and Department of Computer Science, Duke University, Durham, NC 27710, U.S.A.
| | - Ryan P Bell
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, U.S.A.
| | - Chen An
- Department of Mathematics, Duke University, Durham, NC 27708, U.S.A.
| | - Runshi Tang
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, U.S.A.
| | - Shana A Hall
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, U.S.A.
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, U.S.A.
| | - Kareem Al-Khalil
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, U.S.A.
| | - Christina S Meade
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, U.S.A.
| |
Collapse
|
45
|
Pagani M, Gutierrez-Barragan D, de Guzman AE, Xu T, Gozzi A. Mapping and comparing fMRI connectivity networks across species. Commun Biol 2023; 6:1238. [PMID: 38062107 PMCID: PMC10703935 DOI: 10.1038/s42003-023-05629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species. We underscore the critical importance of physiologically decoding neuroimaging measures of brain (dys)connectivity via multiscale mechanistic investigations in animals. We next highlight a set of general principles governing the organization of mammalian connectivity networks across species. These include the presence of evolutionarily conserved network systems, a dominant cortical axis of functional connectivity, and a common repertoire of topographically conserved fMRI spatiotemporal modes. We finally describe emerging approaches allowing comparisons and extrapolations of fMRI connectivity findings across species. As neuroscientists gain access to increasingly sophisticated perturbational, computational and recording tools, cross-species fMRI offers novel opportunities to investigate the large-scale organization of the mammalian brain in health and disease.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - A Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ting Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
46
|
He J, Chang L, Zhang L, Wu W, Zhuo D. Effect of probiotic supplementation on cognition and depressive symptoms in patients with depression: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e36005. [PMID: 38013351 PMCID: PMC10681621 DOI: 10.1097/md.0000000000036005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Depression affects millions globally and often coexists with cognitive deficits. This study explored the potential of probiotics in enhancing cognition and ameliorating depressive symptoms in major depressive disorder patients. METHODS Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol and the Population, Intervention, Comparator, Outcome, and Study design framework, we systematically reviewed randomized controlled trials examining probiotic effects on cognition and depressive symptoms. Searches spanned 7 databases from January 2010 to May 2022. Risk of bias was assessed using Revised Cochrane Risk of Bias 2.0, and meta-analysis was conducted with RevMan 5.4.1. Publication bias was evaluated via Egger test. RESULTS In a systematic review on the effects of probiotic supplementation on cognition and depressive symptoms in depression patients, 635 records were initially identified, with 4 studies ultimately included. These randomized controlled trials were conducted across diverse regions, primarily involving females, with assessment periods ranging from 1 to 2 months. Concerning cognitive outcomes, a statistically significant moderate improvement was found with probiotic supplementation, based on the mean difference and its 95% confidence interval. However, for depressive symptoms, the overall effect was negligible and not statistically significant. A heterogeneity test indicated consistent findings across studies for both cognitive and depressive outcomes (I² = 0% for both). The potential for publication bias was evaluated using the Egger linear regression test, suggesting no significant bias, though caution is advised due to the limited number of studies. CONCLUSION Probiotics may enhance cognitive domains and mitigate depressive symptoms, emphasizing the gut-brain axis role. However, methodological variations and brief intervention durations call for more standardized, extensive research.
Collapse
Affiliation(s)
- Jiang He
- Department of Acupuncture and Moxibustion and Tuina, College of Acupuncture and Moxibustion and Tuina, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, China
| | - Lemei Chang
- Department of Acupuncture and Moxibustion and Tuina, Qingdao Special Service Recuperation Center of the Navy, Qingdao, Shandong Province, China
| | - Lange Zhang
- Department of Acupuncture and Moxibustion and Tuina, College of Acupuncture and Moxibustion and Tuina, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, China
| | - Wenkai Wu
- Department of Acupuncture and Moxibustion and Tuina, College of Acupuncture and Moxibustion and Tuina, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, China
| | - Dongyan Zhuo
- Department of Acupuncture and Moxibustion and Tuina, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Shandong Province, China
| |
Collapse
|
47
|
van Kleef RS, Müller A, van Velzen LS, Marie Bas-Hoogendam J, van der Wee NJA, Schmaal L, Veltman DJ, Rive MM, Ruhé HG, Marsman JBC, van Tol MJ. Functional MRI correlates of emotion regulation in major depressive disorder related to depressive disease load measured over nine years. Neuroimage Clin 2023; 40:103535. [PMID: 37984226 PMCID: PMC10696117 DOI: 10.1016/j.nicl.2023.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Major Depressive Disorder (MDD) often is a recurrent and chronic disorder. We investigated the neurocognitive underpinnings of the incremental risk for poor disease course by exploring relations between enduring depression and brain functioning during regulation of negative and positive emotions using cognitive reappraisal. We used fMRI-data from the longitudinal Netherlands Study of Depression and Anxiety acquired during an emotion regulation task in 77 individuals with MDD. Task-related brain activity was related to disease load, calculated from presence and severity of depression in the preceding nine years. Additionally, we explored task related brain-connectivity. Brain functioning in individuals with MDD was further compared to 35 controls to explore overlap between load-effects and general effects related to MDD history/presence. Disease load was not associated with changes in affect or with brain activity, but with connectivity between areas essential for processing, integrating and regulating emotional information during downregulation of negative emotions. Results did not overlap with general MDD-effects. Instead, MDD was generally associated with lower parietal activity during downregulation of negative emotions. During upregulation of positive emotions, disease load was related to connectivity between limbic regions (although driven by symptomatic state), and connectivity between frontal, insular and thalamic regions was lower in MDD (vs controls). Results suggest that previous depressive load relates to brain connectivity in relevant networks during downregulation of negative emotions. These abnormalities do not overlap with disease-general abnormalities and could foster an incremental vulnerability to recurrence or chronicity of MDD. Therefore, optimizing emotion regulation is a promising therapeutic target for improving long-term MDD course.
Collapse
Affiliation(s)
- Rozemarijn S van Kleef
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center Groningen, Groningen, the Netherlands.
| | - Amke Müller
- Department of Psychology, Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Hamburg, Germany
| | - Laura S van Velzen
- Orygen Parkville, VIC, Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Janna Marie Bas-Hoogendam
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University Medical Center, the Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University Medical Center, the Netherlands
| | - Lianne Schmaal
- Orygen Parkville, VIC, Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location VUMC & Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Maria M Rive
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, the Netherlands; Triversum, Department of Child and Adolescent Psychiatry, GGZ Noord-Holland Noord, Hoorn, the Netherlands
| | - Henricus G Ruhé
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Jan-Bernard C Marsman
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Marie-José van Tol
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
48
|
Zarghami TS. A new causal centrality measure reveals the prominent role of subcortical structures in the causal architecture of the extended default mode network. Brain Struct Funct 2023; 228:1917-1941. [PMID: 37658184 DOI: 10.1007/s00429-023-02697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Network representation has been an incredibly useful concept for understanding the behavior of complex systems in social sciences, biology, neuroscience, and beyond. Network science is mathematically founded on graph theory, where nodal importance is gauged using measures of centrality. Notably, recent work suggests that the topological centrality of a node should not be over-interpreted as its dynamical or causal importance in the network. Hence, identifying the influential nodes in dynamic causal models (DCM) remains an open question. This paper introduces causal centrality for DCM, a dynamics-sensitive and causally-founded centrality measure based on the notion of intervention in graphical models. Operationally, this measure simplifies to an identifiable expression using Bayesian model reduction. As a proof of concept, the average DCM of the extended default mode network (eDMN) was computed in 74 healthy subjects. Next, causal centralities of different regions were computed for this causal graph, and compared against several graph-theoretical centralities. The results showed that the subcortical structures of the eDMN were more causally central than the cortical regions, even though the graph-theoretical centralities unanimously favored the latter. Importantly, model comparison revealed that only the pattern of causal centrality was causally relevant. These results are consistent with the crucial role of the subcortical structures in the neuromodulatory systems of the brain, and highlight their contribution to the organization of large-scale networks. Potential applications of causal centrality-to study causal models of other neurotypical and pathological functional networks-are discussed, and some future lines of research are outlined.
Collapse
Affiliation(s)
- Tahereh S Zarghami
- Bio-Electric Department, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
49
|
Mısır E, Alıcı YH, Kocak OM. Functional connectivity in rumination: a systematic review of magnetic resonance imaging studies. J Clin Exp Neuropsychol 2023; 45:928-955. [PMID: 38346167 DOI: 10.1080/13803395.2024.2315312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/28/2023] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Rumination, defined as intrusive and repetitive thoughts in response to negative emotions, uncertainty, and inconsistency between goal and current situation, is a significant risk factor for depressive disorders. The rumination literature presents diverse findings on functional connectivity and shows heterogeneity in research methods. This systematic review seeks to integrate these findings and provide readers diverse perspectives. METHOD For this purpose, the literature on functional connectivity in rumination was reviewed according to the PRISMA guidelines. Regional connectivity and network connectivity results were scrutinized according to the presence of depression, research methods, and type of rumination. After screening 492 articles, a total of 36 studies were included. RESULTS The results showed that increased connectivity of the default mode network (DMN) was consistently reported. Other important findings include alterations in the connectivity between the DMN and the frontoparietal network and the salience network (SN) and impaired regulatory function of the SN. Region-level connectivity studies consistently show that increased connectivity between the posterior cingulate cortex and the prefrontal cortex is associated with rumination, which may cause the loss of control of the frontoparietal network over self-referential processes. We have seen that the number of studies examining brooding and reflective rumination as separate dimensions are relatively limited. Although there are overlaps between the connectivity patterns of the two types of rumination in these studies, it can be thought that reflective rumination is more associated with more increased functional connectivity of the prefrontal cortex. CONCLUSIONS Although there are many consistent functional connectivity outcomes associated with trait rumination, less is known about connectivity changes during state rumination. Relatively few studies have taken into account the subjective aspect of this thinking style. In order to better explain the relationship between rumination and depression, rumination induction studies during episode and remission periods of depression are needed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Yasemin Hoşgören Alıcı
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Orhan Murat Kocak
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
50
|
Beckers AB, Drenthen GS, Jansen JFA, Backes WH, Poser BA, Keszthelyi D. Comparing the efficacy of data-driven denoising methods for a multi-echo fMRI acquisition at 7T. Neuroimage 2023; 280:120361. [PMID: 37669723 DOI: 10.1016/j.neuroimage.2023.120361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023] Open
Abstract
In functional magnetic resonance imaging (fMRI) of the brain the measured signal is corrupted by several (e.g. physiological, motion, and thermal) noise sources and depends on the image acquisition. Imaging at ultrahigh field strength is becoming increasingly popular as it offers increased spatial accuracy. The latter is of particular benefit in brainstem neuroimaging given the small cross-sectional area of most nuclei. However, physiological noise scales with field strength in fMRI acquisitions. Although this problem is in part solved by decreasing voxel size, it is clear that adequate physiological denoising is of utmost importance in brainstem-focused fMRI experiments. Multi-echo sequences have been reported to facilitate highly effective denoising through TE-dependence of Blood Oxygen Level Dependent (BOLD) signals, in a denoising method referred to as multi-echo independent component analysis (ME-ICA). It has not been explored previously how ME-ICA compares to other data-driven denoising approaches at ultrahigh field strength. In the current study, we compared the efficacy of several denoising methods, including anatomical component based correction (aCompCor), Automatic Removal of Motion Artifacts (ICA-AROMA) aggressive and non-aggressive options, ME-ICA, and a combination of ME-ICA and aCompCor. We assessed several data quality metrics, including temporal signal-to-noise ratio (tSNR), delta variation signal (DVARS), spectral density of the global signal, functional connectivity and Shannon spectral entropy. Moreover, we looked at the ability of each method to uncouple the global signal and respiration. In line with previous reports at lower field strengths, we demonstrate that after applying ME-ICA, the data is best post-processed in order to remove spatially diffuse noise with a method such as aCompCor. Our findings indicate that ME-ICA combined with aCompCor and the aggressive option of ICA-AROMA are highly effective denoising approaches for multi-echo data acquired at 7T. ME-ICA combined with aCompCor potentially preserves more signal-of-interest as compared to the aggressive option of ICA-AROMA.
Collapse
Affiliation(s)
- Abraham B Beckers
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gerhard S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, Maastricht 6202 AZ, the Netherlands.
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, Maastricht 6202 AZ, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, Maastricht 6202 AZ, the Netherlands
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Daniel Keszthelyi
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|