1
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney MW, Sidebottom AM, Fortier LC, Shen A, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent strain. Cell Host Microbe 2025; 33:59-70.e4. [PMID: 39610252 DOI: 10.1016/j.chom.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Clostridioides difficile is a leading cause of healthcare infections. Gut dysbiosis promotes C. difficile infection (CDI) and CDIs promote gut dysbiosis, leading to frequent CDI recurrence. Although therapies preventing recurrent CDI have been developed, including live biotherapeutic products, existing therapies are costly and do not prevent primary infections. Here, we show that an avirulent C. difficile isolate, ST1-75, protects mice from developing colitis induced by a virulent R20291 strain when coinfected at a 1:1 ratio. In metabolic analyses, avirulent ST1-75 depletes amino acids more rapidly than virulent R20291 and supplementation with amino acids ablates this competitive advantage, indicating that ST1-75 limits the growth of virulent R20291 through amino acid depletion. Overall, our study identifies inter-strain nutrient depletion as a potentially exploitable mechanism to reduce the incidence of CDI and reveals that the ST1-75 strain may be a biotherapeutic agent that can prevent CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sophie S Son
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Fishbein SRS, DeVeaux AL, Khanna S, Ferreiro AL, Liao J, Agee W, Ning J, Mahmud B, Wallace MJ, Hink T, Reske KA, Cass C, Guruge J, Leekha S, Rengarajan S, Dubberke ER, Dantas G. Commensal-pathogen dynamics structure disease outcomes during Clostridioides difficile colonization. Cell Host Microbe 2025; 33:30-41.e6. [PMID: 39731916 PMCID: PMC11717617 DOI: 10.1016/j.chom.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024]
Abstract
Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C. difficile have a range of clinical outcomes. Microbiota humanization of germ-free mice with fecal samples from toxigenic C. difficile carriers revealed a spectrum of virulence among clinically prevalent clade 1 lineages and identified candidate taxa, including Blautia, as markers of stable colonization. Using gnotobiotic mice engrafted with defined human microbiota, we validated strain-specific CDI severity across clade 1 strains isolated from patients. Mice engrafted with a community broadly representative of colonized patients were protected from severe disease across all strains without suppression of C. difficile colonization. These results underline the capacity of gut community structure to attenuate a diversity of pathogenic strains without inhibiting colonization, providing insight into determinants of stable C. difficile carriage.
Collapse
Affiliation(s)
- Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna L DeVeaux
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sakshi Khanna
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aura L Ferreiro
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Wesley Agee
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miranda J Wallace
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiffany Hink
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly A Reske
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Candice Cass
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Janaki Guruge
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sidh Leekha
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sunaina Rengarajan
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Zhao Y, Jia H, Deng H, Ge C, Luo H, Zhang Y. Cross-Generational Exposure to Low-Density Polyethylene Microplastics Induced Hyperactive Responses in Eisenia fetida Offsprings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21918-21929. [PMID: 39552075 DOI: 10.1021/acs.est.4c05208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The extensive application of plastic products in daily human life has led to the accumulation of microplastics (MPs) in agricultural soil. However, little is known about the cross-generational toxicity of MPs on terrestrial invertebrates. In this study, two-generational Eisenia fetida was exposed to low-density polyethylene (LDPE, 0-5%, w/w) for 98 days to reveal the cross-generational toxicity and the underlying mechanisms. Results showed that LDPE-MPs not only perpetrated deleterious effects on the development, hatchability, and fecundity of the F0 generation but also stimulated the antioxidant defense activity, inhibited lipid peroxidation, and disordered neurotransmission in F1 generation individuals. The susceptibility of the epidermal-intestinal barrier to LDPE-MPs was dose-dependent. According to the transcriptomic analysis, the cross-generational earthworms confirmed significant perturbances in the cell cycle, neural activity-related pathways, and amino acid metabolism pathways (p < 0.05). Nevertheless, the metabolomic profile of F1 generation individuals exhibited significant hyperactive responses in glutathione metabolism and alanine, aspartate, and glutamate metabolism (p < 0.05). This study provides a comprehensive knowledge of LDPE-MPs toxicity on cross-generational earthworms and highlights the hyperactive responses in the antioxidant defense performance of the offsprings. Our findings also underscore the necessity for long-term investigations in assessing the adverse impacts of emerging pollutants.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
| | - Huiting Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, P. R. China
- Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, P. R. China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, P. R. China
- Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, P. R. China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, P. R. China
- Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, P. R. China
| | - Haibin Luo
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
| | - Ying Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, P. R. China
- Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, P. R. China
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
4
|
Ren X, Clark RM, Bansah DA, Varner EN, Tiffany CR, Jaswal K, Geary JH, Todd OA, Winkelman JD, Friedman ES, Zemel BS, Wu GD, Zackular JP, DePas WH, Behnsen J, Palmer LD. Amino acid competition shapes Acinetobacter baumannii gut carriage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619093. [PMID: 39502362 PMCID: PMC11537318 DOI: 10.1101/2024.10.19.619093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Antimicrobial resistance is an urgent threat to human health. Asymptomatic colonization is often critical for persistence of antimicrobial-resistant pathogens. Gut colonization by the antimicrobial-resistant priority pathogen Acinetobacter baumannii is associated with increased risk of clinical infection. Ecological factors shaping A. baumannii gut colonization remain unclear. Here we show that A. baumannii and other pathogenic Acinetobacter evolved to utilize the amino acid ornithine, a non-preferred carbon source. A. baumannii utilizes ornithine to compete with the resident microbiota and persist in the gut in mice. Supplemental dietary ornithine promotes long-term fecal shedding of A. baumannii. By contrast, supplementation of a preferred carbon source-monosodium glutamate (MSG)-abolishes the requirement for A. baumannii ornithine catabolism. Additionally, we report evidence for diet promoting A. baumannii gut carriage in humans. Together, these results highlight that evolution of ornithine catabolism allows A. baumannii to compete with the microbiota in the gut, a reservoir for pathogen spread.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - R. Mason Clark
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Dziedzom A. Bansah
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth N. Varner
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Connor R. Tiffany
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - John H. Geary
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A. Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Martinez E, Berg N, Rodriguez C, Daube G, Taminiau B. Influence of microbiota on the growth and gene expression of Clostridioides difficile in an in vitro coculture model. Microbiologyopen 2024; 13:e70001. [PMID: 39404502 PMCID: PMC11633334 DOI: 10.1002/mbo3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 12/13/2024] Open
Abstract
Clostridioides difficile is an anaerobic, spore-forming, Gram-positive pathogenic bacterium. This study aimed to analyze the effect of two samples of healthy fecal microbiota on C. difficile gene expression and growth using an in vitro coculture model. The inner compartment was cocultured with spores of the C. difficile polymerase chain reaction (PCR)-ribotype 078, while the outer compartment contained fecal samples from donors to mimic the microbiota (FD1 and FD2). A fecal-free plate served as a control (CT). RNA-Seq and quantitative PCR confirmation were performed on the inner compartment sample. Similarities in gene expression were observed in the presence of the microbiota. After 12 h, the expression of genes associated with germination, sporulation, toxin production, and growth was downregulated in the presence of the microbiota. At 24 h, in an iron-deficient environment, C. difficile activated several genes to counteract iron deficiency. The expression of genes associated with germination and sporulation was upregulated at 24 h compared with 12 h in the presence of microbiota from donor 1 (FD1). This study confirmed previous findings that C. difficile can use ethanolamine as a primary nutrient source. To further investigate this interaction, future studies will use a simplified coculture model with an artificial bacterial consortium instead of fecal samples.
Collapse
Affiliation(s)
- Elisa Martinez
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| | - Noémie Berg
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| | - Cristina Rodriguez
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Unidadde Gestión Clínica de Aparato DigestivoHospital Universitario Virgen de laVictoriaMálagaSpain
| | - Georges Daube
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| | - Bernard Taminiau
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| |
Collapse
|
6
|
Ling J, Hryckowian AJ. Re-framing the importance of Group B Streptococcus as a gut-resident pathobiont. Infect Immun 2024; 92:e0047823. [PMID: 38436256 PMCID: PMC11392526 DOI: 10.1128/iai.00478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial species that causes disease in humans across the lifespan. While antibiotics are used to mitigate GBS infections, it is evident that antibiotics disrupt human microbiomes (which can predispose people to other diseases later in life), and antibiotic resistance in GBS is on the rise. Taken together, these unintended negative impacts of antibiotics highlight the need for precision approaches for minimizing GBS disease. One possible approach involves selectively depleting GBS in its commensal niches before it can cause disease at other body sites or be transmitted to at-risk individuals. One understudied commensal niche of GBS is the adult gastrointestinal (GI) tract, which may predispose colonization at other body sites in individuals at risk for GBS disease. However, a better understanding of the host-, microbiome-, and GBS-determined variables that dictate GBS GI carriage is needed before precise GI decolonization approaches can be developed. In this review, we synthesize current knowledge of the diverse body sites occupied by GBS as a pathogen and as a commensal. We summarize key molecular factors GBS utilizes to colonize different host-associated niches to inform future efforts to study GBS in the GI tract. We also discuss other GI commensals that are pathogenic in other body sites to emphasize the broader utility of precise de-colonization approaches for mitigating infections by GBS and other bacterial pathogens. Finally, we highlight how GBS treatments could be improved with a more holistic understanding of GBS enabled by continued GI-focused study.
Collapse
Affiliation(s)
- Joie Ling
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Healthon, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew J Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Healthon, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Fishbein SRS, DeVeaux AL, Khanna S, Ferreiro AL, Liao J, Agee W, Ning J, Mahmud B, Wallace MJ, Hink T, Reske KA, Guruge J, Leekha S, Dubberke ER, Dantas G. Commensal-pathogen dynamics structure disease outcomes during Clostridioides difficile colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603094. [PMID: 39026847 PMCID: PMC11257545 DOI: 10.1101/2024.07.11.603094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in clinical presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C. difficile have a range of outcomes. Microbiota-humanization of germ-free mice with fecal samples from toxigenic C. difficile carriers revealed a spectrum of virulence among clade 1 lineages and identified commensal Blautia associated with markers of non-pathogenic colonization. Using gnotobiotic mice engrafted with defined human microbiota, we observed strain-specific CDI severity across clade 1 strains. Yet, mice engrafted with a higher diversity community were protected from severe disease across all strains without suppression of C. difficile colonization. These results indicate that when colonization resistance has been breached without overt infection, commensals can attenuate a diversity of virulent strains without inhibiting pathogen colonization, providing insight into determinants of stable C. difficile carriage.
Collapse
|
8
|
Rui W, Zhong S, Li X, Shen C, Cao X, Yang J. Alcohol in Baijiu Contributes to the Increased Probability of Host Infection by Clostridioides difficile Spores. Foodborne Pathog Dis 2024. [PMID: 39049788 DOI: 10.1089/fpd.2023.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Clostridioides difficile and its endospores possess the characteristics of a foodborne pathogen and have been detected at several stages in the food chain. In the presence of an imbalance in host intestinal ecology, C. difficile can proliferate and cause intestinal infections. Multiple food source factors can substantially alter the host's gut ecosystem, including the consumption of baijiu. However, it remains to be known whether the gut ecological changes induced by the consumption of baijiu increase the risk of C. difficile invasion and infection. In this study, C. difficile cells were exposed to two commercially available baijiu to evaluate the effect of baijiu on C. difficile cells and to verify through a mouse model. The results showed that baijiu effectively inhibited the growth and biofilm production of C. difficile, downregulated the expression levels of tcdA and tcdB virulence genes but upregulated the expression level of spore-producing genes Spo0A, enhanced the spore production, as well as increased C. difficile cell adhesion to Caco-2 cells. The mouse model showed that the intake of baijiu promoted the invasion and infection of C. difficile spores, causing damage to the cecum tissue, accompanied by an increase in the gut lipid carrier protein-2 (Lcn-2) and TcdA toxin protein levels. Simultaneously, cholic acid was elevated, whereas deoxycholic acid was decreased. This study is the first to find a possible link between baijiu intake and C. difficile spore invasion and infection.
Collapse
Affiliation(s)
- Wen Rui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Saiwei Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoqian Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Xiaonian Cao
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Brosse A, Coullon H, Janoir C, Péchiné S. The state of play of rodent models for the study of Clostridioides difficile infection. J Med Microbiol 2024; 73:001857. [PMID: 39028257 PMCID: PMC11316558 DOI: 10.1099/jmm.0.001857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhoea and is responsible for a spectrum of diseases characterized by high levels of recurrence and morbidity. In some cases, complications can lead to death. Currently, several types of animal models have been developed to study various aspects of C. difficile infection (CDI), such as colonization, virulence, transmission and recurrence. These models have also been used to test the role of environmental conditions, such as diet, age and microbiome that modulate infection outcome, and to evaluate several therapeutic strategies. Different rodent models have been used successfully, such as the hamster model and the gnotobiotic and conventional mouse models. These models can be applied to study either the initial CDI infectious process or recurrences. The applications of existing rodent models and their advantages and disadvantages are discussed here.
Collapse
Affiliation(s)
- Anaïs Brosse
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Héloïse Coullon
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Séverine Péchiné
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
10
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
11
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney M, Sidebottom AM, Shen A, Fortier LC, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent C. difficile strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592814. [PMID: 38766138 PMCID: PMC11100753 DOI: 10.1101/2024.05.06.592814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Clostridioides difficile (C. difficile) strains belonging to the epidemic BI/NAP1/027 (RT027) group have been associated with increased transmissibility and disease severity. In addition to the major toxin A and toxin B virulence factors, RT027 strains also encode the CDT binary toxin. Our lab previously identified a toxigenic RT027 isolate, ST1-75, that is avirulent in mice despite densely colonizing the colon. Here, we show that coinfecting mice with the avirulent ST1-75 and virulent R20291 strains protects mice from colitis due to rapid clearance of the virulent strain and persistence of the avirulent strain. Although avirulence of ST1-75 is due to a mutation in the cdtR gene, which encodes a response regulator that modulates the production of all three C. difficile toxins, the ability of ST1-75 to protect against acute colitis is not directly attributable to the cdtR mutation. Metabolomic analyses indicate that the ST1-75 strain depletes amino acids more rapidly than the R20291 strain and supplementation with amino acids ablates ST1-75's competitive advantage, suggesting that the ST1-75 strain limits the growth of virulent R20291 bacteria by amino acid depletion. Since the germination kinetics and sensitivity to the co-germinant glycine are similar for the ST1-75 and R20291 strains, our results identify the rapidity of in vivo nutrient depletion as a mechanism providing strain-specific, virulence-independent competitive advantages to different BI/NAP1/027 strains. They also suggest that the ST1-75 strain may, as a biotherapeutic agent, enhance resistance to CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Sophie S. Son
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Rita C. Smith
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Michael Mullowney
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Yang H, Wu X, Li X, Zang W, Zhou Z, Zhou Y, Cui W, Kou Y, Wang L, Hu A, Wu L, Yin Z, Chen Q, Chen Y, Huang Z, Wang Y, Gu B. A commensal protozoan attenuates Clostridioides difficile pathogenesis in mice via arginine-ornithine metabolism and host intestinal immune response. Nat Commun 2024; 15:2842. [PMID: 38565558 PMCID: PMC10987486 DOI: 10.1038/s41467-024-47075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Antibiotic-induced dysbiosis is a major risk factor for Clostridioides difficile infection (CDI), and fecal microbiota transplantation (FMT) is recommended for treating CDI. However, the underlying mechanisms remain unclear. Here, we show that Tritrichomonas musculis (T.mu), an integral member of the mouse gut commensal microbiota, reduces CDI-induced intestinal damage by inhibiting neutrophil recruitment and IL-1β secretion, while promoting Th1 cell differentiation and IFN-γ secretion, which in turn enhances goblet cell production and mucin secretion to protect the intestinal mucosa. T.mu can actively metabolize arginine, not only influencing the host's arginine-ornithine metabolic pathway, but also shaping the metabolic environment for the microbial community in the host's intestinal lumen. This leads to a relatively low ornithine state in the intestinal lumen in C. difficile-infected mice. These changes modulate C. difficile's virulence and the host intestinal immune response, and thus collectively alleviating CDI. These findings strongly suggest interactions between an intestinal commensal eukaryote, a pathogenic bacterium, and the host immune system via inter-related arginine-ornithine metabolism in the regulation of pathogenesis and provide further insights for treating CDI.
Collapse
Affiliation(s)
- Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanqing Zang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenwen Cui
- Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| | - Yanbo Kou
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lianlian Wu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhutao Huang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Lillie IM, Booth CE, Horvath AE, Mondragon M, Engevik MA, Horvath TD. Characterizing arginine, ornithine, and putrescine pathways in enteric pathobionts. Microbiologyopen 2024; 13:e1408. [PMID: 38560776 PMCID: PMC10982811 DOI: 10.1002/mbo3.1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.
Collapse
Affiliation(s)
- Ian M. Lillie
- Department of Materials Science & EngineeringCornell UniversityIthacaNew YorkUSA
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of PathologyTexas Children's HospitalHoustonTexasUSA
| | - Charles E. Booth
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Adelaide E. Horvath
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Department of Biology & BiochemistryUniversity of HoustonHoustonTexasUSA
- Department of MathematicsUniversity of HoustonHoustonTexasUSA
| | - Matthew Mondragon
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Melinda A. Engevik
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Thomas D. Horvath
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of PathologyTexas Children's HospitalHoustonTexasUSA
| |
Collapse
|
14
|
Pensinger DA, Dobrila HA, Stevenson DM, Hryckowian ND, Amador-Noguez D, Hryckowian AJ. Exogenous butyrate inhibits butyrogenic metabolism and alters virulence phenotypes in Clostridioides difficile. mBio 2024; 15:e0253523. [PMID: 38289141 PMCID: PMC10936429 DOI: 10.1128/mbio.02535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 02/13/2024] Open
Abstract
The gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile, but the molecular basis of this colonization resistance is incompletely understood. A prominent class of gut microbiome-produced metabolites important for colonization resistance against C. difficile is short-chain fatty acids (SCFAs). In particular, one SCFA (butyrate) decreases the fitness of C. difficile in vitro and is correlated with C. difficile-inhospitable gut environments, both in mice and in humans. Here, we demonstrate that butyrate-dependent growth inhibition in C. difficile occurs under conditions where C. difficile also produces butyrate as a metabolic end product. Furthermore, we show that exogenous butyrate is internalized into C. difficile cells and is incorporated into intracellular CoA pools where it is metabolized in a reverse (energetically unfavorable) direction to crotonyl-CoA and (S)-3-hydroxybutyryl-CoA and/or 4-hydroxybutyryl-CoA. This internalization of butyrate and reverse metabolic flow of a butyrogenic pathway(s) in C. difficile coincides with alterations in toxin release and sporulation. Together, this work highlights butyrate as a marker of a C. difficile-inhospitable environment to which C. difficile responds by releasing its diarrheagenic toxins and producing environmentally resistant spores necessary for transmission between hosts. These findings provide foundational data for understanding the molecular and genetic basis of how C. difficile growth is inhibited by butyrate and how butyrate alters C. difficile virulence in the face of a highly competitive and dynamic gut environment.IMPORTANCEThe gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile, but the molecular basis of this colonization resistance is incompletely understood, which hinders the development of novel therapeutic interventions for C. difficile infection (CDI). We investigated how C. difficile responds to butyrate, an end-product of gut microbiome community metabolism which inhibits C. difficile growth. We show that exogenously produced butyrate is internalized into C. difficile, which inhibits C. difficile growth by interfering with its own butyrate production. This growth inhibition coincides with increased toxin release from C. difficile cells and the production of environmentally resistant spores necessary for transmission between hosts. Future work to disentangle the molecular mechanisms underlying these growth and virulence phenotypes will likely lead to new strategies to restrict C. difficile growth in the gut and minimize its pathogenesis during CDI.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Horia A. Dobrila
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicole D. Hryckowian
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Langford L, Shah DD. Bioinformatic Analysis of Sulfotransferases from an Unexplored Gut Microbe, Sutterella wadsworthensis 3_1_45B: Possible Roles towards Detoxification via Sulfonation by Members of the Human Gut Microbiome. Int J Mol Sci 2024; 25:2983. [PMID: 38474230 DOI: 10.3390/ijms25052983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.
Collapse
Affiliation(s)
- Lauryn Langford
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Dhara D Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| |
Collapse
|
16
|
Li Y, Shi P, Yao K, Lin Q, Wang M, Hou Z, Tang W, Diao H. Diarrhea induced by insufficient fat absorption in weaned piglets: Causes and nutrition regulation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:299-305. [PMID: 38371473 PMCID: PMC10869582 DOI: 10.1016/j.aninu.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 02/20/2024]
Abstract
Fat is one of the three macronutrients and a significant energy source for piglets. It plays a positive role in maintaining intestinal health and improving production performance. During the weaning period, physiological, stress and diet-related factors influence the absorption of fat in piglets, leading to damage to the intestinal barrier, diarrhea and even death. Signaling pathways, such as fatty acid translocase (CD36), pregnane X receptor (PXR), and AMP-dependent protein kinase (AMPK), are responsible for regulating intestinal fat uptake and maintaining intestinal barrier function. Therefore, this review mainly elaborates on the reasons for diarrhea induced by insufficient fat absorption and related signaling pathways in weaned-piglets, with an emphasis on the intestinal fat absorption disorder. Moreover, we focus on introducing nutritional strategies that can promote intestinal fat absorption in piglets with insufficient fat absorption-related diarrhea, such as lipase, amino acids, and probiotics.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, China
| |
Collapse
|
17
|
Ciurli A, Mohammed Y, Ammon C, Derks RJ, Olivier-Jimenez D, Ducarmon QR, Slingerland M, Neefjes J, Giera M. Spatially and temporally resolved metabolome of the human oral cavity. iScience 2024; 27:108884. [PMID: 38318352 PMCID: PMC10839270 DOI: 10.1016/j.isci.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Saliva is a complex bodily fluid composed of secretions by major and minor salivary glands. Salivary glands and their secretions are known to be unevenly distributed in the human oral cavity. Moreover, saliva flow rate and composition vary across locations and time of the day. This remarkable heterogeneity of salivary secretions suggests that different subtypes of saliva fulfill different functions. By coupling a non-invasive and facile collection method with comprehensive metabolomic profiling, we investigated the spatial and temporal distributions of salivary components. We identified location-specific metabolite profiles, novel oscillating metabolites, and location-specific diurnal patterns. In summary, our study paves the way for a deeper and more comprehensive understanding of the complex dynamics and functionalities of the salivary metabolome and its integration in multi-omics studies related to oral and systemic (patho-)physiology.
Collapse
Affiliation(s)
- Alessio Ciurli
- Oncode Institute and Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Christine Ammon
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Rico J.E. Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Damien Olivier-Jimenez
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Quinten R. Ducarmon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marije Slingerland
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jacques Neefjes
- Oncode Institute and Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
18
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid-altering enzymes impacts bacterial fitness and the global metabolic transcriptome. Microbiol Spectr 2024; 12:e0357623. [PMID: 38018975 PMCID: PMC10783122 DOI: 10.1128/spectrum.03576-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Recent work on bile salt hydrolases (BSHs) in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it are not well understood. In this study, we set out to define if and how Bacteroides thetaiotaomicron (B. theta) uses its BSHs and hydroxysteroid dehydrogenase to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid-altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci. This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Department of Biological Sciences, Genetics Program, College of Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew H. Foley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
Carr A, Baliga NS, Diener C, Gibbons SM. Personalized Clostridioides difficile engraftment risk prediction and probiotic therapy assessment in the human gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.28.538771. [PMID: 37162960 PMCID: PMC10168307 DOI: 10.1101/2023.04.28.538771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clostridioides difficile colonizes up to 30-40% of community-dwelling adults without causing disease. C. difficile infections (CDIs) are the leading cause of antibiotic-associated diarrhea in the U.S. and typically develop in individuals following disruption of the gut microbiota due to antibiotic or chemotherapy treatments. Further treatment of CDI with antibiotics is not always effective and can lead to antibiotic resistance and recurrent infections (rCDI). The most effective treatment for rCDI is the reestablishment of an intact microbiota via fecal microbiota transplants (FMTs). However, the success of FMTs has been difficult to generalize because the microbial interactions that prevent engraftment and facilitate the successful clearance of C. difficile are still only partially understood. Here we show how microbial community-scale metabolic models (MCMMs) accurately predicted known instances of C. difficile colonization susceptibility or resistance in vitro and in vivo. MCMMs provide detailed mechanistic insights into the ecological interactions that govern C. difficile engraftment, like cross-feeding or competition involving metabolites like succinate, trehalose, and ornithine, which differ from person to person. Indeed, three distinct C. difficile metabolic niches emerge from our MCMMs, two associated with positive growth rates and one that represents non-growth, which are consistently observed across 15,204 individuals from five independent cohorts. Finally, we show how MCMMs can predict personalized engraftment and C. difficile growth suppression for a probiotic cocktail (VE303) designed to replace FMTs for the treatment rCDI. Overall, this powerful modeling approach predicts personalized C. difficile engraftment risk and can be leveraged to assess probiotic treatment efficacy. MCMMs could be extended to understand the mechanistic underpinnings of personalized engraftment of other opportunistic bacterial pathogens, beneficial probiotic organisms, or more complex microbial consortia.
Collapse
Affiliation(s)
- Alex Carr
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering Program, University of Washington, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering Program, University of Washington, Seattle, WA, USA
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA, USA
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering Program, University of Washington, Seattle, WA, USA
- Departments of Bioengineering and Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
El-Mohsnawy E, El-Shaer A, El-Gharabawy F, El-Hawary EE, El-Shanshoury AERR. Assignment of the antibacterial potential of Ag 2O/ZnO nanocomposite against MDR bacteria Proteus mirabilis and Salmonella typhi isolated from bone marrow transplant patients. Braz J Microbiol 2023; 54:2807-2815. [PMID: 37801221 PMCID: PMC10689719 DOI: 10.1007/s42770-023-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
The rate of infectious diseases started to be one of the major mortality agents in the healthcare sector. Exposed to increased bacterial infection by antibiotic-resistant bacteria became one of the complications that occurred for bone marrow transplant patients. Nanotechnology may provide clinicians and patients with the key to overcoming multidrug-resistant bacteria. Therefore, this study was conducted to clarify the prevalence of MDR bacteria in bone marrow transplant recipients and the use of Ag2O/ZnO nanocomposites to treat participants of diarrhea brought on by MDR bacteria following bone marrow transplantation (BMT). Present results show that pathogenic bacteria were present in 100 of 195 stool samples from individuals who had diarrhea. Phenotypic, biochemical, and molecular analysis clarify that Proteus mirabilis and Salmonella typhi were detected in 21 and 25 samples, respectively. Successful synthesis of Ag2O/ZnO nanocomposites with a particle enables to inhibition of both pathogens. The maximum inhibitory impact was seen on Salmonella typhi. At low doses (10-5 g/l), it prevented the growth by 53.4%, while at higher concentrations (10-1 g/l), Salmonella typhi was inhibited by 95.5%. Regarding Proteus mirabilis, at (10-5 g/l) Ag2O/ZnO, it was inhabited by 78.7%, but at higher concentrations (10-1 g/l), it was inhibited the growth by 94.6%. Ag2O/ZnO nanocomposite was therefore found to be the most effective therapy for MDR-isolated bacteria and offered promise for the treatment of MDR bacterial infections that cause diarrhea.
Collapse
Affiliation(s)
- Eithar El-Mohsnawy
- Microbial Biotechnology Unit, Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Abdelhamid El-Shaer
- Nanotechnology Unit, Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Fadia El-Gharabawy
- Microbial Biotechnology Unit, Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eslam E El-Hawary
- Pediatric Hematology and Oncology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | | |
Collapse
|
21
|
Sah P, Knighten BA, Reidy MA, Zenewicz LA. Polyamines and hypusination are important for Clostridioides difficile toxin B (TcdB)-mediated activation of group 3 innate lymphocytes (ILC3s). Infect Immun 2023; 91:e0023623. [PMID: 37861311 PMCID: PMC10652861 DOI: 10.1128/iai.00236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial gastrointestinal tract bacterial infections. We lack fully effective reliable treatments for this pathogen, and there is a critical need to better understand how C. difficile interacts with our immune system. Group 3 innate lymphocytes (ILC3s) are rare immune cells localized within mucosal tissues that protect against bacterial infections. Upon activation, ILC3s secrete high levels of the cytokine interleukin-22 (IL-22), which is a critical regulator of tissue responses during infection. C. difficile toxin B (TcdB), the major virulence factor, directly activates ILC3s, resulting in high IL-22 levels. We previously reported that polyamines are important in the activation of ILC3s by the innate cytokine interleukin-23 (IL-23) but did not identify a specific mechanism. In this study, we examine how a pathogen impacts a metabolic pathway important for immune cell function and hypothesized that polyamines are important in TcdB-mediated ILC3 activation. We show that TcdB upregulates the polyamine biosynthesis pathway, and the inhibition of the pathway decreases TcdB-mediated ILC3 activation. Two polyamines, putrescine and spermidine, are involved. Spermidine is the key polyamine in the hypusination of eukaryotic initiation factor 5A (eIF5A), and the inhibition of eIF5A reduced ILC3 activation. Thus, there is potential to leverage polyamines in ILC3s to promote activation of ILC3s during C. difficile infection and other bacterial infections where ILC3s serve a protective role.
Collapse
Affiliation(s)
- Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bailey A. Knighten
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Megan A. Reidy
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
22
|
Cersosimo LM, Graham M, Monestier A, Pavao A, Worley JN, Peltier J, Dupuy B, Bry L. Central in vivo mechanisms by which C. difficile's proline reductase drives efficient metabolism, growth, and toxin production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541423. [PMID: 37292778 PMCID: PMC10245720 DOI: 10.1101/2023.05.19.541423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clostridioides difficile (CD) is a sporulating and toxin-producing nosocomial pathogen that opportunistically infects the gut, particularly in patients with depleted microbiota after antibiotic exposure. Metabolically, CD rapidly generates energy and substrates for growth from Stickland fermentations of amino acids, with proline being a preferred reductive substrate. To investigate the in vivo effects of reductive proline metabolism on C. difficile's virulence in an enriched gut nutrient environment, we evaluated wild-type and isogenic ΔprdB strains of ATCC43255 on pathogen behaviors and host outcomes in highly susceptible gnotobiotic mice. Mice infected with the ΔprdB mutant demonstrated extended survival via delayed colonization, growth and toxin production but ultimately succumbed to disease. In vivo transcriptomic analyses demonstrated how the absence of proline reductase activity more broadly disrupted the pathogen's metabolism including failure to recruit oxidative Stickland pathways, ornithine transformations to alanine, and additional pathways generating growth-promoting substrates, contributing to delayed growth, sporulation, and toxin production. Our findings illustrate the central role for proline reductase metabolism to support early stages of C. difficile colonization and subsequent impact on the pathogen's ability to rapidly expand and cause disease.
Collapse
Affiliation(s)
- Laura M. Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Madeline Graham
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Auriane Monestier
- Department of Microbiology, Institut Pasteur, Paris, France
- I2BC, Université Paris-Saclay, Saclay, France
| | - Aidan Pavao
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Jay N. Worley
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
- National Center for Biotechnology Information, NIH, Bethesda, MD, USA
| | | | - Bruno Dupuy
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| |
Collapse
|
23
|
Pensinger DA, Dobrila HA, Stevenson DM, Davis NM, Amador-Noguez D, Hryckowian AJ. Exogenous butyrate inhibits butyrogenic metabolism and alters expression of virulence genes in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548018. [PMID: 37461482 PMCID: PMC10350080 DOI: 10.1101/2023.07.06.548018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile but the molecular basis of this colonization resistance is incompletely understood. A prominent class of gut microbiome-produced metabolites important for colonization resistance against C. difficile is short chain fatty acids (SCFAs). In particular, one SCFA (butyrate) decreases the fitness of C. difficile in vitro and is correlated with C. difficile-inhospitable gut environments, both in mice and in humans. Here, we demonstrate that butyrate-dependent growth inhibition in C. difficile occurs under conditions where C. difficile also produces butyrate as a metabolic end product. Furthermore, we show that exogenous butyrate is internalized into C. difficile cells, is incorporated into intracellular CoA pools where it is metabolized in a reverse (energetically unfavorable) direction to crotonyl-CoA and (S)-3-hydroxybutyryl-CoA and/or 4-hydroxybutyryl-CoA. This internalization of butyrate and reverse metabolic flow of butyrogenic pathway(s) in C. difficile coincides with alterations in toxin production and sporulation. Together, this work highlights butyrate as a signal of a C. difficile inhospitable environment to which C. difficile responds by producing its diarrheagenic toxins and producing environmentally-resistant spores necessary for transmission between hosts. These findings provide foundational data for understanding the molecular and genetic basis of how C. difficile growth is inhibited by butyrate and how butyrate serves as a signal to alter C. difficile virulence in the face of a highly competitive and dynamic gut environment.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Horia A. Dobrila
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole M. Davis
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
24
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid altering enzymes impact bacterial fitness and the global metabolic transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546749. [PMID: 37425690 PMCID: PMC10327073 DOI: 10.1101/2023.06.27.546749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Bacteroides thetaiotaomicron (B. theta) is a Gram-negative gut bacterium that encodes enzymes that alter the bile acid pool in the gut. Primary bile acids are synthesized by the host liver and are modified by gut bacteria. B. theta encodes two bile salt hydrolases (BSHs), as well as a hydroxysteroid dehydrogenase (HSDH). We hypothesize that B. theta modifies the bile acid pool in the gut to provide a fitness advantage for itself. To investigate each gene's role, different combinations of genes encoding bile acid altering enzymes (bshA, bshB, and hsdhA) were knocked out by allelic exchange, including a triple KO. Bacterial growth and membrane integrity assays were done in the presence and absence of bile acids. To explore if B. theta's response to nutrient limitation changes due to the presence of bile acid altering enzymes, RNASeq analysis of WT and triple KO strains in the presence and absence of bile acids was done. WT B. theta is more sensitive to deconjugated bile acids (CA, CDCA, and DCA) compared to the triple KO, which also decreased membrane integrity. The presence of bshB is detrimental to growth in conjugated forms of CDCA and DCA. RNA-Seq analysis also showed bile acid exposure impacts multiple metabolic pathways in B. theta, but DCA significantly increases expression of many genes in carbohydrate metabolism, specifically those in polysaccharide utilization loci or PULs, in nutrient limited conditions. This study suggests that bile acids B. theta encounters in the gut may signal the bacteria to increase or decrease its utilization of carbohydrates. Further study looking at the interactions between bacteria, bile acids, and the host may inform rationally designed probiotics and diets to ameliorate inflammation and disease. Importance Recent work on BSHs in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it is not well understood. In this study we set out to define if and how B. theta uses its BSHs and HSDH to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci (PULs). This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut. This work will aid in our understanding of how to rationally manipulate the bile acid pool and the microbiota to exploit carbohydrate metabolism in the context of inflammation and other GI diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Matthew H. Foley
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
25
|
Wang T, Tian J, Su W, Yang F, Yin J, Jiang Q, Li Y, Yao K, Li T, Yin Y. Effect of Ornithine α-Ketoglutarate on Intestinal Microbiota and Serum Inflammatory Cytokines in Dextran Sulfate Sodium Induced Colitis. Nutrients 2023; 15:nu15112476. [PMID: 37299439 DOI: 10.3390/nu15112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Ornithine α-ketoglutarate (OKG), a nutritional compound, is an amino acid salt with anti-oxidative and anti-inflammatory effects on humans and animals. Ulcerative colitis (UC), as an inflammatory bowel disease (IBD), leads to chronic intestinal inflammatory dysfunction. This study evaluated the optimal dosage of OKG in healthy mice. Then, a mouse model of acute colitis was established using dextran sodium sulfate (DSS), and the preventive effect of OKG on DSS-induced colitis in mice was explored through analysis of serum inflammatory cytokines and fecal microbiota. Initially, the mice were randomly divided into a control group, a group given a low dose of OKG (LOKG: 0.5%), a group given a medium dose of OKG (MOKG: 1%), and a group given a high dose of OKG (HOKG: 1.5%); they remained in these groups for the entire 14-day experimental period. Our results demonstrated that 1% OKG supplementation increased body weight, serum growth hormone (GH), insulin (INS), alkaline phosphatase (ALP), Tyr, and His and decreased urea nitrogen (BUN), NH3L, and Ile. Then, a 2 × 2 factor design was used for a total of 40 mice, with diet (a standard diet or a 1% OKG diet) and challenge (4% DSS or not) as the main factors. During days 14 to 21, the DSS mice were administered 4% DSS to induce colitis. The results revealed that OKG alleviated weight loss and reversed the increases in colonic histological damage induced by DSS. OKG also increased serum IL-10 secretion. Moreover, OKG enhanced the abundance of Firmicutes and decreased that of Bacteriodetes at the phylum level and particularly enhanced the abundance of Alistipes and reduced that of Parabacterioides at the genus level. Our results indicated that OKG promotes growth performance and hormone secretion and regulates serum biochemical indicators and amino acid concentrations. Furthermore, 1% OKG supplementation prevents DSS-induced colitis in mice via altering microbial compositions and reducing the secretion of inflammatory cytokines in serum.
Collapse
Affiliation(s)
- Tao Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Junquan Tian
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Wenxuan Su
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Fan Yang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Tiejun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| |
Collapse
|
26
|
Wang R. Clostridioides difficile infection: microbe-microbe interactions and live biotherapeutics. Front Microbiol 2023; 14:1182612. [PMID: 37228365 PMCID: PMC10203151 DOI: 10.3389/fmicb.2023.1182612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Clostridioides difficile is a gram-positive, spore-forming, obligate anaerobe that infects the colon. C. difficile is estimated to cause nearly half a million cases in the United States annually, with about 29,000 associated deaths. Unfortunately, the current antibiotic treatment is not ideal. While antibiotics can treat the infections, they also disrupt the gut microbiota that mediates colonization resistance against enteric pathogens, including C. difficile; disrupted gut microbiota provides a window of opportunity for recurrent infections. Therefore, therapeutics that restore the gut microbiota and suppress C. difficile are being evaluated for safety and efficacy. This review will start with mechanisms by which gut bacteria affect C. difficile pathogenesis, followed by a discussion on biotherapeutics for recurrent C. difficile infections.
Collapse
|
27
|
Noecker C, Sanchez J, Bisanz JE, Escalante V, Alexander M, Trepka K, Heinken A, Liu Y, Dodd D, Thiele I, DeFelice BC, Turnbaugh PJ. Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta. PLoS Biol 2023; 21:e3002125. [PMID: 37205710 PMCID: PMC10234575 DOI: 10.1371/journal.pbio.3002125] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/01/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Human gut bacteria perform diverse metabolic functions with consequences for host health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs several unusual chemical transformations, but it does not metabolize sugars and its core growth strategy remains unclear. To obtain a comprehensive view of the metabolic network of E. lenta, we generated several complementary resources: defined culture media, metabolomics profiles of strain isolates, and a curated genome-scale metabolic reconstruction. Stable isotope-resolved metabolomics revealed that E. lenta uses acetate as a key carbon source while catabolizing arginine to generate ATP, traits which could be recapitulated in silico by our updated metabolic model. We compared these in vitro findings with metabolite shifts observed in E. lenta-colonized gnotobiotic mice, identifying shared signatures across environments and highlighting catabolism of the host signaling metabolite agmatine as an alternative energy pathway. Together, our results elucidate a distinctive metabolic niche filled by E. lenta in the gut ecosystem. Our culture media formulations, atlas of metabolomics data, and genome-scale metabolic reconstructions form a freely available collection of resources to support further study of the biology of this prevalent gut bacterium.
Collapse
Affiliation(s)
- Cecilia Noecker
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Juan Sanchez
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| | - Jordan E. Bisanz
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Veronica Escalante
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Margaret Alexander
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kai Trepka
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Almut Heinken
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Yuanyuan Liu
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Dylan Dodd
- Department of Pathology, Stanford University, Stanford, California, United States of America
- Department of Microbiology & Immunology, Stanford University, Stanford, California, United States of America
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Brian C. DeFelice
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| | - Peter J. Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
28
|
Powers DA, Jenior ML, Kolling GL, Papin JA. Network analysis of toxin production in Clostridioides difficile identifies key metabolic dependencies. PLoS Comput Biol 2023; 19:e1011076. [PMID: 37099624 PMCID: PMC10166488 DOI: 10.1371/journal.pcbi.1011076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Clostridioides difficile pathogenesis is mediated through its two toxin proteins, TcdA and TcdB, which induce intestinal epithelial cell death and inflammation. It is possible to alter C. difficile toxin production by changing various metabolite concentrations within the extracellular environment. However, it is unknown which intracellular metabolic pathways are involved and how they regulate toxin production. To investigate the response of intracellular metabolic pathways to diverse nutritional environments and toxin production states, we use previously published genome-scale metabolic models of C. difficile strains CD630 and CDR20291 (iCdG709 and iCdR703). We integrated publicly available transcriptomic data with the models using the RIPTiDe algorithm to create 16 unique contextualized C. difficile models representing a range of nutritional environments and toxin states. We used Random Forest with flux sampling and shadow pricing analyses to identify metabolic patterns correlated with toxin states and environment. Specifically, we found that arginine and ornithine uptake is particularly active in low toxin states. Additionally, uptake of arginine and ornithine is highly dependent on intracellular fatty acid and large polymer metabolite pools. We also applied the metabolic transformation algorithm (MTA) to identify model perturbations that shift metabolism from a high toxin state to a low toxin state. This analysis expands our understanding of toxin production in C. difficile and identifies metabolic dependencies that could be leveraged to mitigate disease severity.
Collapse
Affiliation(s)
- Deborah A. Powers
- Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew L. Jenior
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
29
|
Li J, Zhu S, Wang Y, Fan M, Dai J, Zhu C, Xu K, Cui M, Suo C, Jin L, Jiang Y, Chen X. Metagenomic association analysis of cognitive impairment in community-dwelling older adults. Neurobiol Dis 2023; 180:106081. [PMID: 36931530 DOI: 10.1016/j.nbd.2023.106081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The gut microbiota is reportedly involved in neurodegenerative disorders, and exploration of differences in the gut microbiota in different cognitive status could provide clues for early detection and intervention in cognitive impairment. Here, we used data from the Taizhou Imaging Study (N = 516), a community-based cohort, to compare the overall structure of the gut microbiota at the species level through metagenomic sequencing, and to explore associations with cognition. Interestingly, bacteria capable of producing short-chain fatty acids (SCFAs), such as Bacteroides massiliensis, Bifidobacterium pseudocatenulatum, Fusicatenibacter saccharivorans and Eggerthella lenta, that can biotransform polyphenols, were positively associated with better cognitive performance (p < 0.05). Although Diallister invisus and Streptococcus gordonii were not obviously related to cognition, the former was dominant in individuals with mild cognitive impairment (MCI), while the later was more abundant in cognitively normal (CN) than MCI groups, and positively associated with cognitive performance (p < 0.05). Functional analysis further supported a potential role of SCFAs and lactic acid in the association between the gut microbiota and cognition. The significant associations persisted after accounting for dietary patterns. Collectively, our results demonstrate an association between the gut microbiota and cognition in the general population, indicating a potential role in cognitive impairment. The findings provide clues for microbiome biomarkers of dementia, and insight for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Jincheng Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yingzhe Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Jiacheng Dai
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Kelin Xu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Ministry of Education Key Laboratory of Public Health Safety, Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Ministry of Education Key Laboratory of Public Health Safety, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; International Human Phenome Institute (Shanghai), Shanghai, China.
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| |
Collapse
|
30
|
Hellmann J, Ta A, Ollberding NJ, Bezold R, Lake K, Jackson K, Dirksing K, Bonkowski E, Haslam DB, Denson LA. Patient-Reported Outcomes Correlate With Microbial Community Composition Independent of Mucosal Inflammation in Pediatric Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:286-296. [PMID: 35972440 PMCID: PMC9890220 DOI: 10.1093/ibd/izac175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) involve an aberrant host response to intestinal microbiota causing mucosal inflammation and gastrointestinal symptoms. Patient-reported outcomes (PROs) are increasingly important in clinical care and research. Our aim was to examine associations between PROs and fecal microbiota in patients 0 to 22 years of age with IBD. METHODS A longitudinal, prospective, single-center study tested for associations between microbial community composition via shotgun metagenomics and PROs including stool frequency and rectal bleeding in ulcerative colitis (UC) and abdominal pain and stool frequency in Crohn's disease (CD). Mucosal inflammation was assessed with fecal calprotectin. A negative binomial mixed-effects model including clinical characteristics and fecal calprotectin tested for differentially abundant species and metabolic pathways by PROs. RESULTS In 70 CD patients with 244 stool samples, abdominal pain correlated with increased relative abundance of Haemophilus and reduced Clostridium spp. There were no differences relative to calprotectin level. In 23 UC patients with 76 samples, both rectal bleeding and increased stool frequency correlated with increased Klebsiella and reduced Bacteroides spp. Conversely, UC patients with lower calprotectin had reduced Klebsiella. Both UC and CD patients with active symptoms exhibited less longitudinal microbial community stability. No differences in metabolic pathways were observed in CD. Increased sulfoglycolysis and ornithine biosynthesis correlated with symptomatic UC. CONCLUSIONS Microbial community composition correlated with PROs in both CD and UC. Metabolic pathways differed relative to PROs in UC, but not CD. Data suggest that microbiota may contribute to patient symptoms in IBD, in addition to effects of mucosal inflammation.
Collapse
Affiliation(s)
- Jennifer Hellmann
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Allison Ta
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nicholas J Ollberding
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ramona Bezold
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Lake
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly Jackson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kelsie Dirksing
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Erin Bonkowski
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
31
|
Enterococci enhance Clostridioides difficile pathogenesis. Nature 2022; 611:780-786. [PMID: 36385534 PMCID: PMC9691601 DOI: 10.1038/s41586-022-05438-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.
Collapse
|
32
|
Wu Z, Xu Q, Li A, Lv L, Li L. Apple Polyphenol Extract Suppresses Clostridioides difficile Infection in a Mouse Model. Metabolites 2022; 12:1042. [PMID: 36355125 PMCID: PMC9694464 DOI: 10.3390/metabo12111042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Fruits such as apples are a dietary source of polyphenols and have health benefits. We studied the benefits of apple polyphenols in reducing intestinal infections. We explored the potential roles of apple polyphenols in combating Clostridioides difficile-induced intestinal infections by modulating the intestinal microbiota and metabolism in our study. Mice fed with apple polyphenols exhibited higher survival rates and improved diarrhea symptoms in a C. difficile infection mouse model given once-daily apple polyphenol extract (200 or 400 mg/kg bw) or phosphate-buffered saline. Feeding polyphenols enhanced anti-inflammatory effects and colon barrier integrity. In addition, apple polyphenols mitigated intestinal microbiota disorders in C. difficile infection, modulating the intestinal microbiota and increasing the abundance of beneficial microbiota. Apple polyphenols also improved fecal metabolic alterations in C. difficile-infected mice and modulated the expression of pathways related to intestinal inflammation. Our results suggest that apple polyphenol extract is a potential prebiotic agent that affects the intestinal microbiota and metabolism, thereby positively influencing intestinal infections.
Collapse
Affiliation(s)
- Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Ailing Li
- Shulan (Hangzhou) Hospital, Hangzhou 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
33
|
Cortés A, Martin J, Rosa BA, Stark KA, Clare S, McCarthy C, Harcourt K, Brandt C, Tolley C, Lawley TD, Mitreva M, Berriman M, Rinaldi G, Cantacessi C. The gut microbial metabolic capacity of microbiome-humanized vs. wild type rodents reveals a likely dual role of intestinal bacteria in hepato-intestinal schistosomiasis. PLoS Negl Trop Dis 2022; 16:e0010878. [PMID: 36279280 PMCID: PMC9633004 DOI: 10.1371/journal.pntd.0010878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/03/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence shows that the host gut microbiota might be involved in the immunological cascade that culminates with the formation of tissue granulomas underlying the pathophysiology of hepato-intestinal schistosomiasis. In this study, we investigated the impact of Schistosoma mansoni infection on the gut microbial composition and functional potential of both wild type and microbiome-humanized mice. In spite of substantial differences in microbiome composition at baseline, selected pathways were consistently affected by parasite infection. The gut microbiomes of infected mice of both lines displayed, amongst other features, enhanced capacity for tryptophan and butyrate production, which might be linked to the activation of mechanisms aimed to prevent excessive injuries caused by migrating parasite eggs. Complementing data from previous studies, our findings suggest that the host gut microbiome might play a dual role in the pathophysiology of schistosomiasis, where intestinal bacteria may contribute to egg-associated pathology while, in turn, protect the host from uncontrolled tissue damage.
Collapse
Affiliation(s)
- Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, València, Spain
| | - John Martin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Klara A. Stark
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Clare
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Catherine McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cordelia Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charlotte Tolley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Trevor D. Lawley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile. J Bacteriol 2022; 204:e0022922. [PMID: 35862761 PMCID: PMC9380539 DOI: 10.1128/jb.00229-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Clostridioides difficile is a nosocomial pathogen that colonizes the gut and causes diarrhea, colitis, and severe inflammation. Recently, C. difficile has been shown to use toxin-mediated inflammation to promote host collagen degradation, which releases several amino acids into the environment. Amino acids act as electron donors and acceptors in Stickland metabolism, an anaerobic process involving redox reactions between pairs of amino acids. Proline, glycine, and hydroxyproline are the three main constituents of collagen and are assumed to act as electron acceptors, but their exact effects on the growth and physiology of C. difficile are still unclear. Using three standard culture media (supplemented brain heart infusion [BHIS], tryptone-yeast [TY], and C. difficile minimal medium [CDMM]) supplemented with proline, glycine, or hydroxyproline, we grew C. difficile strains R20291, JIR8094, and a panel of mutants unable to express the Stickland selenoenzymes d-proline reductase and glycine reductase. In the wild-type strains, growth yields in rich media (BHIS and TY) were higher with proline and hydroxyproline but not glycine; moreover, proline-stimulated growth yields required the activity of d-proline reductase, whereas hydroxyproline-stimulated growth yields were independent of its activity. While assumed to be a proline auxotroph, C. difficile could surprisingly grow in a defined medium (CDMM) without proline but only if d-proline reductase was absent. We believe the mere presence of this enzyme ultimately determines the organism's strict dependence on proline and likely defines the bioenergetic priorities for thriving in the host. Finally, we demonstrated that addition of proline and hydroxyproline to the culture medium could reduce toxin production but not in cells lacking selenoproteins. IMPORTANCE Stickland metabolism is a core facet of C. difficile physiology that likely plays a major role in host colonization. Here, we carefully delineate the effects of each amino acid on the growth of C. difficile with respect to the selenoenzymes d-proline reductase and glycine reductase. Moreover, we report that d-proline reductase forces C. difficile to strictly depend on proline for growth. Finally, we provide evidence that proline and hydroxyproline suppress toxin production and that selenoproteins are involved in this mechanism. Our findings highlight the significance of selenium-dependent Stickland reactions and may provide insight on what occurs during host infection, especially as it relates to the decision to colonize based on proline as a nutrient.
Collapse
|
35
|
Munneke MJ, Skaar EP. Ornithine supports C. difficile gut carriage. Nat Metab 2022; 4:7-8. [PMID: 34992298 DOI: 10.1038/s42255-021-00510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew J Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|