1
|
Pontanari F, Demagny H, Faure A, Li X, Benegiamo G, Jalil A, Perino A, Auwerx J, Schoonjans K. Wars1 downregulation in hepatocytes induces mitochondrial stress and disrupts metabolic homeostasis. Metabolism 2025; 162:156061. [PMID: 39515413 DOI: 10.1016/j.metabol.2024.156061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/03/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Several laboratories, including ours, have employed the Slc25a47tm1c(EUCOMM)Hmgu mouse model to investigate the role of SLC25A47, a hepatocyte-specific mitochondrial carrier, in regulating hepatic metabolism and systemic physiology. In this study, we reveal that the hepatic and systemic phenotypes observed following recombination of the Slc25a47-Wars1 locus in hepatocytes are primarily driven by the unexpected downregulation of Wars1, the cytosolic tryptophan aminoacyl-tRNA synthetase located adjacent to Slc25a47. While the downregulation of Wars1 predictably affects cytosolic translation, we also observed a significant impairment in mitochondrial protein synthesis within hepatocytes. This disturbance in mitochondrial function leads to an activation of the mitochondrial unfolded protein response (UPRmt), a critical component of the mitochondrial stress response (MSR). Our findings clarify the distinct roles of Slc25a47 and Wars1 in maintaining both systemic and hepatic metabolic homeostasis. This study sheds new light on the broader implications of aminoacyl-tRNA synthetases in mitochondrial physiology and stress responses.
Collapse
Affiliation(s)
- Francesca Pontanari
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hadrien Demagny
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Adrien Faure
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Antoine Jalil
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Wang Q, Wang J, Huang Z, Li Y, Li H, Huang P, Cai Y, Wang J, Liu X, Lin FC, Lu J. The endosomal-vacuolar transport system acts as a docking platform for the Pmk1 MAP kinase signaling pathway in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2025; 245:722-747. [PMID: 39494465 DOI: 10.1111/nph.20235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
In Magnaporthe oryzae, the Pmk1 MAP kinase signaling pathway regulates appressorium formation, plant penetration, effector secretion, and invasive growth. While the Mst11-Mst7-Pmk1 cascade was characterized two decades ago, knowledge of its signaling in the intracellular network remains limited. In this study, we demonstrate that the endosomal surface scaffolds Pmk1 MAPK signaling and Msb2 activates Ras2 on endosomes in M. oryzae. Protein colocalization demonstrated that Msb2, Ras2, Cap1, Mst50, Mst11, Mst7, and Pmk1 attach to late endosomal membranes. Damage to the endosome-vacuole transport system influences Pmk1 phosphorylation. When Msb2 senses a plant signal, it internalizes and activates Ras2 on endosome membrane surfaces, transmitting the signal to Pmk1 via Mst11 and Mst7. Signal-sensing and delivery proteins are ubiquitinated and sorted for degradation in late endosomes and vacuoles, terminating signaling. Plant penetration and lowered intracellular turgor are required for the transition from late endosomes to vacuoles in appressoria. Our findings uncover an effective mechanism that scaffolds and controls Pmk1 MAPK signaling through endosomal-vacuolar transport, offering new knowledge for the cytological and molecular mechanisms by which the Pmk1 MAPK pathway modulates development and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Qing Wang
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhicheng Huang
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Li
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Li
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengyun Huang
- School of Medicine, Linyi University, Linyi, 276000, Shandong Province, China
| | - Yingying Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaohong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Lu
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Li Z, Wang X, Hu G, Li X, Song W, Wei W, Liu L, Gao C. Engineering Metabolic Flux for the Microbial Synthesis of Aromatic Compounds. Metab Eng 2024:S1096-7176(24)00178-2. [PMID: 39724940 DOI: 10.1016/j.ymben.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Microbial cell factories have emerged as a sustainable alternative to traditional chemical synthesis and plant extraction methods for producing aromatic compounds. However, achieving economically viable production of these compounds in microbial systems remains a significant challenge. This review summarizes the latest advancements in metabolic flux regulation during the microbial production of aromatic compounds, providing an overview of its applications and practical outcomes. Various strategies aimed at improving the utilization of extracellular substrates, enhancing the efficiency of synthetic pathways for target products, and rewiring intracellular metabolic networks to boost the titer, yield, and productivity of aromatic compounds are discussed. Additionally, the persistent challenges in this field and potential solutions are highlighted.
Collapse
Affiliation(s)
- Zhendong Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianghe Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Jo S, Seo M, Nguyen TH, Cha JW, An YJ, Park S. Biosynthesis-Encoded Lipogenic Acetyl-CoA Measurement Using NMR Reveals Glucose-Driven Lipogenesis and Glutamine's Alternative Roles in Kidney Cancer. J Am Chem Soc 2024; 146:33753-33762. [PMID: 39611721 DOI: 10.1021/jacs.4c11809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Fatty acid de novo synthesis (FADNS) is a critical process in lipogenesis that is characteristically altered in clear cell renal cell carcinoma (ccRCC), which is the major type of kidney cancer. An important challenge in studying the FADNS process has been the accurate measurement of cytosolic lipogenic acetyl-CoA (AcCoA), the precursor in FADNS, due to its compartmentalization within cells. Here, we describe a novel NMR-based method to decode the isotopic enrichment of lipogenic AcCoA, which, as we demonstrated, is encoded in the simple signal ratios of the geminal methyl groups of lanosterol during its biosynthesis. The approach was validated based on the independence of the tracer enrichment and species along with the expected FADNS modulation using differentially enriched tracers and a well-studied drug. Application of this technique to 786-O ccRCC cells showed that glucose may serve as a major carbon source for lipogenic AcCoA in FADNS at physiological nutrient concentrations, at odds with previous studies that indicated glutamine's dominant role through reductive carboxylation under higher nutrient conditions. Further investigation into glutamine's alternative roles in ccRCC cells suggested its major involvement in the bioenergetic TCA cycle, pyrimidine synthesis, and glutathione synthesis, which is also critical in ccRCC growth. The glutamine-dependent glutathione synthesis was also suggested as a possible metabolic vulnerability compared to normal kidney cells using a glutathione synthesis inhibitor. The current study provides a simple tool for studying an important aspect of lipid metabolism and suggests translational implications for targeting glucose-driven lipogenesis and glutamine-supported glutathione synthesis in ccRCC.
Collapse
Affiliation(s)
- Sihyang Jo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Munjun Seo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Thi Ha Nguyen
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jin Wook Cha
- KIST Gangneung Institute of Natural Products, Natural Product Drug Development Division, Center for Natural Product Systems Biology, Gangneung 25451, Korea
| | - Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
5
|
Yokoyama R. Spatial sugar separation is key to how fast you get old. PLANT PHYSIOLOGY 2024; 196:2269-2270. [PMID: 39288162 PMCID: PMC11637987 DOI: 10.1093/plphys/kiae494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Affiliation(s)
- Ryo Yokoyama
- Plant Physiology, American Society of Plant Biologists
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
6
|
Bucci J, Malouf L, Tanase DA, Farag N, Lamb JR, Rubio-Sánchez R, Gentile S, Del Grosso E, Kaminski CF, Di Michele L, Ricci F. Enzyme-Responsive DNA Condensates. J Am Chem Soc 2024; 146:31529-31537. [PMID: 39503320 PMCID: PMC11583213 DOI: 10.1021/jacs.4c08919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Membrane-less compartments and organelles are widely acknowledged for their role in regulating cellular processes, and there is an urgent need to harness their full potential as both structural and functional elements of synthetic cells. Despite rapid progress, synthetically recapitulating the nonequilibrium, spatially distributed responses of natural membrane-less organelles remains elusive. Here, we demonstrate that the activity of nucleic-acid cleaving enzymes can be localized within DNA-based membrane-less compartments by sequestering the respective DNA or RNA substrates. Reaction-diffusion processes lead to complex nonequilibrium patterns, dependent on enzyme concentration. By arresting similar dynamic patterns, we spatially organize different substrates in concentric subcompartments, which can be then selectively addressed by different enzymes, demonstrating spatial distribution of enzymatic activity. Besides expanding our ability to engineer advanced biomimetic functions in synthetic membrane-less organelles, our results may facilitate the deployment of DNA-based condensates as microbioreactors or platforms for the detection and quantitation of enzymes and nucleic acids.
Collapse
Affiliation(s)
- Juliette Bucci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Layla Malouf
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Diana A Tanase
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Nada Farag
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Jacob R Lamb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Roger Rubio-Sánchez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| |
Collapse
|
7
|
Park JH, Wandless TJ. p53 engagement is a hallmark of an unfolded protein response in the nucleus of mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622663. [PMID: 39574672 PMCID: PMC11581032 DOI: 10.1101/2024.11.08.622663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Exposure to exogenous and endogenous stress is associated with the intracellular accumulation of aberrant unfolded and misfolded proteins. In eukaryotic cells, protein homeostasis within membrane-bound organelles is regulated by specialized signaling pathways, with the unfolded protein response in the endoplasmic reticulum serving as a foundational example. Yet, it is unclear if a similar surveillance mechanism exists in the nucleus. Here we leveraged engineered proteins called destabilizing domains to acutely expose mammalian cells to nuclear- or cytosolic- localized unfolded protein. We show that the appearance of unfolded protein in either compartment engages a common transcriptional response associated with the transcription factors Nrf1 and Nrf2. Uniquely, only in the nucleus does unfolded protein activate a robust p53-driven transcriptional response and a transient p53-independent cell cycle delay. These studies highlight the distinct effects of localized protein folding stress and the unique protein quality control environment of the nucleus.
Collapse
|
8
|
Norden PR, Wedan RJ, Longenecker JZ, Preston SEJ, Graber N, Pentecost OA, Canfield M, McLaughlin E, Nowinski SM. Mitochondrial Phosphopantetheinylation is Required for Oxidative Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.592977. [PMID: 38766035 PMCID: PMC11100772 DOI: 10.1101/2024.05.09.592977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
4'-phosphopantetheinyl (4'PP) groups are essential co-factors added to target proteins by p hospho p antetheinyl transferase (PPTase) enzymes. Although mitochondrial 4'PP-modified proteins have been described for decades, a mitochondrially-localized PPTase has never been found in mammals. We discovered that the cytoplasmic PPTase a mino a dipate s emialdehyde d ehydrogenase p hospho p antetheinyl t ransferase (AASDHPPT) is required for mitochondrial respiration and oxidative metabolism. Loss of AASDHPPT results in failed 4'-PP modification of the mitochondrial acyl carrier protein and blunted activity of the mitochondrial fatty acid synthesis (mtFAS) pathway. We found that in addition to its cytoplasmic localization, AASDHPPT localizes to the mitochondrial matrix via an N-terminal mitochondrial targeting sequence contained within the first 13 amino acids of the protein. Our data show that this novel mitochondrial localization of AASDHPPT is required to support mtFAS activity and oxidative function. We further identify two variants of uncertain significance in AASDHPPT that are likely pathogenic in humans due to loss of mtFAS activity.
Collapse
|
9
|
Chen Y, Li Y, Gu W, Liu S, Wang Y, Jiao B, Wang M, Long Y, Miao K, Niu Y, Duan H, Tang S, Zheng Y, Dai Y. The key metabolic signatures and biomarkers of polycyclic aromatic hydrocarbon-induced blood glucose elevation in chinese individuals exposed to diesel engine exhaust. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116997. [PMID: 39260215 DOI: 10.1016/j.ecoenv.2024.116997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Due to the complexity of environmental exposure factors and the low levels of exposure in the general population, identifying the key environmental factors associated with diabetes and understanding their potential mechanisms present significant challenges. This study aimed to identify key polycyclic aromatic hydrocarbons (PAHs) contributing to increased fasting blood glucose (FBG) concentrations and to explore their potential metabolic mechanisms. We recruited a highly PAH-exposed diesel engine exhaust testing population and healthy controls. Our findings found a positive association between FBG concentrations and PAH metabolites, identifying 1-OHNa, 2-OHPh, and 9-OHPh as major contributors to the rise in FBG concentrations induced by PAH mixtures. Specifically, each 10 % increase in 1-OHNa, 2-OHPh, and 9-OHPh concentrations led to increases in FBG concentrations of 0.201 %, 0.261 %, and 0.268 %, respectively. Targeted metabolomics analysis revealed significant alterations in metabolic pathways among those exposed to high levels of PAHs, including sirtuin signaling, asparagine metabolism, and proline metabolism pathway. Toxic function analysis highlighted differential metabolites involved in various dysglycemia-related conditions, such as cardiac arrhythmia and renal damage. Mediation analysis revealed that 2-aminooctanoic acid mediated the FBG elevation induced by 2-OHPh, while 2-hydroxyphenylacetic acid and hypoxanthine acted as partial suppressors. Notably, 2-aminooctanoic acid was identified as a crucial intermediary metabolic biomarker, mediating significant portions of the associations between the multiple different structures of OH-PAHs and elevated FBG concentrations, accounting for 16.73 %, 10.84 %, 10.00 %, and 11.90 % of these effects for 1-OHPyr, 2-OHFlu, the sum concentrations of 2- and 9-OHPh, and the sum concentrations of total OH-PAHs, respectively. Overall, our study explored the potential metabolic mechanisms underlying the elevated FBG induced by PAHs and identified 2-aminooctanoic acid as a pivotal metabolic biomarker, presenting a potential target for intervention.
Collapse
Affiliation(s)
- Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanting Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yican Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mengmeng Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuehan Long
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Yufei Dai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
10
|
Norris V. Hunting the Cell Cycle Snark. Life (Basel) 2024; 14:1213. [PMID: 39459514 PMCID: PMC11509034 DOI: 10.3390/life14101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
In this very personal hunt for the meaning of the bacterial cell cycle, the snark, I briefly revisit and update some of the mechanisms we and many others have proposed to regulate the bacterial cell cycle. These mechanisms, which include the dynamics of calcium, membranes, hyperstructures, and networks, are based on physical and physico-chemical concepts such as ion condensation, phase transition, crowding, liquid crystal immiscibility, collective vibrational modes, reptation, and water availability. I draw on ideas from subjects such as the 'prebiotic ecology' and phenotypic diversity to help with the hunt. Given the fundamental nature of the snark, I would expect that its capture would make sense of other parts of biology. The route, therefore, followed by the hunt has involved trying to answer questions like "why do cells replicate their DNA?", "why is DNA replication semi-conservative?", "why is DNA a double helix?", "why do cells divide?", "is cell division a spandrel?", and "how are catabolism and anabolism balanced?". Here, I propose some relatively unexplored, experimental approaches to testing snark-related hypotheses and, finally, I propose some possibly original ideas about DNA packing, about phase separations, and about computing with populations of virtual bacteria.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| |
Collapse
|
11
|
Song S, Ivanov T, Yuan D, Wang J, da Silva LC, Xie J, Cao S. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles. Biomacromolecules 2024; 25:5468-5488. [PMID: 39178343 DOI: 10.1021/acs.biomac.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Biomolecular condensates are dynamic liquid droplets through intracellular liquid-liquid phase separation that function as membraneless organelles, which are highly involved in various complex cellular processes and functions. Artificial analogs formed via similar pathways that can be integrated with biological complexity and advanced functions have received tremendous research interest in the field of synthetic biology. The coacervate droplet-based compartments can partition and concentrate a wide range of solutes, which are regarded as attractive candidates for mimicking phase-separation behaviors and biophysical features of biomolecular condensates. The use of peptide-based materials as phase-separating components has advantages such as the diversity of amino acid residues and customized sequence design, which allows for programming their phase-separation behaviors and the physicochemical properties of the resulting compartments. In this Perspective, we highlight the recent advancements in the design and construction of biomimicry condensates from synthetic peptides relevant to intracellular phase-separating protein, with specific reference to their molecular design, self-assembly via phase separation, and biorelated applications, to envisage the use of peptide-based droplets as emerging biomedical delivery vehicles.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | | | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianqiang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Kang Z, Hou S, Gao K, Liu Y, Zhang N, Fang Z, Zhang W, Xu X, Xu R, Lü C, Ma C, Xu P, Gao C. An Ultrasensitive Biosensor for Probing Subcellular Distribution and Mitochondrial Transport of l-2-Hydroxyglutarate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404119. [PMID: 39005231 PMCID: PMC11425224 DOI: 10.1002/advs.202404119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
l-2-Hydroxyglutarate (l-2-HG) is a functionally compartmentalized metabolite involved in various physiological processes. However, its subcellular distribution and mitochondrial transport remain unclear owing to technical limitations. In the present study, an ultrasensitive l-2-HG biosensor, sfLHGFRH, composed of circularly permuted yellow fluorescent protein and l-2-HG-specific transcriptional regulator, is developed. The ability of sfLHGFRH to be used for analyzing l-2-HG metabolism is first determined in human embryonic kidney cells (HEK293FT) and macrophages. Then, the subcellular distribution of l-2-HG in HEK293FT cells and the lower abundance of mitochondrial l-2-HG are identified by the sfLHGFRH-supported spatiotemporal l-2-HG monitoring. Finally, the role of the l-glutamate transporter SLC1A1 in mitochondrial l-2-HG uptake is elucidated using sfLHGFRH. Based on the design of sfLHGFRH, another highly sensitive biosensor with a low limit of detection, sfLHGFRL, is developed for the point-of-care diagnosis of l-2-HG-related diseases. The accumulation of l-2-HG in the urine of patients with kidney cancer is determined using the sfLHGFRL biosensor.
Collapse
Affiliation(s)
- Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Shuang Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Kaiyu Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Xianzhi Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Rong Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
13
|
Wagner PM, Salgado MA, Turani O, Fornasier SJ, Salvador GA, Smania AM, Bouzat C, Guido ME. Rhythms in lipid droplet content driven by a metabolic oscillator are conserved throughout evolution. Cell Mol Life Sci 2024; 81:348. [PMID: 39136766 PMCID: PMC11335272 DOI: 10.1007/s00018-024-05355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O2 levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells. GLs are key components of lipid droplets (LDs), intracellular storage organelles, present in all living organisms, and essential for energy and lipid homeostasis regulation and survival; however, the cell bioenergetics status is not constant across time and depends on energy demands. Thus, the formation and degradation of LDs may reflect a time-dependent process following energy requirements. This work investigated the presence of metabolic rhythms in LD content along evolution by studying prokaryotic and eukaryotic cells and organisms. We found sustained temporal oscillations in LD content in Pseudomonas aeruginosa bacteria and Caenorhabditis elegans synchronized by temperature cycles, in serum-shock synchronized human embryonic kidney cells (HEK 293 cells) and brain tumor cells (T98G and GL26) after a dexamethasone pulse. Moreover, in synchronized T98G cells, LD oscillations were altered by glycogen synthase kinase-3 (GSK-3) inhibition that affects the cytosolic activity of the metabolic oscillator or by knocking down LIPIN-1, a key GL synthesizing enzyme. Overall, our findings reveal the existence of metabolic oscillations in terms of LD content highly conserved across evolutionary scales notwithstanding variations in complexity, regulation, and cell organization.
Collapse
Affiliation(s)
- Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Mauricio A Salgado
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Ornella Turani
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Santiago J Fornasier
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Gabriela A Salvador
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Andrea M Smania
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Cecilia Bouzat
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
14
|
Tan S, Dengler AS, Darawsheh RZ, Kory N. The iAAA-mitochondrial protease YME1L1 regulates the degradation of the short-lived mitochondrial transporter SLC25A38. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593764. [PMID: 38979268 PMCID: PMC11230184 DOI: 10.1101/2024.05.12.593764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondrial transporters facilitate the exchange of diverse metabolic intermediates across the inner mitochondrial membrane, ensuring an adequate supply of substrates and cofactors to support redox and biosynthetic reactions within the mitochondrial matrix. However, the regulatory mechanisms governing the abundance of these transporters, crucial for maintaining metabolic compartmentalization and mitochondrial functions, remain poorly defined. Through analysis of protein half-life data and mRNA-protein correlations, we identified SLC25A38, a mitochondrial glycine transporter, as a short- lived protein with a half-life of 4 hours under steady-state conditions. Pharmacological inhibition and genetic depletion of various cellular proteolytic systems revealed that SLC25A38 is rapidly degraded by the iAAA-mitochondrial protease YME1L1. Depolarization of the mitochondrial membrane potential induced by the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrozone prevented the degradation of SLC25A38. This dual regulation of SLC25A38 abundance by YME1L1 and mitochondrial membrane potential suggests a link between SLC25A38 turnover, the integrity of the inner mitochondrial membrane, and electron transport chain function. These findings open avenues for investigating whether mitochondrial glycine import coordinates with mitochondrial bioenergetics.
Collapse
|
15
|
Yu X, Li H, Xu C, Xu Z, Chen S, Liu W, Zhang T, Sun H, Ge Y, Qi Z, Liu J. Liquid-Liquid Phase Separation-Mediated Photocatalytic Subcellular Hybrid System for Highly Efficient Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400097. [PMID: 38572522 PMCID: PMC11165473 DOI: 10.1002/advs.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Plant chloroplasts have a highly compartmentalized interior, essential for executing photocatalytic functions. However, the construction of a photocatalytic reaction compartment similar to chloroplasts in inorganic-biological hybrid systems (IBS) has not been reported. Drawing inspiration from the compartmentalized chloroplast and the phenomenon of liquid-liquid phase separation, herein, a new strategy is first developed for constructing a photocatalytic subcellular hybrid system through liquid-liquid phase separation technology in living cells. Photosensitizers and in vivo expressed hydrogenases are designed to coassemble within the cell to create subcellular compartments for synergetic photocatalysis. This compartmentalization facilitates efficient electron transfer and light energy utilization, resulting in highly effective H2 production. The subcellular compartments hybrid system (HM/IBSCS) exhibits a nearly 87-fold increase in H2 production compared to the bare bacteria/hybrid system. Furthermore, the intracellular compartments of the photocatalytic reactor enhance the system's stability obviously, with the bacteria maintaining approximately 81% of their H2 production activity even after undergoing five cycles of photocatalytic hydrogen production. The research brings forward visionary prospects for the field of semi-artificial photosynthesis, offering new possibilities for advancements in areas such as renewable energy, biomanufacturing, and genetic engineering.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Hui Li
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Chengchen Xu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Shuheng Chen
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Wang Liu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Tianlong Zhang
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Hongcheng Sun
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Yan Ge
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Zhenhui Qi
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| |
Collapse
|
16
|
Wang R, Su Y, Yang W, Zhang H, Wang J, Gao W. Enhanced precision and efficiency in metabolic regulation: Compartmentalized metabolic engineering. BIORESOURCE TECHNOLOGY 2024; 402:130786. [PMID: 38703958 DOI: 10.1016/j.biortech.2024.130786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Metabolic engineering has witnessed remarkable advancements, enabling successful large-scale, cost-effective and efficient production of numerous compounds. However, the predominant expression of heterologous genes in the cytoplasm poses limitations, such as low substrate concentration, metabolic competition and product toxicity. To overcome these challenges, compartmentalized metabolic engineering allows the spatial separation of metabolic pathways for the efficient and precise production of target compounds. Compartmentalized metabolic engineering and its common strategies are comprehensively described in this study, where various membranous compartments and membraneless compartments have been used for compartmentalization and constructive progress has been made. Additionally, the challenges and future directions are discussed in depth. This review is dedicated to providing compartmentalized, precise and efficient methods for metabolic production, and provides valuable guidance for further development in the field of metabolic engineering.
Collapse
Affiliation(s)
- Rubing Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
17
|
Llamosí A, Szymański MP, Szumna A. Molecular vessels from preorganised natural building blocks. Chem Soc Rev 2024; 53:4434-4462. [PMID: 38497833 DOI: 10.1039/d3cs00801k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Supramolecular vessels emerged as tools to mimic and better understand compartmentalisation, a central aspect of living matter. However, many more applications that go beyond those initial goals have been documented in recent years, including new sensory systems, artificial transmembrane transporters, catalysis, and targeted drug or gene delivery. Peptides, carbohydrates, nucleobases, and steroids bear great potential as building blocks for the construction of supramolecular vessels, possessing complexity that is still difficult to attain with synthetic methods - they are rich in functional groups and well-defined stereogenic centers, ready for noncovalent interactions and further functions. One of the options to tame the functional and dynamic complexity of natural building blocks is to place them at spatially designed positions using synthetic scaffolds. In this review, we summarise the historical and recent advances in the construction of molecular-sized vessels by the strategy that couples synthetic predictability and durability of various scaffolds (cyclodextrins, porphyrins, crown ethers, calix[n]arenes, resorcin[n]arenes, pillar[n]arenes, cyclotriveratrylenes, coordination frameworks and multivalent high-symmetry molecules) with functionality originating from natural building blocks to obtain nanocontainers, cages, capsules, cavitands, carcerands or coordination cages by covalent chemistry, self-assembly, or dynamic covalent chemistry with the ultimate goal to apply them in sensing, transport, or catalysis.
Collapse
Affiliation(s)
- Arturo Llamosí
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Marek P Szymański
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
18
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
19
|
Sprenger HG, Mittenbühler MJ, Sun Y, Van Vranken JG, Schindler S, Jayaraj A, Khetarpal SA, Vargas-Castillo A, Puszynska AM, Spinelli JB, Armani A, Kunchok T, Ryback B, Seo HS, Song K, Sebastian L, O'Young C, Braithwaite C, Dhe-Paganon S, Burger N, Mills EL, Gygi SP, Arthanari H, Chouchani ET, Sabatini DM, Spiegelman BM. Ergothioneine boosts mitochondrial respiration and exercise performance via direct activation of MPST. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588849. [PMID: 38645260 PMCID: PMC11030429 DOI: 10.1101/2024.04.10.588849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models in mice. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive. Here we use a systematic approach to identify how mitochondria remodel their metabolome in response to exercise training. From this data, we find that EGT accumulates in muscle mitochondria upon exercise training. Proteome-wide thermal stability studies identify 3-mercaptopyruvate sulfurtransferase (MPST) as a direct molecular target of EGT; EGT binds to and activates MPST, thereby boosting mitochondrial respiration and exercise training performance in mice. Together, these data identify the first physiologically relevant EGT target and establish the EGT-MPST axis as a molecular mechanism for regulating mitochondrial function and exercise performance.
Collapse
|
20
|
Ayyangar U, Karkhanis A, Tay H, Afandi AFB, Bhattacharjee O, Ks L, Lee SH, Chan J, Raghavan S. Metabolic rewiring of macrophages by epidermal-derived lactate promotes sterile inflammation in the murine skin. EMBO J 2024; 43:1113-1134. [PMID: 38418556 PMCID: PMC10987662 DOI: 10.1038/s44318-024-00039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 03/01/2024] Open
Abstract
Dysregulated macrophage responses and changes in tissue metabolism are hallmarks of chronic inflammation in the skin. However, the metabolic cues that direct and support macrophage functions in the skin are poorly understood. Here, we show that during sterile skin inflammation, the epidermis and macrophages uniquely depend on glycolysis and the TCA cycle, respectively. This compartmentalisation is initiated by ROS-induced HIF-1α stabilization leading to enhanced glycolysis in the epidermis. The end-product of glycolysis, lactate, is then exported by epithelial cells and utilized by the dermal macrophages to induce their M2-like fates through NF-κB pathway activation. In addition, we show that psoriatic skin disorder is also driven by such lactate metabolite-mediated crosstalk between the epidermis and macrophages. Notably, small-molecule inhibitors of lactate transport in this setting attenuate sterile inflammation and psoriasis disease burden, and suppress M2-like fate acquisition in dermal macrophages. Our study identifies an essential role for the metabolite lactate in regulating macrophage responses to inflammation, which may be effectively targeted to treat inflammatory skin disorders such as psoriasis.
Collapse
Affiliation(s)
- Uttkarsh Ayyangar
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.
- School for Chemical and Biotechnology, Sastra University, Thanjavur, India.
| | - Aneesh Karkhanis
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Heather Tay
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Oindrila Bhattacharjee
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Lalitha Ks
- Animal Care and Resource Centre (ACRC), National Centre for Biological Sciences (NCBS), Bangalore, India
| | - Sze Han Lee
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - James Chan
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science Technology and Research, Singapore, Singapore
| | - Srikala Raghavan
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
21
|
Ali MY, Bar-Peled L. Chemical proteomics to study metabolism, a reductionist approach applied at the systems level. Cell Chem Biol 2024; 31:446-451. [PMID: 38518745 DOI: 10.1016/j.chembiol.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Cellular metabolism encompasses a complex array of interconnected biochemical pathways that are required for cellular homeostasis. When dysregulated, metabolism underlies multiple human pathologies. At the heart of metabolic networks are enzymes that have been historically studied through a reductionist lens, and more recently, using high throughput approaches including genomics and proteomics. Merging these two divergent viewpoints are chemical proteomic technologies, including activity-based protein profiling, which combines chemical probes specific to distinct enzyme families or amino acid residues with proteomic analysis. This enables the study of metabolism at the network level with the precision of powerful biochemical approaches. Herein, we provide a primer on how chemical proteomic technologies custom-built for studying metabolism have unearthed fundamental principles in metabolic control. In parallel, these technologies have leap-frogged drug discovery through identification of novel targets and drug specificity. Collectively, chemical proteomics technologies appear to do the impossible: uniting systematic analysis with a reductionist approach.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Costa CF, Lismont C, Chornyi S, Koster J, Li H, Hussein MAF, Van Veldhoven PP, Waterham HR, Fransen M. The solute carrier SLC25A17 sustains peroxisomal redox homeostasis in diverse mammalian cell lines. Free Radic Biol Med 2024; 212:241-254. [PMID: 38159891 DOI: 10.1016/j.freeradbiomed.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Despite the crucial role of peroxisomes in cellular redox maintenance, little is known about how these organelles transport redox metabolites across their membrane. In this study, we sought to assess potential associations between the cellular redox landscape and the human peroxisomal solute carrier SLC25A17, also known as PMP34. This carrier has been reported to function as a counter-exchanger of adenine-containing cofactors such as coenzyme A (CoA), dephospho-CoA, flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), adenosine 3',5'-diphosphate, flavin mononucleotide, and adenosine monophosphate. We found that inactivation of SLC25A17 resulted in a shift toward a more reductive state in the glutathione redox couple (GSSG/GSH) across HEK-293 cells, HeLa cells, and SV40-transformed mouse embryonic fibroblasts, with variable impact on the NADPH levels and the NAD+/NADH redox couple. This phenotype could be rescued by the expression of Candida boidinii Pmp47, a putative SLC25A17 orthologue reported to be essential for the metabolism of medium-chain fatty acids in yeast peroxisomes. In addition, we provide evidence that the alterations in the redox state are not caused by changes in peroxisomal antioxidant enzyme expression, catalase activity, H2O2 membrane permeability, or mitochondrial fitness. Furthermore, treating control and ΔSLC25A17 cells with dehydroepiandrosterone, a commonly used glucose-6-phosphate dehydrogenase inhibitor affecting NADPH regeneration, revealed a kinetic disconnection between the peroxisomal and cytosolic glutathione pools. Additionally, these experiments underscored the impact of SLC25A17 loss on peroxisomal NADPH metabolism. The relevance of these findings is discussed in the context of the still ambiguous substrate specificity of SLC25A17 and the recent observation that the mammalian peroxisomal membrane is readily permeable to both GSH and GSSG.
Collapse
Affiliation(s)
- Cláudio F Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Mohamed A F Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium; Department of Biochemistry, Faculty of Pharmacy, Assiut University, 71515, Asyut, Egypt
| | - Paul P Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
23
|
Shi X, DeCiucis M, Grabinska KA, Kanyo J, Liu A, Lam TT, Shen H. Dual regulation of SLC25A39 by AFG3L2 and iron controls mitochondrial glutathione homeostasis. Mol Cell 2024; 84:802-810.e6. [PMID: 38157846 PMCID: PMC10922821 DOI: 10.1016/j.molcel.2023.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Organelle transporters define metabolic compartmentalization, and how this metabolite transport process can be modulated is poorly explored. Here, we discovered that human SLC25A39, a mitochondrial transporter critical for mitochondrial glutathione uptake, is a short-lived protein under dual regulation at the protein level. Co-immunoprecipitation mass spectrometry and CRISPR knockout (KO) in mammalian cells identified that mitochondrial m-AAA protease AFG3L2 is responsible for degrading SLC25A39 through the matrix loop 1. SLC25A39 senses mitochondrial iron-sulfur cluster using four matrix cysteine residues and inhibits its degradation. SLC25A39 protein regulation is robust in developing and mature neurons. This dual transporter regulation, by protein quality control and metabolic sensing, allows modulating mitochondrial glutathione level in response to iron homeostasis, opening avenues for exploring regulation of metabolic compartmentalization. Neuronal SLC25A39 regulation connects mitochondrial protein quality control, glutathione, and iron homeostasis, which were previously unrelated biochemical features in neurodegeneration.
Collapse
Affiliation(s)
- Xiaojian Shi
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA; Systems Biology Institute, Yale West Campus, West Haven, CT, USA
| | - Marisa DeCiucis
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA; Systems Biology Institute, Yale West Campus, West Haven, CT, USA
| | - Kariona A Grabinska
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA; Systems Biology Institute, Yale West Campus, West Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Adam Liu
- Amity High School, Woodbridge, CT, USA
| | - Tukiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Hongying Shen
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA; Systems Biology Institute, Yale West Campus, West Haven, CT, USA.
| |
Collapse
|
24
|
Ge M, Papagiannakopoulos T, Bar-Peled L. Reductive stress in cancer: coming out of the shadows. Trends Cancer 2024; 10:103-112. [PMID: 37925319 DOI: 10.1016/j.trecan.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Redox imbalance is defined by disruption in oxidative and reductive pathways and has a central role in cancer initiation, development, and treatment. Although redox imbalance has traditionally been characterized by high levels of oxidative stress, emerging evidence suggests that an overly reductive environment is just as detrimental to cancer proliferation. Reductive stress is defined by heightened levels of antioxidants, including glutathione and elevated NADH, compared with oxidized NAD, which disrupts central biochemical pathways required for proliferation. With the advent of new technologies that measure and manipulate reductive stress, the sensors and drivers of this overlooked metabolic stress are beginning to be revealed. In certain genetically defined cancers, targeting reductive stress pathways may be an effective strategy. Redox-based pathways are gaining recognition as essential 'regulatory hubs,' and a broader understanding of reductive stress signaling promises not only to reveal new insights into metabolic homeostasis but also potentially to transform therapeutic options in cancer.
Collapse
Affiliation(s)
- Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Fang Z, Zhu YJ, Qian ZG, Xia XX. Designer protein compartments for microbial metabolic engineering. Curr Opin Biotechnol 2024; 85:103062. [PMID: 38199036 DOI: 10.1016/j.copbio.2023.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Protein compartments are distinct structures assembled in living cells via self-assembly or phase separation of specific proteins. Significant efforts have been made to discover their molecular structures and formation mechanisms, as well as their fundamental roles in spatiotemporal control of cellular metabolism. Here, we review the design and construction of synthetic protein compartments for spatial organization of target metabolic pathways toward increased efficiency and specificity. In particular, we highlight the compartmentalization strategies and recent examples to speed up desirable metabolic reactions, to reduce the accumulation of toxic metabolic intermediates, and to switch competing metabolic pathways. We also identify the most important challenges that need to be addressed for exploitation of these designer compartments as a versatile toolkit in metabolic reprogramming.
Collapse
Affiliation(s)
- Zhen Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ya-Jiao Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| |
Collapse
|
26
|
Holcombe J, Weavers H. Functional-metabolic coupling in distinct renal cell types coordinates organ-wide physiology and delays premature ageing. Nat Commun 2023; 14:8405. [PMID: 38110414 PMCID: PMC10728150 DOI: 10.1038/s41467-023-44098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
Precise coupling between cellular physiology and metabolism is emerging as a vital relationship underpinning tissue health and longevity. Nevertheless, functional-metabolic coupling within heterogenous microenvironments in vivo remains poorly understood due to tissue complexity and metabolic plasticity. Here, we establish the Drosophila renal system as a paradigm for linking mechanistic analysis of metabolism, at single-cell resolution, to organ-wide physiology. Kidneys are amongst the most energetically-demanding organs, yet exactly how individual cell types fine-tune metabolism to meet their diverse, unique physiologies over the life-course remains unclear. Integrating live-imaging of metabolite and organelle dynamics with spatio-temporal genetic perturbation within intact functional tissue, we uncover distinct cellular metabolic signatures essential to support renal physiology and healthy ageing. Cell type-specific programming of glucose handling, PPP-mediated glutathione regeneration and FA β-oxidation via dynamic lipid-peroxisomal networks, downstream of differential ERR receptor activity, precisely match cellular energetic demands whilst limiting damage and premature senescence; however, their dramatic dysregulation may underlie age-related renal dysfunction.
Collapse
Affiliation(s)
- Jack Holcombe
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
27
|
Wollmuth EM, Correa A, Alvarado Obando M, Smith MK, Buckley DH, Hefferon KL, Angert ER. Helping students see bacteria in 3D: cellular models increase student learning about cell size and diffusion. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2023; 24:e00089-23. [PMID: 38108011 PMCID: PMC10720526 DOI: 10.1128/jmbe.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 12/19/2023]
Abstract
In the microbial world, cell size and shape impact physiology, but students struggle to visualize spatial relationships between cells and macromolecules. In prokaryotic cells, cell size is limited by reliance on diffusion for nutrient uptake and the transport of nutrients within the cell. Cells must also meet a minimum size threshold to accommodate essential cellular components such as ribosomes and DNA. Using 3D printing allows for the creation of custom models that can be influential teaching tools in the biology classroom. This lesson uses 3D cell models to teach students enrolled in an introductory microbiology course about bacterial cell size and the biological importance of surface-area-to-volume ratio. During the lesson, students interact with 3D cell models and discuss a series of questions in small groups. Student learning was assessed using quantitative and qualitative student response data collected pre- and post-lesson. Student achievement of learning objectives, and their confidence in their knowledge of these concepts, improved post-lesson, and these gains were statistically significant. Our findings suggest that interacting with 3D-printed cell models improves student understanding about bacterial cell size and diffusion.
Collapse
Affiliation(s)
- Emily M. Wollmuth
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Alberto Correa
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | | | - Michelle K. Smith
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Daniel H. Buckley
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Cornell University, Soil & Crop Sciences Section of the School of Integrative Plant Science, Ithaca, New York, USA
| | | | - Esther R. Angert
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
28
|
Liu Y, Liu S, Tomar A, Yen FS, Unlu G, Ropek N, Weber RA, Wang Y, Khan A, Gad M, Peng J, Terzi E, Alwaseem H, Pagano AE, Heissel S, Molina H, Allwein B, Kenny TC, Possemato RL, Zhao L, Hite RK, Vinogradova EV, Mansy SS, Birsoy K. Autoregulatory control of mitochondrial glutathione homeostasis. Science 2023; 382:820-828. [PMID: 37917749 PMCID: PMC11170550 DOI: 10.1126/science.adf4154] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.
Collapse
Affiliation(s)
- Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Shanshan Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Anju Tomar
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Cellular, Computational and Integrative Biology, Università di Trento, Trento, TN, Italy
| | - Frederick S. Yen
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Nathalie Ropek
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY, USA
| | - Ross A. Weber
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ying Wang
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mark Gad
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Erdem Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Alexandra E. Pagano
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Benjamin Allwein
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy C. Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Richard L. Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Sheref S. Mansy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
29
|
Kramer NJ, Prakash G, Isaac RS, Choquet K, Soto I, Petrova B, Merens HE, Kanarek N, Churchman LS. Regulators of mitonuclear balance link mitochondrial metabolism to mtDNA expression. Nat Cell Biol 2023; 25:1575-1589. [PMID: 37770567 PMCID: PMC11370000 DOI: 10.1038/s41556-023-01244-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.
Collapse
Affiliation(s)
- Nicholas J Kramer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gyan Prakash
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Iliana Soto
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hope E Merens
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
31
|
Zhang J, Bar-Peled L. Chemical biology approaches to uncovering nuclear ROS control. Curr Opin Chem Biol 2023; 76:102352. [PMID: 37352605 PMCID: PMC10524750 DOI: 10.1016/j.cbpa.2023.102352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Heightened concentrations of reactive metabolites, including reactive oxygen species (ROS), can damage all macromolecules leading to the erosion of cellular fidelity. In this regard, the control of ROS in the nuclues is essential for cellular homeostasis, and dysregulation of nuclear ROS has been attributed to multiple pathologies and the mechanism of action of certain chemotherapies. How nuclear ROS is generated, detoxified and sensed is poorly understood, and stems in part, from a historical lack of tools that allow for its precise generation and detection. Here, we summarize the latest advances in chemical biology inspired approaches that have been developed to study nuclear ROS and highlight how these tools have led to major breakthroughs in understanding its regulation. The continued development and application of chemical biology approaches to understand nuclear ROS promises to unlock fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Junbing Zhang
- Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA.
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA; Department of Medicine, Harvard Medical School, Boston MA, USA.
| |
Collapse
|
32
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
33
|
Straub RH, Pongratz G, Buttgereit F, Gaber T. [Energy metabolism of the immune system : Consequences in chronic inflammation]. Z Rheumatol 2023:10.1007/s00393-023-01389-4. [PMID: 37488246 DOI: 10.1007/s00393-023-01389-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Energy is the currency of life. The systemic and intracellular energy metabolism plays an essential role for the energy supply of the resting and activated immune system and this also applies to chronic inflammatory diseases. OBJECTIVE This presentation examines both components of the systemic and cellular energy metabolism in health and chronic inflammation. MATERIAL AND METHODS A literature search was conducted using PubMed, Embase and the Cochrane Library. The information is presented in the form of a narrative review. RESULTS A chronically activated immune system acquires large amounts of energy-rich substrates that are lost for other functions of the body. In particular, the immune system and the brain are in competition. The consequences of this competition are many known diseases, such as fatigue, anxiety, depression, anorexia, sleep problems, sarcopenia, osteoporosis, insulin resistance, hypertension and others. The permanent change in the brain causes long-term alterations that stimulate disease sequelae even after disease remission. In the intracellular energy supply, chronic inflammation typically involves a conversion to glycolysis (to lactate, which has its own regulatory functions) and the pentose phosphate pathway in disorders of mitochondrial function. The chronic changes in immune cells of patients with rheumatoid arthritis (RA) lead to a disruption of the citric acid cycle (Krebs cycle). The hypoxic situation in the inflamed tissue stimulates many alterations. A differentiation is made between effector functions and regulatory functions of immune cells. CONCLUSION Based on the energy changes mentioned, novel treatment suggestions can be made in addition to those already known in energy metabolism.
Collapse
Affiliation(s)
- Rainer H Straub
- Labor für Experimentelle Rheumatologie und Neuroendokrin-Immunologie, Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum Regensburg, 93042, Regensburg, Deutschland.
| | - Georg Pongratz
- Abteilung für Rheumatologie, Klinik für Gastroenterologie, Krankenhaus Barmherzige Brüder Regensburg, 93049, Regensburg, Deutschland
| | - Frank Buttgereit
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Timo Gaber
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| |
Collapse
|
34
|
Binder MJ, Pedley AM. The roles of molecular chaperones in regulating cell metabolism. FEBS Lett 2023; 597:1681-1701. [PMID: 37287189 PMCID: PMC10984649 DOI: 10.1002/1873-3468.14682] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Fluctuations in nutrient and biomass availability, often as a result of disease, impart metabolic challenges that must be overcome in order to sustain cell survival and promote proliferation. Cells adapt to these environmental changes and stresses by adjusting their metabolic networks through a series of regulatory mechanisms. Our understanding of these rewiring events has largely been focused on those genetic transformations that alter protein expression and the biochemical mechanisms that change protein behavior, such as post-translational modifications and metabolite-based allosteric modulators. Mounting evidence suggests that a class of proteome surveillance proteins called molecular chaperones also can influence metabolic processes. Here, we summarize several ways the Hsp90 and Hsp70 chaperone families act on human metabolic enzymes and their supramolecular assemblies to change enzymatic activities and metabolite flux. We further highlight how these chaperones can assist in the translocation and degradation of metabolic enzymes. Collectively, these studies provide a new view for how metabolic processes are regulated to meet cellular demand and inspire new avenues for therapeutic intervention.
Collapse
|
35
|
Dvorak V, Superti-Furga G. Structural and functional annotation of solute carrier transporters: implication for drug discovery. Expert Opin Drug Discov 2023; 18:1099-1115. [PMID: 37563933 DOI: 10.1080/17460441.2023.2244760] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Solute carriers (SLCs) represent the largest group of membrane transporters in the human genome. They play a central role in controlling the compartmentalization of metabolism and most of this superfamily is linked to human disease. Despite being in general considered druggable and attractive therapeutic targets, many SLCs remain poorly annotated, both functionally and structurally. AREAS COVERED The aim of this review is to provide an overview of functional and structural parameters of SLCs that play important roles in their druggability. To do this, the authors provide an overview of experimentally solved structures of human SLCs, with emphasis on structures solved in complex with chemical modulators. From the functional annotations, the authors focus on SLC localization and SLC substrate annotations. EXPERT OPINION Recent progress in the structural and functional annotations allows to refine the SLC druggability index. Particularly the increasing number of experimentally solved structures of SLCs provides insights into mode-of-action of a significant number of chemical modulators of SLCs.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Fasimoye R, Dong W, Nirujogi RS, Rawat ES, Iguchi M, Nyame K, Phung TK, Bagnoli E, Prescott AR, Alessi DR, Abu-Remaileh M. Golgi-IP, a tool for multimodal analysis of Golgi molecular content. Proc Natl Acad Sci U S A 2023; 120:e2219953120. [PMID: 37155866 PMCID: PMC10193996 DOI: 10.1073/pnas.2219953120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
The Golgi is a membrane-bound organelle that is essential for protein and lipid biosynthesis. It represents a central trafficking hub that sorts proteins and lipids to various destinations or for secretion from the cell. The Golgi has emerged as a docking platform for cellular signaling pathways including LRRK2 kinase whose deregulation leads to Parkinson disease. Golgi dysfunction is associated with a broad spectrum of diseases including cancer, neurodegeneration, and cardiovascular diseases. To allow the study of the Golgi at high resolution, we report a rapid Golgi immunoprecipitation technique (Golgi-IP) to isolate intact Golgi mini-stacks for subsequent analysis of their content. By fusing the Golgi-resident protein TMEM115 to three tandem HA epitopes (GolgiTAG), we purified the Golgi using Golgi-IP with minimal contamination from other compartments. We then established an analysis pipeline using liquid chromatography coupled with mass spectrometry to characterize the human Golgi proteome, metabolome, and lipidome. Subcellular proteomics confirmed known Golgi proteins and identified proteins not previously associated with the Golgi. Metabolite profiling established the human Golgi metabolome and revealed the enrichment of uridine-diphosphate (UDP) sugars and their derivatives, which is consistent with their roles in protein and lipid glycosylation. Furthermore, targeted metabolomics validated SLC35A2 as the subcellular transporter for UDP-hexose. Finally, lipidomics analysis showed that phospholipids including phosphatidylcholine, phosphatidylinositol, and phosphatidylserine are the most abundant Golgi lipids and that glycosphingolipids are enriched in this compartment. Altogether, our work establishes a comprehensive molecular map of the human Golgi and provides a powerful method to study the Golgi with high precision in health and disease.
Collapse
Affiliation(s)
- Rotimi Fasimoye
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Wentao Dong
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Raja S. Nirujogi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Eshaan S. Rawat
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Miharu Iguchi
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Kwamina Nyame
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Toan K. Phung
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Enrico Bagnoli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Monther Abu-Remaileh
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| |
Collapse
|
37
|
Wang R, Liu X, Lv B, Sun W, Li C. Designing Intracellular Compartments for Efficient Engineered Microbial Cell Factories. ACS Synth Biol 2023; 12:1378-1395. [PMID: 37083286 DOI: 10.1021/acssynbio.2c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
With the rapid development of synthetic biology, various kinds of microbial cell factories (MCFs) have been successfully constructed to produce high-value-added compounds. However, the complexity of metabolic regulation and pathway crosstalk always cause issues such as intermediate metabolite accumulation, byproduct generation, and metabolic burden in MCFs, resulting in low efficiencies and low yields of industrial biomanufacturing. Such issues could be solved by spatially rearranging the pathways using intracellular compartments. In this review, design strategies are summarized and discussed based on the types and characteristics of natural and artificial subcellular compartments. This review systematically presents information for the construction of efficient MCFs with intracellular compartments in terms of four aspects of design strategy goals: (1) improving local reactant concentration; (2) intercepting and isolating competing pathways; (3) providing specific reaction substances and environments; and (4) storing and accumulating products.
Collapse
Affiliation(s)
- Ruwen Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Center for Synthetic and System Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
38
|
Liu Y, Birsoy K. Metabolic sensing and control in mitochondria. Mol Cell 2023; 83:877-889. [PMID: 36931256 PMCID: PMC10332353 DOI: 10.1016/j.molcel.2023.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are membrane-enclosed organelles with endosymbiotic origins, harboring independent genomes and a unique biochemical reaction network. To perform their critical functions, mitochondria must maintain a distinct biochemical environment and coordinate with the cytosolic metabolic networks of the host cell. This coordination requires them to sense and control metabolites and respond to metabolic stresses. Indeed, mitochondria adopt feedback or feedforward control strategies to restrain metabolic toxicity, enable metabolic conservation, ensure stable levels of key metabolites, allow metabolic plasticity, and prevent futile cycles. A diverse panel of metabolic sensors mediates these regulatory circuits whose malfunctioning leads to inborn errors of metabolism with mild to severe clinical manifestations. In this review, we discuss the logic and molecular basis of metabolic sensing and control in mitochondria. The past research outlined recurring patterns in mitochondrial metabolic sensing and control and highlighted key knowledge gaps in this organelle that are potentially addressable with emerging technological breakthroughs.
Collapse
Affiliation(s)
- Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
39
|
Kramer NJ, Prakash G, Choquet K, Soto I, Petrova B, Merens HE, Kanarek N, Churchman LS. Genome-wide screens for mitonuclear co-regulators uncover links between compartmentalized metabolism and mitochondrial gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528118. [PMID: 36798306 PMCID: PMC9934615 DOI: 10.1101/2023.02.11.528118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells, in which gene expression must be coordinated across organelles using distinct pools of ribosomes. How cells produce and maintain the accurate subunit stoichiometries for these OXPHOS complexes remains largely unknown. To identify genes involved in dual-origin protein complex synthesis, we performed FACS-based genome-wide screens analyzing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of cytochrome c oxidase (Complex IV). We identified novel genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6 . We found that PREPL specifically regulates Complex IV biogenesis by interacting with mitochondrial protein synthesis machinery, while NME6, an uncharacterized nucleoside diphosphate kinase (NDPK), controls OXPHOS complex biogenesis through multiple mechanisms reliant on its NDPK domain. First, NME6 maintains local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Second, through stabilizing interactions with RCC1L, NME6 modulates the activity of mitoribosome regulatory complexes, leading to disruptions in mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression. Finally, we present these screens as a resource, providing a catalog of genes involved in mitonuclear gene regulation and OXPHOS biogenesis.
Collapse
|