1
|
Zhao J, Zhi Y, Ren H, Wang J, Zhao Y. Emerging biotechnologies for engineering liver organoids. Bioact Mater 2025; 45:1-18. [PMID: 39588483 PMCID: PMC11585797 DOI: 10.1016/j.bioactmat.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The engineering construction of the liver has attracted enormous attention. Organoids, as emerging miniature three-dimensional cultivation units, hold significant potential in the biomimetic simulation of liver structure and function. Despite notable successes, organoids still face limitations such as high variability and low maturity. To overcome these challenges, engineering strategies have been established to maintain organoid stability and enhance their efficacy, laying the groundwork for the development of advanced liver organoids. The present review comprehensively summarizes the construction of engineered liver organoids and their prospective applications in biomedicine. Initially, we briefly present the latest research progress on matrix materials that maintain the three-dimensional morphology of organoids. Next, we discuss the manipulative role of engineering technologies in organoid assembly. Additionally, we outline the impact of gene-level regulation on organoid growth and development. Further, we introduce the applications of liver organoids in disease modeling, drug screening and regenerative medicine. Lastly, we overview the current obstacles and forward-looking perspectives on the future of engineered liver organoids. We anticipate that ongoing innovations in engineered liver organoids will lead to significant advancements in medical applications.
Collapse
Affiliation(s)
- Junqi Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Zhi
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
2
|
Kesharwani A, Tani S, Nishikawa M, Sakai Y, Okada H, Ohba S, Chung UI, Hojo H. Modeling vascular dynamics at the initial stage of endochondral ossification on a microfluidic chip using a human embryonic-stem-cell-derived organoid. Regen Ther 2025; 28:90-100. [PMID: 39703814 PMCID: PMC11655692 DOI: 10.1016/j.reth.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Vascular interactions play a crucial role in embryogenesis, including skeletal development. During endochondral ossification, vascular networks are formed as mesenchymal cells condense and later invade skeletal elements to form the bone marrow. We and other groups developed a model of endochondral ossification by implanting human embryonic stem cell (hESC)-derived sclerotome into immunodeficient mice. However, in vitro models of endochondral ossification, particularly vascular interaction with mesenchymal cells at its initial stage, are yet to be established. Therefore, we developed a method to model the initial stage of endochondral ossification using a microfluidic chip-based platform, with a particular focus on the vascular interaction. On the chip, we found that the fibrin gel helped align mCherry-expressing human umbilical vein endothelial cells (HUVECs) better than the collagen-I gel, suggesting that the fibrin gel is more suitable for the formation of a vascular-like network. The perfusability of the vascular-like networks was partially confirmed using fluorescein isothiocyanate (FITC)-dextran and fluorescent microbeads. We then mixed hESC-derived sclerotome with enhanced green fluorescent protein (EGFP)-expressing HUVECs and applied this mixture on the chip. We named this mixture of cells SH organoids. The SH organoids showed superior abilities to maintain the vascular-like network, which was formed by the mCherry-expressing HUVECs, compared with the sclerotome spheroids on the chip. The EGFP-expressing HUVECs migrated from the SH organoid, formed a vascular-like networks, and partially interacted with the mCherry-expressing vascular-like networks on the chip. Histological analysis showed that SRY-box transcription factor 9 (SOX9) and type I collagen were expressed mutually exclusively in the condensed mesenchymal cells and perichondrial-like cells, respectively. This study demonstrates that our SH organoid-on-a-chip method reproduces vascular networks that are formed at the initial stage of endochondral ossification. This model may provide insights into human endochondral ossification and has potential applications in bone disease modeling and drug screening.
Collapse
Affiliation(s)
- Abhiraj Kesharwani
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Shoichiro Tani
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masaki Nishikawa
- Department of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yasuyuki Sakai
- Department of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Ung-il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
3
|
Ciucci G, Braga L, Zacchigna S. Discovery platforms for RNA therapeutics. Br J Pharmacol 2025; 182:281-295. [PMID: 38760893 DOI: 10.1111/bph.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/20/2024] Open
Abstract
RNA therapeutics are emerging as a unique opportunity to drug currently "undruggable" molecules and diseases. While their advantages over conventional, small molecule drugs, their therapeutic implications and the tools for their effective in vivo delivery have been extensively reviewed, little attention has been so far paid to the technological platforms exploited for the discovery of RNA therapeutics. Here, we provide an overview of the existing platforms and ex vivo assays for RNA discovery, their advantages and disadvantages, as well as their main fields of application, with specific focus on RNA therapies that have reached either phase 3 or market approval. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Giulio Ciucci
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luca Braga
- Functional Cell Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
4
|
Shrestha SK, Lachke SA. Lens Regeneration: The Application of iSyTE and In Silico Approaches to Evaluate Gene Expression in Lens Organoids. Methods Mol Biol 2025; 2848:37-58. [PMID: 39240515 DOI: 10.1007/978-1-0716-4087-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Several protocols have been established for the generation of lens organoids from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and other cells with regenerative potential in humans or various animal models. It is important to examine how well the regenerated lens organoids reflect lens biology, in terms of its development, homeostasis, and aging. Toward this goal, the iSyTE database (integrated Systems Tool for Eye gene discovery; https://research.bioinformatics.udel.edu/iSyTE/ ), a bioinformatics resource tool that contains meta-analyzed gene expression data in wild-type lens across different embryonic, postnatal, and adult stages, can serve as a resource for comparative analysis. This article outlines the approaches toward effective use of iSyTE to gain insights into normal gene expression in the mouse lens, enriched expression in the lens, and differential gene expression in select mouse gene-perturbation cataract/lens defects models, which in turn can be used to evaluate expression of key lens-relevant genes in lens organoids by transcriptomics (e.g., RNA-sequencing (RNA-seq), microarrays, etc.) or other downstream methods (e.g., RT-qPCR, etc.).
Collapse
Affiliation(s)
- Sanjaya K Shrestha
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
5
|
Carrasco-Mantis A, Reina-Romo E, Sanz-Herrera JA. A multiphysics hybrid continuum - agent-based model of in vitro vascularized organoids. Comput Biol Med 2024; 185:109559. [PMID: 39709871 DOI: 10.1016/j.compbiomed.2024.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Organoids are 3D in vitro models that fulfill a hierarchical function, representing a small version of living tissues and, therefore, a good approximation of cellular mechanisms. However, one of the main disadvantages of these models is the appearance of a necrotic core due to poor vascularization. The aim of this work is the development of a numerical framework that incorporates the mechanical stimulation as a key factor in organoid vascularization. Parameters, such as fluid velocity and nutrient consumption, are analyzed along the organoid evolution. METHODS The mathematical model created for this purpose combines continuum and discrete approaches. In the continuum part, the fluid flow and the diffusion of oxygen and nutrients are modeled using a finite element method approach. Meanwhile, the growth of the organoid, blood vessel evolution, as well as their interaction with the surrounding environment, are modeled using agent-based methods. RESULTS Continuum model outcomes include the distribution of shear stress, pressure and fluid velocity around the organoid surface, in addition to the concentration of oxygen and nutrients in its interior. The agent models account for cell proliferation, differentiation, organoid growth and blood vessel morphology, for the different case studies considered. CONCLUSIONS Two main conclusions are achieved in this work: (i) the results of the study quantitatively predict in vitro data, with an enhanced blood vessel invasion under high fluid flow and (ii) the diffusion and consumption model parameters of the organoid cells determine the thickness of the proliferative, quiescent, hypoxic and necrotic layers.
Collapse
Affiliation(s)
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
| | | |
Collapse
|
6
|
Han Y, Liu C, Yin S, Cui J, Sun Y, Xue B, Jiang C, Gu X, Qin M, Wang W, Xu H, Cao Y. Dynamic Diselenide Hydrogels for Controlled Tumor Organoid Culture and Dendritic Cell Vaccination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69114-69124. [PMID: 39631374 DOI: 10.1021/acsami.4c18728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Dynamic hydrogels are emerging as advanced materials for engineering tissue-like environments that mimic cellular microenvironments. We introduce a diselenide-cross-linked hydrogel system with light-responsive properties, designed for precise control of tumor organoid growth and light-initiated radical inactivation, particularly for dendritic cell (DC) vaccines. Diselenide exchange enables stress relaxation and hydrogel remodeling, while recombination and quenching of seleno radicals (Se•) reduce cross-linking density, leading to controlled degradation. We demonstrate a 2D to 3D growth strategy, where tumor cells inoculate on the hydrogel surface, expand, and gradually form spherical organoids within the 3D hydrogel. These tumor organoids show significantly higher drug resistance compared to 2D-cultured cells. High-density light irradiation enhances diselenide exchange, inducing hydrogel degradation, tumor cell death, and release of functional antigens. This system serves as a dynamic platform for tumor organoid culture and antigen release, offering significantly advanced approaches for in vitro tumor modeling and immunological research. Our findings position diselenide-cross-linked hydrogels as versatile materials for precision cellular engineering, with broad applications in cancer research and beyond.
Collapse
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Cheng Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yang Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
7
|
De Beuckeleer S, Vanhooydonck A, Van Den Daele J, Van De Looverbosch T, Asselbergh B, Kim H, Campsteijn C, Ponsaerts P, Watts R, De Vos WH. An agarose fluidic chip for high-throughput in toto organoid imaging. LAB ON A CHIP 2024. [PMID: 39686700 DOI: 10.1039/d4lc00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Modern cell and developmental biology increasingly relies on 3D cell culture systems such as organoids. However, routine interrogation with microscopy is often hindered by tedious, non-standardized sample mounting, limiting throughput. To address these bottlenecks, we have developed a pipeline for imaging intact organoids in flow, utilizing a transparent agarose fluidic chip that enables efficient and consistent recordings with theoretically unlimited throughput. The chip, cast from a custom-designed 3D-printed mold, is coupled to a mechanically controlled syringe pump for fast and precise sample positioning. We benchmarked this setup on a commercial digitally scanned light sheet microscope with cleared glioblastoma spheroids. Spheroids of varying sizes were positioned in the field of view with micrometer-level stability, achieving a throughput of 40 one-minute recordings per hour. We further showed that sample positioning could be automated through online feedback microscopy. The optical quality of the agarose chip outperformed FEP tubing, glass channels and PDMS casts for the clearing agents used, as demonstrated by image contrast profiles of spheroids stained with a fluorescent nuclear counterstain and further emphasized by the resolution of fine microglial ramifications within cerebral organoids. The retention of image quality throughout 500 μm-sized spheroids enabled comprehensive spatial mapping of live and dead cells based on their nuclear morphology. Finally, imaging a batch of LMNA knockout vs. wildtype astrocytoma spheroids revealed significant differences in their DNA damage response, underscoring the system's sensitivity and throughput. Overall, the fluidic chip design provides a cost-effective, accessible, and efficient solution for high-throughput organoid imaging.
Collapse
Affiliation(s)
- Sarah De Beuckeleer
- Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
| | - Andres Vanhooydonck
- Faculty of Design Sciences, Department of Product Development, University of Antwerp, Paardenmarkt 94, 2000 Antwerp, Belgium.
| | - Johanna Van Den Daele
- Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
| | - Tim Van De Looverbosch
- Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
| | - Bob Asselbergh
- VIB-UAntwerp Center for Molecular Neurology, VIB, Universiteitsplein 1, Antwerp, Belgium
| | - Hera Kim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Coen Campsteijn
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Belgium
| | - Regan Watts
- Faculty of Design Sciences, Department of Product Development, University of Antwerp, Paardenmarkt 94, 2000 Antwerp, Belgium.
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
- Antwerp Centre for Advanced Microscopy, University of Antwerp, Belgium
- μNEURO Centre of Research Excellence, University of Antwerp, Belgium
| |
Collapse
|
8
|
Yan X, Tan D, Yu L, Li D, Wang Z, Huang W, Wu H. An integrated microfluidic device for sorting of tumor organoids using image recognition. LAB ON A CHIP 2024; 25:41-48. [PMID: 39629737 DOI: 10.1039/d4lc00746h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Tumor organoids present a challenge in drug screening due to their considerable heterogeneity in morphology and size. To address this issue, we proposed a portable microfluidic device that employs image processing algorithms for specific target organoid recognition and microvalve-controlled deflection for sorting and collection. This morphology-activated organoid sorting system offers numerous advantages, such as automated classification, portability, low cost, label-free sample preparation, and gentle handling of organoids. We conducted classification experiments using polystyrene beads, F9 tumoroids and patient-derived tumor organoids, achieving organoid separation efficiency exceeding 88%, purity surpassing 91%, viability exceeding 97% and classification throughput of 800 per hour, thereby meeting the demands of clinical organoid medicine.
Collapse
Affiliation(s)
- Xingyang Yan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Deng Tan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Lei Yu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Danyu Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zhenghao Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Weiren Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
9
|
Zhang X, Contessi Negrini N, Correia R, Sharpe PT, Celiz AD, Angelova Volponi A. Generating Tooth Organoids Using Defined Bioorthogonally Cross-Linked Hydrogels. ACS Macro Lett 2024; 13:1620-1626. [PMID: 39532305 DOI: 10.1021/acsmacrolett.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Generating teeth in vitro requires mimicking tooth developmental processes. Biomaterials are essential to support 3D tooth organoid formation, but their properties must be finely tuned to achieve the required biomimicry for tooth development. For the first time, we used bioorthogonally cross-linked hydrogels as defined 3D matrixes for tooth developmental engineering, and we highlighted how their properties play a pivotal role in enabling 3D tooth organoid formation in vitro. We prepared hydrogels by mixing gelatin precursors modified either with tetrazine (Tz) or norbornene (Nb) moieties. We tuned the hydrogel properties (E = 2-7 kPa; G' = 500-1500 Pa) by varying the gelatin concentration (8% vs 12% w/V) and stoichiometric ratio (Tz:Nb = 1 vs 0.5). We encapsulated dental epithelial-mesenchymal cell pellets in a library of hydrogels and identified a hydrogel formulation that enabled successful growth kinetics and morphogenesis of tooth germs, introducing a defined tunable platform for tooth organoid engineering and modeling.
Collapse
Affiliation(s)
- Xuechen Zhang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, SE1 9RT London, U.K
| | - Nicola Contessi Negrini
- Department of Bioengineering, Imperial College London, W12 0BZ London, U.K
- The Francis Crick Institute, NW1 1AT London, U.K
| | - Rita Correia
- Department of Bioengineering, Imperial College London, W12 0BZ London, U.K
- The Francis Crick Institute, NW1 1AT London, U.K
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, SE1 9RT London, U.K
| | - Adam D Celiz
- Department of Bioengineering, Imperial College London, W12 0BZ London, U.K
- The Francis Crick Institute, NW1 1AT London, U.K
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, SE1 9RT London, U.K
| |
Collapse
|
10
|
Gubala J, Mieville V, Benamran D, Tille JC, Valerio M, Nowak-Sliwinska P. Generation and maintenance of kidney and kidney cancer organoids from patient-derived material for drug development and precision oncology. Mol Ther Methods Clin Dev 2024; 32:101368. [PMID: 39659758 PMCID: PMC11629258 DOI: 10.1016/j.omtm.2024.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
Despite significant advancements in targeted- and immunotherapies, millions of patients with cancer still succumb to the disease each year. In renal cell carcinoma, up to 25% of metastatic patients do not respond to first-line therapies. This reality underscores the urgent need for innovative or repurposed therapies to effectively treat these patients. Patient-derived organoids represent a promising model for evaluating treatment efficacy and toxicity, offering a potential breakthrough in personalized medicine. However, utilizing organoid models for drug screening presents several challenges. Our protocol aims to address these obstacles by outlining a practical approach to successfully isolate and cultivate patient-derived renal cell carcinoma and kidney organoids for treatment screening purposes.
Collapse
Affiliation(s)
- Jakub Gubala
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Valentin Mieville
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Daniel Benamran
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | | | - Massimo Valerio
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
11
|
Hu Y, Zhu T, Cui H, Cui H. Integrating 3D Bioprinting and Organoids to Better Recapitulate the Complexity of Cellular Microenvironments for Tissue Engineering. Adv Healthc Mater 2024:e2403762. [PMID: 39648636 DOI: 10.1002/adhm.202403762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Indexed: 12/10/2024]
Abstract
Organoids, with their capacity to mimic the structures and functions of human organs, have gained significant attention for simulating human pathophysiology and have been extensively investigated in the recent past. Additionally, 3D bioprinting, as an emerging bio-additive manufacturing technology, offers the potential for constructing heterogeneous cellular microenvironments, thereby promoting advancements in organoid research. In this review, the latest developments in 3D bioprinting technologies aimed at enhancing organoid engineering are introduced. The commonly used bioprinting methods and materials for organoids, with a particular emphasis on the potential advantages of combining 3D bioprinting with organoids are summarized. These advantages include achieving high cell concentrations to form large cellular aggregates, precise deposition of building blocks to create organoids with complex structures and functions, and automation and high throughput to ensure reproducibility and standardization in organoid culture. Furthermore, this review provides an overview of relevant studies from recent years and discusses the current limitations and prospects for future development.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
12
|
Wang B, Hasturk O, Kumarasinghe U, Rudolph S, Staii C, Chen Y, Kaplan DL. Temporary Nanoencapsulation of Human Intestinal Organoids Using Silk Ionomers. Adv Healthc Mater 2024:e2403176. [PMID: 39648539 DOI: 10.1002/adhm.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Indexed: 12/10/2024]
Abstract
Human intestinal organoids (HIOs) are vital for modeling intestinal development, disease, and therapeutic tissue regeneration. However, their susceptibility to stress, immunological attack, and environmental fluctuations limits their utility in research and therapeutic applications. This study evaluated the effectiveness of temporary silk protein-based layer-by-layer (LbL) nanoencapsulation technique to enhance the viability and functions of HIOs against common biomedical stressors, without compromising their native functions. Cell viability and differentiation capacity are assessed, finding that nanoencapsulation significantly improved HIO survival under the various environmental perturbations studied without compromising cellular functionality. Post-stress exposures, the encapsulated HIOs still successfully differentiated into essential intestinal cell types such as enterocytes, goblet cells, enteroendocrine cells, and Paneth cells. Moreover, the silk nanocoatings effectively protected against environmental stressors such as ultraviolet (UV) light exposure, protease degradation, antibody binding, and cytokine-induced inflammation. This nanoencapsulation technique shows promise for advancing HIO applications in disease modeling, drug testing, and potential transplantation therapies.
Collapse
Affiliation(s)
- Brooke Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Ying Chen
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| |
Collapse
|
13
|
Zhang Y, Qi F, Chen P, Liu BF, Li Y. Spatially defined microenvironment for engineering organoids. BIOPHYSICS REVIEWS 2024; 5:041302. [PMID: 39679203 PMCID: PMC11646138 DOI: 10.1063/5.0198848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/01/2024] [Indexed: 12/17/2024]
Abstract
In the intricately defined spatial microenvironment, a single fertilized egg remarkably develops into a conserved and well-organized multicellular organism. This observation leads us to hypothesize that stem cells or other seed cell types have the potential to construct fully structured and functional tissues or organs, provided the spatial cues are appropriately configured. Current organoid technology, however, largely depends on spontaneous growth and self-organization, lacking systematic guided intervention. As a result, the structures replicated in vitro often emerge in a disordered and sparse manner during growth phases. Although existing organoids have made significant contributions in many aspects, such as advancing our understanding of development and pathogenesis, aiding personalized drug selection, as well as expediting drug development, their potential in creating large-scale implantable tissue or organ constructs, and constructing multicomponent microphysiological systems, together with functioning at metabolic levels remains underutilized. Recent discoveries have demonstrated that the spatial definition of growth factors not only induces directional growth and migration of organoids but also leads to the formation of assembloids with multiple regional identities. This opens new avenues for the innovative engineering of higher-order organoids. Concurrently, the spatial organization of other microenvironmental cues, such as physical stresses, mechanical loads, and material composition, has been minimally explored. This review delves into the burgeoning field of organoid engineering with a focus on potential spatial microenvironmental control. It offers insight into the molecular principles, expected outcomes, and potential applications, envisioning a future perspective in this domain.
Collapse
Affiliation(s)
- Yilan Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater 2024; 42:140-164. [PMID: 39280585 PMCID: PMC11402070 DOI: 10.1016/j.bioactmat.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
As a powerful paradigm, artificial intelligence (AI) is rapidly impacting every aspect of our day-to-day life and scientific research through interdisciplinary transformations. Living human organoids (LOs) have a great potential for in vitro reshaping many aspects of in vivo true human organs, including organ development, disease occurrence, and drug responses. To date, AI has driven the revolutionary advances of human organoids in life science, precision medicine and pharmaceutical science in an unprecedented way. Herein, we provide a forward-looking review, the frontiers of LOs, covering the engineered construction strategies and multidisciplinary technologies for developing LOs, highlighting the cutting-edge achievements and the prospective applications of AI in LOs, particularly in biological study, disease occurrence, disease diagnosis and prediction and drug screening in preclinical assay. Moreover, we shed light on the new research trends harnessing the power of AI for LO research in the context of multidisciplinary technologies. The aim of this paper is to motivate researchers to explore organ function throughout the human life cycle, narrow the gap between in vitro microphysiological models and the real human body, accurately predict human-related responses to external stimuli (cues and drugs), accelerate the preclinical-to-clinical transformation, and ultimately enhance the health and well-being of patients.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, PR China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, PR China
| |
Collapse
|
15
|
Septiana WL, Pawitan JA. Potential Use of Organoids in Regenerative Medicine. Tissue Eng Regen Med 2024; 21:1125-1139. [PMID: 39412646 PMCID: PMC11589048 DOI: 10.1007/s13770-024-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND In vitro cell culture is crucial for studying human diseases and development. Compared to traditional monolayer cultures, 3D culturing with organoids offers significant advantages by more accurately replicating natural tissues' structural and functional features. This advancement enhances disease modeling, drug testing, and regenerative medicine applications. Organoids, derived from stem cells, mimic tissue physiology in a more relevant manner. Despite their promise, the clinical use of regenerative medicine currently needs to be improved by reproducibility, scalability, and maturation issues. METHODS This article overviews recent organoid research, focusing on their types, sources, 3D culturing methods, and applications in regenerative medicine. A literature review of "organoid" and "regenerative medicine" in PubMed/MEDLINE highlighted relevant studies published over the past decade, emphasizing human-sourced organoids and their regenerative benefits, as well as the availability of free full-text articles. The review uses descriptive data, including tables and text, to illustrate the challenges and potential of organoids in regenerative medicine. RESULTS The transition from 2D to 3D models, particularly organoids, has significantly advanced in vitro research. This review covers a decade of progress in various organoid types-such as liver, cholangiocyte, intestinal, pancreatic, cardiac, brain, thymus, and mammary organoids-and their 3D culture methods and applications. It addresses critical issues of maturity, scalability, and reproducibility and underscores the need for standardization and improved production techniques to facilitate broader clinical applications in regenerative medicine. CONCLUSIONS Successful therapy requires increased scalability and standardization. Organoids have enormous potential in biological research, notwithstanding obstacles.
Collapse
Affiliation(s)
- Wahyunia L Septiana
- Department of Histology Faculty of Medicine, Gunadarma University, Depok, Indonesia.
| | - Jeanne A Pawitan
- Department of Histology Faculty of Medicine,, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Center (SCTE) IMERI, Jakarta, Indonesia
| |
Collapse
|
16
|
Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer 2024; 24:850-866. [PMID: 39433978 DOI: 10.1038/s41568-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Kadotani A, Hayase G, Yoshino D. Geometrically engineered organoid units and their assembly for pre-construction of organ structures. APL Bioeng 2024; 8:046112. [PMID: 39606711 PMCID: PMC11602216 DOI: 10.1063/5.0222866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Regenerative medicine is moving from the nascent to the transitional stage as researchers are actively engaged in creating mini-organs from pluripotent stem cells to construct artificial models of physiological and pathological conditions. Currently, mini-organs can express higher-order functions, but their size is limited to the order of a few millimeters. Therefore, one of the ultimate goals of regenerative medicine, "organ replication and transplantation with organoid," remains a major obstacle. Three-dimensional (3D) bioprinting technology is expected to be an innovative breakthrough in this field, but various issues have been raised, such as cell damage, versatility of bioink, and printing time. In this study, we established a method for fabricating, connecting, and assembling organoid units of various shapes independent of cell type, extracellular matrix, and adhesive composition (unit construction method). We also fabricated kidney tissue-like structures using three types of parenchymal and interstitial cells that compose the human kidney and obtained findings suggesting the possibility of crosstalk between the units. This study mainly focuses on methods for reproducing the structure of organs, and there are still issues to be addressed in terms of the expression of their higher-order functions. We anticipate that engineering innovation based on this technique will bring us closer to the realization of highly efficient and rapid fabrication of full-scale organoids that can withstand organ transplantation.
Collapse
Affiliation(s)
- Ayaka Kadotani
- Department of Biomedical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Gen Hayase
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | |
Collapse
|
18
|
Wen Z, Orduno M, Liang Z, Gong X, Mak M. Optimization of Vascularized Intestinal Organoid Model. Adv Healthc Mater 2024; 13:e2400977. [PMID: 39091070 DOI: 10.1002/adhm.202400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Vasculature is crucial for maintaining organ homeostasis and metabolism. Although 3D organoids can mimic organ structures and patterns, they still lack vascular systems, limiting the recapitulation of physiological complexities. Although vascularization of organoids has been demonstrated by mixing Matrigel in fibrin, how the mixed gel niche affects endothelial cells (ECs) and organoids remains unclear. Existing protocols rely on fibroblasts to promote vascular network formation. This study explores how varying the ratio of Matrigel in fibrin-Matrigel co-gel affects vascular network formation and intestinal organoid growth. A fine-tuned hydrogel is developed by adding aprotinin and 15% Matrigel in fibrin. Medium for co-culturing ECs and organoids is modified with basic fibroblast growth factor (bFGF) and heparin. In combination with fine-tuned hydrogel and modified medium, vascular network formation and organoid vascularization are successfully generated in the absence of fibroblast. Furthermore, structural cues and pore architectures are critical for angiogenesis and vascularization. By incorporating engineered thick collagen fiber bundles into the system, vascular network formation is guided by bundle architectures, enhancing interactions between vascular networks and organoids. The results demonstrate an optimized system that advances tissue and organoid vascularization by combining fiber bundles with fine-tuned hydrogel and modified medium.
Collapse
Affiliation(s)
- Zhang Wen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mariabelen Orduno
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zixie Liang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Bisht S, Singh MF. The triggering pathway, the metabolic amplifying pathway, and cellular transduction in regulation of glucose-dependent biphasic insulin secretion. Arch Physiol Biochem 2024; 130:854-865. [PMID: 38196246 DOI: 10.1080/13813455.2023.2299920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Insulin secretion is a highly regulated process critical for maintaining glucose homeostasis. This abstract explores the intricate interplay between three essential pathways: The Triggering Pathway, The Metabolic Amplifying Pathway, and Cellular Transduction, in orchestrating glucose-dependent biphasic insulin secretion. MECHANISM During the triggering pathway, glucose metabolism in pancreatic beta-cells leads to ATP production, closing ATP-sensitive potassium channels and initiating insulin exocytosis. The metabolic amplifying pathway enhances insulin secretion via key metabolites like NADH and glutamate, enhancing calcium influx and insulin granule exocytosis. Additionally, the cellular transduction pathway involves G-protein coupled receptors and cyclic AMP, modulating insulin secretion. RESULT AND CONCLUSION These interconnected pathways ensure a dynamic insulin response to fluctuating glucose levels, with the initial rapid phase and the subsequent sustained phase. Understanding these pathways' complexities provides crucial insights into insulin dysregulation in diabetes and highlights potential therapeutic targets to restore glucose-dependent insulin secretion.
Collapse
Affiliation(s)
- Shradha Bisht
- Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh, India
| | - Mamta F Singh
- School of Pharmaceutical Sciences, SBS University, Balawala, Uttarakhand, India
| |
Collapse
|
20
|
Chap BS, Rayroux N, Grimm AJ, Ghisoni E, Dangaj Laniti D. Crosstalk of T cells within the ovarian cancer microenvironment. Trends Cancer 2024; 10:1116-1130. [PMID: 39341696 DOI: 10.1016/j.trecan.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Ovarian cancer (OC) represents ecosystems of highly diverse tumor microenvironments (TMEs). The presence of tumor-infiltrating lymphocytes (TILs) is linked to enhanced immune responses and long-term survival. In this review we present emerging evidence suggesting that cellular crosstalk tightly regulates the distribution of TILs within the TME, underscoring the need to better understand key cellular networks that promote or impede T cell infiltration in OC. We also capture the emergent methodologies and computational techniques that enable the dissection of cell-cell crosstalk. Finally, we present innovative ex vivo TME models that can be leveraged to map and perturb cellular communications to enhance T cell infiltration and immune reactivity.
Collapse
Affiliation(s)
- Bovannak S Chap
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Nicolas Rayroux
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
21
|
Bandil P, Vernerey FJ. A morpho-viscoelasticity theory for growth in proliferating aggregates. Biomech Model Mechanobiol 2024; 23:2155-2176. [PMID: 39222162 DOI: 10.1007/s10237-024-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Despite significant research efforts in the continuum modeling of biological growth, certain aspects have been overlooked. For instance, numerous investigations have examined the influence of morphogenetic cell behaviors, like division and intercalation, on the mechanical response of passive (non-growing) tissues. Yet, their impact on active growth dynamics remains inadequately explored. A key reason for this inadequacy stems from challenges in the continuum treatment of cell-level processes. While some coarse-grained models have been proposed to address these shortcomings, a focus on cell division and cell expansion has been missing, rendering them unusable when it comes to modeling growth. Moreover, existing studies are limited to two-dimensional tissues and are yet to be formally extended to three-dimensional multicellular systems. To address these limitations, we here present a generalized multiscale model for three-dimensional aggregates that accounts for complex morphogenetic movements that include division, expansion, and intercalation. The proposed continuum theory thus allows for a comprehensive exploration into the growth and dissipation mechanics of proliferating aggregates, such as spheroids and organoids.
Collapse
Affiliation(s)
- Prakhar Bandil
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado, Boulder, USA.
| |
Collapse
|
22
|
Lee S, Choi JH, Park SY, Kim J. Gastric Organoid, a Promising Modeling for Gastric Stem Cell Homeostasis and Therapeutic Application. Int J Stem Cells 2024; 17:337-346. [PMID: 38698632 PMCID: PMC11612215 DOI: 10.15283/ijsc23075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
The elucidation of the pathophysiology underlying various diseases necessitates the development of research platforms that faithfully mimic in vivo conditions. Traditional model systems such as two-dimensional cell cultures and animal models have proven inadequate in capturing the complexities of human disease modeling. However, recent strides in organoid culture systems have opened up new avenues for comprehending gastric stem cell homeostasis and associated diseases, notably gastric cancer. Given the significance of gastric cancer, a thorough understanding of its pathophysiology and molecular underpinnings is imperative. To this end, the utilization of patient-derived organoid libraries emerges as a remarkable platform, as it faithfully mirrors patient-specific characteristics, including mutation profiles and drug sensitivities. Furthermore, genetic manipulation of gastric organoids facilitates the exploration of molecular mechanisms underlying gastric cancer development. This review provides a comprehensive overview of recent advancements in various adult stem cell-derived gastric organoid models and their diverse applications.
Collapse
Affiliation(s)
- Subin Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
| | - Jang-Hyun Choi
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| | - So-Yeon Park
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jihoon Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| |
Collapse
|
23
|
Scalise M, Cianflone E, Quercia C, Pagano L, Chiefalo A, Stincelli A, Torella A, Puccio B, Santamaria G, Guzzi HP, Veltri P, De Angelis A, Urbanek K, Ellison-Hughes GM, Torella D, Marino F. Senolytics rejuvenate aging cardiomyopathy in human cardiac organoids. Mech Ageing Dev 2024; 223:112007. [PMID: 39622416 DOI: 10.1016/j.mad.2024.112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Human cardiac organoids closely replicate the architecture and function of the human heart, offering a potential accurate platform for studying cellular and molecular features of aging cardiomyopathy. Senolytics have shown potential in addressing age-related pathologies but their potential to reverse aging-related human cardiomyopathy remains largely unexplored. METHODS We employed human iPSC-derived cardiac organoids (hCOs/hCardioids) to model doxorubicin(DOXO)-induced cardiomyopathy in an aged context. hCardioids were treated with DOXO and subsequently with a combination of two senolytics: dasatinib (D) and quercetin (Q). RESULTS DOXO-treated hCardioids exhibited significantly increased oxidative stress, DNA damage (pH2AX), cellular senescence (p16INK4A) and decreased cell proliferation associated with a senescence-associated secretory phenotype (SASP). DOXO-treated hCardioids were considerably deprived of cardiac progenitors and displayed reduced cardiomyocyte proliferation as well as contractility. These distinctive aging-associated characteristics were confirmed by global RNA-sequencing analysis. Treatment with D+Q reversed these effects, reducing oxidative stress and senescence markers, alleviating SASP, and restoring hCardioids viability and function. Additionally, senolytics replenished cardiac progenitors and reversed the cardiomyocyte proliferation deficit. CONCLUSIONS Doxorubicin triggers an age-associated phenotype in hCardioids reliably modelling the main cellular and molecular features of aging cardiomyopathy. Senescence is a key mechanism of the aged-hCOs phenotype as senolytics rejuvenated aged-hCardioids restoring their structure and function while reverting the age-associated regenerative deficit.
Collapse
Affiliation(s)
- Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100, Italy; Centre for Human and Applied Physiological, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy.
| | - Claudia Quercia
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy
| | - Loredana Pagano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100, Italy
| | - Antonio Stincelli
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy
| | - Annalaura Torella
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples 80138, Italy
| | - Barbara Puccio
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100, Italy
| | - Hiram P Guzzi
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy
| | - Pierangelo Veltri
- DIMES Department of Informatics, Modeling, Electronics and Systems, UNICAL, Rende, Cosenza, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples 80138, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", and CEINGE-Advanced Biotechnologies, Naples 80131, Italy
| | - Georgina M Ellison-Hughes
- Centre for Human and Applied Physiological, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100, Italy.
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100, Italy
| |
Collapse
|
24
|
Cho Y, Sung MH, Kang HT, Lee JH. Establishment of an Apical-Out Organoid Model for Directly Assessing the Function of Postbiotics. J Microbiol Biotechnol 2024; 34:2184-2191. [PMID: 39317684 PMCID: PMC11637808 DOI: 10.4014/jmb.2405.05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
In vitro organoids that mimic the physiological properties of in vivo organs based on three-dimensional cell cultures overcome the limitations of two-dimensional culture systems. However, because the lumen of a typical intestinal organoid is internal, we used an apical-out intestinal organoid model in which the lumen that absorbs nutrients is outside to directly assess the function of postbiotics. A composite culture supernatant of Lactiplantibacillus plantarum KM2 and Bacillus velezensis KMU01 was used as a postbiotic treatment. Expression of COX-2 decreased in apical-out organoids co-treated with a lipopolysaccharide (LPS) and postbiotics. Expression of tight-junction markers such as ZO-1, claudin, and Occludin increased, and expression of mitochondrial homeostasis factors such as PINK1, parkin, and PGC1a also increased. As a result, small and large intestine organoids treated with postbiotics protected tight junctions from LPS-induced damage and maintained mitochondrial homeostasis through mitophagy and mitochondrial biogenesis. This suggests that an apical-out intestinal organoid model can confirm the function of food ingredients.
Collapse
Affiliation(s)
- Yeonoh Cho
- Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Moon-Hee Sung
- KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Hee-Taik Kang
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
25
|
Kim JC, Kim Y, Cho S, Park HS. Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Chem Rev 2024; 124:12463-12497. [PMID: 39541258 DOI: 10.1021/acs.chemrev.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.
Collapse
Affiliation(s)
- Joo-Chan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YouJin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suho Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
27
|
Naghipour S, Corben LA, Hulme AJ, Dottori M, Delatycki MB, Lees JG, Lim SY. Omaveloxolone for the Treatment of Friedreich Ataxia: Efficacy, Safety, and Future Perspectives. Mov Disord 2024. [PMID: 39559924 DOI: 10.1002/mds.30070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Saba Naghipour
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
| | - Amy J Hulme
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mirella Dottori
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
- National Heart Research Institute, National Heart Center, Singapore
| |
Collapse
|
28
|
Wu M, Ma Z, Tian Z, Rich JT, He X, Xia J, He Y, Yang K, Yang S, Leong KW, Lee LP, Huang TJ. Sound innovations for biofabrication and tissue engineering. MICROSYSTEMS & NANOENGINEERING 2024; 10:170. [PMID: 39562793 PMCID: PMC11577104 DOI: 10.1038/s41378-024-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/31/2024] [Accepted: 06/20/2024] [Indexed: 11/21/2024]
Abstract
Advanced biofabrication techniques can create tissue-like constructs that can be applied for reconstructive surgery or as in vitro three-dimensional (3D) models for disease modeling and drug screening. While various biofabrication techniques have recently been widely reviewed in the literature, acoustics-based technologies still need to be explored. The rapidly increasing number of publications in the past two decades exploring the application of acoustic technologies highlights the tremendous potential of these technologies. In this review, we contend that acoustics-based methods can address many limitations inherent in other biofabrication techniques due to their unique advantages: noncontact manipulation, biocompatibility, deep tissue penetrability, versatility, precision in-scaffold control, high-throughput capabilities, and the ability to assemble multilayered structures. We discuss the mechanisms by which acoustics directly dictate cell assembly across various biostructures and examine how the advent of novel acoustic technologies, along with their integration with traditional methods, offers innovative solutions for enhancing the functionality of organoids. Acoustic technologies are poised to address fundamental challenges in biofabrication and tissue engineering and show promise for advancing the field in the coming years.
Collapse
Affiliation(s)
- Mengxi Wu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Joseph T Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xin He
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
29
|
Ye S, Marsee A, van Tienderen GS, Rezaeimoghaddam M, Sheikh H, Samsom RA, de Koning EJP, Fuchs S, Verstegen MMA, van der Laan LJW, van de Vosse F, Malda J, Ito K, Spee B, Schneeberger K. Accelerated production of human epithelial organoids in a miniaturized spinning bioreactor. CELL REPORTS METHODS 2024; 4:100903. [PMID: 39561715 DOI: 10.1016/j.crmeth.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Conventional static culture of organoids necessitates weekly manual passaging and results in nonhomogeneous exposure of organoids to nutrients, oxygen, and toxic metabolites. Here, we developed a miniaturized spinning bioreactor, RPMotion, specifically optimized for accelerated and cost-effective culture of epithelial organoids under homogeneous conditions. We established tissue-specific RPMotion settings and standard operating protocols for the expansion of human epithelial organoids derived from the liver, intestine, and pancreas. All organoid types proliferated faster in the bioreactor (5.2-fold, 3-fold, and 4-fold, respectively) compared to static culture while keeping their organ-specific phenotypes. We confirmed that the bioreactor is suitable for organoid establishment directly from biopsies and for long-term expansion of liver organoids. Furthermore, we showed that after accelerated expansion, liver organoids can be differentiated into hepatocyte-like cells in the RPMotion bioreactor. In conclusion, this miniaturized bioreactor enables work-, time-, and cost-efficient organoid culture, holding great promise for organoid-based fundamental and translational research and development.
Collapse
Affiliation(s)
- Shicheng Ye
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Ary Marsee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Gilles S van Tienderen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Mohammad Rezaeimoghaddam
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Hafsah Sheikh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands; Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584 CT, the Netherlands
| | - Sabine Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht 3584 EA, the Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, P.O. Box 2040, Rotterdam 3000 CA, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, P.O. Box 2040, Rotterdam 3000 CA, the Netherlands
| | - Frans van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Keita Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands.
| |
Collapse
|
30
|
Gazola AA, Lautert-Dutra W, Archangelo LF, Reis RBD, Squire JA. Precision oncology platforms: practical strategies for genomic database utilization in cancer treatment. Mol Cytogenet 2024; 17:28. [PMID: 39543667 PMCID: PMC11566986 DOI: 10.1186/s13039-024-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
In recent years, the expansion of molecularly targeted cancer therapies has significantly advanced precision oncology. Parallel developments in next-generation sequencing (NGS) technologies have also improved precision oncology applications, making genomic analysis of tumors more affordable and accessible. Targeted NGS panels now enable the rapid identification of diverse actionable mutations, requiring clinicians to efficiently assess the predictive value of cancer biomarkers for specific treatments. The urgency for timely and accurate decision-making in oncology emphasizes the importance of reliable precision oncology software. Online clinical decision-making tools and associated cancer databases have been designed by consolidating genomic data into standardized, accessible formats. These new platforms are highly integrated and crucial for identifying actionable somatic genomic biomarkers essential for tumor survival, determining corresponding drug targets, and selecting appropriate treatments based on the mutational profile of each patient's tumor. To help oncologists and translational cancer researchers unfamiliar with these tools, we review the utility, accuracy, and comprehensiveness of several commonly used precision medicine software options currently available. Our analysis categorized selected genomic databases based on their primary content, utility, and how well they provide practical guidance for interpreting somatic biomarker data. We identified several comprehensive, mostly open-access platforms that are easy to use for genetic biomarker searches, each with unique features and limitations. Among the precision oncology tools we evaluated, we found MyCancerGenome and OncoKB to be the first choice, offering comprehensive, accurate up-to-date information on the clinical significance of somatic mutations. To illustrate the application of these precision oncology tools in clinical settings, we evaluated three case studies to see how use of the platforms could have influenced treatment planning. Most of the precision oncology software evaluated could be easily streamlined into clinical workflows to provide updated information on approved drugs and clinical trials related the actionable mutations detected. Some platforms were very intuitive and easy to use, while others, often developed in smaller academic settings, were more difficult to navigate and may not be updated consistently. Future enhancements, incorporating artificial intelligence algorithms, are likely to improve integration of the platforms with diverse big data sources, enabling more accurate predictions of potential therapeutic responses.
Collapse
Affiliation(s)
- Antonia A Gazola
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga, 668, Porto Alegre, RS, 90619-900, Brazil
| | - William Lautert-Dutra
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo - USP, Ribeirao Preto, SP, 14049-900, Brazil
| | - Leticia Frohlich Archangelo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Medical School of Ribeirao Preto, University of Sao Paulo (FMRP-USP), Ribeirao Preto, SP, 14049-900, Brazil
| | - Rodolfo B Dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo - USP, Ribeirao Preto, SP, 14049-900, Brazil
| | - Jeremy A Squire
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo - USP, Ribeirao Preto, SP, 14049-900, Brazil.
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, K7L3N6, Canada.
| |
Collapse
|
31
|
Seyfoori A, Liu K, Caruncho HJ, Walter PB, Akbari M. Tumoroid-On-a-Plate (ToP): Physiologically Relevant Cancer Model Generation and Therapeutic Screening. Adv Healthc Mater 2024:e2402060. [PMID: 39538973 DOI: 10.1002/adhm.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Employing three-dimensional (3D) in vitro models, including tumor organoids and spheroids, stands pivotal in enhancing cancer therapy. These models bridge the gap between two-dimensional (2D) cell cultures and complex in vivo environments and offer versatile tools for comprehensive studies into cancer progression, drug responses, and tailored therapies. This study introduces the Tumoroid-on-a-Plate (ToP) device, an innovative ope-surface microfluidic platform designed to create predictive 3D models of solid tumors. The ToP device combines tumor mass, stromal cells, and extracellular matrix (ECM) components, to closely replicate the microenvironment of glioblastoma (GBM) and pancreatic adenocarcinoma (PDAC). Using the advanced ToP model and testing various GBM ECM compositions such as collagen and Rreelin within the model, we can assess how specific elements affect GBM invasiveness. The ToP in vitro model also enables screening chemotherapeutics such as temozolomide and iron-chelators in a single and binary treatment setting on the complex ECM-embedded tumoroids to evaluate their toxicity on GBM and PDAC models viability and apoptosis. Furthermore, co-culturing PDAC tumoroids with human-derived fibroblasts reveals the pro-invasive influence of stromal elements on tumor growth and drug response. This research underscores the value of advanced 3D models like ToP in advancing the understanding of cancer complexity and therapy responses.
Collapse
Affiliation(s)
- Amir Seyfoori
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Apricell Biotechnology Inc., Victoria, BC, V8P 1T5, Canada
| | - Kaiwen Liu
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Apricell Biotechnology Inc., Victoria, BC, V8P 1T5, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C4, Canada
| | - Patrick B Walter
- Department of Biology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
32
|
Li Z, You Y, Feng B, Chen J, Gao H, Li F. Construction methods and latest applications of kidney cancer organoids. Oncol Rev 2024; 18:1434981. [PMID: 39600908 PMCID: PMC11588466 DOI: 10.3389/or.2024.1434981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Renal cell carcinoma (RCC) is one of the deadliest malignant tumors. Despite significant advances in RCC treatment over the past decade, complete remission is rarely achieved. Consequently, there is an urgent need to explore and develop new therapies to improve the survival rates and quality of life for patients. In recent years, the development of tumor organoid technology has attracted widespread attention as it can more accurately simulate the spatial structure and physiological characteristics of tumors within the human body. In this review, we summarize the main methods currently used to construct kidney cancer organoids, as well as their various biological and clinical applications. Furthermore, combining organoids with other technologies, such as co-culture techniques and microfluidic technologies, can further develop organoids and address their limitations, creating more practical models. This approach summarizes the interactions between different tissues or organs during tumor progression. Finally, we also provide an outlook on the construction and application of kidney cancer organoids. These rapidly evolving kidney cancer organoids may soon become a focal point in the development of in vitro clinical models and therapeutic research for kidney cancer.
Collapse
Affiliation(s)
- Zhiqiang Li
- Medical College of Guangxi University, Nan Ning, Guang Xi, China
| | - Yanqiu You
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Bingzheng Feng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Jibing Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Hongjun Gao
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Fujun Li
- Medical College of Guangxi University, Nan Ning, Guang Xi, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| |
Collapse
|
33
|
Ma S, Wang W, Zhou J, Liao S, Hai C, Hou Y, Zhou Z, Wang Z, Su Y, Zhu Y, Dai X, Zhao Y, Liao S, Cai Y, Xu X. Lamination-based organoid spatially resolved transcriptomics technique for primary lung and liver organoid characterization. Proc Natl Acad Sci U S A 2024; 121:e2408939121. [PMID: 39514315 PMCID: PMC11573637 DOI: 10.1073/pnas.2408939121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial-transcriptomics technologies have demonstrated exceptional performance in characterizing brain and visceral organ tissues, as well as brain and retinal organoids. However, it has not yet been proven whether spatial transcriptomics can effectively characterize primary tissue-derived organoids, as the standardized tissue sectioning or slicing methods are not applicable for such organoids. Herein, we present a technique, lamination-based organoid spatially resolved transcriptomics (LOSRT), for organoid-spatially resolved transcriptomics based on organoid lamination. Primary mouse lung and liver-derived organoids were used in this study. The organoids were formulated using the droplet-engineering method and laminated using a homemade device with weight compression. This technique preserved most cells in individual organoids while maintaining delicate epithelium structures in laminated domains that can be recognized through visual segmentation. The mouse lung and liver organoids were resolved comprising various cell types, including alveolar cells, damage-associated transient progenitor cells, basal cells, macrophages, endothelial cells, fibroblasts, hepatocytes, and hepatic stellate cells. The distribution and count of cells were confirmed using immunohistology and identified with spatial transcriptomic features. This study reports an automated and integrated spatial transcriptomics method for primary organoids. It has the potential to standardize and rapidly characterize primary tissue-derived organoids.
Collapse
Affiliation(s)
- Shaohua Ma
- Tsinghua Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Wanlong Wang
- Tsinghua Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Jiaqi Zhou
- Tsinghua Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Shangfeng Liao
- The Beijing Genomics Institute Research, Shenzhen 518083, China
- BGI Research, Sanya 572025, China
| | - Cheng Hai
- Tsinghua Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yibo Hou
- Tsinghua Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Zhichun Zhou
- The Beijing Genomics Institute Research, Shenzhen 518083, China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yingshi Su
- Synorg Biotechnology (Shenzhen) Co. Ltd., Shenzhen 518107, China
| | - Yu Zhu
- Tsinghua Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyong Dai
- Tsinghua Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yuan Zhao
- The Beijing Genomics Institute Research, Shenzhen 518083, China
| | - Sha Liao
- The Beijing Genomics Institute Research, Shenzhen 518083, China
| | - Yongde Cai
- Synorg Biotechnology (Shenzhen) Co. Ltd., Shenzhen 518107, China
| | - Xun Xu
- The Beijing Genomics Institute Research, Shenzhen 518083, China
| |
Collapse
|
34
|
Zolfaghar M, Acharya P, Joshi P, Choi NY, Shrestha S, Lekkala VKR, Kang SY, Lee M, Lee MY. Cryopreservation of Neuroectoderm on a Pillar Plate and In Situ Differentiation into Human Brain Organoids. ACS Biomater Sci Eng 2024; 10:7111-7119. [PMID: 39454131 DOI: 10.1021/acsbiomaterials.4c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Cryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform. To demonstrate cryopreservation application to human brain organoids (HBOs), early stage HBOs were produced by differentiating induced pluripotent stem cells (iPSCs) into neuroectoderm (NE) in an ultralow attachment (ULA) 384-well plate. The NE was transferred and encapsulated in Matrigel on the pillar plate. The NE on the pillar plate was exposed to four commercially available CPAs, including the PSC cryopreservation kit, CryoStor CS10, 3dGRO, and 10% DMSO, before being frozen overnight at -80 °C and subsequently stored in a liquid nitrogen dewar. We examined the impact of the CPA type, organoid size, and CPA exposure duration on cell viability post-thaw. Additionally, the differentiation of NE into HBOs on the pillar plate was assessed using RT-qPCR and immunofluorescence staining. The PSC cryopreservation kit proved to be the least toxic for preserving the early stage HBOs on the pillar plate. Notably, smaller HBOs showed higher cell viability postcryopreservation than larger ones. An incubation period of 80 min with the PSC kit was essential to ensure optimal CPA diffusion into HBOs with a diameter of 400-600 μm. These cryopreserved early stage HBOs successfully matured over 30 days, exhibiting gene expression patterns akin to noncryopreserved HBOs. The cryopreserved early stage HBOs on the pillar plate maintained high viability after thawing and successfully differentiated into mature HBOs. This on-chip cryopreservation method could extend to other small organoids, by integrating cryopreservation, thawing, culturing, staining, rinsing, and imaging processes within a single system, thereby preserving the 3D structure of the organoids.
Collapse
Affiliation(s)
- Mona Zolfaghar
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, Texas 75234, United States
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | | | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Minseong Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
- Bioprinting Laboratories Inc., Dallas, Texas 75234, United States
| |
Collapse
|
35
|
Bhattacharya R, Bose D, Kaur T, Patel R, Renuka O, Rodriguez RV. Model Organoids: Integrated Frameworks for the Next Frontier of Healthcare Advancements. Stem Cell Rev Rep 2024:10.1007/s12015-024-10814-3. [PMID: 39527389 DOI: 10.1007/s12015-024-10814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The morphogenetic events leading to tissue formation can be recapitulated using organoids, which allows studying new diseases and modelling personalized medicines. In this review, culture systems comparable to human organs are presented, these organoids are created from pluripotent stem cells or adult stem cells. The efficient and reproducible models of human tissues are discussed for biobanking, precision medicine and basic research. Mechanisms used by these model systems with an overview of models from human cells are also covered. As human physiology is different from animals, culture conditions and tissue limits often become challenging. Organoids offer novel approaches for such cases with rapid screening, transplantation studies and in immunotherapy. Discrepancies with large datasets can be handled with an integrated framework of artificial intelligence or AI and machine learning. An attempt has been made to show the improved effectiveness, simplified iterations, along with image analysis that are possible from this synergy. AI-assisted organoids have the potential to transform healthcare by improving disease understanding and accelerating clinical decision-making through personalized and precision medicine.
Collapse
Affiliation(s)
- Riya Bhattacharya
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India
- Centre of Excellence for Health Technology, Ecosystems, & Biodiversity, Woxsen University, Hyderabad, Telangana, India
| | - Debajyoti Bose
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India.
- Centre of Excellence for Health Technology, Ecosystems, & Biodiversity, Woxsen University, Hyderabad, Telangana, India.
| | - Tanveen Kaur
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University of Science and Technology, Ames, IA, USA
| | - Rushik Patel
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India
- School of Technology, Woxsen University, Hyderabad, Telangana, India
| | - Oladri Renuka
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India
- School of Technology, Woxsen University, Hyderabad, Telangana, India
| | - Raul V Rodriguez
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India.
- Centre of Excellence for Health Technology, Ecosystems, & Biodiversity, Woxsen University, Hyderabad, Telangana, India.
- School of Business, Woxsen University, Hyderabad, Telangana, India.
| |
Collapse
|
36
|
de la Jara Ortiz F, Cimmino C, Ventre M, Cambi A. Understanding and measuring mechanical signals in the tumor stroma. FEBS Open Bio 2024. [PMID: 39523476 DOI: 10.1002/2211-5463.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) is well known for its immune suppressive role, especially in solid tumors which are characterized by a thick, dense stroma. Apart from cell-cell interactions and biochemical signals, the tumor stroma is also characterized by its distinct mechanical properties, which are dictated by the composition and architecture of its extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs) are the main producers and remodelers of the stromal ECM, and their heterogeneity has recently become a focus of intense research. This review describes recent findings highlighting CAF subtypes and their specific functions, as well as the development of 3D models to study tumor stroma mechanics in vitro. Finally, we discuss the quantitative techniques used to measure tissue mechanical properties at different scales. Given the diagnostic and prognostic value of stroma stiffness and composition, and the recent development of anti-tumor therapeutic strategies targeting the stroma, understanding and measuring tumor stroma mechanical properties has never been more timely or relevant.
Collapse
Affiliation(s)
- Fàtima de la Jara Ortiz
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chiara Cimmino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Pan C, Wang X, Yang C, Fu K, Wang F, Fu L. The culture and application of circulating tumor cell-derived organoids. Trends Cell Biol 2024:S0962-8924(24)00210-1. [PMID: 39523200 DOI: 10.1016/j.tcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology. However, isolating and enriching CTCs from blood remains challenging due to their scarcity, exacerbated by the lack of an optimized culture medium for CTC-derived organoids (CTCDOs). In this review, we summarize the origin, isolation, enrichment, culture, validation, and clinical application of CTCs and CTCDOs.
Collapse
Affiliation(s)
- Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
38
|
Li K, Gu L, Cai H, Lu HC, Mackie K, Guo F. Human brain organoids for understanding substance use disorders. Drug Metab Pharmacokinet 2024:101036. [PMID: 39567282 DOI: 10.1016/j.dmpk.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding its neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUD using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUD in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.
Collapse
Affiliation(s)
- Kangle Li
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, USA
| | - Longjun Gu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, USA
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, USA.
| |
Collapse
|
39
|
Velliou RI, Giannousi E, Ralliou C, Kassi E, Chatzigeorgiou A. Ex Vivo Tools and Models in MASLD Research. Cells 2024; 13:1827. [PMID: 39594577 PMCID: PMC11592755 DOI: 10.3390/cells13221827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) presents a growing global health challenge with limited therapeutic choices. This review delves into the array of ex vivo tools and models utilized in MASLD research, encompassing liver-on-a-chip (LoC) systems, organoid-derived tissue-like structures, and human precision-cut liver slice (PCLS) systems. Given the urgent need to comprehend MASLD pathophysiology and identify novel therapeutic targets, this paper aims to shed light on the pivotal role of advanced ex vivo models in enhancing disease understanding and facilitating the development of potential therapies. Despite challenges posed by the elusive disease mechanism, these innovative methodologies offer promise in reducing the utilization of in vivo models for MASLD research while accelerating drug discovery and biomarker identification, thereby addressing critical unmet clinical needs.
Collapse
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| | - Eirini Giannousi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| | - Christiana Ralliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| |
Collapse
|
40
|
Kaden T, Alonso-Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2024:e2402756. [PMID: 39491534 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, 07745, Jena, Germany
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Raquel Alonso-Román
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV, Jena University Hospital, 07747, Jena, Germany
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| |
Collapse
|
41
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 PMCID: PMC11531151 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
42
|
Tan KH, Ang JLY, Yong ASK, Lim SZE, Kng JSJ, Liang K. Non-destructive viability assessment of cancer cell spheroids using dynamic optical coherence tomography with trypan blue validation. BIOMEDICAL OPTICS EXPRESS 2024; 15:6370-6383. [PMID: 39553864 PMCID: PMC11563335 DOI: 10.1364/boe.533339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 11/19/2024]
Abstract
3D cell cultures are widely used in biomedical research for the recapitulation of in vivo microenvironments. Viability assessment and monitoring of these intricate conformations remain an open problem as standard cell viability protocols based on colorimetry or microscopy are not directly applicable to intact 3D samples. Optical coherence tomography (OCT) has been explored extensively for subsurface structural and quasi-functional analysis of 3D cell cultures and tissue. Recent studies of dynamic OCT as a source of cellular contrast have found qualitative associations with necrosis in cell spheroids, suggesting potential as a viability marker. We present empirical and validated evidence for dynamic OCT as a quantitative indicator of cell viability in 3D cultures. We analysed over 240 MCF-7 cancer cell spheroids with dynamic OCT and corresponding viability measurements using the trypan blue exclusion assay. Significant effects of common reagents dimethyl sulfoxide (DMSO) and phosphate-buffered saline (PBS) on OCT readouts were noted. We proposed a regression-based OCT brightness normalisation technique that removed reagent-induced OCT intensity biases and helped improve correspondence to the viability assay. These results offer a quantitative biological foundation for further advances of dynamic OCT as a novel non-invasive modality for 3D culture monitoring.
Collapse
Affiliation(s)
- Ko Hui Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Joel Lang Yi Ang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Alexander Si Kai Yong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Stefanie Zi En Lim
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #07-01, Singapore 138669, Republic of Singapore
| | - Jessica Sze Jia Kng
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #07-01, Singapore 138669, Republic of Singapore
| | - Kaicheng Liang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-02, Singapore 138634, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 11 Mandalay Rd, Singapore 308232, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University (NTU), 62 Nanyang Drive, Singapore 637459, Republic of Singapore
| |
Collapse
|
43
|
Kheiri S, Yakavets I, Cruickshank J, Ahmadi F, Berman HK, Cescon DW, Young EWK, Kumacheva E. Microfluidic Platform for Generating and Releasing Patient-Derived Cancer Organoids with Diverse Shapes: Insight into Shape-Dependent Tumor Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410547. [PMID: 39276011 DOI: 10.1002/adma.202410547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/15/2024] [Indexed: 09/16/2024]
Abstract
Multicellular spheroids and patient-derived organoids find many applications in fundamental research, drug discovery, and regenerative medicine. Advances in the understanding and recapitulation of organ functionality and disease development require the generation of complex organoid models, including organoids with diverse morphologies. Microfluidics-based cell culture platforms enable time-efficient confined organoid generation. However, the ability to form organoids with different shapes with a subsequent transfer from microfluidic devices to unconstrained environments for studies of morphology-dependent organoid growth is yet to be demonstrated. Here, a microfluidic platform is introduced that enables high-fidelity formation and addressable release of breast cancer organoids with diverse shapes. Using this platform, the impact of organoid morphology on their growth in unconstrained biomimetic hydrogel is explored. It is shown that proliferative cancer cells tend to localize in high positive curvature organoid regions, causing their faster growth, while the overall growth pattern of organoids with diverse shapes tends to reduce interfacial tension at the organoid-hydrogel interface. In addition to the formation of organoids with diverse morphologies, this platform can be integrated into multi-tissue micro-physiological systems.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
| | - Fatemeh Ahmadi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
44
|
Özkan A, LoGrande NT, Feitor JF, Goyal G, Ingber DE. Intestinal organ chips for disease modelling and personalized medicine. Nat Rev Gastroenterol Hepatol 2024; 21:751-773. [PMID: 39192055 DOI: 10.1038/s41575-024-00968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Alterations in intestinal structure, mechanics and physiology underlie acute and chronic intestinal conditions, many of which are influenced by dysregulation of microbiome, peristalsis, stroma or immune responses. Studying human intestinal physiology or pathophysiology is difficult in preclinical animal models because their microbiomes and immune systems differ from those of humans. Although advances in organoid culture partially overcome this challenge, intestinal organoids still lack crucial features that are necessary to study functions central to intestinal health and disease, such as digestion or fluid flow, as well as contributions from long-term effects of living microbiome, peristalsis and immune cells. Here, we review developments in organ-on-a-chip (organ chip) microfluidic culture models of the human intestine that are lined by epithelial cells and interfaced with other tissues (such as stroma or endothelium), which can experience both fluid flow and peristalsis-like motions. Organ chips offer powerful ways to model intestinal physiology and disease states for various human populations and individual patients, and can be used to gain new insight into underlying molecular and biophysical mechanisms of disease. They can also be used as preclinical tools to discover new drugs and then validate their therapeutic efficacy and safety in the same human-relevant model.
Collapse
Affiliation(s)
- Alican Özkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nina Teresa LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jessica F Feitor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
| |
Collapse
|
45
|
Werschler N, Quintard C, Nguyen S, Penninger J. Engineering next generation vascularized organoids. Atherosclerosis 2024; 398:118529. [PMID: 39304390 DOI: 10.1016/j.atherosclerosis.2024.118529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 09/22/2024]
Abstract
Organoids are self-organizing 3D cell culture models that are valuable for studying the mechanisms underlying both development and disease in multiple species, particularly, in humans. These 3D engineered tissues can mimic the structure and function of human organs in vitro. Methods to generate organoids have substantially improved to better resemble, in various ways, their in vivo counterpart. One of the major limitations in current organoid models is the lack of a functional vascular compartment. Here we discuss methodological approaches to generating perfusable blood vessel networks in organoid systems. Inclusion of perfused vascular compartments markedly enhances the physiological relevance of organoid systems and is a critical step in the establishment of next generation, higher-complexity in vitro systems for use in developmental, clinical, and drug-development settings.
Collapse
Affiliation(s)
- Nicolas Werschler
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, School of Biomedical Engineering, Vancouver, Canada.
| | - Clement Quintard
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, Medical Genetics, Vancouver, Canada
| | - Stephanie Nguyen
- University of British Columbia, School of Biomedical Engineering, Vancouver, Canada
| | - Josef Penninger
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, School of Biomedical Engineering, Vancouver, Canada; University of British Columbia, Medical Genetics, Vancouver, Canada; Helmholtz Centre for Infection Research, Germany; Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Austria; IMBA Institute of Molecular Biotechnology, Vienna, Austria
| |
Collapse
|
46
|
Plage H, Dressler FF, Fendler A. Patient-derived Models: A Promising Frontier in Testing the Efficacy of Drugs for Bladder Cancer. Eur Urol 2024; 86:445-446. [PMID: 39183091 DOI: 10.1016/j.eururo.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Henning Plage
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Franz F Dressler
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Fendler
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
47
|
Vuijk SA, Camman AE, de Ridder L. Considerations in Paediatric and Adolescent Inflammatory Bowel Disease. J Crohns Colitis 2024; 18:ii31-ii45. [PMID: 39475081 PMCID: PMC11523044 DOI: 10.1093/ecco-jcc/jjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 11/02/2024]
Abstract
The incidence of inflammatory bowel disease [IBD] is rising most rapidly among children and adolescents. Paediatric-onset IBD is associated with a more extensive and severe disease course compared to adult-onset IBD. At a young age, screening for underlying genetic and immunological disorders is important and may impact treatment management. Early and effective treatment is crucial to reach disease remission and prevent complications of ongoing active disease. In children with Crohn's disease, exclusive enteral nutrition is an effective induction therapy. Other promising dietary therapies, such as the Crohn's disease exclusion diet, are emerging. Within paediatric IBD, anti-tumour necrosis factor therapy is the only approved biological thus far and additional treatment options are crucially needed. Other biological therapies, such as vedolizumab and ustekinumab, are currently prescribed off-label in this population. A specific challenge in paediatric IBD is the unacceptable and major delay in approval of drugs for children with IBD. A guided transfer period of paediatric patients to adult care is associated with improved disease outcomes and is required. Major knowledge gaps and challenges within paediatric IBD include the aetiology, diagnostics, and monitoring of disease, tailoring of treatment, and both understanding and coping with the physical and psychological consequences of living with IBD. Challenges and research gaps in paediatrics should be addressed without any delay in comparison with the adult field, in order to ensure a high quality of care for all patients with IBD, irrespective of the age of onset.
Collapse
Affiliation(s)
- Stephanie A Vuijk
- Department of Paediatric Gastroenterology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Anouk E Camman
- Department of Paediatric Gastroenterology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Jang J, Jung H, Jeong J, Jeon J, Lee K, Jang HR, Han JW, Lee J. Modeling doxorubicin-induced-cardiotoxicity through breast cancer patient specific iPSC-derived heart organoid. Heliyon 2024; 10:e38714. [PMID: 39640743 PMCID: PMC11620051 DOI: 10.1016/j.heliyon.2024.e38714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Heart organoid (HO) technology has successfully overcome the limitations of two-dimensional (2D) disease modeling and drug testing, thereby emerging as a valuable tool in drug discovery for assessing toxicity and efficacy. However, its ability to distinguish drug responses among individuals remain unclear, which is crucial for developing predictive models. We addressed this gap by comparing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with human induced pluripotent stem cell-derived heart organoids (hiPSC-HOs) in the context of doxorubicin-induced cardiotoxicity (DIC). For this study, we utilized hiPSCs generated from breast cancer patients who had previously been treated with doxorubicin. By comparing groups with and without DIC, we examined various parameters, including cell viability, mRNA expression, protein expression and electrophysiological variations. The results of our analysis revealed significant differences between these groups, providing insights into hiPSC-HOs as a potential platform for testing differences in drug responses among patients.
Collapse
Affiliation(s)
- Jiye Jang
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyewon Jung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaekyun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
49
|
Zebochin I, Denk F, Nochi Z. Modeling neuropathic pain in a dish. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:233-278. [PMID: 39580214 DOI: 10.1016/bs.irn.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The study of pain mechanisms has advanced significantly with the development of innovative in vitro models. This chapter explores those already used in or potentially useful for neuropathic pain research, emphasizing the complementary roles of animal and human cellular models to enhance translational success. Traditional animal models have provided foundational insights into the neurobiology of pain and remain invaluable for understanding complex pain pathways. However, integrating human cellular models addresses the need for better replication of human nociceptors. The chapter details methodologies for culturing rodent and human primary sensory neurons, including isolation and culture techniques, advantages, and limitations. It highlights the application of these models in neuropathic pain research, such as identifying pain-associated receptors and ion channels. Recent advancements in using induced pluripotent stem cell (iPSC)-derived sensory neurons are also discussed. Finally, the chapter explores advanced in vitro models, including 2D co-cultures and 3D organoids, and their implications for studying neuropathic pain. These models offer significant advantages for drug screening and ethical research practices, providing a more accurate representation of human pain pathways and paving the way for innovative therapeutic strategies. Despite challenges such as limited access to viable human tissue and variability between samples, these in vitro models, alongside traditional animal models, are indispensable for advancing our understanding of neuropathic pain and developing effective treatments.
Collapse
Affiliation(s)
- Irene Zebochin
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Zahra Nochi
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
50
|
He B, Ma H, Yu H, Li D, Zhang L, Wang J. Organoids research progress in gynecological cancers: a bibliometric analysis. Front Oncol 2024; 14:1484074. [PMID: 39529835 PMCID: PMC11552305 DOI: 10.3389/fonc.2024.1484074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Gynecological cancers (GC) pose a severe threat to the health and safety of women's lives, and organoids, as in-vitro research models, have demonstrated significant advantages in simulating tissue characteristics and drug screening. In recent years, there has been a rapid increase in research outcomes related to organoids in GC. However, there has been no bibliometric study concerning. Methods Publications related to GC and organoids from 2010-2023 were retrieved from the Web of Science Core Collection (WoSCC). We conducted a bibliometric analysis and visualization using CiteSpace, VOSviewer, and the Bibliometrix R Package. This analysis included the spatiotemporal distribution, author, sources, references, and keywords. Results A total of 333 publications were included. The number of annual publications indicated an explosive phase of development since 2019. The USA was the most important country in terms of cooperation, publication output, citation and centrality. University of California system ranked first in productivity among institutions, and HIPPO Y is the most relevant author in the research field. CANCERS published the most documents, and NATURE is the most cited sources. Analysis of Keywords and References, it is possible to establish the trend, and find the hotspots in the research field. Conclusion This bibliometric analysis delineated global landscapes and progress trends in GC organoids research. This study emphasized that organoids can effectively replicate the original tissue or tumors, providing a good in-vitro model for research on tumor-related mechanisms and showing significant advantages in drug screening and efficacy clinical prediction. Additionally, as preclinical models, they provide compelling evidence for personalized therapy and prediction of patient drug responses.
Collapse
Affiliation(s)
- Baiyun He
- Department of Gynecology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Huihao Ma
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongbo Yu
- Department of Gynecology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Dongmei Li
- Department of Gynecology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Li Zhang
- Department of Gynecology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Junjie Wang
- Department of Gynecology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| |
Collapse
|