1
|
Ribeiro de Souza B, Oliveira G, Leme G, Brum Reis I, Augusto Tossini Cabral F, Lima Baggio de Paula J, Henrique da Silva Santos D, Ronca Felizzola C, Durán N, Anglesio M, José Fávaro W. A novel serous ovarian carcinoma model induced by DMBA: Results from OncoTherad® (MRB-CFI-1) immunotherapy preclinical testing. Biomed Pharmacother 2025; 182:117755. [PMID: 39693910 DOI: 10.1016/j.biopha.2024.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
AIMS The term ovarian carcinoma (OC) refers to a heterogeneous collection of five distinct diseases known as histotypes. While histotype-specific treatment is still a clinical challenge in OC, well-characterized models are required for testing new therapeutic strategies. We employed OncoTherad® (MRB-CFI-1), an interferon (IFN-γ)-stimulating nano-immunotherapy mediated by Toll-like receptors (TLR) 2/4, in association or not with Erythropoietin (EPO) in a chemically-induced ovarian cancer model. Besides characterization of the therapies effects, we also assessed whether the animal model was representative of human OC by providing histotype classification. MAIN METHODS Thirty-five Fischer rats were distributed into five groups: Control (Sham surgery); Cancer (7,12-dimethylbenzoanthracene - DMBA injection in the ovarian bursa, 1.25 mg/kg); OncoTherad® (20 mg/kg intraperitoneal); EPO (8.4 µg/kg intraperitoneal); and OncoTherad+EPO (same doses). Ovaries were formalin-fixed into paraffin-embedded blocks. TLR pathway and the inflammatory response profile were evaluated by immunohistochemistry (IHC). After DNA extraction and tissue microarray construction, we assessed typical gene mutations directly (Sanger sequencing) or indirectly (IHC surrogates) and examined biomarkers of different OC histotypes. KEY FINDINGS OC induction decreased TLR2, TLR4, and proinflammatory cytokines. OncoTherad® alone or associated with EPO modulated the OC microenvironment to a cytotoxic immune profile through stimulation of the TLR4-mediated non-canonical pathway. EPO stimulated TLR2-mediated canonical pathway and notably increased Tregs. SIGNIFICANCE The features analyzed favored interpretation of our DMBA-induced tumor model as predominantly low-grade, serous carcinoma-like, in which treatments with OncoTherad® and EPO showed immunomodulatory properties related to the reduction of ovarian lesions.
Collapse
Affiliation(s)
- Bianca Ribeiro de Souza
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Gabriela Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Giovana Leme
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ianny Brum Reis
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Felippe Augusto Tossini Cabral
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliane Lima Baggio de Paula
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniel Henrique da Silva Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudia Ronca Felizzola
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Nelson Durán
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Michael Anglesio
- Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wagner José Fávaro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina-Rojas M, Tyner S, Watters C, Antonic V. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS 2021; 130:436-457. [PMID: 34132418 DOI: 10.1111/apm.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brett Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Maria Medina-Rojas
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stuart Tyner
- US Army Medical Research and Development Command Military Infectious Diseases Research Program, Frederick, Maryland, USA
| | - Chase Watters
- Naval Medical Research Unit-3, Ghana Detachment, Accra, Ghana
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Urrutia AA, Guan N, Mesa‐Ciller C, Afzal A, Davidoff O, Haase VH. Inactivation of HIF-prolyl 4-hydroxylases 1, 2 and 3 in NG2-expressing cells induces HIF2-mediated neurovascular expansion independent of erythropoietin. Acta Physiol (Oxf) 2021; 231:e13547. [PMID: 32846048 PMCID: PMC7757172 DOI: 10.1111/apha.13547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
AIM NG2 cells in the brain are comprised of pericytes and NG2 glia and play an important role in the execution of cerebral hypoxia responses, including the induction of erythropoietin (EPO) in pericytes. Oxygen-dependent angiogenic responses are regulated by hypoxia-inducible factor (HIF), the activity of which is controlled by prolyl 4-hydroxylase domain (PHD) dioxygenases and the von Hippel-Lindau (VHL) tumour suppressor. However, the role of NG2 cells in HIF-regulated cerebral vascular homeostasis is incompletely understood. METHODS To examine the HIF/PHD/VHL axis in neurovascular homeostasis, we used a Cre-loxP-based genetic approach in mice and targeted Vhl, Epo, Phd1, Phd2, Phd3 and Hif2a in NG2 cells. Cerebral vasculature was assessed by immunofluorescence, RNA in situ hybridization, gene and protein expression analysis, gel zymography and in situ zymography. RESULTS Vhl inactivation led to a significant increase in angiogenic gene and Epo expression. This was associated with EPO-independent expansion of capillary networks in cortex, striatum and hypothalamus, as well as pericyte proliferation. A comparable phenotype resulted from the combined inactivation of Phd2 and Phd3, but not from Phd2 inactivation alone. Concomitant PHD1 function loss led to further expansion of the neurovasculature. Genetic inactivation of Hif2a in Phd1/Phd2/Phd3 triple mutant mice resulted in normal cerebral vasculature. CONCLUSION Our studies establish (a) that HIF2 activation in NG2 cells promotes neurovascular expansion and remodelling independently of EPO, (b) that HIF2 activity in NG2 cells is co-controlled by PHD2 and PHD3 and (c) that PHD1 modulates HIF2 transcriptional responses when PHD2 and PHD3 are inactive.
Collapse
Affiliation(s)
- Andrés A. Urrutia
- Department of MedicineVanderbilt University School of MedicineNashvilleTNUSA
- Unidad de Investigación Hospital de Santa CristinaInstituto de Investigación del Hospital Universitario La PrincesaUniversidad Autónoma de MadridMadridSpain
| | - Nan Guan
- Department of MedicineVanderbilt University School of MedicineNashvilleTNUSA
- Division of NephrologyHuashan Hospital and Nephrology Research InstituteFudan UniversityShanghaiChina
| | - Claudia Mesa‐Ciller
- Unidad de Investigación Hospital de Santa CristinaInstituto de Investigación del Hospital Universitario La PrincesaUniversidad Autónoma de MadridMadridSpain
| | - Aqeela Afzal
- Department of NeurosurgeryVanderbilt University School of MedicineNashvilleTNUSA
| | - Olena Davidoff
- Department of MedicineVanderbilt University School of MedicineNashvilleTNUSA
| | - Volker H. Haase
- Department of MedicineVanderbilt University School of MedicineNashvilleTNUSA
- Division of Integrative PhysiologyDepartment of Medical Cell BiologyUppsala UniversitetUppsalaSweden
- Department of Molecular Physiology and Biophysics and Program in Cancer BiologyVanderbilt University School of MedicineNashvilleTNUSA
| |
Collapse
|
4
|
Abstract
Cancer and kidney disease are linked by causality and comorbidities. Observational data show an increased risk of malignancy as renal function declines. Erythropoietin stimulating agents (ESAs), which are the cornerstone therapy for anemia patients with chronic kidney disease and cancer, are associated with increased risks for cancer, cancer-related mortality, progression of disease, and thromboembolic events. This article examines the recently published guidelines for ESA use in cancer patients from the American Society of Clinical Oncology and American Society of Hematology and attempts to contextualize them to the care of patients with coexistent CKD, cancer, and anemia.
Collapse
Affiliation(s)
- Sheron Latcha
- Renal Division, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
5
|
Han XP, Zhang FQ, Tan XS, Liu L, Ma WX, Ou-Yang HF, Wu CG. EPO modified MSCs can inhibit asthmatic airway remodeling in an animal model. J Cell Biochem 2017; 119:1008-1016. [PMID: 28686347 DOI: 10.1002/jcb.26268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/05/2017] [Indexed: 01/04/2023]
Abstract
There was no effective measures can be obtained at present to reverse or prevent airway remodeling. We investigated the therapeutic effect of Erythropoietin (EPO) gene modified mesenchymal stem cells (MSCs) on asthmatic airway remodeling and the possible underlied molecular mechanisms. EPO gene was transfected into MSCs via lentivirus vector. The transfected cells (EPO-MSCs) were identified by flow cytometry and the EPO secreting function was detected by PCR and Western blot. MSCs or EPO-MSCs were administrated to albumin (OVA)-induced chronic asthmatic mouse model via tail veins. The asthmatic phenotype was analyzed. Number of cells in bronchoalveolar lavage fluid (BALF) was counted using a hemocytometer. Histological findings of airways were evaluated by microscopic examination. The concentrations of interleukin 4(IL-4), interleukin 5(IL-5), and interleukin 13(IL-13) in lung homogenate were determined by ELISA. The activation state of transforming growth factor-β 1 (TGF-β1), Transforming growth factor beta-activated kinase 1 (TAK1), and p38 Mitogen Activated Protein Kinase (p38MAPK) signaling was detected by Real-Time PCR and Western blotting. EPO-MSCs were successfully constructed. EPO-MSCs showed a more potently suppressive effect on local asthmatic airway inflammation and the level of IL-4, IL-5, and IL-13 in lung tissue than MSCs. Moreover, the numbers of goblet cells, the thicknesses of smooth muscle layer, collagen density, percentage of proliferating cell nuclear antigen positive (PCNA+ ) mesenchymal cells, and von Willebrand factor positive(vWF+ ) vessels were also significantly inhibited by EPO-MSCs. Furthermore, EPO-MSCs could downregulate the expression of TGF-β1, TAK1, and p38MAPK in lung tissue both in mRNA level and in protein level. EPO gene modified MSCs may more efficiently attenuate asthmatic airway remodeling, which maybe related with the downregulation of TGF-β1-TAK1-p38MAPK pathway activity.
Collapse
Affiliation(s)
- Xin-Peng Han
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang-Qi Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiang-Shu Tan
- Department of Internal Medicine, Xi'an Jiaotong University Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Liu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen-Xian Ma
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hai-Feng Ou-Yang
- Department of Respiratory Medicine, Baoan District Central Hospital, Shenzhen, China
| | - Chang-Gui Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Reduced cancer mortality at high altitude: The role of glucose, lipids, iron and physical activity. Exp Cell Res 2017; 356:209-216. [PMID: 28344053 DOI: 10.1016/j.yexcr.2017.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
Abstract
Residency at high altitude (HA) demands adaptation to challenging environmental conditions with hypobaric hypoxia being the most important one. Epidemiological and experimental data suggest that chronic exposure to HA reduces cancer mortality and lowers prevalence of metabolic disorders like diabetes and obesity implying that adaption to HA modifies a broad spectrum of physiological, metabolic and cellular programs with a generally beneficial outcome for humans. However, the complexity of multiple, potentially tumor-suppressive pathways at HA impedes the understanding of mechanisms leading to reduced cancer mortality. Many adaptive processes at HA are tightly interconnected and thus it cannot be ruled out that the entirety or at least some of the HA-related alterations act in concert to reduce cancer mortality. In this review we discuss tumor formation as a concept of competition between healthy and cancer cells with improved fitness - and therefore higher competitiveness - of healthy cells at high altitude. We discuss HA-related changes in glucose, lipid and iron metabolism that may have an impact on tumorigenesis. Additionally, we discuss two parameters with a strong impact on tumorigenesis, namely drug metabolism and physical activity, to underpin their potential contribution to HA-dependent reduced cancer mortality. Future studies are needed to unravel why cancer mortality is reduced at HA and how this knowledge might be used to prevent and to treat cancer patients.
Collapse
|
7
|
Redmond KJ, Robertson S, Lo SS, Soltys SG, Ryu S, McNutt T, Chao ST, Yamada Y, Ghia A, Chang EL, Sheehan J, Sahgal A. Consensus Contouring Guidelines for Postoperative Stereotactic Body Radiation Therapy for Metastatic Solid Tumor Malignancies to the Spine. Int J Radiat Oncol Biol Phys 2016; 97:64-74. [PMID: 27843035 DOI: 10.1016/j.ijrobp.2016.09.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE To develop consensus contouring guidelines for postoperative stereotactic body radiation therapy (SBRT) for spinal metastases. METHODS AND MATERIALS Ten spine SBRT specialists representing 10 international centers independently contoured the clinical target volume (CTV), planning target volume (PTV), spinal cord, and spinal cord planning organ at risk volume (PRV) for 10 representative clinical scenarios in postoperative spine SBRT for metastatic solid tumor malignancies. Contours were imported into the Computational Environment for Radiotherapy Research. Agreement between physicians was calculated with an expectation minimization algorithm using simultaneous truth and performance level estimation with κ statistics. Target volume definition guidelines were established by finding optimized confidence level consensus contours using histogram agreement analyses. RESULTS Nine expert radiation oncologists and 1 neurosurgeon completed contours for all 10 cases. The mean sensitivity and specificity were 0.79 (range, 0.71-0.89) and 0.94 (range, 0.90-0.99) for the CTV and 0.79 (range, 0.70-0.95) and 0.92 (range, 0.87-0.99) for the PTV), respectively. Mean κ agreement, which demonstrates the probability that contours agree by chance alone, was 0.58 (range, 0.43-0.70) for CTV and 0.58 (range, 0.37-0.76) for PTV (P<.001 for all cases). Optimized consensus contours were established for all patients with 80% confidence interval. Recommendations for CTV include treatment of the entire preoperative extent of bony and epidural disease, plus immediately adjacent bony anatomic compartments at risk of microscopic disease extension. In particular, a "donut-shaped" CTV was consistently applied in cases of preoperative circumferential epidural extension, regardless of extent of residual epidural extension. Otherwise more conformal anatomic-based CTVs were determined and described. Spinal instrumentation was consistently excluded from the CTV. CONCLUSIONS We provide consensus contouring guidelines for common scenarios in postoperative SBRT for spinal metastases. These consensus guidelines are subject to clinical validation.
Collapse
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland.
| | - Scott Robertson
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University, Stanford, California
| | - Samuel Ryu
- Department of Radiation Oncology, Stony Brook Cancer Center, Stony Brook, New York
| | - Todd McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Samuel T Chao
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Amol Ghia
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Eric L Chang
- Department of Radiation Oncology, Norris Cancer Center and Keck School of Medicine at University of Southern California, Los Angeles, California
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Erythropoietin accelerates tumor growth through increase of erythropoietin receptor (EpoR) as well as by the stimulation of angiogenesis in DLD-1 and Ht-29 xenografts. Mol Cell Biochem 2016; 421:1-18. [PMID: 27543111 PMCID: PMC5021757 DOI: 10.1007/s11010-016-2779-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022]
Abstract
Anemia is a relatively common symptom coexisting with colorectal carcinoma. Besides having a positive impact on hematological parameters, erythropoietin (Epo) has the serious adverse effect of promoting the neoplastic process. The role of Epo in colon cancer has not been clearly shown. The aim of this study was to assess the effects of Epo therapy on colorectal carcinoma cells both in in vitro and in animal models. Human colon adenocarcinoma cells DLD-1 and Ht-29 were cultured in medium with Epo beta in normoxia. Cell proliferation was measured with an automated cell counter. Expression of erythropoietin receptor (EpoR) mRNA, Akt mRNA, and their proteins were assessed by RT-PCR and confocal microscopy, respectively. Nude mice were inoculated with adenocarcinoma cells and treated with a therapeutic dose of Epo. Expression of EpoR, VEGF, Flt-1 and CD31 was evaluated in xenograft tumors. We identified that Epo through EpoR activates Akt, which promotes colon cancer cell growth and proliferation. Epo, and high levels of phosphorylated EpoR, directly accelerates tumor growth through its proliferative and proangiogenic effects. This study demonstrated that Epo had enhanced carcinogenesis through increase of EpoR and Flt-1 expression, and thereby contributed to tumor development. These results suggest that both EpoR-positive and EpoR-negative cancer cells could be regulated by exogenous Epo. However, an increased response to erythropoietin was observed in the EpoR-positive cells. Thus, erythropoietin increases the risk of tumor progression in colon cancer and should not be used to treat anemia in this type of cancer.
Collapse
|
9
|
Doleschel D, Rix A, Arns S, Palmowski K, Gremse F, Merkle R, Salopiata F, Klingmüller U, Jarsch M, Kiessling F, Lederle W. Erythropoietin improves the accumulation and therapeutic effects of carboplatin by enhancing tumor vascularization and perfusion. Am J Cancer Res 2015; 5:905-18. [PMID: 26000061 PMCID: PMC4440446 DOI: 10.7150/thno.11304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/27/2015] [Indexed: 11/05/2022] Open
Abstract
Recombinant human erythropoietin (rhuEpo) is currently under debate for the treatment of chemotherapy-induced anemia due to clinical trials showing adverse effects in Epo-treated patients and the discovery of the erythropoietin-receptor (EpoR) in tumor and endothelial cells. Here, using Epo-Cy5.5 as theranostic near-infrared fluorescent probe we analyzed the effects of rhuEpo as co-medication to carboplatin in non-small-cell-lung-cancer (NSCLC)-xenografts with different tumor cell EpoR-expression (H838 ~8-fold higher than A549). Nude mice bearing subcutaneous A549 and H838 NSCLC-xenografts received either only carboplatin or carboplatin and co-medication of rhuEpo in two different doses. Tumor sizes and relative blood volumes (rBV) were longitudinally measured by 3D-contrast-enhanced ultrasound (3D-US). Tumoral EpoR-levels were determined by combined fluorescence molecular tomography (FMT)/ micro computed tomography (µCT) hybrid imaging. We found that rhuEpo predominantly acted on the tumor endothelium. In both xenografts, rhuEpo co-medication significantly increased vessel densities, diameters and the amount of perfused vessels. Accordingly, rhuEpo induced EpoR-phoshorylation and stimulated proliferation of endothelial cells. However, compared with solely carboplatin-treated tumors, tumor growth was significantly slower in the groups co-medicated with rhuEpo. This is explained by the Epo-mediated vascular remodeling leading to improved drug delivery as obvious by a more than 2-fold higher carboplatin accumulation and significantly enhanced tumor apoptosis. In addition, co-medication of rhuEpo reduced tumor hypoxia and diminished intratumoral EpoR-levels which continuously increased during carboplatin (Cp) -treatment. These findings suggest that co-medication of rhuEpo in well balanced doses can be used to improve the accumulation of anticancer drugs. Doses and indications may be personalized and refined using theranostic EpoR-probes.
Collapse
|
10
|
Abstract
Current standard treatments of cancer can prolong survival of many cancer patients but usually do not effectively cure the disease. Oncolytic virotherapy is an emerging therapeutic for the treatment of cancer that exploits replication-competent viruses to selectively infect and destroy cancerous cells while sparing normal cells and tissues. Clinical and/or preclinical studies on oncolytic viruses have revealed that the candidate viruses being tested in trials are remarkably safe and offer potential for treating many classes of currently incurable cancers. Among these candidates are vaccinia and myxoma viruses, which belong to the family Poxviridae and possess promising oncolytic features. This article describes poxviruses that are being developed for oncolytic virotherapy and summarizes the outcomes of both clinical and preclinical studies. Additionally, studies demonstrating superior efficacy when poxvirus oncolytic virotherapy is combined with conventional therapies are described.
Collapse
Affiliation(s)
- Winnie M. Chan
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
11
|
Zhou B, Damrauer JS, Bailey ST, Hadzic T, Jeong Y, Clark K, Fan C, Murphy L, Lee CY, Troester MA, Miller CR, Jin J, Darr D, Perou CM, Levine RL, Diehn M, Kim WY. Erythropoietin promotes breast tumorigenesis through tumor-initiating cell self-renewal. J Clin Invest 2014; 124:553-63. [PMID: 24435044 DOI: 10.1172/jci69804] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/24/2013] [Indexed: 12/30/2022] Open
Abstract
Erythropoietin (EPO) is a hormone that induces red blood cell production. In its recombinant form, EPO is the one of most prescribed drugs to treat anemia, including that arising in cancer patients. In randomized trials, EPO administration to cancer patients has been associated with decreased survival. Here, we investigated the impact of EPO modulation on tumorigenesis. Using genetically engineered mouse models of breast cancer, we found that EPO promoted tumorigenesis by activating JAK/STAT signaling in breast tumor-initiating cells (TICs) and promoted TIC self renewal. We determined that EPO was induced by hypoxia in breast cancer cell lines, but not in human mammary epithelial cells. Additionally, we demonstrated that high levels of endogenous EPO gene expression correlated with shortened relapse-free survival and that pharmacologic JAK2 inhibition was synergistic with chemotherapy for tumor growth inhibition in vivo. These data define an active role for endogenous EPO in breast cancer progression and breast TIC self-renewal and reveal a potential application of EPO pathway inhibition in breast cancer therapy.
Collapse
|
12
|
Progress in detecting cell-surface protein receptors: the erythropoietin receptor example. Ann Hematol 2013; 93:181-92. [PMID: 24337485 PMCID: PMC3890056 DOI: 10.1007/s00277-013-1947-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/02/2013] [Indexed: 12/18/2022]
Abstract
Testing for the presence of specific cell-surface receptors (such as EGFR or HER2) on tumor cells is an integral part of cancer care in terms of treatment decisions and prognosis. Understanding the strengths and limitations of these tests is important because inaccurate results may occur if procedures designed to prevent false-negative or false-positive outcomes are not employed. This review discusses tests commonly used to identify and characterize cell-surface receptors, such as the erythropoietin receptor (EpoR). First, a summary is provided on the biology of the Epo/EpoR system, describing how EpoR is expressed on erythrocytic progenitors and precursors in the bone marrow where it mediates red blood cell production in response to Epo. Second, studies are described that investigated whether erythropoiesis-stimulating agents could stimulate tumor progression in cancer patients and whether EpoR is expressed and functional on tumor cells or on endothelial cells. The methods used in these studies included immunohistochemistry, Northern blotting, Western blotting, and binding assays. This review summarizes the strengths and limitations of these methods. Critically analyzing data from tests for cell-surface receptors such as EpoR requires understanding the techniques utilized and demonstrating that results are consistent with current knowledge about receptor biology.
Collapse
|
13
|
Jelkmann W, Elliott S. Erythropoietin and the vascular wall: the controversy continues. Nutr Metab Cardiovasc Dis 2013; 23 Suppl 1:S37-S43. [PMID: 22682530 DOI: 10.1016/j.numecd.2012.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Erythropoietin (EPO) stimulates erythropoiesis through its specific receptor (EPO-R). Preclinical work has assigned a role for the EPO/EPO-R system in the heart and blood vessels. The potential use of erythropoiesis-stimulating agents (ESAs) for nonhematopoietic indications is a focus of current research. This article considers proven actions of EPO in the cardiovascular system, with emphasis on the human responses. DATA SYNTHESIS By use of specific anti-EPO-R antibody no EPO-R protein was detected by Western blotting in normal non-erythroid tissues. Clinical trials failed to demonstrate clear beneficial effects of high-dosed ESAs in patients with coronary syndrome or myocardial infarct. While ESA therapy may lead to an elevation in arterial blood pressure in previously anemic patients, several studies have reported no effects on vessels/blood pressure with ESAs. EPO has been reported to stimulate angiogenesis. EPO-R mRNA is detectable in human vascular endothelium. However, in most vitro studies very high concentrations of EPO were applied and well-designed studies have failed to show direct effects of ESAs on endothelial cells. Whether EPO promotes the mobilization of myeloid progenitor cells into the blood stream still needs to be studied in more detail, as this effect may prove useful for augmenting the neovascularization of ischemic tissues. With respect to the administration of ESAs to tumor patients, a deeper insight into the role of EPO for tumor angiogenesis is desirable. CONCLUSIONS The enthusiastic reports of the nonhematopoietic cytoprotective potential of EPO and its derivatives in the cardiovascular system have not yet been confirmed in placebo-controlled clinical trials.
Collapse
Affiliation(s)
- W Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, D-23562 Luebeck, Germany.
| | - S Elliott
- Department of Hematology, Hematology/Oncology, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
14
|
Elliott S, Swift S, Busse L, Scully S, Van G, Rossi J, Johnson C. Epo receptors are not detectable in primary human tumor tissue samples. PLoS One 2013; 8:e68083. [PMID: 23861852 PMCID: PMC3701640 DOI: 10.1371/journal.pone.0068083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/24/2013] [Indexed: 01/03/2023] Open
Abstract
Erythropoietin (Epo) is a cytokine that binds and activates an Epo receptor (EpoR) expressed on the surface of erythroid progenitor cells to promote erythropoiesis. While early studies suggested EpoR transcripts were expressed exclusively in the erythroid compartment, low-level EpoR transcripts were detected in nonhematopoietic tissues and tumor cell lines using sensitive RT-PCR methods. However due to the widespread use of nonspecific anti-EpoR antibodies there are conflicting data on EpoR protein expression. In tumor cell lines and normal human tissues examined with a specific and sensitive monoclonal antibody to human EpoR (A82), little/no EpoR protein was detected and it was not functional. In contrast, EpoR protein was reportedly detectable in a breast tumor cell line (MCF-7) and breast cancer tissues with an anti-EpoR polyclonal antibody (M-20), and functional responses to rHuEpo were reported with MCF-7 cells. In another study, a functional response was reported with the lung tumor cell line (NCI-H838) at physiological levels of rHuEpo. However, the specificity of M-20 is in question and the absence of appropriate negative controls raise questions about possible false-positive effects. Here we show that with A82, no EpoR protein was detectable in normal human and matching cancer tissues from breast, lung, colon, ovary and skin with little/no EpoR in MCF-7 and most other breast and lung tumor cell lines. We show further that M-20 provides false positive staining with tissues and it binds to a non-EpoR protein that migrates at the same size as EpoR with MCF-7 lysates. EpoR protein was detectable with NCI-H838 cells, but no rHuEpo-induced phosphorylation of AKT, STAT3, pS6RP or STAT5 was observed suggesting the EpoR was not functional. Taken together these results raise questions about the hypothesis that most tumors express high levels of functional EpoR protein.
Collapse
Affiliation(s)
- Steve Elliott
- Amgen Inc, Thousand Oaks, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
15
|
Pascual M, Bohle B, Alonso S, Mayol X, Salvans S, Grande L, Pera M. Preoperative administration of erythropoietin stimulates tumor recurrence after surgical excision of colon cancer in mice by a vascular endothelial growth factor–independent mechanism. J Surg Res 2013; 183:270-7. [DOI: 10.1016/j.jss.2012.12.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
|
16
|
Nguyen DH, Chen NG, Zhang Q, Le HT, Aguilar RJ, Yu YA, Cappello J, Szalay AA. Vaccinia virus-mediated expression of human erythropoietin in tumors enhances virotherapy and alleviates cancer-related anemia in mice. Mol Ther 2013; 21:2054-62. [PMID: 23765443 DOI: 10.1038/mt.2013.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/09/2013] [Indexed: 12/27/2022] Open
Abstract
Recombinant human erythropoietin (rhEPO), a glycoprotein hormone regulating red blood cell (RBC) formation, is used for the treatment of cancer-related anemia. The effect of rhEPO on tumor growth, however, remains controversial. Here, we report the construction and characterization of the recombinant vaccinia virus (VACV) GLV-1h210, expressing hEPO. GLV-1h210 was shown to replicate in and kill A549 lung cancer cells in culture efficiently. In mice bearing A549 lung cancer xenografts, treatment with a single intravenous dose of GLV-1h210 resulted in tumor-specific production and secretion of functional hEPO, which exerted an effect on RBC progenitors and precursors in the mouse bone marrow, leading to a significant increase in the number of RBCs and in the level of hemoglobin. Furthermore, virally expressed hEPO, but not exogenously added rhEPO, enhanced virus-mediated green fluorescent protein (GFP) expression in tumors and subsequently accelerated tumor regression when compared with the treatment with the parental virus GLV-1h68 or GLV-1h209 that expressed a nonfunctional hEPO protein. Moreover, intratumorally expressed hEPO caused enlarged tumoral microvessels, likely facilitating virus spreading. Taken together, VACV-mediated intratumorally expressed hEPO not only enhanced oncolytic virotherapy but also simultaneously alleviated cancer-related anemia.
Collapse
Affiliation(s)
- Duong H Nguyen
- Department of Biochemistry, Rudolph Virchow Center for Experimental Biomedicine, and Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells.
Collapse
|
18
|
Li Y, Kundu P, Seow SW, de Matos CT, Aronsson L, Chin KC, Kärre K, Pettersson S, Greicius G. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 2012; 33:1231-8. [PMID: 22461519 DOI: 10.1093/carcin/bgs137] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is increasingly recognized as a major contributor of human colorectal cancer (CRC). While gut microbiota can trigger inflammation in the intestinal tract, the precise signaling pathways through which host cells respond to inflammatory bacterial stimulation are unclear. Here, we show that gut microbiota enhances intestinal tumor load in the APC(Min/+) mouse model of CRC. Furthermore, systemic anemia occurs coincident with rapid tumor growth, suggesting a role for intestinal barrier damage and erythropoiesis-stimulating mitogens. Short-term stimulation assays of murine colonic tumor cells reveal that lipopolysaccharide, a microbial cell wall component, can accelerate cell growth via a c-Jun/JNK activation pathway. Colonic tumors are also infiltrated by CD11b+ myeloid cells expressing high levels of phospho-STAT3 (p-Tyr705). Our results implicate the role of gut microbiota, through triggering the c-Jun/JNK and STAT3 signaling pathways in combination with anemia, in the acceleration of tumor growth in APC(Min/+) mice.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Joshi D, Tsui J, Yu R, Shiwen X, Selvakumar S, Abraham DJ, Baker DM. Potential of Novel EPO Derivatives in Limb Ischemia. Cardiol Res Pract 2012; 2012:213785. [PMID: 22462027 PMCID: PMC3296231 DOI: 10.1155/2012/213785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/12/2011] [Indexed: 12/18/2022] Open
Abstract
Erythropoietin (EPO) has tissue-protective properties, but it increases the risk of thromboembolism by raising the haemoglobin concentration. New generation of EPO derivatives is tissue protective without the haematopoietic side effects. Preclinical studies have demonstrated their effectiveness and safety. This paper summarizes the development in EPO derivatives with emphasis on their potential use in critical limb ischaemia.
Collapse
Affiliation(s)
- Dhiraj Joshi
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Janice Tsui
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Rebekah Yu
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Xu Shiwen
- Centre for Rheumatology, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Sadasivam Selvakumar
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Daryll M. Baker
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| |
Collapse
|
20
|
Doleschel D, Mundigl O, Wessner A, Gremse F, Bachmann J, Rodriguez A, Klingmüller U, Jarsch M, Kiessling F, Lederle W. Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts. J Nucl Med 2012; 53:304-11. [PMID: 22228796 DOI: 10.2967/jnumed.111.091124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The putative presence of the erythropoietin receptor (EpoR) on human cancer cells has given rise to controversial discussion about the use of recombinant human erythropoietin (rhuEpo) for treatment of patients with chemotherapy-induced anemia. In vivo analysis of the EpoR status in tumors could help in elucidating the role of erythropoietin in cancer. Thus, the aim of this study was to develop a targeted EpoR probe for the investigation of EpoR expression in human lung cancer xenografts by fluorescence-mediated tomography. METHODS Epo-Cy5.5 was generated by coupling Cy5.5 to rhuEpo. In vitro binding assays were performed using the EpoR-positive non-small cell lung cancer (NSCLC) cell lines A549 (lower EpoR expression) and H838 (higher EpoR expression), the EpoR-negative cell line H2030, and EpoR/EGFP-overexpressing HeLa cells. In vivo specificity of Epo-Cy5.5 was confirmed by competition analyses using micro-CT/fluorescence-mediated tomography fusion imaging. Biodistribution was analyzed over 50 h after injection. Binding of Epo-Cy5.5 was validated on tumor cryosections. RESULTS After intravenous injection, the probe was rapidly cleared from the circulation. An accumulation was observed in liver and kidneys, with a maximum at 7 h after injection followed by a decline, indicating renal excretion. Almost constant accumulation of Epo-Cy5.5 was found in bone marrow and tumors, indicating specific receptor binding. The probe allowed the discrimination between H838 with higher EpoR expression (89.54 ± 15.91 nM at 25 h) and A549 tumors with lower EpoR expression (60.45 ± 14.59 nM at 25 h, P < 0.05). Tumor accumulation of Epo-Cy5.5 could be significantly reduced by adding unlabeled rhuEpo (P < 0.05 at 4, 7, and 24 h). In vitro validation confirmed specific binding of Epo-Cy5.5 to the tumor cells, and this binding correlated with the EpoR expression level. Binding was also observed on endothelial cells. Vessel density and Epo-Cy5.5 binding on endothelial cells were comparable. CONCLUSION Epo-Cy5.5 allows the longitudinal analysis of EpoR expression in tumors and thereby can investigate the influence of erythropoietin on EpoR expression, tumor growth, and angiogenesis.
Collapse
Affiliation(s)
- Dennis Doleschel
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH-Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abhold E, Rahimy E, Wang-Rodriguez J, Blair KJ, Yu MA, Brumund KT, Weisman RA, Ongkeko WM. Recombinant human erythropoietin promotes the acquisition of a malignant phenotype in head and neck squamous cell carcinoma cell lines in vitro. BMC Res Notes 2011; 4:553. [PMID: 22188703 PMCID: PMC3285115 DOI: 10.1186/1756-0500-4-553] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/21/2011] [Indexed: 11/10/2022] Open
Abstract
Background Recent studies indicate an increase in tumor progression and recurrence in head and neck squamous cell carcinomas (HNSCC) of cancer patients taking recombinant human erythropoietin (rhEpo) for anemia. This study was undertaken to investigate the potential role of rhEpo in invasion, proliferation, and cisplatin-induced cell death in HNSCC cell lines. Methods The following experiments were performed with two HNSCC cell lines, UMSCC-10B and UMSCC-22B. Presence of EpoR in both cell lines was determined by western blot and quantitative PCR. Colorimetric MTS assays and clonogenic assays were used to study the effect of rhEpo at pharmacologically relevant doses on cell proliferation. Matrigel invasion assays were performed in order to determine effects of exogenous rhEpo on invasive abilities. Clonogenic assays were also used to study potential cytoprotective effects of rhEpo against cisplatin. Immunoblotting was done to analyze the effect of rhEpo on Akt phosphorylation. Finally, MTS and TUNEL assays were performed to test our hypothesis that Akt activation by PI3K was involved in rhEpo-mediated cisplatin resistance. Results HNSCC cell lines were shown to express Epo receptor (EpoR). RhEpo increased invasion 1.8-fold in UMSCC-10B and 2.6-fold in UMSCC-22B compared to control. RhEpo at 10 U/ml increased cell proliferation by 41% and 53% in UMSCC-10B and UMSCC-22B, respectively, and colony formation by 1.5-fold and 1.8-fold. UMSCC-10B treated with cisplatin and exposed to rhEpo at 1 and 10 U/ml resulted in a 1.7-fold and 3.0-fold increase in colony number compared to control, respectively. UMSCC-22B treated with cisplatin and rhEpo at 1 or 10 U/ml resulted in ~2.5-fold increase in colony number. A TUNEL assay demonstrated a 30.5% and 76.5% increase in survival in UMSCC-10B and UMSCC-22B cells, respectively, in cisplatin and rhEpo-treated cells compared to cisplatin alone. MTS assay showed similar cytoprotective effects. Western blot revealed increased phosphorylation of Akt upon exposure of HNSCC cell lines to rhEpo. MTS assay and TUNEL analyses implicate Akt as a likely contributor to regulation of rhEpo-mediated cytoprotection. Conclusions The results demonstrate that, in HNSCC cells expressing functional EpoR, rhEpo promotes invasion, cell proliferation, and induces resistance to cisplatin, which may contribute to tumor progression.
Collapse
Affiliation(s)
- Eric Abhold
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, San Diego, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rupertus K, Senger S, Menger MD, Schilling MK, Kollmar O. Darbepoetin-α promotes neovascularization and cell proliferation in established colorectal liver metastases. J Surg Res 2011; 176:517-23. [PMID: 22137989 DOI: 10.1016/j.jss.2011.09.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND The erythropoietin-analogue darbepoetin-α (DPO) improves liver function and regeneration after hepatectomy (Phx), however, also enhances Phx-induced tumor cell engraftment and neovascularization. Because it is unknown whether DPO also enhances the growth of established tumors, we herein studied the effect of DPO on established colorectal liver metastases after Phx. METHODS CT26.WT cells were implanted into the liver of BALB/c mice. Five days after tumor establishment, animals underwent 50% Phx and received 10 μg/kgBW DPO or saline. Non-Phx animals with DPO or saline-treatment served as controls. Seven days after Phx tumors were analyzed regarding blood vessel formation, leukocyte adhesion, cell proliferation, apoptotic cell death, and growth using intravital fluorescence microscopy, histology, and immunohistochemistry. RESULTS The growth of established colorectal liver metastases was slightly stimulated after DPO-treatment in hepatectomized and non-hepatectomized animals. However, tumor vessel formation and tumor cell proliferation were significantly enhanced after DPO-treatment in hepatectomized and non-hepatectomized mice compared with controls. Apoptotic cell death and leukocyte-endothelial cell interaction were significantly reduced after DPO-treatment. CONCLUSION Our study indicates that DPO-treatment promotes neovascularization and cell proliferation in established colorectal liver metastases of hepatectomized and non-hepatectomized mice. DPO-application in patients with colorectal liver metastases might promote tumor progression and should therefore be avoided.
Collapse
Affiliation(s)
- Kathrin Rupertus
- Department of General, Visceral, Vascular and Pediatric Surgery, University of Saarland, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
23
|
Recombinant human erythropoietin suppresses endothelial cell apoptosis and reduces the ratio of Bax to Bcl-2 proteins in the aortas of apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2011; 57:424-33. [PMID: 21242808 DOI: 10.1097/fjc.0b013e31820d92fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent clinical trials have raised concern that therapy with recombinant human erythropoietin (EPO) may increase cardiovascular disease risk, event rate, and mortality. Endothelial cell apoptosis has been implicated in both atherogenesis and in the destabilization and rupture of atheromatous plaques. In the current study, we observed that EPO and the EPO-mimetic peptide EMP-1 markedly suppressed lipopolysaccharide-induced apoptosis in endothelial cell monolayers. Therapeutic concentrations of EPO upregulated Bcl-2 expression and concurrently diminished expression of Bax, resulting in a net decrease in the ratio of Bax to Bcl-2 protein concentrations. In vivo studies demonstrated that EPO receptor is abundantly expressed in murine aorta and that EPO treatment for 10 weeks markedly decreased the ratio of Bax to Bcl-2 protein in the aortas of apolipoprotein E-deficient mice fed a high-fat diet. To our knowledge, these data are the first to reveal a modulation of regulators of the apoptotic pathway in murine aorta by chronic EPO treatment. These observations imply that long-term administration of EPO may have the potential to affect plaque stability.
Collapse
|
24
|
Sfacteria A, Lanteri G, Grasso G, Macrì B, Mazzullo G. Mast cells in canine mammary gland tumour: number, distribution and EPOR positivity. Vet Comp Oncol 2011; 9:310-5. [PMID: 22077413 DOI: 10.1111/j.1476-5829.2011.00277.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Erythropoietin (EPO)-mediated mitogenic and anti-apoptotic effects involve all the cells expressing functional receptors for EPO (EPOR), as demonstrated by in vitro and in vivo studies. EPO shows pleiotropic effects and acts as an endogenous mediator of adaptive tissue response to metabolic stress protecting tissues from different injuries. Recently, the EPO/EPOR complex has been identified in several neoplastic cell lines and solid tumours. In this study, the authors investigated the mast cells (MCs) number, distribution and their immunoreactivity for EPOR in normal, dysplastic and neoplastic canine mammary gland. The results showed that MCs were more numerous in displastic glands compared with normal and neoplastic glands. As far as the EPOR immunoreactivity is concerned, we did not observe MCs reaction on cancer, in contrast with previously published data where epithelium of neoplastic gland showed an increase in EPOR expression along with the neoplastic progression. Overall, our results might be suggestive for MCs role in oncogenesis and offer new insight regarding to the expression of EPOR in mammary gland cancer in dog.
Collapse
Affiliation(s)
- A Sfacteria
- Unit of Pathology, Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Messina, Messina, Italy.
| | | | | | | | | |
Collapse
|
25
|
Traitement par agent stimulant l’érythropoïèse, une double problématique. ACTUALITES PHARMACEUTIQUES 2011. [DOI: 10.1016/s0515-3700(11)70962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Abstract
Erythropoiesis is the process whereby erythroid progenitor cells differentiate and divide, resulting in increased numbers of red blood cells (RBCs). RBCs contain hemoglobin, the main oxygen carrying component in blood. The large number of RBCs found in blood is required to support the prodigious consumption of oxygen by tissues as they undergo oxygen-dependent processes. Erythropoietin is a hormone that when it binds and activates Epo receptors resident on the surface of cells results in stimulation of erythropoiesis. Successful cloning of the EPO gene allowed for the first time production of recombinant human erythropoietin and other erythropoiesis stimulating agents (ESAs), which are used to treat anemia in patients. In this chapter, the control of Epo levels and erythropoiesis, the various forms of ESAs used commercially, and their physical and biological properties are discussed.
Collapse
Affiliation(s)
- Steve Elliott
- Department of Hematology, Amgen, Inc., Thousand Oaks, CA 91320, USA.
| |
Collapse
|
27
|
Bennett CL, Lai SY, Henke M, Barnato SE, Armitage JO, Sartor O. Association between pharmaceutical support and basic science research on erythropoiesis-stimulating agents. ACTA ACUST UNITED AC 2010; 170:1490-8. [PMID: 20837837 DOI: 10.1001/archinternmed.2010.309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND To our knowledge, no prior research has evaluated the association between pharmaceutical industry funding and basic science research results. When erythropoiesis-stimulating agents (ESAs) were licensed to treat chemotherapy-associated anemia, basic science concerns related to potential cancer stimulation were raised. We evaluated associations between pharmaceutical industry support and reported findings evaluating ESA effects on cancer cells. METHODS Articles identified in MEDLINE and EMBASE databases (1988-2008) investigating basic science findings related to ESA administration in the solid tumor setting were reviewed. Outcomes included information on erythropoietin receptors (EpoRs), Epo-induced signaling events, cellular function, and qualitative conclusions. Information on study funding (academic investigators with no reported funding from ESA manufacturers [64 studies], academic investigators with grant funding from ESA manufacturers [7 studies], and investigators employed by the ESA manufacturers [3 studies]) was evaluated. Some studies did not include information on each outcome. RESULTS Investigators without funding from ESA manufacturers were more likely than academic investigators with such funding or investigators employed by ESA manufacturers to identify EpoRs on solid tumor cells (100%, 60%, and 67%, respectively; P = .009), Epo-induced signaling events (94%, 0%, and 0%, respectively; P = .001), or changes in cellular function (57%, 0%, and 0%, respectively; P = .007) and to conclude that ESAs had potentially harmful effects on cancer cells (57%, 0%, and 0%, respectively; P = .008). CONCLUSIONS Researchers who do not have pharmaceutical industry support are more likely than those with pharmaceutical support to identify detrimental in vitro effects of ESAs. The potential for conflicts of interest to affect basic science research should be considered.
Collapse
Affiliation(s)
- Charles L Bennett
- The South Carolina College of Pharmacy, South Carolina Center of Economic Excellence for Medication Safety and Efficacy, and Southern Network on Adverse Reactions, Columbia, USA
| | | | | | | | | | | |
Collapse
|
28
|
Darbepoetin-α Enhances Hepatectomy-Associated Stimulation of Colorectal Liver Metastatic Growth. Ann Surg 2010; 252:131-41. [DOI: 10.1097/sla.0b013e3181e33915] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood 2010; 115:4264-72. [PMID: 20124513 DOI: 10.1182/blood-2009-10-248666] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Erythropoiesis stimulating agents (ESAs) have been reported to activate erythropoietin receptors (EpoR) on cell types, including endothelial, neuronal, renal tubule, and cardiac cells. ESAs have also been reported to promote angiogenesis. However, those findings are controversial and confounded by methodologic issues. We show that EpoR mRNA was detected in essentially all cell types examined, including primary human endothelial, renal, cardiac, and neuronal cells but 10- to 100-fold lower than Epo-responsive cells using quantitative reverse-transcribed polymerase chain reaction. Total endothelial EpoR protein examined using a new monoclonal antibody was low to undetectable. Surface EpoR on endothelial cells was not detected using [(125)I]-rHuEpo surface-binding studies. There was no evidence of ESA-induced intracellular signaling in endothelial cells. There was a similar lack of EpoR expression and signaling in other cell types examined. Experiments were performed examining ESA function on these cells. An in vivo rat corneal angiogenesis assay demonstrated neo-vessel formation in response to recombinant human vascular endothelial growth factor (rHuVEGF). However, recombinant mouse Epo did not induce vessel formation. Similarly, ESAs did not reproducibly provide cytoprotection to neuronal, renal, or cardiac cells. Taken together, our data challenge the notion of presence or function of EpoR on nonhematopoietic cells, and call into question the preclinical basis for clinical studies exploring direct, "pleiotropic" actions of ESAs.
Collapse
|
30
|
Hadland BK, Longmore GD. Erythroid-Stimulating Agents in Cancer Therapy: Potential Dangers and Biologic Mechanisms. J Clin Oncol 2009; 27:4217-26. [DOI: 10.1200/jco.2008.21.6945] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Erythropoietin-stimulating agents (ESAs) were originally designed to replace endogenous erythropoietin in patients with anemia secondary to renal failure. Their use has subsequently been expanded to include patients with anemia of other causes, including cancer patients, in whom deficiency of erythropoietin, per se, is not the primary cause of anemia. Although early studies showed promise of ESA administration in reducing the need for transfusions and improving the quality of life in cancer patients, several large randomized clinical trials have recently shown a potential detrimental effect of ESA administration on tumor progression and survival in these patients. These studies have called into question the safety of ESAs as supportive therapy in patients being treated for oncologic conditions. However, numerous questions remain to be addressed regarding the design of these studies, the effect of various targeted hemoglobin levels, and the potential biologic mechanisms proposed to explain promotion of tumor progression and reduced survival.
Collapse
Affiliation(s)
- Brandon K. Hadland
- From the Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; and Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Gregory D. Longmore
- From the Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; and Department of Medicine, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
31
|
Song BJ, Cai H, Tsai JC, Chang S, Forbes M, Del Priore LV. Intravitreal Recombinant Human Erythropoietin: A Safety Study in Rabbits. Curr Eye Res 2009; 33:750-60. [DOI: 10.1080/02713680802366602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Brian J. Song
- Brown Glaucoma Research Laboratory, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hui Cai
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - James C. Tsai
- Brown Glaucoma Research Laboratory, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Stanley Chang
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Max Forbes
- Brown Glaucoma Research Laboratory, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Lucian V. Del Priore
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
32
|
Merchionne F, Dammacco F. Biological functions and therapeutic use of erythropoiesis-stimulating agents: perplexities and perspectives. Br J Haematol 2009; 146:127-41. [PMID: 19388936 DOI: 10.1111/j.1365-2141.2009.07702.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Randomized clinical studies, carried out in patients with haematological malignancies and with solid tumours, have consistently demonstrated that treatment with recombinant human erythropoietin (Epo) increases haemoglobin levels, reduces blood transfusion requirements, and improves the quality of life. In addition, identification of erythropoietin receptor (EpoR) expression on many types of non-erythroid and cancer cells has spurred an interest in the extra-haematological activities of Epo itself and other erythropoiesis-stimulating agents (ESAs). Epo and its derivatives have emerged as major tissue-protective cytokines in ischaemic and degenerative damage of cardiovascular, neurological and renal diseases, while their angiogenetic and immunomodulatory properties indicate that their therapeutic potential may extend well beyond erythropoiesis alone. Both preclinical and clinical data, however, have suggested that they may contribute to tumour progression and prejudice survival when administered to anaemic cancer patients, though the results are equivocal and the assumed mechanisms by which tumour growth could be promoted are not fully understood. While these findings offer new perspectives, they nonetheless demand caution in the employment of ESAs. Further, well-designed experimental and clinical studies are warranted.
Collapse
Affiliation(s)
- Francesca Merchionne
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari 70124, Italy
| | | |
Collapse
|
33
|
Erythropoietin promotes the growth of tumors lacking its receptor and decreases survival of tumor-bearing mice by enhancing angiogenesis. Neoplasia 2009; 10:932-9. [PMID: 18714393 DOI: 10.1593/neo.08140] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 11/18/2022]
Abstract
Erythropoietin (Epo), a known hematopoietic growth factor, has been reported to promote tumor growth and angiogenesis in Epo receptor (EpoR)-positive tumors, but its effects on EpoR-negative tumors have not been clearly shown. Here, we show that Epo accelerates the growth of EpoR-negative tumors by promoting tumor angiogenesis. Mice were inoculated with Lewis lung carcinoma cells and treated with Epo. Erythropoietin accelerated tumor growth and increased intratumoral microvessel density, although it did not accelerate Lewis lung carcinoma cell tumor proliferation in vitro. To observe the direct effect of Epo on endothelial cells, we examined human dermal microvascular endothelial cells (HMVECs) that expressed EpoR. Erythropoietin induced the proliferation of HMVECs and protected them from H2O2-induced cell death. Erythropoietin activated the extracellular signal-regulated kinase signaling pathway and up-regulated the expression of the downstream antiapoptotic protein Bcl-xL in HMVECs. Moreover, in both the absence and presence of tumors, in vivo treatment of mice with Epo increased circulating endothelial progenitor cells. To investigate the role of Epo in a primary tumor model, we inoculated the chemical carcinogen methylcholanthrene (MCA) subcutaneously into mice at two doses, a high or a low dose, which induced fibrosarcoma, and treated them with Epo. Erythropoietin promoted tumor growth after MCA inoculation at both doses and decreased the overall survival of the mice inoculated with the high-dose MCA. However, Epo did not increase the incidence of fibrosarcoma at either dose. Lewis lung carcinoma cells and MCA-induced fibrosarcomas did not express EpoR. These results suggest that Epo accelerates the growth of tumors that lack EpoR expression by promoting tumor angiogenesis.
Collapse
|
34
|
Arcasoy MO. Erythropoiesis-Stimulating Agent Use in Cancer: Preclinical and Clinical Perspectives. Clin Cancer Res 2008; 14:4685-90. [DOI: 10.1158/1078-0432.ccr-08-0264] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Chabowska AM, Sulkowska M, Chabowski A, Wincewicz A, Koda M, Sulkowski S. Erythropoietin and erythropoietin receptor in colorectal cancer. Int J Surg Pathol 2008; 16:269-76. [PMID: 18487221 DOI: 10.1177/1066896908315796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Erythropoietin via erythropoietin receptor effectively prevents anemia, giving reasons for a clinical use of erythropoietin in patients with colorectal cancers. However, erythropoietin seems to promote survival of the neoplastic cells in hypoxic environment. The aim of this study was to evaluate immunohistochemically the expression of erythropoietin and erythropoietin receptor in 136 primary colorectal cancers with a correlation to different anatomo-clinical features. Erythropoietin correlated with erythropoietin receptor in colorectal cancers (r = 0.547, P < .00001). Erythropoietin and erythropoietin receptor expressions were statistically higher in adenocarcinomas versus mucinous carcinomas (P = .05 and P = .03, respectively) and in moderately (G2) versus poorly differentiated (G3) tumors (P = .001 and P = .02, respectively). This in vivo study is the first study that provides evidences for the presence of erythropoietin and erythropoietin receptor in human colorectal cancer. The expressions of these proteins strictly depended on grading because the better histological differentiation probably comes from trophic influence of erythropoietin and erythropoietin receptor.
Collapse
Affiliation(s)
- Anna M Chabowska
- Department of Clinical and General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
36
|
Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ. The erythropoietin receptor in normal and cancer tissues. Crit Rev Oncol Hematol 2008; 67:39-61. [PMID: 18434185 DOI: 10.1016/j.critrevonc.2008.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/25/2008] [Accepted: 03/19/2008] [Indexed: 01/27/2023] Open
Abstract
The hormone erythropoietin (EPO) is essential for the survival, proliferation and differentiation of the erythrocytic progenitors. The EPO receptor (EPO-R) of erythrocytic cells belongs to the cytokine class I receptor family and signals through various protein kinases and STAT transcription factors. The EPO-R is also expressed in many organs outside the bone marrow, suggesting that EPO is a pleiotropic anti-apoptotic factor. The controversial issue as to whether the EPO-R is functional in tumor tissue is critically reviewed. Importantly, most studies of EPO-R detection in tumor tissue have provided falsely positive results because of the lack of EPO-R specific antibodies. However, endogenous EPO appears to be necessary to maintain the viability of endothelial cells and to promote tumor angiogenesis. Although there is no clinical proof that the administration of erythropoiesis stimulating agents (ESAs) promotes tumor growth and mortality, present recommendations are that (i) ESAs should be administered at the lowest dose sufficient to avoid the need for red blood cell transfusions, (ii) ESAs should not be used in patients with active malignant disease not receiving chemotherapy or radiotherapy, (iii) ESAs should be discontinued following the completion of a chemotherapy course, (iv) the target Hb should be 12 g/dL and not higher and (v) the risks of shortened survival and tumor progression have not been excluded when ESAs are dosed to target Hb <12 g/dL.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
| | | | | | | |
Collapse
|
37
|
Rad FH, Ulusakarya A, Gad S, Sibony M, Juin F, Richard S, Machover D, Uzan G. Novel somatic mutations of the VHL gene in an erythropoietin-producing renal carcinoma associated with secondary polycythemia and elevated circulating endothelial progenitor cells. Am J Hematol 2008; 83:155-8. [PMID: 17696210 DOI: 10.1002/ajh.21019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutation of the VHL tumor suppressor gene is a frequent genetic event in the carcinogenesis of renal-cell carcinoma (RCC). Circulating endothelial progenitor cells (EPCs) have important role in neoangiogenesis, and mobilization of these cells is induced by various growth factors including erythropoietin (EPO). With this regard, we analyzed a patient with EPO-producing clear-cell RCC and polycythemia. DNA extraction and sequencing analysis of the VHL gene were performed from the tumor and the adjacent normal renal tissue. Isolated and cultured circulating EPCs from the blood taken with phlebotomy were characterized by flow cytometry and immunofluorescence analysis. This RCC had two novel somatic mutations of the VHL gene, p.Leu128Pro and p.Asn131Lys. Culture of blood mononuclear cells revealed a strikingly high number of endothelial cell colonies derived from EPCs (nearly 10-fold more than in controls). Elevated number of circulating EPCs seems to be related to high EPO production from RCC with novel double somatic mutation of the VHL gene in this patient.
Collapse
|
38
|
Tsai JC. Safety of intravitreally administered recombinant erythropoietin (an AOS thesis). TRANSACTIONS OF THE AMERICAN OPHTHALMOLOGICAL SOCIETY 2008; 106:459-472. [PMID: 19277250 PMCID: PMC2646431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
PURPOSE This study investigated the safety and potential retinal toxicity of intravitreally administered erythropoietin (EPO) in a rodent animal model. METHODS Forty-two healthy Sprague-Dawley rats were divided into one of 7 groups (N = 6 per group): control, sham injection, vehicle injection, and EPO injections of 50 ng (5 U), 100 ng (10 U), 250 ng (25 U), and 625 ng (62.5 U). Only the right eye was treated in each animal. Standard full-field dark- and light-adapted electroretinography (ERG) was obtained at 1 day prior to injection and then on postinjection days 3, 7, 14, and 21. Intraocular pressure (IOP) was measured at the conclusion of each ERG recording. Animals were sacrificed and the eyes underwent histologic examination with light microscopy and hematoxylin-eosin staining. RESULTS Rod peak, scotopic, and photopic responses (amplitude and latency) were not statistically different in the animals receiving 50 to 100 ng EPO. In the 250-ng group, the photopic b-wave amplitude at day 21 was elevated (P <.05), whereas in the 625-ng group, the scotopic OP3 latency ratio was higher at baseline (P <.05). No significant histologic abnormalities were noted except for one animal (625-ng group) with qualitative differences in retinal layer thickness and cellular density. CONCLUSIONS Intravitreal administration of EPO (at doses up to 625 ng) does not cause adverse effects on retinal function as assessed by ERG. Moreover, single intravitreal dosing does not appear to elicit retinal neovascularization. Further investigation is warranted to assess fully the potential of this neuroprotective cytokine as a treatment for glaucoma.
Collapse
Affiliation(s)
- James C Tsai
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
39
|
Leo C, Horn LC, Rauscher C, Hentschel B, Liebmann A, Hildebrandt G, Höckel M. Expression of erythropoietin and erythropoietin receptor in cervical cancer and relationship to survival, hypoxia, and apoptosis. Clin Cancer Res 2007; 12:6894-900. [PMID: 17145806 DOI: 10.1158/1078-0432.ccr-06-1285] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Physiologically, hypoxia induces the expression of erythropoietin (Epo) in adult kidney cells. Epo, in turn, acts on the Epo receptor (EpoR) in RBC precursors to stimulate growth and prevent apoptosis. Because hypoxia plays a major role in the malignant progression of tumors and Epo and its receptors have also been detected in malignant tumors, we investigated the expression of Epo and EpoR and their relationship with hypoxia, proliferation, apoptosis, and clinicopathologic variables in cervical cancer. EXPERIMENTAL DESIGN Intratumoral oxygen measurement and needle biopsies of the tumors were done in 48 patients with cervical cancer. The obtained tissue was analyzed by immunohistochemistry with antibodies against Epo, EpoR, and Ki-67 as well as by terminal deoxynucleotidyl transferase-mediated deoxyuracil triphosphate nick-end labeling assays. RESULTS Epo and EpoR were expressed in 88% and 92% of samples, respectively. Cervical cancers with higher Epo expression showed a significantly reduced overall survival (3 years, 50.0% versus 80.6%; P = 0.0084). Epo and EpoR expression correlated significantly with apoptosis (r = 0.49, P = 0.001 and r = 0.36, P = 0.021). Furthermore, EpoR expression correlated significantly with tumor size (r = 0.32, P = 0.032) and was significantly associated with the presence of lymphovascular space involvement (P = 0.037). However, we observed no correlation between Epo or EpoR expression and intratumoral hypoxia, although in well-oxygenated tumors, EpoR localized significantly more often to the invasion front (P = 0.047). CONCLUSIONS This study analyzes Epo/EpoR expression and their relationship with intratumoral pO(2) levels as well as with survival in patients with cervical cancer. The data suggest a critical role of the endogenous Epo/EpoR system in cervical cancer.
Collapse
Affiliation(s)
- Cornelia Leo
- Department of Gynecology, Leipzig University, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kokhaei P, Abdalla AO, Hansson L, Mikaelsson E, Kubbies M, Haselbeck A, Jernberg-Wiklund H, Mellstedt H, Osterborg A. Expression of erythropoietin receptor and in vitro functional effects of epoetins in B-cell malignancies. Clin Cancer Res 2007; 13:3536-44. [PMID: 17575216 DOI: 10.1158/1078-0432.ccr-06-2828] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Erythropoietin (EPO) and EPO receptor (EPO-R) expression have been reported in solid tumors and are claimed to regulate tumor growth; however, no data have been published on this issue in B-cell malignancies or normal lymphoid cells. This report describes genomic/protein EPO-R expression and in vitro effects of recombinant human EPO (epoetin) in B-cell chronic lymphocytic leukemia (B-CLL), mantle-cell lymphoma (MCL), and multiple myeloma (MM). EXPERIMENTAL DESIGN Blood samples were obtained from patients with B-CLL, MCL, and healthy volunteers, and bone marrow was obtained from MM patients. EPO-R mRNA was detected by reverse transcription-PCR. EPO-R surface expression was investigated by flow cytometry using digoxigenin-labeled epoetin and polyclonal rabbit anti-EPO-R antibody for intracellular receptor. Tumor cell stimulation was determined in vitro using [(3)H]thymidine incorporation and CD69 expression after exposure to epoetin alpha or beta or darbepoetin alpha. RESULTS EPO-R mRNA was detected in mononuclear cells from 32 of 41 (78%) B-CLL and 5 of 7 (71%) MCL patients, and 21 of 21 (100%) MM samples. Expression was also detected in highly purified T cells from six of eight B-CLL patients, four of four MM patients, and normal donor B and T cells. Surface EPO-R protein was not detected. Intracellular EPO-R staining with anti-EPO-R antibodies was unspecific. No tumor-stimulatory effect was observed with high epoetin concentrations. CONCLUSIONS EPO-R gene is frequently expressed in lymphoid malignancies and normal B and T cells. However, there was no surface protein expression and no epoetin-induced in vitro stimulation of tumor B cells, indicating that epoetin therapy in vivo is likely to be safe in patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Parviz Kokhaei
- Department of Oncology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hardee ME, Cao Y, Fu P, Jiang X, Zhao Y, Rabbani ZN, Vujaskovic Z, Dewhirst MW, Arcasoy MO. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression. PLoS One 2007; 2:e549. [PMID: 17579721 PMCID: PMC1891087 DOI: 10.1371/journal.pone.0000549] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 05/29/2007] [Indexed: 12/22/2022] Open
Abstract
Background The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. Methodology/Principal Findings Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody) with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. Conclusions/Significance These data indicate that erythropoietin is an important angiogenic factor that regulates the induction of tumor cell-induced neovascularization and growth during the initial stages of tumorigenesis. The suppression of tumor angiogenesis and progression by erythropoietin blockade suggests that erythropoietin may constitute a potential target for the therapeutic modulation of angiogenesis in cancer.
Collapse
Affiliation(s)
- Matthew E. Hardee
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yiting Cao
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ping Fu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xiaohong Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yulin Zhao
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Zahid N. Rabbani
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Murat O. Arcasoy
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Ceelen W, Boterberg T, Smeets P, Van Damme N, Demetter P, Zwaenepoel O, Cesteleyn L, Houtmeyers P, Peeters M, Pattyn P. Recombinant human erythropoietin alpha modulates the effects of radiotherapy on colorectal cancer microvessels. Br J Cancer 2007; 96:692-700. [PMID: 17299396 PMCID: PMC2360077 DOI: 10.1038/sj.bjc.6603568] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent data suggest that recombinant human erythropoietin (rhEPO) modulates tumour growth and therapy response. The purpose of the present study was to examine the modulation of radiotherapy (RT) effects on tumour microvessels by rhEPO in a rat colorectal cancer model. Before and after 5 × 5 Gy of RT, dynamic contrast-enhanced -magnetic resonance imaging was performed and endothelial permeability surface product (PS), plasma flow (F), and blood volume (V) were modelled. Imaging was combined with pO2 measurements, analysis of microvessel density, microvessel diameter, microvessel fractal dimension, and expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 α (HIF-1α), Bax, and Bcl-2. We found that RT significantly reduced PS and V in control rats, but not in rhEPO-treated rats, whereas F was unaffected by RT. Oxygenation was significantly better in rhEPO-treated animals, and RT induced a heterogeneous reoxygenation in both groups. Microvessel diameter was significantly larger in rhEPO animals, whereas VEGF expression was significantly lower in the rhEPO group. No differences were observed in HIF-1α, Bax, or Bcl-2 expression. We conclude that rhEPO results in spatially heterogeneous modulation of RT effects on tumour microvessels. Direct effects of rhEPO on neoplastic endothelium are likely to explain these findings in addition to indirect effects induced by increased oxygenation.
Collapse
Affiliation(s)
- W Ceelen
- Department of Surgery, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Osterborg A, Aapro M, Cornes P, Haselbeck A, Hayward CRW, Jelkmann W. Preclinical studies of erythropoietin receptor expression in tumour cells: Impact on clinical use of erythropoietic proteins to correct cancer-related anaemia. Eur J Cancer 2007; 43:510-9. [PMID: 17150352 DOI: 10.1016/j.ejca.2006.10.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/09/2006] [Accepted: 10/24/2006] [Indexed: 12/11/2022]
Abstract
In vitro and animal model studies have shown erythropoietin receptor (Epo-R) mRNA and/or protein may be present in a range of human tumours and cancer cell lines, and erythropoiesis-stimulating agents (ESAs) have been reported to have tumour cell growth-modulating effects. Following a review of the literature, we conclude that considerations must be made when interpreting data from the preclinical studies. First, supraphysiological doses of ESAs were usually used. Second, there are no well validated, commercially available antibodies for identifying the presence and functionality of Epo-R at the protein level, either intracellularly or on the cell surface. Data from previous studies that used antibodies only for Epo-R detection must therefore be interpreted with caution. Together with diverging results in the literature, these methodological limitations indicate that findings from preclinical studies must not be over-translated in terms of their clinical relevance to patients with cancer.
Collapse
Affiliation(s)
- Anders Osterborg
- Department of Oncology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Sinclair AM, Todd MD, Forsythe K, Knox SJ, Elliott S, Begley CG. Expression and function of erythropoietin receptors in tumors. Cancer 2007; 110:477-88. [PMID: 17582631 DOI: 10.1002/cncr.22832] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Safety concerns surrounding the use of recombinant human erythropoietin (Epo) to treat anemia in cancer patients were raised after 2 recent clinical studies reported a worse survival outcome in patients who received epoetin alpha or epoetin beta compared with patients who received placebo. Although those findings contrasted with previous clinical studies, which demonstrated no difference in survival for cancer patients who received erythropoiesis-stimulating agents (ESAs), some investigators have suggested a potential role for ESAs in promoting tumor growth through 1) stimulation of Epo receptors (EpoR) expressed in tumors, 2) stimulation and formation of tumor vessels, and/or 3) enhanced tumor oxygenation. The first and second hypotheses appeared to be supported by some EpoR expression and ESA in vitro studies. However, these conclusions have been challenged because of poor specificity of EpoR-detection methodologies, conflicting data from different groups, and the lack of correlation between in vitro data and in vivo findings in animal tumor models. For this report, the authors reviewed the biology of EpoR in erythropoiesis and compared and contrasted the reported findings on the role of ESAs and EpoR in tumors.
Collapse
|
45
|
Ribatti D, Marzullo A, Longo V, Poliani L. Schwann cells in neuroblastoma express erythropoietin. J Neurooncol 2006; 82:327-8. [PMID: 17164976 DOI: 10.1007/s11060-006-9289-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
|
46
|
Gewirtz DA, Di X, Walker TD, Sawyer ST. Erythropoietin fails to interfere with the antiproliferative and cytotoxic effects of antitumor drugs. Clin Cancer Res 2006; 12:2232-8. [PMID: 16609039 DOI: 10.1158/1078-0432.ccr-05-2287] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Erythropoietin (EPO) therapy is widely used for the prevention and treatment of anemia resulting from cancer chemotherapy. Native EPO regulates erythropoiesis, at least in part, by protecting erythroid progenitor cells from apoptotic cell death. The recent discovery of the EPO receptor (EPOR) on cancer cells raises the concern that EPO therapy might stimulate tumor growth and/or protect cancer cells from drug-induced apoptosis. Therefore, the capacity of EPO to interfere with the effects of conventional chemotherapeutic drugs on proliferation, apoptosis, and the induction of senescence was investigated in MCF-7 and MDA-MB231 breast tumor cells, which express the EPOR as well as in F-MEL erythroleukemia cells. EXPERIMENTAL DESIGN Breast cancer cells and F-MEL leukemic cells were cultured in the presence or absence of EPO and then exposed to antitumor drugs. Cell proliferation was assessed by a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye reduction assay 72 hours after drug exposure. Cytotoxicity was monitored by clonogenic survival. Apoptosis was evaluated either by the terminal deoxyribonucleotide transferase-mediated nick-end labeling assay or fluorescence-activated cell sorting analysis, and senescence was monitored by beta-galactosidase staining. EPO signaling was assessed by monitoring the phosphorylation/activation of specific signaling proteins. RESULTS EPO failed to stimulate the proliferation of MCF-7 or MDA-MB231 breast tumor cells or F-MEL leukemic cells. EPO treatment also failed to interfere with the antiproliferative and/or cytotoxic effects of Adriamycin, Taxol, and tamoxifen in breast tumor cells (or of cytarabine and daunorubicin in F-MEL cells). EPO failed to prevent apoptosis induced by Taxol or senescence induced by Adriamycin in MCF-7 cells. EPO stimulated the activation of extracellular signal-regulated kinase, p38, and c-Jun-NH(2)-kinase in MCF-7 cells but did not activate Akt or signal transducers and activators of transcription 5 (STAT5). EPO failed to activate any of these signaling pathways in MDA-MB231 cells. Cytarabine and daunorubicin interfered with EPO signaling in F-MEL cells. CONCLUSIONS These findings suggest that EPO is unlikely to directly counteract the effectiveness of cancer chemotherapeutic drugs. This may be a consequence of either ineffective signaling through the EPOR or drug-mediated suppression of EPO signaling.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Antagonism
- Drug Screening Assays, Antitumor
- Erythropoietin/pharmacology
- Humans
- Leukemia, Erythroblastic, Acute/drug therapy
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Paclitaxel/pharmacology
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Tamoxifen/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- David A Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
The hemopoietic growth factor erythropoietin (EPO) has been recognized to be a multifunctional cytokine that plays a key role in ischemic preconditioning in the brain and heart. The EPO receptor is expressed widely in the kidney, and we review the important findings from the use of EPO in experimental models of acute renal failure that show that EPO reduces tubular cell death and hence the dysfunction induced by ischemia reperfusion injury, and we explore how these observations may be translated into the clinical arena.
Collapse
Affiliation(s)
- Edward J Sharples
- Center for Experimental Medicine, Nephrology and Critical Care, William Harvey Research Institute, Queen Mary, University of London, London, UK.
| | | |
Collapse
|