1
|
Liu B, Xu Y, Zhang X, Yin X, Zhang Z, Ren B, Zhou W, Liu S. Developing a predictive model for delayed healing of esophagojejunal anastomotic fistula following total gastrectomy based on imaging and clinical inflammatory-nutritional status. Clin Nutr ESPEN 2025; 66:169-178. [PMID: 39814262 DOI: 10.1016/j.clnesp.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/07/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Esophagojejunal anastomotic fistula (EJF) following radical total gastrectomy is a severe perioperative complication in patients with gastric cancer, particularly as delayed fistula healing increases hospitalization costs and leads to poor prognosis. Numerous factors influence the occurrence and progression of EJF, with inflammation and nutritional status being significant contributors to perioperative complications. Therefore, this study aims to investigate the prediction of delayed EJF healing based on postoperative clinical and imaging-related inflammation-nutrition status. METHODS We retrospectively collected data on 315 cases of EJF following radical total gastrectomy for gastric cancer from two centers between 2015 and 2023 (training group: center one with 194 cases, validation group: center two with 121 cases). EJF was diagnosed based on clinical presentation, gastrointestinal imaging, or endoscopic findings. The healing time for EJF was defined as the period from diagnosis to the removal of the abdominal drainage tube, and patients were categorized into early healing and delayed healing groups based on the median healing time. Postoperative abdominal computed tomography(CT) scans and clinical characteristics at the time of EJF diagnosis were collected. Univariate and multivariable logistic regression analyses were performed on the training group data to construct a predictive model (nomogram). The model's performance in both the training and validation groups was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), calibration curves, and decision curve analysis (DCA). RESULT The mean healing time for EJF was 16 ± 7 days (median time: 12 days, range: 4-43 days). Postoperative systemic immune-inflammation index (SII) > 521 × 10ˆ9/L, controlling nutritional status score (CONUT) > 4, nutritional support method, visceral fat index (VFI) < 74.42 cm2/m2, and skeletal muscle index (SMI) < 41.25 cm2/m2 were associated with delayed EJF healing times. A comprehensive model was developed, in the validation group, the model demonstrated an AUC of 0.838 (95 % confidence interval (95 % CI): 0.763-0.912). The DCA and calibration curves indicated a strong predictive consistency and clinical utility of the model.
Collapse
Affiliation(s)
- Bo Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong province, China; Department of General Surgery, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China; The Second Clinical Medical College, Lanzhou University, Chengguan District, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China
| | - Yuan Xu
- The Second Clinical Medical College, Lanzhou University, Chengguan District, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China; Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China; Key Laboratory of Medical Imaging of Gansu Province, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China
| | - Xijie Zhang
- The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong province, China; Department of General Surgery, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China
| | - Xiaojiao Yin
- The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong province, China
| | - Zhoujing Zhang
- The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong province, China
| | - Bo Ren
- Department of General Surgery, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China; The Second Clinical Medical College, Lanzhou University, Chengguan District, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China; The Second Clinical Medical College, Lanzhou University, Chengguan District, Cuiyingmen No.82, Lanzhou 730030, Gansu province, China.
| | - Shuangyong Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong province, China.
| |
Collapse
|
2
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
3
|
Xu M, Jin X, Shen Z. ZAG promotes colorectal cancer cell proliferation and epithelial-mesenchymal transition by promoting lipid synthesis. Open Life Sci 2024; 19:20221007. [PMID: 39711976 PMCID: PMC11662974 DOI: 10.1515/biol-2022-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor characterized by a high degree of invasiveness, and since zinc-α2 glycoprotein (ZAG) has been implicated in the progression of several malignancies, this study was designed to investigate the role of ZAG in CRC. Its expression was assessed using the GEPIA database, and short hairpin RNA (shRNA) interference was conducted to create ZAG knockdown in CRC cell lines. We also conducted lipid synthesis, cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) experiments to elucidate the effects of ZAG expression on CRC, as well as explored the potential underlying mechanistic pathways. Our findings reveal that ZAG is overexpressed in CRC. In vitro, ZAG knockdown resulted in the suppression of lipid production, cell division, and EMT while concurrently promoting apoptosis. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway was found to mediate the effects of ZAG on CRC cells. In conclusion, the downregulation of ZAG can inhibit CRC cell survival, EMT, and lipid production via the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Maotao Xu
- Department of Gastroenterology, The Ninth People’s Hospital of Chongqing, Chognqing, 400700, China
| | - Xingzheng Jin
- Department of Surgery, Southwest University Hospital, Chongqing, 400700, China
| | - Zhouli Shen
- Department of Gastroenterology, The Ninth People’s Hospital of Chongqing, No. 69, Jialing Village, Beibei District, Chognqing, 400700, China
| |
Collapse
|
4
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Geppert J, Rohm M. Cancer cachexia: biomarkers and the influence of age. Mol Oncol 2024; 18:2070-2086. [PMID: 38414161 PMCID: PMC11467804 DOI: 10.1002/1878-0261.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer cachexia (Ccx) is a complex metabolic condition characterized by pronounced muscle and fat wasting, systemic inflammation, weakness and fatigue. Up to 30% of cancer patients succumb directly to Ccx, yet therapies that effectively address this perturbed metabolic state are rare. In recent decades, several characteristics of Ccx have been established in mice and humans, of which we here highlight adipose tissue dysfunction, muscle wasting and systemic inflammation, as they are directly linked to biomarker discovery. To counteract cachexia pathogenesis as early as possible and mitigate its detrimental impact on anti-cancer treatments, identification and validation of clinically endorsed biomarkers assume paramount importance. Ageing was recently shown to affect both the validity of Ccx biomarkers and Ccx development, but the underlying mechanisms are still unknown. Thus, unravelling the intricate interplay between ageing and Ccx can help to counteract Ccx pathogenesis and tailor diagnostic and treatment strategies to individual needs.
Collapse
Affiliation(s)
- Julia Geppert
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Maria Rohm
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
6
|
Ramos CC, Pires J, Gonzalez E, Garcia-Vallicrosa C, Reis CA, Falcon-Perez JM, Freitas D. Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:371-396. [PMID: 39697630 PMCID: PMC11648493 DOI: 10.20517/evcna.2024.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 12/20/2024]
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication. Tumor cells release EVs containing bioactive molecules such as hormones (adrenomedullin, PTHrP), pro-inflammatory cytokines (IL-6), and miRNAs (miR-1304-3p, miR-204-5p, miR-155, miR-425-3p, miR-146b-5p, miR-92a-3p), which can trigger lipolysis and induce the browning of white adipocytes contributing to a cancer cachexia phenotype. On the other hand, adipocyte-derived EVs can reprogram the metabolism of tumor cells by transporting fatty acids and enzymes involved in fatty acid oxidation, resulting in tumor growth and progression. These vesicles also carry leptin and key miRNAs (miR-155-5p, miR-10a-3p, miR-30a-3p, miR-32a/b, miR-21), thereby supporting tumor cell proliferation, metastasis formation, and therapy resistance. Understanding the intricate network underlying EV-mediated communication between tumor cells and adipocytes can provide critical insights into the mechanisms driving cancer cachexia. This review consolidates current knowledge on the crosstalk between tumor cells and adipose tissue mediated by EVs and offers valuable insights for future research. It also addresses controversial topics in the field and possible therapeutic approaches to manage cancer cachexia and ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Cátia C. Ramos
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
| | - José Pires
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | | | | | - Celso A. Reis
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | - Juan M. Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Derio 48160, Spain
- IKERBASQUE Research Foundation, Bilbao 48009, Spain
| | - Daniela Freitas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
| |
Collapse
|
7
|
Chaunzwa TL, Qian JM, Li Q, Ricciuti B, Nuernberg L, Johnson JW, Weiss J, Zhang Z, MacKay J, Kagiampakis I, Bikiel D, Di Federico A, Alessi JV, Mak RH, Jacob E, Awad MM, Aerts HJWL. Body Composition in Advanced Non-Small Cell Lung Cancer Treated With Immunotherapy. JAMA Oncol 2024; 10:773-783. [PMID: 38780929 PMCID: PMC11117154 DOI: 10.1001/jamaoncol.2024.1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/13/2023] [Indexed: 05/25/2024]
Abstract
Importance The association between body composition (BC) and cancer outcomes is complex and incompletely understood. Previous research in non-small-cell lung cancer (NSCLC) has been limited to small, single-institution studies and yielded promising, albeit heterogeneous, results. Objectives To evaluate the association of BC with oncologic outcomes in patients receiving immunotherapy for advanced or metastatic NSCLC. Design, Setting, and Participants This comprehensive multicohort analysis included clinical data from cohorts receiving treatment at the Dana-Farber Brigham Cancer Center (DFBCC) who received immunotherapy given alone or in combination with chemotherapy and prospectively collected data from the phase 1/2 Study 1108 and the chemotherapy arm of the phase 3 MYSTIC trial. Baseline and follow-up computed tomography (CT) scans were collected and analyzed using deep neural networks for automatic L3 slice selection and body compartment segmentation (skeletal muscle [SM], subcutaneous adipose tissue [SAT], and visceral adipose tissue). Outcomes were compared based on baseline BC measures or their change at the first follow-up scan. The data were analyzed between July 2022 and April 2023. Main Outcomes and Measures Hazard ratios (HRs) for the association of BC measurements with overall survival (OS) and progression-free survival (PFS). Results A total of 1791 patients (878 women [49%]) with NSCLC were analyzed, of whom 487 (27.2%) received chemoimmunotherapy at DFBCC (DFBCC-CIO), 825 (46.1%) received ICI monotherapy at DFBCC (DFBCC-IO), 222 (12.4%) were treated with durvalumab monotherapy on Study 1108, and 257 (14.3%) were treated with chemotherapy on MYSTIC; median (IQR) ages were 65 (58-74), 66 (57-71), 65 (26-87), and 63 (30-84) years, respectively. A loss in SM mass, as indicated by a change in the L3 SM area, was associated with worse oncologic outcome across patient groups (HR, 0.59 [95% CI, 0.43-0.81] and 0.61 [95% CI, 0.47-0.79] for OS and PFS, respectively, in DFBCC-CIO; HR, 0.74 [95% CI, 0.60-0.91] for OS in DFBCC-IO; HR, 0.46 [95% CI, 0.33-0.64] and 0.47 [95% CI, 0.34-0.64] for OS and PFS, respectively, in Study 1108; HR, 0.76 [95% CI, 0.61-0.96] for PFS in the MYSTIC trial). This association was most prominent among male patients, with a nonsignificant association among female patients in the MYSTIC trial and DFBCC-CIO cohorts on Kaplan-Meier analysis. An increase of more than 5% in SAT density, as quantified by the average CT attenuation in Hounsfield units of the SAT compartment, was associated with poorer OS in 3 patient cohorts (HR, 0.61 [95% CI, 0.43-0.86] for DFBCC-CIO; HR, 0.62 [95% CI, 0.49-0.79] for DFBCC-IO; and HR, 0.56 [95% CI, 0.40-0.77] for Study 1108). The change in SAT density was also associated with PFS for DFBCC-CIO (HR, 0.73; 95% CI, 0.54-0.97). This was primarily observed in female patients on Kaplan-Meier analysis. Conclusions and Relevance The results of this multicohort study suggest that loss in SM mass during systemic therapy for NSCLC is a marker of poor outcomes, especially in male patients. SAT density changes are also associated with prognosis, particularly in female patients. Automated CT-derived BC measurements should be considered in determining NSCLC prognosis.
Collapse
Affiliation(s)
- Tafadzwa L. Chaunzwa
- Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jack M. Qian
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Qin Li
- AstraZeneca, Cambridge, England and Waltham, Massachusetts
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Leonard Nuernberg
- Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands
| | - Justin W. Johnson
- Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
| | - Jakob Weiss
- Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
- Department of Diagnostic and Interventional Radiology, University Freiburg, Freiburg im Breisgau, Germany
| | - Zhongyi Zhang
- Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
| | - Jamie MacKay
- AstraZeneca, Cambridge, England and Waltham, Massachusetts
| | | | - Damian Bikiel
- AstraZeneca, Cambridge, England and Waltham, Massachusetts
| | | | - Joao V. Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Raymond H. Mak
- Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Etai Jacob
- AstraZeneca, Cambridge, England and Waltham, Massachusetts
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hugo J. W. L. Aerts
- Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
8
|
Wang Q, Su Y, Sun R, Xiong X, Guo K, Wei M, Yang G, Ru Y, Zhang Z, Li J, Zhang J, Qiao Q, Li X. MIIP downregulation drives colorectal cancer progression through inducing peri-cancerous adipose tissue browning. Cell Biosci 2024; 14:12. [PMID: 38245780 PMCID: PMC10800076 DOI: 10.1186/s13578-023-01179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The enrichment of peri-cancerous adipose tissue is a distinctive feature of colorectal cancer (CRC), accelerating disease progression and worsening prognosis. The communication between tumor cells and adjacent adipocytes plays a crucial role in CRC advancement. However, the precise regulatory mechanisms are largely unknown. This study aims to explore the mechanism of migration and invasion inhibitory protein (MIIP) downregulation in the remodeling of tumor cell-adipocyte communication and its role in promoting CRC. RESULTS MIIP expression was found to be decreased in CRC tissues and closely associated with adjacent adipocyte browning. In an in vitro co-culture model, adipocytes treated with MIIP-downregulated tumor supernatant exhibited aggravated browning and lipolysis. This finding was further confirmed in subcutaneously allografted mice co-injected with adipocytes and MIIP-downregulated murine CRC cells. Mechanistically, MIIP interacted with the critical lipid mobilization factor AZGP1 and regulated AZGP1's glycosylation status by interfering with its association with STT3A. MIIP downregulation promoted N-glycosylation and over-secretion of AZGP1 in tumor cells. Subsequently, AZGP1 induced adipocyte browning and lipolysis through the cAMP-PKA pathway, releasing free fatty acids (FFAs) into the microenvironment. These FFAs served as the primary energy source, promoting CRC cell proliferation, invasion, and apoptosis resistance, accompanied by metabolic reprogramming. In a tumor-bearing mouse model, inhibition of β-adrenergic receptor or FFA uptake, combined with oxaliplatin, significantly improved therapeutic efficacy in CRC with abnormal MIIP expression. CONCLUSIONS Our data demonstrate that MIIP plays a regulatory role in the communication between CRC and neighboring adipose tissue by regulating AZGP1 N-glycosylation and secretion. MIIP reduction leads to AZGP1 oversecretion, resulting in adipose browning-induced CRC rapid progression and poor prognosis. Inhibition of β-adrenergic receptor or FFA uptake, combined with oxaliplatin, may represent a promising therapeutic strategy for CRC with aberrant MIIP expression.
Collapse
Affiliation(s)
- Qinhao Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yuanyuan Su
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Department of Pharmacology, Medical College, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Ruiqi Sun
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xin Xiong
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kai Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Mengying Wei
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guodong Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yi Ru
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhengxiang Zhang
- Department of Pharmacology, Medical College, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jing Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Xia Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
9
|
Qu Y, Wang Y, Wu T, Liu X, Wang H, Ma D. A comprehensive multiomics approach reveals that high levels of sphingolipids in cardiac cachexia adipose tissue are associated with inflammatory and fibrotic changes. Lipids Health Dis 2023; 22:211. [PMID: 38041133 PMCID: PMC10691093 DOI: 10.1186/s12944-023-01967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Cardiac cachexia is a deadly consequence of advanced heart failure that is characterised by the dysregulation of adipose tissue homeostasis. Once cachexia occurs with heart failure, it prevents the normal treatment of heart failure and increases the risk of death. Targeting adipose tissue is an important approach to treating cardiac cachexia, but the pathogenic mechanisms are still unknown, and there are no effective therapies available. Transcriptomics, metabolomics, and lipidomics were used to examine the underlying mechanisms of cardiac cachexia. Transcriptomics investigation of cardiac cachexia adipose tissue revealed that genes involved in fibrosis and monocyte/macrophage migration were increased and strongly interacted. The ECM-receptor interaction pathway was primarily enriched, as shown by KEGG enrichment analysis. In addition, gene set enrichment analysis revealed that monocyte chemotaxis/macrophage migration and fibrosis gene sets were upregulated in cardiac cachexia. Metabolomics enrichment analysis demonstrated that the sphingolipid signalling pathway is important for adipose tissue remodelling in cardiac cachexia. Lipidomics analysis showed that the adipose tissue of rats with cardiac cachexia had higher levels of sphingolipids, including Cer and S1P. Moreover, combined multiomics analysis suggested that the sphingolipid metabolic pathway was associated with inflammatory-fibrotic changes in adipose tissue. Finally, the key indicators were validated by experiments. In conclusion, this study described a mechanism by which the sphingolipid signalling pathway was involved in adipose tissue remodelling by inducing inflammation and fat fibrosis in cardiac cachexia.
Collapse
Affiliation(s)
- Yiwei Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaizhe Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dufang Ma
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
McClement SE. Toward a holistic understanding of cancer cachexia: Application of the human response to illness model. Asia Pac J Oncol Nurs 2023; 10:100306. [PMID: 38197036 PMCID: PMC10772185 DOI: 10.1016/j.apjon.2023.100306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 01/11/2024] Open
Abstract
Cachexia is a commonly presenting multidimensional syndrome in individuals living with advanced cancer. Given its prevalence of between 50% and 80%, nurses are going to encounter individuals manifesting ongoing loss of skeletal muscle mass (with or without loss of fat mass) that can be partially but not entirely reversed by conventional nutritional support. Thus nurses require a comprehensive understanding of this complex clinical problem. Research suggests, however, that nurses receive minimal education about cachexia or its management. Limited understanding undermines the ability to confidently care for patients with cachexia and their families, thereby hampering effective practice. The human response to illness model provides nurses with an organizing framework to guide and make sense of their assessments in clinical practice when caring for patients with cancer cachexia and provides direction for appropriate intervention. This article illustrates the integration of the human response to illness model to clinical practice, thereby assisting nurses to develop a comprehensive understanding of the physiological, pathophysiological, behavioral, and experiential facets of cachexia in advanced cancer patients. Contemporary areas of further interest and research will be presented.
Collapse
Affiliation(s)
- Susan E. McClement
- Rady Faculty of Health Sciences, College of Nursing, University of Manitoba, Winnipeg, Manitoba, Canada
- Helen Glass Centre for Nursing, The University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Ge SX, Li G, Ryan AS. Effects of Weight Loss and Aerobic Exercise Training on Adi-Pose Tissue Zinc α2-Glycoprotein and Associated Genes in Obesity. Cells 2023; 12:2366. [PMID: 37830580 PMCID: PMC10571564 DOI: 10.3390/cells12192366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Zinc α2-glycoprotein (ZAG) has been implicated in fatty acid metabolism and utilization and is lower in obese and higher in cachexic adults compared to those of normal weight. Previous studies suggest that ZAG binds to the beta3-adrenergic receptor (β3AR) to influence fatty acid metabolism in adipose tissue by regulating hormone sensitive lipase (HSL). The purpose of this study is to investigate the effects of a six-month weight loss (WL) or aerobic exercise (AEX) intervention on adipose tissue and skeletal muscle ZAG mRNA levels and protein expression, as well as the expression of β3AR, and HSL. Abdominal adipose tissue (AB) and gluteal adipose tissue (Glut) and vastus lateralis muscle biopsies were performed before and after WL (n = 13) or AEX (n = 13). ZAG, HSL, and β3AR expressions were determined by RT-PCR, and ZAG and HSL plasma levels by ELISA. Body weight decreased by 9.69% (p < 0.001) in WL and did not change with AEX. Maximal oxygen consumption (VO2max) increased by 7.1% (p < 0.005) after WL and by 16.69% (p < 0.001) after AEX. WL significantly decreased body weight with a reduction of percentage of fat, fat mass, fat-free mass (FFM). AEX decreased percent fat and increased VO2max, but did not change fat mass and FFM. Abdominal ZAG and HSL mRNA levels did not change significantly after WL or AEX. There were no changes in plasma ZAG, HSL and adipose tissue β3AR mRNA levels after WL and AEX. ZAG, HSL and β3AR mRNA expressions in adipose tissue are positively associated each other. Adipose tissue abdominal and gluteal HSL are negatively associated with HOMA-IR (Homeostatic Model Assessment for Insulin Resistance), and both ZAG and HSL adipose tissue are negatively associated with fasting glucose and the glucose area under the curve. Further work is needed to elucidate the role of ZAG and HSL in the propensity for weight gain and the ability of exercise to mitigate these responses.
Collapse
Affiliation(s)
- Shealinna X. Ge
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Guoyan Li
- Division of Gerontology and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, 655 W Baltimore Street, Baltimore, MD 21201, USA
| | - Alice S. Ryan
- Division of Gerontology and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, 655 W Baltimore Street, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Geriatric Research, Education and Clinical Center (GRECC), 10 N Greene Street, Baltimore, MD 21201, USA
- VA Research Service, VA Maryland Health Care System, 10 N Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
13
|
Raths F, Karimzadeh M, Ing N, Martinez A, Yang Y, Qu Y, Lee TY, Mulligan B, Devkota S, Tilley WT, Hickey TE, Wang B, Giuliano AE, Bose S, Goodarzi H, Ray EC, Cui X, Knott SR. The molecular consequences of androgen activity in the human breast. CELL GENOMICS 2023; 3:100272. [PMID: 36950379 PMCID: PMC10025454 DOI: 10.1016/j.xgen.2023.100272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male and may undergo gender-affirming androgen therapy to align their physical characteristics and gender identity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues from transgender men following androgen therapy. We find canonical androgen receptor gene targets are upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfiguration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the human breast at single-cell resolution.
Collapse
Affiliation(s)
- Florian Raths
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mehran Karimzadeh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan Ing
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Martinez
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yoona Yang
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tian-Yu Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brianna Mulligan
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suzanne Devkota
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wayne T. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Bo Wang
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | - Shikha Bose
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Edward C. Ray
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Transgender Surgery and Health Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon R.V. Knott
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
14
|
Fang R, Yan L, Liao Z. Abnormal lipid metabolism in cancer-associated cachexia and potential therapy strategy. Front Oncol 2023; 13:1123567. [PMID: 37205195 PMCID: PMC10185845 DOI: 10.3389/fonc.2023.1123567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a major characteristic of advanced cancer, associates with almost all types of cancer. Recent studies have found that lipopenia is an important feature of CAC, and it even occurs earlier than sarcopenia. Different types of adipose tissue are all important in the process of CAC. In CAC patients, the catabolism of white adipose tissue (WAT) is increased, leading to an increase in circulating free fatty acids (FFAs), resulting in " lipotoxic". At the same time, WAT also is induced by a variety of mechanisms, browning into brown adipose tissue (BAT). BAT is activated in CAC and greatly increases energy expenditure in patients. In addition, the production of lipid is reduced in CAC, and the cross-talk between adipose tissue and other systems, such as muscle tissue and immune system, also aggravates the progression of CAC. The treatment of CAC is still a vital clinical problem, and the abnormal lipid metabolism in CAC provides a new way for the treatment of CAC. In this article, we will review the mechanism of metabolic abnormalities of adipose tissue in CAC and its role in treatment.
Collapse
Affiliation(s)
- Ruoxin Fang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, China
- *Correspondence: Zhengkai Liao, ; Ling Yan,
| | - Zhengkai Liao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Zhengkai Liao, ; Ling Yan,
| |
Collapse
|
15
|
Weber BZC, Arabaci DH, Kir S. Metabolic Reprogramming in Adipose Tissue During Cancer Cachexia. Front Oncol 2022; 12:848394. [PMID: 35646636 PMCID: PMC9135324 DOI: 10.3389/fonc.2022.848394] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a disorder of energy balance characterized by the wasting of adipose tissue and skeletal muscle resulting in severe weight loss with profound influence on morbidity and mortality. Treatment options for cancer cachexia are still limited. This multifactorial syndrome is associated with changes in several metabolic pathways in adipose tissue which is affected early in the course of cachexia. Adipose depots are involved in energy storage and consumption as well as endocrine functions. In this mini review, we discuss the metabolic reprogramming in all three types of adipose tissues – white, brown, and beige – under the influence of the tumor macro-environment. Alterations in adipose tissue lipolysis, lipogenesis, inflammation and adaptive thermogenesis of beige/brown adipocytes are highlighted. Energy-wasting circuits in adipose tissue impacts whole-body metabolism and particularly skeletal muscle. Targeting of key molecular players involved in the metabolic reprogramming may aid in the development of new treatment strategies for cancer cachexia.
Collapse
|
16
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martínez-Guardado I, Navarro-Jiménez E, Tornero-Aguilera JF. Nutritional and Exercise Interventions in Cancer-Related Cachexia: An Extensive Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4604. [PMID: 35457471 PMCID: PMC9025820 DOI: 10.3390/ijerph19084604] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023]
Abstract
One of the common traits found in cancer patients is malnutrition and cachexia, which affects between 25% to 60% of the patients, depending on the type of cancer, diagnosis, and treatment. Given the lack of current effective pharmacological solutions for low muscle mass and sarcopenia, holistic interventions are essential to patient care, as well as exercise and nutrition. Thus, the present narrative review aimed to analyze the nutritional, pharmacological, ergonutritional, and physical exercise strategies in cancer-related cachexia. The integration of multidisciplinary interventions could help to improve the final intervention in patients, improving their prognosis, quality of life, and life expectancy. To reach these aims, an extensive narrative review was conducted. The databases used were MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. Cancer-related cachexia is a complex multifactorial phenomenon in which systemic inflammation plays a key role in the development and maintenance of the symptomatology. Pharmacological interventions seem to produce a positive effect on inflammatory state and cachexia. Nutritional interventions are focused on a high-energy diet with high-density foods and the supplementation with antioxidants, while physical activity is focused on strength-based training. The implementation of multidisciplinary non-pharmacological interventions in cancer-related cachexia could be an important tool to improve traditional treatments and improve patients' quality of life.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | | | | |
Collapse
|
17
|
The burning furnace: Alteration in lipid metabolism in cancer-associated cachexia. Mol Cell Biochem 2022; 477:1709-1723. [DOI: 10.1007/s11010-022-04398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
|
18
|
Li S, Qiu R, Yuan G, Wang Q, Li Z, Li Q, Zhang N. Body composition in relation to postoperative anastomotic leakage and overall survival in patients with esophageal cancer. Nutrition 2021; 94:111534. [PMID: 34952360 DOI: 10.1016/j.nut.2021.111534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Body composition was reported to be related to the prognosis of patients with cancer. This study aimed to investigate the influence of preoperative body composition on anastomotic leakage and overall survival in patients with esophageal cancer. METHODS In this retrospective study, 93 patients with esophageal cancers were evaluated. Skeletal muscle area, intermuscular adipose tissue, visceral adipose tissue (VAT), and subcutaneous adipose tissue were measured on computed tomography images at the level of the third lumbar vertebra. Subsequently, each body composition index was also calculated by dividing the body composition by the square of the height. The cut-off values of body compositions were defined using X-tile software (version 3.6.1; Yale University, New Haven, CTA). Univariate and multivariate analyses were performed to evaluate the risk factors of anastomotic leakage. Kaplan-Meier method and Cox regression analysis were used to evaluate the risk factors of overall survival. RESULTS VAT and visceral fat index (VFI) were higher in patients with anastomotic fistula than in those without anastomotic fistula, but none of them were independent risk factors. Patients with higher body mass index (BMI), higher VFI, and higher subcutaneous fat index (SFI) had better overall survival. By multivariate analysis, SFI >27.6 cm2/m2 was still significantly associated with overall survival. CONCLUSION Patients with higher VAT and VFI were prone to have an anastomotic leakage. Lower BMI, VFI, and SFI were associated with a reduction in overall survival.
Collapse
Affiliation(s)
- Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruixing Qiu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Namkhah Z, Naeini F, Ostadrahimi A, Tutunchi H, Hosseinzadeh-Attar MJ. The association of the adipokine zinc-alpha2-glycoprotein with non-alcoholic fatty liver disease and related risk factors: A comprehensive systematic review. Int J Clin Pract 2021; 75:e13985. [PMID: 33404166 DOI: 10.1111/ijcp.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/03/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIM The adipokine zinc-alpha2-glycoprotein (ZAG), a multidisciplinary protein, is involved in lipid metabolism, glucose homeostasis and energy balance. Accumulating evidence demonstrates that the expression of ZAG is mainly downregulated in obesity and obesity-related conditions. In the present study, we assessed the association of ZAG with non-alcoholic fatty liver disease (NAFLD) and the related risk factors including obesity, metabolic factors and inflammatory parameters, with emphasis on potential mechanisms underlying these associations. METHODS PRISMA guidelines were followed in this review. Systematic searches were performed using the PubMed/Medline, ScienceDirect, Scopus, EMBASE, ProQuest and Google Scholar databases, up to August 2020 for all relevant published papers. RESULTS Out of 362 records screened, 34 articles were included in the final analysis. According to the studies reviewed here, ZAG appears to exert a protective effect against NAFLD by enhancing mRNA expression levels of peroxisome proliferator-activated receptor α (PPARα) and PPARγ, promoting mRNA expression levels of the lipolysis-related genes, reducing mRNA expression levels of the lipogenesis-related genes, increasing hepatic fatty acid oxidation, ameliorating hepatic steatosis, promoting the activity of brown adipose tissue and the expression of thermogenesis-related genes, modulating energy balance and glucose homeostasis, and elevating plasma levels of healthy adipokines such as adiponectin. ZAG can also be involved in the regulation of inflammatory responses by attenuation of the expression of pro-inflammatory and pro-fibrotic mediators. CONCLUSION According to the studies reviewed here, ZAG is suggested to be a promising therapeutic target for NAFLD. However, the favourable effects of ZAG need to be confirmed in prospective cohort studies.
Collapse
Affiliation(s)
- Zahra Namkhah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
20
|
Banaszak M, Górna I, Przysławski J. Zinc and the Innovative Zinc-α2-Glycoprotein Adipokine Play an Important Role in Lipid Metabolism: A Critical Review. Nutrients 2021; 13:nu13062023. [PMID: 34208404 PMCID: PMC8231141 DOI: 10.3390/nu13062023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Numerous studies indicate that zinc and the new zinc-related adipokine, zinc-α2-glycoprotein (ZAG), are involved in lipid metabolism. Excess body fat lowers blood concentrations of Zn and ZAG, leading not only to the development of obesity but also to other components of the metabolic syndrome. Zinc homeostasis disorders in the body negatively affect the lipid profile and cytokine secretion. Zinc appears to be a very important ZAG homeostasis regulator. The physiological effects of ZAG are related to lipid metabolism, but studies show that ZAG also affects glucose metabolism and is linked to insulin resistance. ZAG has a zinc binding site in its structure, which may indicate that ZAG mediates the effect of zinc on lipid metabolism. The review aimed to verify the available studies on the effects of zinc and ZAG on lipid metabolism. A literature review within the scope of this research area was conducted using articles available in PubMed (including MEDLINE), Web of Science and Cochrane Library databases. An analysis of available studies has shown that zinc improves hepatic lipid metabolism and has an impact on the lipid profile. Numerous studies have found that zinc supplementation in overweight individuals significantly reduced blood levels of total cholesterol, LDL (Low-density lipoprotein)cholesterol and triglycerides, potentially reducing cardiovascular morbidity and mortality. Some results also indicate that it increases HDL-C (High-density lipoprotein) cholesterol levels. ZAG has been shown to play a significant role in reducing obesity and improving insulin sensitivity, both in experimental animal model studies and in human studies. Furthermore, ZAG at physiologically relevant concentrations increases the release of adiponectin from human adipocytes. In addition, ZAG has been shown to inhibit in vitro leptin production. Further studies are needed to provide more data on the role of zinc and zinc-α2-glycoprotein.
Collapse
Affiliation(s)
- Michalina Banaszak
- Faculty of Medical Sciences, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Ilona Górna
- Department of Bromatology, Poznan University of Medical Sciences, 60-354 Poznan, Poland;
- Correspondence: ; Tel.: +48-61-854-7204
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-354 Poznan, Poland;
| |
Collapse
|
21
|
Development of a prediction model for mortality and cardiovascular outcomes in older adults taking into account AZGP1. Sci Rep 2021; 11:11792. [PMID: 34083628 PMCID: PMC8175433 DOI: 10.1038/s41598-021-91169-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Zinc-alpha 2-glycoprotein (AZGP1) is a serum protein with postulated functions in metabolism, cancer and cardiovascular disease. We developed new prediction models for mortality or cardiovascular events investigating the predictive potential of serum AZGP1 in a community-based cohort of older adults. We measured AZGP1 (μg/ml) in stored serum samples of 930 individuals of the Berlin Initiative Study, a prospective, population-based cohort of adults aged ≥ 70. We determined the prognostic potential of 20 knowledge-based predictors including AZGP1 for the outcomes of mortality or the composite endpoint of death and cardiovascular events (stroke, myocardial infarction (MI)) using Cox models; their model fit was evaluated with calibration plots, goodness-of-fit tests and c-indices. During median follow-up of 48.3 months, 70 incident strokes, 38 incident MI and 234 deaths occurred. We found no associations or correlations between AZGP1 and other candidate variables. After multivariable Cox regression with backward-selection AZGP1 remained in both models for mortality (HR = 0.44, 95%CI: 0.24–0.80) and for the composite endpoint (HR = 0.43, 95%CI: 0.23–0.82). Within newly built prediction models, we found that increased AZGP1 levels were predictive for lower risk of mortality and the composite endpoint in older adults. AZGP1 as a predictor warrants further validation in older adults.
Collapse
|
22
|
Siff T, Parajuli P, Razzaque MS, Atfi A. Cancer-Mediated Muscle Cachexia: Etiology and Clinical Management. Trends Endocrinol Metab 2021; 32:382-402. [PMID: 33888422 PMCID: PMC8102392 DOI: 10.1016/j.tem.2021.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Muscle cachexia has a major detrimental impact on cancer patients, being responsible for 30% of all cancer deaths. It is characterized by a debilitating loss in muscle mass and function, which ultimately deteriorates patients' quality of life and dampens therapeutic treatment efficacy. Muscle cachexia stems from widespread alterations in whole-body metabolism as well as immunity and neuroendocrine functions and these global defects often culminate in aberrant signaling within skeletal muscle, causing muscle protein breakdown and attendant muscle atrophy. This review summarizes recent landmark discoveries that significantly enhance our understanding of the molecular etiology of cancer-driven muscle cachexia and further discuss emerging therapeutic approaches seeking to simultaneously target those newly discovered mechanisms to efficiently curb this lethal syndrome.
Collapse
Affiliation(s)
- Thomas Siff
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Parash Parajuli
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Azeddine Atfi
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; Sorbonne Universités, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France.
| |
Collapse
|
23
|
Cao Z, Zhao K, Jose I, Hoogenraad NJ, Osellame LD. Biomarkers for Cancer Cachexia: A Mini Review. Int J Mol Sci 2021; 22:4501. [PMID: 33925872 PMCID: PMC8123431 DOI: 10.3390/ijms22094501] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer cachexia is a common condition in many cancer patients, particularly those with advanced disease. Cancer cachexia patients are generally less tolerant to chemotherapies and radiotherapies, largely limiting their treatment options. While the search for treatments of this condition are ongoing, standards for the efficacy of treatments have yet to be developed. Current diagnostic criteria for cancer cachexia are primarily based on loss of body mass and muscle function. However, these criteria are rather limiting, and in time, when weight loss is noticeable, it may be too late for treatment. Consequently, biomarkers for cancer cachexia would be valuable adjuncts to current diagnostic criteria, and for assessing potential treatments. Using high throughput methods such as "omics approaches", a plethora of potential biomarkers have been identified. This article reviews and summarizes current studies of biomarkers for cancer cachexia.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
| | - Kening Zhao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Irvin Jose
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
| | - Nick J. Hoogenraad
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Laura D. Osellame
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| |
Collapse
|
24
|
Fan G, Li Y, Ma F, Zhao R, Yang X. Zinc-α2-glycoprotein promotes skeletal muscle lipid metabolism in cold-stressed mice. Endocr J 2021; 68:53-62. [PMID: 32863292 DOI: 10.1507/endocrj.ej20-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle is the most abundant tissue in the adult body and plays an essential role in maintaining heat production for the entire body. Recently, muscle-derived non-shivering thermogenesis under cold conditions has received much attention. Zinc-α2-glycoprotein (ZAG) is an adipokine that was shown to influence energy metabolism in the adipose tissue. We used ZAG knock-out (ZAG KO) and wild-type (WT) mice to investigate the effect of ZAG on the lipid metabolism of skeletal muscle upon exposure to a low temperature (6°C) for one week. The results show that cold stress significantly increases the level of lipolysis, energy metabolism, and fat browning-related proteins in the gastrocnemius muscle of WT mice. In contrast, ZAG KO mice did not show any corresponding changes. Increased expression of β3-adrenoceptor (β3-AR) and protein kinase A (PKA) might be involved in the ZAG pathway in mice exposed cold stress. Furthermore, expression of lipolysis-related proteins (ATGL and p-HSL) and energy metabolism-related protein (PGC1α, UCP2, UCP3 and COX1) was significantly enhanced in ZAG KO mice after injection of ZAG-recombinant plasmids. These results indicate that ZAG promotes lipid-related metabolism in the skeletal muscle when the animals are exposed to low temperatures. This finding provides a promising target for the development of new therapeutic approaches to improve skeletal muscle energy metabolism.
Collapse
Affiliation(s)
- Guoqiang Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yanfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Fuli Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
25
|
Pearsey HM, Henson J, Sargeant JA, Davies MJ, Khunti K, Suzuki T, Bowden-Davies KA, Cuthbertson DJ, Yates TE. Zinc-alpha2-glycoprotein, dysglycaemia and insulin resistance: a systematic review and meta-analysis. Rev Endocr Metab Disord 2020; 21:569-575. [PMID: 32377863 PMCID: PMC7557496 DOI: 10.1007/s11154-020-09553-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To systematically review the current literature investigating associations between zinc-alpha2-glycoprotein (ZAG) and dysglycaemia (including type 2 diabetes (T2DM), poly-cystic-ovary syndrome (PCOS), pre-diabetes or insulin resistance). This included relationships between ZAG and continuous measures of insulin and glucose. Additionally, we performed a meta-analysis to estimate the extent that ZAG differs between individuals with or without dysglycaemia; whilst examining the potential influence of adiposity. A systematic search was performed on four databases for studies on circulating ZAG concentrations in adult human populations, comparing healthy controls to individuals with dysglycaemia. Key characteristics, including the mean ZAG concentrations (mg∙L-1), and any correlational statistics between ZAG and continuous measures of glucose, glycated haemoglobin (HbA1c) or insulin were extracted. Meta-analyses were performed to compare metabolically healthy controls to cases, and on studies that compared controls and cases considered overweight or obese (body mass index (BMI) ≥25 kg.m2). 1575 papers were identified and 14 studies (16 cohorts) were considered eligible for inclusion. Circulating ZAG was lower in individuals with dysglycaemia compared to metabolically healthy controls (-4.14 [-8.17, -0.11] mg.L-1; I2 = 98.5%; p < 0.001). When using data from only studies with overweight or obese groups with or without dysglycaemia (three studies (four cohorts); pooled n = 332), the difference in circulating ZAG was no longer significant (-0.30 [-3.67, 3.07] mg. L-1; I2 = 28.0%; p = 0.225). These data suggest that ZAG may be implicated in dysglycaemia, although there was significant heterogeneity across different studies and the mediating effect of adiposity cannot be excluded. Therefore, more research is needed before robust conclusions can be drawn.
Collapse
Affiliation(s)
- Harriet M Pearsey
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK.
- NIHR Leicester Biomedical Research Centre, Leicester, UK.
- Department of Health Science, University of Leicester, Leicester, UK.
| | - Joseph Henson
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Jack A Sargeant
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR ARC East Midlands, Leicester, UK
| | - Toru Suzuki
- NIHR Leicester Biomedical Research Centre, Leicester, UK
- Cardiovascular Sciences Unit, Leicester Glenfeild Hospital, Leicester, UK
| | | | - Daniel J Cuthbertson
- Clinical Sciences Centre, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Thomas E Yates
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
26
|
Janovska P, Melenovsky V, Svobodova M, Havlenova T, Kratochvilova H, Haluzik M, Hoskova E, Pelikanova T, Kautzner J, Monzo L, Jurcova I, Adamcova K, Lenkova L, Buresova J, Rossmeisl M, Kuda O, Cajka T, Kopecky J. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin. J Cachexia Sarcopenia Muscle 2020; 11:1614-1627. [PMID: 33084249 PMCID: PMC7749591 DOI: 10.1002/jcsm.12631] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cachexia worsens long-term prognosis of patients with heart failure (HF). Effective treatment of cachexia is missing. We seek to characterize mechanisms of cachexia in adipose tissue, which could serve as novel targets for the treatment. METHODS The study was conducted in advanced HF patients (n = 52; 83% male patients) undergoing heart transplantation. Patients with ≥7.5% non-intentional body weight (BW) loss during the last 6 months were rated cachectic. Clinical characteristics and circulating markers were compared between cachectic (n = 17) and the remaining, BW-stable patients. In epicardial adipose tissue (EAT), expression of selected genes was evaluated, and a combined metabolomic/lipidomic analysis was performed to assess (i) the role of adipose tissue metabolism in the development of cachexia and (ii) potential impact of cachexia-associated changes on EAT-myocardium environment. RESULTS Cachectic vs. BW-stable patients had higher plasma levels of natriuretic peptide B (BNP; 2007 ± 1229 vs. 1411 ± 1272 pg/mL; P = 0.010) and lower EAT thickness (2.1 ± 0.8 vs. 2.9 ± 1.4 mm; P = 0.010), and they were treated with ~2.5-fold lower dose of both β-blockers and angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ACE/ARB-inhibitors). The overall pattern of EAT gene expression suggested simultaneous activation of lipolysis and lipogenesis in cachexia. Lower ratio between expression levels of natriuretic peptide receptors C and A was observed in cachectic vs. BW-stable patients (0.47 vs. 1.30), supporting activation of EAT lipolysis by natriuretic peptides. Fundamental differences in metabolome/lipidome between BW-stable and cachectic patients were found. Mitochondrial phospholipid cardiolipin (CL), specifically the least abundant CL 70:6 species (containing C16:1, C18:1, and C18:2 acyls), was the most discriminating analyte (partial least squares discriminant analysis; variable importance in projection score = 4). Its EAT levels were higher in cachectic as compared with BW-stable patients and correlated with the degree of BW loss during the last 6 months (r = -0.94; P = 0.036). CONCLUSIONS Our results suggest that (i) BNP signalling contributes to changes in EAT metabolism in cardiac cachexia and (ii) maintenance of stable BW and 'healthy' EAT-myocardium microenvironment depends on the ability to tolerate higher doses of both ACE/ARB inhibitors and β-adrenergic blockers. In line with preclinical studies, we show for the first time in humans the association of cachexia with increased adipose tissue levels of CL. Specifically, CL 70:6 could precipitate wasting of adipose tissue, and thus, it could represent a therapeutic target to ameliorate cachexia.
Collapse
Affiliation(s)
- Petra Janovska
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Michaela Svobodova
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tereza Havlenova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Helena Kratochvilova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Martin Haluzik
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Eva Hoskova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Terezie Pelikanova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Luca Monzo
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Ivana Jurcova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Katerina Adamcova
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Lucie Lenkova
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Jana Buresova
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Martin Rossmeisl
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tomas Cajka
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
27
|
Kapoor ND, Twining PK, Groot OQ, Pielkenrood BJ, Bongers MER, Newman ET, Verlaan JJ, Schwab JH. Adipose tissue density on CT as a prognostic factor in patients with cancer: a systematic review. Acta Oncol 2020; 59:1488-1495. [PMID: 32730106 DOI: 10.1080/0284186x.2020.1800087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Predicting oncologic outcomes is essential for optimizing the treatment for patients with cancer. This review examines the feasibility of using Computed Tomography (CT) images of fat density as a prognostic factor in patients with cancer. METHODS A systematic literature search was performed in PubMed, Embase and Cochrane up to March 2020. All studies that mentioned using subcutaneous or visceral adipose tissue (SAT and VAT, respectively) CT characteristics as a prognostic factor for patients with cancer were included. The primary endpoints were any disease-related outcomes in patients with cancer. RESULTS After screening 1043 studies, ten studies reporting a total of 23 - ten for SAT and thirteen for VAT - comparisons on survival, tumor recurrence and postsurgical infection were included. All ten studies included different types of malignancy: six localized, two metastatic disease, and two both. Five different anatomic landmarks were used to uniformly measure fat density on CT: lumbar (L)4 (n = 4), L3 (n = 2), L4-L5 intervertebral space (n = 2), L5-S1 intervertebral space (n = 1), and the abdomen (n = 1). Overall, six of ten SAT comparisons (60%) and six of thirteen VAT comparisons (46%) reported a significant (p < .05) association of increased SAT or VAT density with an adverse outcome. All remaining nonsignificant comparisons, except one, deviated in the same direction of being predictive for adverse outcomes but failed to reach significance. The median hazard ratio (HR) for the nine SAT and thirteen VAT associations where HRs were given were 1.45 (95% confidence interval [CI] 1.01-1.97) and 1.90 (95% CI 1.12-2.74), respectively. The binomial sign test and Fisher's method both reported a significant association between both SAT and VAT and adverse outcomes. CONCLUSION This review may support the feasibility of using SAT or VAT on CT as a prognostic tool for patients with cancer in predicting adverse outcomes such as survival and tumor recurrence. Future research should standardize radiologic protocol in prospective homogeneous series of patients on each cancer diagnosis group in order to establish accurate parameters to help physicians use CT scan defined characteristics in clinical practice.
Collapse
Affiliation(s)
- N. D. Kapoor
- Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital – Harvard Medical School, Boston, MA, USA
| | - P. K. Twining
- Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital – Harvard Medical School, Boston, MA, USA
| | - O. Q. Groot
- Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital – Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - B. J. Pielkenrood
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M. E. R. Bongers
- Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital – Harvard Medical School, Boston, MA, USA
| | - E. T. Newman
- Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital – Harvard Medical School, Boston, MA, USA
| | - J. J. Verlaan
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J. H. Schwab
- Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital – Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Moh A, Seah N, Low S, Ang K, Sum CF, Subramaniam T, Kwan PY, Lee S, Tang WE, Lim SC. Zinc-α2-glycoprotein is associated with non-albuminuric chronic kidney disease progression in type 2 diabetes: a retrospective study with 4-year follow-up. Diabet Med 2020; 37:1919-1926. [PMID: 32353891 DOI: 10.1111/dme.14313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
AIM To investigate the association between baseline plasma zinc-α2-glycoprotein and non-albuminuric chronic kidney disease progression in type 2 diabetes. METHODS Adults with normoalbuminuria at entry (n=341; age 57±10 years, 52% men) were analysed. Chronic kidney disease progression was defined as a decrease in chronic kidney disease stage and a decline of ≥25% in estimated GFR from baseline. Baseline plasma zinc-α2-glycoprotein levels were quantified by immunoassay, and analysed either as a continuous variable or by tertiles in Cox proportional hazards models. Model discrimination was assessed using Harrell's C-index. A sensitivity analysis was performed on a subset of individuals who maintained normoalbuminuria during follow-up. RESULTS Chronic kidney disease progression occurred in 54 participants (16%). Zinc-α2-glycoprotein levels were elevated in chronic kidney disease progressors (P = 0.011), and more progressors were assigned to the higher zinc-α2-glycoprotein tertile than non-progressors. In the unadjusted Cox model, zinc-α2-glycoprotein, both as a continuous variable (hazard ratio 1.72, 95% CI 1.08-2.75) and tertile 3 (vs tertile 1; hazard ratio 2.14, 95% CI 1.10-4.17), predicted chronic kidney disease progression. The association persisted after multivariable adjustment. The C-index of the Cox model increased significantly after incorporation of zinc-α2-glycoprotein into a base model comprising renin-angiotensin system antagonist usage. Sensitivity analysis showed that zinc-α2-glycoprotein independently predicted chronic kidney disease progression among individuals who maintained normoalbuminuria during follow-up. CONCLUSIONS Plasma zinc-α2-glycoprotein is associated with chronic kidney disease progression, and may serve as a useful early biomarker for predicting non-albuminuric chronic kidney disease progression in type 2 diabetes.
Collapse
Affiliation(s)
- A Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - N Seah
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - S Low
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore
| | - K Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - C F Sum
- Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore
| | - T Subramaniam
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore
| | - P Y Kwan
- National Healthcare Group Polyclinics, Singapore
| | - S Lee
- National Healthcare Group Polyclinics, Singapore
| | - W E Tang
- National Healthcare Group Polyclinics, Singapore
| | - S C Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Health, National University Hospital, Singapore
| |
Collapse
|
29
|
Zhang W, Qiao Y, Qi F, Shen Q, Zhao R, Yang X. Zinc-α2-Glycoprotein Knockout Influenced Genes Expression Profile in Adipose Tissue and Decreased the Lipid Mobilizing After Dexamethasone Treatment in Mice. Horm Metab Res 2020; 52:755-763. [PMID: 32542628 DOI: 10.1055/a-1186-0649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zinc-α2-glycoprotein (ZAG), as an adipokine, plays an important role in lipid metabolism. However, its influence on whole gene expression profile in adipose tissue is not known. Under stress condition, how ZAG affects the lipid metabolism is also unclear. Therefore, in this study ZAG systemic knockout (KO) mice were used as a model to reveal the genes expression profile in visceral fat tissues of ZAG KO mice and wild-type mice by genome-wide microarray screening. Then dexamethasone (DEX) was used to explore the effect of ZAG deletion on body fat metabolism under stress. Our results showed that 179 genes were differentially expressed more than 1.5 times between ZAG KO mice and wild type mice, of which 26 genes were upregulated dramatically and 153 genes were significantly downregulated. Under DEX simulated stress, ZAG systemic knockout in vivo resulted in a markedly decrease of triglycerides (TG) and nonesterified fatty acid (NEFA) content in in plasma. Similarly, for lipid catabolism, ZAG KO led to a significant increase of phosphorylated HSL (p-HSL) protein and a rising tendency of adipose triglyceride lipase (ATGL) protein relative to those of the DEX group. For lipid anabolism, fatty acid synthase (FAS) and adiponectin protein expression in visceral fat rose notably in ZAG KO mice after DEX treatment. In conclusion, ZAG knockout can affect the gene expression profile of adipose tissue, reduce elevated TG and NEFA levels in plasma, and alter lipid metabolism under DEX treatment. These findings provide new insights into the mechanism of lipid metabolic disorders in response to stress.
Collapse
Affiliation(s)
- Wenge Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yu Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| | - Fulei Qi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| | - Qingyi Shen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
30
|
Miller J, Dreczkowski G, Ramage MI, Wigmore SJ, Gallagher IJ, Skipworth RJE. Adipose depot gene expression and intelectin-1 in the metabolic response to cancer and cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1141-1153. [PMID: 32232960 PMCID: PMC7432578 DOI: 10.1002/jcsm.12568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/21/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer cachexia is a poorly understood metabolic consequence of cancer. During cachexia, different adipose depots demonstrate differential wasting rates. Animal models suggest adipose tissue may be a key driver of muscle wasting through fat-muscle crosstalk, but human studies in this area are lacking. We performed global gene expression profiling of visceral (VAT) and subcutaneous (SAT) adipose from weight stable and cachectic cancer patients and healthy controls. METHODS Cachexia was defined as >2% weight loss plus low computed tomography-muscularity. Biopsies of SAT and VAT were taken from patients undergoing resection for oesophago-gastric cancer, and healthy controls (n = 16 and 8 respectively). RNA was isolated and reverse transcribed. cDNA was hybridised to the Affymetrix Clariom S microarray and data analysed using R/Bioconductor. Differential expression of genes was assessed using empirical Bayes and moderated-t-statistic approaches. Category enrichment analysis was used with a tissue-specific background to examine the biological context of differentially expressed genes. Selected differentially regulated genes were validated by qPCR. Enzyme-linked immunosorbent assay (ELISA) for intelectin-1 was performed on all VAT samples. The previously-described cohort plus 12 additional patients from each group also had plasma I = intelectin-1 ELISA carried out. RESULTS In VAT vs. SAT comparisons, there were 2101, 1722, and 1659 significantly regulated genes in the cachectic, weight stable, and control groups, respectively. There were 2200 significantly regulated genes from VAT in cachectic patients compared with controls. Genes involving inflammation were enriched in cancer and control VAT vs. SAT, although different genes contributed to enrichment in each group. Energy metabolism, fat browning (e.g. uncoupling protein 1), and adipogenesis genes were down-regulated in cancer VAT (P = 0.043, P = 5.4 × 10-6 and P = 1 × 10-6 respectively). The gene showing the largest difference in expression was ITLN1, the gene that encodes for intelectin-1 (false discovery rate-corrected P = 0.0001), a novel adipocytokine associated with weight loss in other contexts. CONCLUSIONS SAT and VAT have unique gene expression signatures in cancer and cachexia. VAT is metabolically active in cancer, and intelectin-1 may be a target for therapeutic manipulation. VAT may play a fundamental role in cachexia, but the down-regulation of energy metabolism genes implies a limited role for fat browning in cachectic patients, in contrast to pre-clinical models.
Collapse
Affiliation(s)
- Janice Miller
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | | | - Michael I Ramage
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Stephen J Wigmore
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Iain J Gallagher
- Faculty of Health Science and Sport, University of Stirling, Stirling, UK
| | - Richard J E Skipworth
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Abstract
The paper is based on the lecture that I gave on receiving the Nutrition Society's inaugural Gowland Hopkins Award for contributions to Cellular and Molecular Nutrition. It reviews studies on the adipose tissues, brown and white, conducted by the groups that I have led since entering nutrition research in 1975. The initial focus was on exploring metabolic factors that underpin the development of obesity using animal models. This resulted in an interest in non-shivering thermogenesis with brown adipose tissue being identified as the key effector of facultative heat production. Brown fat is less thermogenically active in various obese rodents, and major changes in activity are exhibited under physiological conditions such as lactation and fasting consistent with a general role for the tissue in nutritional energetics. My interests moved to white adipose tissue following the cloning of the Ob gene. Our initial contributions in this area included demonstrating nutritional regulation of Ob gene expression and circulating leptin levels, as well as a regulatory role for the sympathetic nervous system operating through β3-adrenoceptors. My interests subsequently evolved to a wider concern with the endocrine/signalling role of adipose tissue. Inflammation is a characteristic of white fat in obesity with the release of inflammation-related adipokines, and we proposed that hypoxia underlies this inflammatory state. O2-deprivation was shown to have substantial effects on gene expression and cellular function in white adipocytes. The hypoxia studies led to the proposition that O2 should be considered as a critical macronutrient.
Collapse
|
32
|
Crystal structure of zinc-α2-glycoprotein in complex with a fatty acid reveals multiple different modes of protein-lipid binding. Biochem J 2019; 476:2815-2834. [PMID: 31506272 DOI: 10.1042/bcj20190354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Human zinc-α2-glycoprotein (ZAG) is a 42 kDa adipokine which regulates body fat mass and is associated with cachexia and obesity. ZAG belongs to the major histocompatibility complex class I protein family and binds long-chain polyunsaturated fatty acids in its groove formed from the α1 and α2 domains. To identify the molecular basis of its lipid-binding function, we determined the first crystal structure at 2.49 Å resolution for fatty acid-bound ZAG, where the ligand was the fluorescent 11-(dansylamino)undecanoic acid (DAUDA). The 192 kDa crystallographic asymmetric unit contained six ZAG and eight fatty acid molecules in unique conformations. Six fatty acid molecules were localised to the ZAG grooves, where their tails were bound in two distinct conformations. The carboxylate groups of three fatty acids projected out of the groove, while the fourth was hydrogen bonded with R73 inside the groove. Other ligand-residue contacts were primarily hydrophobic. A new fatty acid site was revealed for two further DAUDA molecules at the ZAG α3 domains. Following conformational changes from unbound ZAG, the α3 domains formed tetrameric β-barrel structures lined by fatty acid molecules that doubled the binding capacity of ZAG. Analytical ultracentrifugation revealed that ZAG in solution was a monomer in the absence of DAUDA, but formed small amounts of tetramers with DAUDA. By showing that ZAG binds fatty acids in different locations, we demonstrate an augmented mechanism for fatty acid binding in ZAG that is distinct from other known fatty acid binding proteins, and may be relevant to cachexia.
Collapse
|
33
|
Lake JE, Moser C, Johnston L, Magyar C, Nelson SD, Erlandson KM, Brown TT, McComsey GA. CT Fat Density Accurately Reflects Histologic Fat Quality in Adults With HIV On and Off Antiretroviral Therapy. J Clin Endocrinol Metab 2019; 104:4857-4864. [PMID: 31329901 PMCID: PMC6733493 DOI: 10.1210/jc.2018-02785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Microscopic measurement of adipocyte size is the gold standard for determining adipose tissue (AT) quality. AT density on CT may also reflect adipocyte quality (lower density = poorer quality). OBJECTIVE We used abdominal subcutaneous AT (SAT) specimens and CT scans to validate CT SAT density as a marker of SAT quality in adults living with HIV. SETTING AND DESIGN Secondary data analysis from completed trial of antiretroviral therapy (ART) initiation (ACTG A5224s). CT abdominal SAT density was measured in HU. SAT specimens were digitally scanned for calculation of mean adipocyte area. PARTICIPANTS Participants had SAT biopsy and CT data at baseline (n = 54) and HIV-1 RNA <50 copies per milliliter on ART and biopsy or CT data at week 96 (n = 30). OUTCOME MEASURES Spearman correlations and linear regression models adjusting for participant characteristics examined associations between SAT density and adipocyte area. RESULTS Baseline median age was 40 years, CD4+ T lymphocyte count 219 cells per cubic millimeter, and body mass index 26.0 kg/m2; 89% were male and 67% white. Median SAT area and density were 199 cm2 and -100 HU. Over 96 weeks, SAT area increased (+18%) and SAT density decreased (-3%). Mean SAT adipocyte area correlated with SAT density (P < 0.01) off and on ART after adjustment for SAT area, age, race, sex, CD4+ T lymphocyte count, and HIV-1 RNA. CONCLUSIONS CT SAT density correlates with biopsy-quantified SAT adipocyte size in adults with HIV on and off ART, suggesting that CT is a useful tool for noninvasive assessment of SAT quality.
Collapse
Affiliation(s)
- Jordan E Lake
- University of California, Los Angeles, California
- University of Texas Health Science Center at Houston, Houston, Texas
| | | | | | - Clara Magyar
- University of California, Los Angeles, California
| | | | | | | | - Grace A McComsey
- University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
34
|
Bouchara A, Yi D, Pastural M, Granjon S, Selag JC, Laville M, Arkouche W, Pelletier S, Fouque D, Soulage CO, Koppe L. Serum levels of the adipokine zinc-alpha2-glycoprotein (ZAG) predict mortality in hemodialysis patients. Kidney Int 2019; 94:983-992. [PMID: 30348306 DOI: 10.1016/j.kint.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 11/30/2022]
Abstract
Wasting has been associated with increased cardiovascular and all-cause mortality in chronic kidney disease (CKD). We investigated whether serum zinc-alpha2-glycoprotein (ZAG), a potent cachectic and lipid-mobilizing factor that is increased in patients with CKD, predicts clinical outcomes in patients on chronic hemodialysis. We quantified serum ZAG at baseline in a prospective cohort of 252 patients undergoing maintenance hemodialysis. Serum ZAG concentrations were inversely associated with serum albumin, creatinine, and triglycerides and, conversely, positively associated with age. Although ZAG is strongly linked to protein energy wasting (PEW) in patients with cancer, higher ZAG concentrations were not associated with PEW in our cohort. During a mean study follow-up of 954 days, 49 patients died and 62 patients experienced a cardiovascular event. Kaplan-Meier analysis revealed a significant correlation between serum ZAG concentrations and all-cause mortality and cardiovascular events. In separate multivariable Cox regression models, serum ZAG concentrations remained significantly associated with all-cause mortality and cardiovascular events after adjustment for demographic factors (age, sex, and dialysis vintage), metabolic parameters (serum albumin, prealbumin, triglycerides, cholesterol, normalized protein catabolic rate, and body mass index), and cardiovascular risk factors (diabetes, dyslipidemia, history of cardiovascular disease, smoking, and diuretic use as a proxy of residual renal function). Thus, serum ZAG appears to be a strong and independent predictor of mortality and cardiovascular events in patients with end-stage renal disease. Further studies are necessary to confirm this association and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Anaïs Bouchara
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Dan Yi
- Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Lyon 1, INSA-Lyon, Villeurbanne, France
| | - Myriam Pastural
- Association pour l'Utilisation du Rein Artificiel dans la région Lyonnaise (AURAL), Lyon, France
| | - Samuel Granjon
- Laboratoire d'Analyse Médicale Cerballiance Rhône alpes, Lyon, France
| | - Jean-Christophe Selag
- Association pour l'Utilisation du Rein Artificiel dans la région Lyonnaise (AURAL), Lyon, France
| | - Maurice Laville
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Walid Arkouche
- Association pour l'Utilisation du Rein Artificiel dans la région Lyonnaise (AURAL), Lyon, France
| | - Solenne Pelletier
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Denis Fouque
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France; Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Lyon 1, INSA-Lyon, Villeurbanne, France
| | - Christophe O Soulage
- Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Lyon 1, INSA-Lyon, Villeurbanne, France
| | - Laetitia Koppe
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France; Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Lyon 1, INSA-Lyon, Villeurbanne, France.
| |
Collapse
|
35
|
Zheng S, Liu E, Zhang Y, Long T, Liu X, Gong Y, Mai T, Shen H, Chen H, Lin R, Zheng Y, Xie Y, Wang F. Circulating zinc-α2-glycoprotein is reduced in women with polycystic ovary syndrome, but can be increased by exenatide or metformin treatment. Endocr J 2019; 66:555-562. [PMID: 30918134 DOI: 10.1507/endocrj.ej18-0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The study was to investigate circulating zinc-α2-glycoprotein (ZAG) concentrations in women with PCOS, and changes in ZAG levels after exenatide or metformin treatment. One hundred eighty-two women with polycystic ovary syndrome (PCOS) who met the 2003 Rotterdam diagnostic criteria and 150 controls without PCOS were recruited. We partitioned women with PCOS into groups according to body mass index or blood glucose concentrations, determined serum ZAG, anthropometric parameters, metabolic and endocrine indicators, and inflammatory markers, and statistically analyzed the results. Eighty-two overweight/obese subjects of the recruited women with PCOS were then randomly assigned to groups administered either 12 weeks of exenatide injection (10 μg b.i.d.) or oral metformin (1,000 mg b.i.d.). Circulating ZAG levels were determined after 12 weeks of treatment. The results showed that circulating ZAG was significantly lower in PCOS women than in healthy women (p < 0.01). Overweight/obese women and those with higher blood glucose levels had lower circulating ZAG. After 12 weeks of exenatide or metformin treatment, there were significant increases (p < 0.01) in circulating ZAG in both treatment groups (the exenatide baseline level was 46.54 ± 2.38 ng/mL vs. 56.41 ± 2.02 ng/mL after treatment, p < 0.01; metformin baseline was 47.81 ± 2.14 ng/mL vs. 55.67 ± 2.01 ng/mL after treatment, p < 0.01), however there was no statistical difference between the 2 treatments (p > 0.05). Circulating ZAG is closely related to PCOS and could be an important adipokine involved in the occurrence and development of PCOS. ZAG might possibly be applicable as a new observational indicator in the treatment of PCOS.
Collapse
Affiliation(s)
- Siyuan Zheng
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - En Liu
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ying Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Tao Long
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xin Liu
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yi Gong
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Tingting Mai
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Huanling Shen
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Hui Chen
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Rong Lin
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yongxiong Zheng
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yijuan Xie
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
36
|
Rohm M, Zeigerer A, Machado J, Herzig S. Energy metabolism in cachexia. EMBO Rep 2019; 20:embr.201847258. [PMID: 30890538 DOI: 10.15252/embr.201847258] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
Cachexia is a wasting disorder that accompanies many chronic diseases including cancer and results from an imbalance of energy requirements and energy uptake. In cancer cachexia, tumor-secreted factors and/or tumor-host interactions cause this imbalance, leading to loss of adipose tissue and skeletal and cardiac muscle, which weakens the body. In this review, we discuss how energy enters the body and is utilized by the different organs, including the gut, liver, adipose tissue, and muscle, and how these organs contribute to the energy wasting observed in cachexia. We also discuss futile cycles both between the organs and within the cells, which are often used to fine-tune energy supply under physiologic conditions. Ultimately, understanding the complex interplay of pathologic energy-wasting circuits in cachexia can bring us closer to identifying effective treatment strategies for this devastating wasting disease.
Collapse
Affiliation(s)
- Maria Rohm
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliano Machado
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany .,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| |
Collapse
|
37
|
Abstract
Cachexia is a systemic condition that occurs during many neoplastic diseases, such as cancer. Cachexia in cancer is characterized by loss of body weight and muscle and by adipose tissue wasting and systemic inflammation. Cancer cachexia is often associated with anorexia and increased energy expenditure. Even though the cachectic condition severely affects skeletal muscle, a tissue that accounts for ~40% of total body weight, it represents a multi-organ syndrome that involves tissues and organs such as white adipose tissue, brown adipose tissue, bone, brain, liver, gut and heart. Indeed, evidence suggests that non-muscle tissues and organs, as well as tumour tissues, secrete soluble factors that act on skeletal muscle to promote wasting. In addition, muscle tissue also releases various factors that can interact with the metabolism of other tissues during cancer. In this Review, we examine the effect of non-muscle tissues and inter-tissue communication in cancer cachexia and discuss studies aimed at developing novel therapeutic strategies for the condition.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
38
|
Schmidt SF, Rohm M, Herzig S, Berriel Diaz M. Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends Cancer 2018; 4:849-860. [DOI: 10.1016/j.trecan.2018.10.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
|
39
|
Mokari-Yamchi A, Sharifi A, Kheirouri S. Increased serum levels of S100A1, ZAG, and adiponectin in cachectic patients with COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:3157-3163. [PMID: 30349224 PMCID: PMC6183696 DOI: 10.2147/copd.s172996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background COPD is a common irreversible obstructive airway disease. S100A1, ZAG, and adiponectin are important regulators of energy metabolism and body weight. Therefore, the aim of this study was to assess resting metabolic rate (RMR) and its association with serum levels of S100A1, ZAG, and adiponectin in cachectic and noncachectic COPD patients. Patients and methods Ninety men with COPD, aged 40–70 years, were enrolled in the study. Patients were divided into the following two groups based on the unintentional weight loss of .7.5% in previous 6 months: noncachectic (n=45) and cachectic (n=45). The groups were matched based on age and body mass index (BMI). RMR was measured by indirect calorimetry method. Anthropometric indices and body composition were also measured. Serum levels of S100A1, ZAG, and adiponectin were measured by ELISA. Results Cachectic patients had significantly higher RMR than controls (P<0.001). Serum levels of ZAG, S100A1, and adiponectin were significantly higher in the cachexia group (P<0.0001). RMR was not significantly associated with S100A1, ZAG, and adiponectin levels. However, weight loss of patients was significantly associated with serum levels of ZAG and adiponectin (both, β=0.22, P=0.03). Strong and positive association were found between the serum levels of S100A1 and ZAG (β=0.88, P<0.0001), S100A1 and adiponectin (β=0.86, P<0.0001), and also ZAG and adiponectin (β=0.83, P<0.0001). Conclusion The potential role of these factors in the wasting process is considerable. Also, the association between serum levels of S100A1, ZAG, and adiponectin represents that these three proteins are probably related to specific functions.
Collapse
Affiliation(s)
- Amin Mokari-Yamchi
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran,
| | - Akbar Sharifi
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran,
| |
Collapse
|
40
|
Husi H, MacDonald A, Skipworth RJE, Miller J, Cronshaw A, Fearon KCH, Ross JA. Proteomic identification of potential markers of myosteatosis in human urine. Biomed Rep 2018; 8:557-564. [PMID: 29904612 DOI: 10.3892/br.2018.1091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Myosteatosis, the infiltration of fat in skeletal muscle, is associated with lower skeletal muscle density (SMD) as detected by computed tomography (CT). It increases with aging and obesity and is thought to play a role in the aetiology of insulin resistance and type II diabetes. The clinical significance of myosteatosis in cancer cachexia, however, remains to be determined. Along with demonstrable subcutaneous and visceral lipolysis, myosteatosis may also be a key component of the syndrome. We aimed to investigate the use of human urine as a non-invasive way to screen for molecular biomarkers of myosteatosis/reduced SMD using SELDI-TOF mass spectrometry. Pre-operative CT scans of patients undergoing surgery for upper gastrointestinal or hepatopancreaticobiliary cancer were analysed at the level of the third lumbar vertebrae. Myosteatosis was inferred as the presence of reduced SMD, which was defined as Hounsfield units for skeletal muscle <39.5 (two standard deviations below a normal healthy cohort). Urine was analysed by mass spectrometry using CM10 and IMAC30 SELDI-chips. Peaks observed in the CM10 and IMAC30 chip types, showed marked expressional differences between control and myosteatosis, were further investigated by mascot SELDI matrix matching. A total of 55 patients was recruited; 31 patients were found to be myosteatotic on CT scan. Application of the IMAC30-derived model to the entire cohort showed a sensitivity of 97%, specificity of 71% and an overall correctness of 85%. Application of the CM10 chipset-based model to the entire cohort, showed a 77% sensitivity, 67% specificity and 73% overall correctness. Analysis of the peaks of interest resulted in the identification of significant fragments of cathepsin C, argin, arylsulfatase A and glial fibrillary acidic protein. We identified several potential urinary molecular biomarkers associated with reduced SMD in cancer. Such markers are potentially useful in deriving a clinical screening test for myosteatosis.
Collapse
Affiliation(s)
- Holger Husi
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, IV2 3JH Inverness, UK
| | - Alisdair MacDonald
- Department of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | | | - Janice Miller
- Department of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Andrew Cronshaw
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kenneth C H Fearon
- Department of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - James A Ross
- Department of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| |
Collapse
|
41
|
Euclydes VLV, Castro NP, Lima LR, Brito C, Ribeiro L, Simões FA, Requena G, Luzia LA, Rondó PH. Cord blood concentrations of leptin, zinc-α2-glycoprotein, and adiponectin, and adiposity gain during the first 3 mo of life. Nutrition 2018; 54:89-93. [PMID: 29758496 DOI: 10.1016/j.nut.2018.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/21/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Adipose tissue development starts in intrauterine life and cytokines are involved in this process. Therefore, understanding the role of cytokines in the fat mass gain of infants is crucial to prevent obesity later in life. Furthermore, recent evidence indicates a sex-specific link between cytokines and adipose tissue development. The objective of this study was to assess sex-specific relationships of cord blood concentrations of the cytokines leptin, zinc-α2-glycoprotein (ZAG), and adiponectin with infant adiposity during the first 3 mo of life. METHODS This was a prospective cohort study of 104 mother-infant pairs that were selected from a maternity hospital in Sao Paulo, Brazil. Cord blood leptin, ZAG, and adiponectin were determined by enzyme-linked immunosorbent assays. The body composition of the infants was assessed monthly by air displacement plethysmography. A multiple linear regression analysis was conducted with the average fat mass gain from birth to the third month of life as the outcome and cord blood leptin, ZAG, and adiponectin as the variables of interest. RESULTS Leptin was inversely associated with fat mass gain in the first 3 mo of life (P = 0.003; adjusted R2 = 0.09). There were inverse associations of leptin (P = 0.021), ZAG (P = 0.042), and maternal body mass index (P = 0.04) with fat mass gain in girls (adjusted R2 = 0.29) but fat mass gain in boys was positively associated with gestational age (P = 0.01; adjusted R2 = 0.15). CONCLUSIONS The results of this study suggest that adiposity programming is sex-specific, which highlights the need to investigate the different metabolic mechanisms that are involved in adipogenesis.
Collapse
Affiliation(s)
- Verônica L V Euclydes
- Postgraduate Program in Applied Human Nutrition, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia P Castro
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Lourdes R Lima
- Laboratory of Immunology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Cyro Brito
- Laboratory of Immunology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Laisa Ribeiro
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Agapito Simões
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Guaraci Requena
- Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil
| | - Liania Alves Luzia
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Patricia Helen Rondó
- Postgraduate Program in Applied Human Nutrition, University of Sao Paulo, Sao Paulo, Brazil; Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
42
|
Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, Xu CX, Wen GB, Liu JH. Zinc alpha2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun 2018; 496:287-293. [PMID: 29317208 DOI: 10.1016/j.bbrc.2018.01.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Recent studies have highlighted recruiting and activating brite adipocytes in WAT (so-called "browning") would be an attractive anti-obesity strategy. Zinc alpha2 glycoprotein (ZAG) as an important adipokine, is reported to ameliorate glycolipid metabolism and lose body weight in obese mice. However whether the body reducing effect mediated by browning programme remains unclear. Here, we show that overexpression of ZAG in 3T3-L1 adipocytes enhanced expression of brown fat-specific markers (UCP-1, PRDM16 and CIDEA), mitochondrial biogenesis genes (PGC-1α, NRF-1/2 and mtTFA) and the key lipid metabolism lipases (ATGL, HSL, CPT1-A and p-acyl-CoA carboxylase). Additionally, those effects were dramaticlly abolished by H89/SB203580, revealing ZAG-induced browning depend on PKA and p38 MAPK signaling. Overall, our findings suggest that ZAG is a candidate therapeutic agent against obesity via induction of brown fat-like phenotype in white adipocytes.
Collapse
Affiliation(s)
- Xin-Hua Xiao
- Department of Metabolism and Endocrinology, University of South China, Hengyang, 421001, Hunan Province, China
| | - Xiao-Yan Qi
- Department of Metabolism and Endocrinology, University of South China, Hengyang, 421001, Hunan Province, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, University of South China, Hengyang, 421001, Hunan Province, China
| | - Li Ran
- Department of Metabolism and Endocrinology, University of South China, Hengyang, 421001, Hunan Province, China
| | - Jing Yang
- Department of Metabolism and Endocrinology, University of South China, Hengyang, 421001, Hunan Province, China
| | - Huan-Li Zhang
- Department of Metabolism and Endocrinology, University of South China, Hengyang, 421001, Hunan Province, China
| | - Can-Xin Xu
- Department of Pathology & Immunology, Developmental, Regenerative and Stem Cell Biology, Washington University in St. Louis, MO, 63110, USA
| | - Ge-Bo Wen
- Department of Metabolism and Endocrinology, University of South China, Hengyang, 421001, Hunan Province, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
43
|
Extracellular matrix remodeling and matrix metalloproteinase inhibition in visceral adipose during weight cycling in mice. Exp Cell Res 2017; 359:431-440. [DOI: 10.1016/j.yexcr.2017.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/20/2017] [Accepted: 08/17/2017] [Indexed: 11/23/2022]
|
44
|
Alipoor E, Esmaillzadeh A, Mahdavi-Mazdeh M, Yaseri M, Zahed NS, Hosseinzadeh-Attar MJ. The relationship of serum adipokines with malnutrition inflammation score in haemodialysis. Eur J Clin Invest 2017. [PMID: 28621798 DOI: 10.1111/eci.12774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Protein-energy wasting is a prevalent disorder in haemodialysis. Zinc-α2-glycoprotein (ZAG) and adipose triglyceride lipase (ATGL) are novel adipokines with recognized lipolytic effects and proposed role in metabolic homoeostasis. This study was conducted to investigate the association of ZAG and ATGL concentrations with malnutrition-inflammation score (MIS) and metabolic profile of patients with haemodialysis. MATERIALS AND METHODS Eighty-eight patients under regular haemodialysis were divided based on MIS to normal to mild wasting (NMW; n = 35) or moderate wasting (MW; n = 53) group. Anthropometric measurements along with fasting serum concentrations of ZAG, ATGL, free fatty acids (FFAs), albumin, transferrin, total iron-binding capacity (TIBC), hs-CRP, lipid profile and glucose metabolism were assessed. RESULTS Adipose triglyceride lipase concentration was significantly higher in MW than NMW group (10·89 ± 5·7 vs. 8·02 ± 3·37 mIU/mL; P = 0·008). The ZAG and FFAs were not significantly different between two groups. ATGL was directly correlated with FFAs in all of the patients (r = 0·284, P = 0·007) and MW (r = 0·32, P = 0·021), and marginally in NMW (r = 0·31, P = 0·057) groups. ATGL and odds of having mild or moderate wasting were significantly correlated (OR = 1·21, P = 0·033). A positive association was observed between ATGL with TG (r = 0·31, P = 0·049) and also with transferrin and TIBC (r = 0·44, P = 0·001) only in MW group. An inverse relationship was observed between ATGL and HDL in all of the participants (r=-0·222, P = 0·04). No significant correlation was observed between ZAG and other parameters. CONCLUSIONS The serum concentrations of ATGL, but not ZAG, were significantly higher in MW compared to NMW group. Each unit increase in ATGL concentrations was correlated with 21% increase in the odds of wasting severity. ATGL might play a role in wasting pathogenesis and metabolic profile in haemodialysis.
Collapse
Affiliation(s)
- Elham Alipoor
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Mahdavi-Mazdeh
- Iranian Tissue Bank & Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Sadat Zahed
- Department of Nephrology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
45
|
Loumaye A, Thissen JP. Biomarkers of cancer cachexia. Clin Biochem 2017; 50:1281-1288. [PMID: 28739222 DOI: 10.1016/j.clinbiochem.2017.07.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia.
Collapse
Affiliation(s)
- Audrey Loumaye
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium.
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
46
|
Abstract
Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole-body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity-related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.
Collapse
Affiliation(s)
- Alexandros Vegiopoulos
- Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Maria Rohm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program Inner Medicine I, Neuherberg, Germany
| |
Collapse
|
47
|
Morse KW, Astbury NM, Walczyszyn A, Hashim SA, Geliebter A. Changes in zinc-α2-glycoprotein (ZAG) plasma concentrations pre and post Roux-En-Y gastric bypass surgery (RYGB) or a very low calorie (VLCD) diet in clinically severe obese patients: Preliminary Study. ACTA ACUST UNITED AC 2017; 3. [PMID: 29367881 PMCID: PMC5777576 DOI: 10.15761/iod.1000170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this preliminary study was to investigate changes in plasma concentrations of zinc-α2-glycoprotein (ZAG), a lipid mobilizing hormone, in obese subjects following Roux-En-Y Gastric Bypass (RYGB) surgery or a very low calorie diet (VLCD). Fasting blood concentrations and anthropometric measurements were measured pre and 12 weeks post intervention. 14 healthy, obese individuals underwent either RYGB (N=6) surgery or a VLCD (N=8). Body composition and fasting plasma ZAG concentrations were measured at baseline (pre) and 12 weeks post intervention (post). At pre-intervention baseline, there was no difference in plasma ZAG between the two intervention groups. Post-intervention, there was a significant overall reduction (F(1,11) = 32.8, p<0.001) in plasma ZAG, which was significant only within the RYGB group from pre to post intervention (33.2 ± 5.7 μg/ml to 26.7 ± 4.8 μg/ml (p<0.015)) and significantly greater than the change within the VLCD group. The change in ZAG was inversely correlated across groups with BMI reduction (r= −0.60, p<0.05), % body fat reduction (r= −0.68, p<0.015), reduction in weight (r= −0.58, p<0.05), and % weight loss (r= −0.70, p<0.05). Overall, subjects who underwent RYGB or VLCD had a significant reduction in plasma ZAG. This reduction was significant within the RYGB group alone, who lost a larger amount of weight than the VLCD group, which suggests that ZAG may have a protective effect during marked weight loss.
Collapse
Affiliation(s)
- Kyle W Morse
- Weill Cornell Medical College, New York, NY, USA
| | | | | | | | - Allan Geliebter
- Weill Cornell Medical College, New York, NY, USA.,Department of Psychiatry, Mt Sinai St. Luke's Hospital, New York, NY, USA
| |
Collapse
|
48
|
Erlandson KM, Lake JE. Fat Matters: Understanding the Role of Adipose Tissue in Health in HIV Infection. Curr HIV/AIDS Rep 2016; 13:20-30. [PMID: 26830284 DOI: 10.1007/s11904-016-0298-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
More than one-third of adults in the USA are obese and obesity-related disease accounts for some of the leading causes of preventable death. Mid-life obesity may be a strong predictor of physical function impairment later in life regardless of body mass index (BMI) in older age, highlighting the benefits of obesity prevention on health throughout the lifespan. Adipose tissue disturbances including lipodystrophy and obesity are prevalent in the setting of treated and untreated HIV infection. This article will review current knowledge on fat disturbances in HIV-infected persons, including therapeutic options and future directions.
Collapse
Affiliation(s)
- Kristine M Erlandson
- University of Colorado-Anschutz Medical Center, 12700 E 19th Ave, Mailstop B168, Aurora, CO, USA.
| | - Jordan E Lake
- University of California, Los Angeles, 11075 Santa Monica Blvd., Ste. 100, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Metabolic and morphological measurements of subcutaneous and visceral fat and their relationship with disease stage and overall survival in newly diagnosed pancreatic adenocarcinoma. Eur J Nucl Med Mol Imaging 2016; 44:110-116. [DOI: 10.1007/s00259-016-3525-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
|
50
|
Huang XY, Huang ZL, Yang JH, Xu YH, Sun JS, Zheng Q, Wei C, Song W, Yuan Z. Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:46. [PMID: 26975989 PMCID: PMC4791758 DOI: 10.1186/s13046-016-0317-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/29/2016] [Indexed: 01/27/2023]
Abstract
Background Progressive loss of skeletal muscle, termed muscle wasting, is a hallmark of cancer cachexia and contributes to weakness, reduced quality of life, as well as poor response to therapy. Previous studies have indicated that systemic host inflammatory response regarding tumor development results in muscle wasting. However, how tumor directly regulates muscle wasting via tumor-derived secreted proteins is still largely unknown. Methods In this study, we performed bioinformatics analysis in two datasets of pancreatic ductal adenocarcinoma, which causes cancer cachexia and muscle wasting with the highest prevalence, and uncovered that IGFBP3, which encodes IGF-binding protein-3 (IGFBP-3), is dramatically up-regulated in pancreatic tumor samples. We also verified the wasting effect of IGFBP-3 on C2C12 muscle cells with biochemical and genetic assays. Results IGFBP-3 potently leads to impaired myogenesis and enhanced muscle protein degradation, the major features of muscle wasting, via IGF signaling inhibition. Moreover, conditioned medium from Capan-1 pancreatic cancer cells, which contains abundant IGFBP-3, significantly induces muscle cell wasting. This wasting effect is potently alleviated by IGFBP3 knockdown in Capan-1 cells or IGFBP-3 antibody neutralization. Strikingly, compared to muscle cells, IGF signaling and proliferation rate of Capan-1 cells were rarely affected by IGFBP-3 treatment. Conclusions Our results demonstrated that pancreatic cancer cells induce muscle wasting via IGFBP-3 production. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0317-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiu-yan Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Zi-Li Huang
- Department of Radiology, Xuhui Central Hospital, Shanghai, 200031, PR China
| | - Ju-hong Yang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Yong-hua Xu
- Department of Radiology, Xuhui Central Hospital, Shanghai, 200031, PR China
| | - Jiu-Song Sun
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Qi Zheng
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China
| | - Chunyao Wei
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhou Yuan
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| |
Collapse
|