1
|
Lewis THJ, Getsy PM, Peroni JF, Ryan RM, Jenkins MW, Lewis SJ. Characterization of endothelium-dependent and -independent processes in occipital artery of the rat: Relevance to control of blood flow to nodose sensory cells. J Appl Physiol (1985) 2021; 131:1067-1079. [PMID: 34323595 DOI: 10.1152/japplphysiol.00221.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating factors access cell bodies of vagal afferents in nodose ganglia (NG) via the occipital artery (OA). Constrictor responses of OA segments closer in origin from the external carotid artery (ECA) differ from segments closer to NG. Our objective was to determine the role of endothelium in this differential vasoreactivity in rat OA segments. Vasoreactivity of OA segments (proximal segments closer to ECA, distal segments closer to NG) were examined in wire myographs. We evaluated (a) vasoconstrictor effects of 5-hydroxytryptamine (5-HT) in intact and endothelium-denuded OA segments in absence/presence of soluble guanylate cyclase (SGC) inhibitor ODQ, (b) vasodilator responses elicited by NO-donor MAHMA NONOate in intact or endothelium-denuded OA segments in absence/presence of ODQ, and (c) vasodilator responses elicited by endothelium-dependent vasodilator, acetylcholine (ACh), in intact OA segments in absence/presence of ODQ. Intact distal OA responded more to 5-HT than intact proximal OA. Endothelium denudation increased 5-HT potency in both OA segments, especially proximal OA. ODQ increased maximal responses of 5HT in both segments, particularly proximal OA. ACh similarly relaxed both OA segments, effects abolished by endothelial denudation and attenuated by ODQ. MAHMA NONOate elicited transient vasodilation in both segments. Effects of ODQ against ACh were segment-dependent whereas those against MAHMA NONOate were not. The endothelium regulates OA responsiveness in a segment-dependently fashion. Endothelial cells at the OA-ECA junction more strongly influence vascular tone than those closer to NG. Differential endothelial regulation of OA tone may play a role in controlling blood flow and access of circulating factors to NG.
Collapse
Affiliation(s)
- Tristan H J Lewis
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - John F Peroni
- Department of Large Animal Medicine, University of Georgia, Athens, Georgia, United States
| | - Rita M Ryan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen John Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States.,Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|
3
|
Brownfoot FC, Tong S, Hannan NJ, Hastie R, Cannon P, Tuohey L, Kaitu'u-Lino TJ. YC-1 reduces placental sFlt-1 and soluble endoglin production and decreases endothelial dysfunction: A possible therapeutic for preeclampsia. Mol Cell Endocrinol 2015; 413:202-8. [PMID: 26159901 DOI: 10.1016/j.mce.2015.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/05/2015] [Accepted: 06/28/2015] [Indexed: 01/12/2023]
Abstract
Preeclampsia is a serious complication of pregnancy with no medical treatment. It is caused by intermittent placental hypoxia and release of sFlt-1 and soluble endoglin, leading to wide spread maternal endothelial dysfunction and multisystem organ injury. YC-1 is a guanylyl cyclase activator and HIF1α inhibitor developed for use in hypertension and atherosclerosis. We examined whether YC-1 reduces sFlt-1 and sENG secretion and reverses endothelial dysfunction in primary human tissues. YC-1 significantly reduced sFlt-1 and sENG secretion from human umbilical vein endothelial cells, purified primary trophoblast cells and placental explants taken from patients with preterm preeclampsia. This was concordant with reduced HIF1α expression. YC-1 also reversed TNFα induced endothelial dysfunction, including reduced vascular cell adhesion molecule 1 expression and monocyte adhesion to primary endothelial cells. We conclude YC-1 decreases placental production of sFlt-1 and sENG and decreases endothelial dysfunction. It is a novel therapeutic candidate for preeclampsia.
Collapse
Affiliation(s)
- Fiona C Brownfoot
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Rd, Heidelberg 3084, Victoria, Australia.
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Rd, Heidelberg 3084, Victoria, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Rd, Heidelberg 3084, Victoria, Australia
| | - Roxanne Hastie
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Rd, Heidelberg 3084, Victoria, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Rd, Heidelberg 3084, Victoria, Australia
| | - Laura Tuohey
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Rd, Heidelberg 3084, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Rd, Heidelberg 3084, Victoria, Australia
| |
Collapse
|
4
|
Soeiro-Pereira PV, Falcai A, Kubo CA, Antunes E, Condino-Neto A. BAY 41-2272 activates host defence against local and disseminated Candida albicans infections. Mem Inst Oswaldo Cruz 2015; 110:75-85. [PMID: 25742266 PMCID: PMC4371220 DOI: 10.1590/0074-02760140255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/04/2014] [Indexed: 11/21/2022] Open
Abstract
In our previous study, we have found that
5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]-pyrimidin-4-ylamine
(BAY 41-2272), a guanylate cyclase agonist, activates human monocytes and the THP-1
cell line to produce the superoxide anion, increasing in vitro microbicidal activity,
suggesting that this drug can be used to modulate immune functioning in primary
immunodeficiency patients. In the present work, we investigated the potential of the
in vivo administration of BAY 41-2272 for the treatment of Candida albicans and
Staphylococcus aureus infections introduced via intraperitoneal and subcutaneous
inoculation. We found that intraperitoneal treatment with BAY 41-2272 markedly
increased macrophage-dependent cell influx to the peritoneum in addition to
macrophage functions, such as spreading, zymosan particle phagocytosis and nitric
oxide and phorbol myristate acetate-stimulated hydrogen peroxide production.
Treatment with BAY 41-2272 was highly effective in reducing the death rate due to
intraperitoneal inoculation of C. albicans, but not S. aureus. However, we found that
in vitro stimulation of peritoneal macrophages with BAY 41-2272 markedly increased
microbicidal activities against both pathogens. Our results show that the prevention
of death by the treatment of C. albicans-infected mice with BAY 41-2272 might occur
primarily by the modulation of the host immune response through macrophage
activation.
Collapse
Affiliation(s)
| | - Angela Falcai
- Centro de Ensino Universitário do Maranhão, São Luís, MA, Brasil
| | - Christina Arslanian Kubo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Edson Antunes
- Departamento de Farmacologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Antonio Condino-Neto
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Li J, Ke Y, Huang M, Huang S, Liang Y. Inhibitory effects of B-cell lymphoma 2 on the vasculogenic mimicry of hypoxic human glioma cells. Exp Ther Med 2014; 9:977-981. [PMID: 25667663 PMCID: PMC4316972 DOI: 10.3892/etm.2014.2162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 10/29/2014] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the mechanisms and effects of B-cell lymphoma 2 (Bcl-2) on the vasculogenic mimicry (VM) of human glioma cells. U87 cells were cultured under hypoxic conditions and then divided into four groups: Control, 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole (YC-1), ABT-737 and YC-1 + ABT-737. These groups were treated with the corresponding simulators. The expression of hypoxia-inducible factor-1α (HIF-1α), matrix metalloproteinase (MMP)-2, MMP-14 and Bcl-2 in each group was determined using a reverse transcription-quantitative polymerase chain reaction and western blot analysis. Compared with that in the control group, the mRNA and protein expression of MMP-2, MMP-14 and Bcl-2 in the YC-1 and ABT-737 groups was significantly reduced. The expression of HIF-1α, however, was only significantly reduced in the YC-1 group (P<0.05). Compared with those in the YC-1 + ABT-737 group, the expression levels of the four proteins in the YC-1 and ABT-737 groups were not significantly different, with the exception of the expression of HIF-1α in the ABT-737 group, which was significantly enhanced (P<0.05). The mRNA expression levels of HIF-1α, MMP-2 and MMP-14 in the YC-1 group were significantly different from those in the ABT-737 group (P<0.01); however, no significant difference was observed in the expression of Bcl-2. In conclusion, Bcl-2 may be an important factor in the VM formation of human malignant glioma U87 cells under hypoxic conditions. Certain functions of Bcl-2 may be attributed to the HIF-1α-MMP-2-MMP-14-VM channel, whereas other functions may be independent of the channel.
Collapse
Affiliation(s)
- Jianwen Li
- Department of Neurosurgery, Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yiquan Ke
- Department of Neurosurgery, Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Min Huang
- Department of Neurosurgery, Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shuyun Huang
- Department of Neurosurgery, Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yiming Liang
- Department of Neurosurgery, Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
6
|
Mohan S, Patel H, Bolinaga J, Soekamto N. AMP-activated protein kinase regulates L-arginine mediated cellular responses. Nutr Metab (Lond) 2013; 10:40. [PMID: 23718875 PMCID: PMC3680329 DOI: 10.1186/1743-7075-10-40] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022] Open
Abstract
Background Our prior study revealed the loss in short-term L-Arginine (ARG) therapeutic efficacy after continuous exposure; resulting in tolerance development, mediated by endothelial nitric oxide synthase (eNOS) down-regulation, secondary to oxidative stress and induced glucose accumulation. However, the potential factor regulating ARG cellular response is presently unknown. Method Human umbilical vein endothelial cells were incubated with 100 μM ARG for 2 h in buffer (short-term or acute), or for 7 days in culture medium and challenged for 2 h in buffer (continuous or chronic), in the presence or absence of other agents. eNOS activity was determined by analyzing cellular nitrite/nitrate (NO2–/NO3–), and AMP-activated protein kinase (AMPK) activity was assayed using SAMS peptide. 13C6 glucose was added to medium to measure glucose uptake during cellular treatments, which were determined by LC-MS/MS. Cellular glucose was identified by o-toluidine method. Superoxide (O2•–) was identified by EPR-spin-trap, and peroxynitrite (ONOO–) was measured by flow-cytometer using aminophenyl fluorescein dye. Results Short-term incubation of cells with 100 μM ARG in the presence or absence of 30 μM L-NG-Nitroarginine methyl ester (L-NAME) or 30 μM AMPK inhibitor (compound C, CMP-C) increased cellular oxidative stress and overall glucose accumulation with no variation in glucose transporter-1 (GLUT-1), or AMPK activity from control. The increase in total NO2–/NO3– after 2 h 100 μM ARG exposure, was suppressed in cells co-incubated with 30 μM CMP-C or L-NAME. Long-term exposure of ARG with or without CMP-C or L-NAME suppressed NO2–/NO3–, glucose uptake, GLUT-1, AMPK expression and activity below control, and increased overall cellular glucose, O2•– and ONOO–. Gluconeogenesis inhibition with 30 μM 5-Chloro-2-N-2,5-dichlorobenzenesulfonamido-benzoxazole (CDB) during ARG exposure for 2 h maintained overall cellular glucose to control, but increased cellular glucose uptake. Continuous co-incubation with CDB and ARG increased NO2–/NO3–, glucose uptake, GLUT-1, AMPK expression and activity, and maintained overall cellular glucose, O2•– and ONOO– to control conditions. Conclusion The present study provides the fundamental evidence for AMPK as the primary modulator of ARG cellular responses and for regulating the mode of glucose accumulation during short-term and continuous ARG treatments.
Collapse
Affiliation(s)
- Srinidi Mohan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| | - Jorge Bolinaga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| | - Nathania Soekamto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| |
Collapse
|
7
|
Brito TS, Lima FJB, Aragão KS, de Siqueira RJB, Sousa PJC, Maia JGS, Filho JD, Lahlou S, Magalhães PJC. The vasorelaxant effects of 1-nitro-2-phenylethane involve stimulation of the soluble guanylate cyclase-cGMP pathway. Biochem Pharmacol 2012; 85:780-8. [PMID: 23270994 DOI: 10.1016/j.bcp.2012.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
1-Nitro-2-phenylethane is the first organic NO₂-containing molecule isolated from plants. It possesses interesting hypotensive, bradycardic, and vasodilator properties, but the mode by which it induces vasorelaxation is still unknown. The underlying mechanism involved in the vasodilator effect of 1-nitro-2-phenylethane was investigated in rat aorta. The vasorelaxant effects of 1-nitro-2-phenylethane did not depend on endothelial layer integrity, and the effects were refractory to L-N(G)-nitroarginine methyl ester (L-NAME)-induced nitric oxide synthase inhibition. Vasorelaxation was similarly resistant to treatment with indomethacin, cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine hydrochloride (MDL-12330A), and KT5720, indicating that neither prostaglandin release nor adenylyl cyclase activation is involved. Conversely, methylene blue- and ODQ-induced guanylate cyclase inhibition reduced the vasorelaxation induced by 1-nitro-2-phenylethane. The pharmacological blockade of K(+) channels with tetraethylammonium, glybenclamide, and 4-aminopyridine also blunted vasorelaxation induced by 1-nitro-2-phenylethane. The effects of 1-nitro-2-phenylethane were reversed by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and comparable to the effects induced by sodium nitroprusside. In silico analysis using an Ns H-NOX subunit of guanylate cyclase revealed a pocket on the macromolecule surface where 1-nitro-2-phenylethane preferentially docked. In vitro, 1-nitro-2-phenylethane increased cyclic guanosine 3',5'-monophosphate (cGMP) levels in rat aortic rings, an effect also reversed by ODQ. In conclusion, 1-nitro-2-phenylethane produces vasodilator effects by stimulating the soluble guanylate cyclase-cGMP pathway.
Collapse
Affiliation(s)
- Teresinha S Brito
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hwang TL, Tang MC, Kuo LM, Chang WD, Chung PJ, Chang YW, Fang YC. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages. Toxicol Appl Pharmacol 2012; 260:193-200. [DOI: 10.1016/j.taap.2012.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 01/20/2023]
|
9
|
Ramos-Espiritu LS, Hess KC, Buck J, Levin LR. The soluble guanylyl cyclase activator YC-1 increases intracellular cGMP and cAMP via independent mechanisms in INS-1E cells. J Pharmacol Exp Ther 2011; 338:925-31. [PMID: 21665942 DOI: 10.1124/jpet.111.184135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In addition to increasing cGMP, the soluble guanylyl cyclase (sGC) activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) can elevate intracellular cAMP levels. This response was assumed to be as a result of cGMP-dependent inhibition of cAMP phosphodiesterases; however, in this study, we show that YC-1-induced cAMP production in the rat pancreatic beta cell line INS-1E occurs independent of its function as a sGC activator and independent of its ability to inhibit phosphodiesterases. This YC-1-induced cAMP increase is dependent upon soluble adenylyl cyclase and not on transmembrane adenylyl cyclase activity. We previously showed that soluble adenylyl cyclase-generated cAMP can lead to extracellular signal-regulated kinase activation and that YC-1-stimulated cAMP production also stimulates extracellular signal-regulated kinase. Although YC-1 has been used as a tool for investigating sGC and cGMP-mediated pathways, this study reveals cGMP-independent pharmacological actions of this compound.
Collapse
|
10
|
Park WS, Ko JH, Ko EA, Son YK, Hong DH, Jung ID, Park YM, Choi TH, Kim N, Han J. The guanylyl cyclase activator YC-1 directly inhibits the voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. J Pharmacol Sci 2010; 112:64-72. [PMID: 20093789 DOI: 10.1254/jphs.09228fp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated the effects of YC-1, an activator of soluble guanylyl cyclase (sGC), on voltage-dependent K+ (Kv) channels in smooth muscle cells from freshly isolated rabbit coronary arteries by using the whole-cell patch clamp technique. YC-1 inhibited the Kv current in a dose-dependent fashion with an apparent K(d) of 9.67 microM. It accelerated the decay rate of Kv channel inactivation without altering the kinetics of current activation. The rate constants of association and dissociation for YC-1 were 0.36 +/- 0.01 microM(-1) x s(-1) and 3.44 +/- 0.22 s(-1), respectively. YC-1 did not have a significant effect on the steady-state activation and inactivation curves. The recovery time constant from inactivation was decreased in the presence of YC-1, and application of train pulses (1 or 2 Hz) caused a progressive increase in the YC-1 blockade, indicating that YC-1-induced inhibition of Kv currents is use-dependent. Pretreatment with Bay 41-2272 (also a sGC activator), ODQ (a sGC inhibitor), or Rp-8-Br-PET-cGMPs (a protein kinase G inhibitor) did not affect the basal Kv current and also did not significantly alter the inhibitory effect of YC-1. From these results, we suggest that YC-1 directly inhibits the Kv current independently of sGC activation and in a state-, time-, and use-dependent fashion.
Collapse
Affiliation(s)
- Won Sun Park
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, FIRST Mitochondrial Research Group, Biomarker Medical Research Center, Inje University, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hung CC, Liou HH. YC-1, a novel potential anticancer agent, inhibit multidrug-resistant protein via cGMP-dependent pathway. Invest New Drugs 2010; 29:1337-46. [PMID: 20676745 DOI: 10.1007/s10637-010-9496-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/12/2010] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to evaluate the effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) on multidrug resistance. Expression of human P-glycoprotein was assessed by realtime quantitative RT-PCR and western blot. The efflux function of P-glycoprotein was evaluated by rhodamine 123 accumulation and calcein-AM uptake models. The mechanisms of action of YC-1 on different signaling pathways were studied using series of antagonists and the kinetics was also assessed. Cytotoxicity was evaluated by MTT assay. The results demonstrated that increased intracellular accumulation of rhodamine 123 and increased fluorescence of calcein were observed after YC-1 treatment. Furthermore, increased YC-1 concentration resulted in significant decrease in Vmax while K(M) remained unchanged suggested that YC-1 acted as a noncompetitive inhibitor of P-glycoprotein. Moreover, the inhibition of Pgp efflux function by YC-1 was significantly reversed by NO synthase inhibitor, (L)-NAME, the sGC inhibitor, ODQ, the PKG inhibitor, Rp-8-Br-PET-cGMPS, and the PKG inhibitor KT5823. In addition, ERK kinase inhibitor PD98059 also significantly restored YC-1 inhibited Pgp efflux function. These results indicated that YC-1 inhibited Pgp efflux via the NO-cGMP-PKG-ERK signaling pathway through noncompetitive inhibition. The present study revealed that YC-1 could be a good candidate for development as a MDR modulator.
Collapse
Affiliation(s)
- Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, Republic of China
| | | |
Collapse
|
12
|
Dal-Secco D, Freitas A, Abreu MA, Garlet TP, Rossi MA, Ferreira SH, Silva JS, Alves-Filho JC, Cunha FQ. Reduction of ICAM-1 expression by carbon monoxide via soluble guanylate cyclase activation accounts for modulation of neutrophil migration. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:483-93. [PMID: 20349048 DOI: 10.1007/s00210-010-0500-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 02/12/2010] [Indexed: 02/08/2023]
Abstract
Previously, it was demonstrated that the heme/heme oxygenase (HO)/carbon monoxide (CO) pathway inhibits neutrophil recruitment during the inflammatory response. Herein, we addressed whether the inhibitory effect of the HO pathway on neutrophil adhesion and migration involves the reduction of intracellular adhesion molecule type (ICAM)-1 and beta(2)-integrin expression. Mice pretreated with a specific inhibitor of inducible HO (HO-1), zinc protoporphyrin (ZnPP) IX, exhibit enhanced neutrophil adhesion and migration induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS). These findings are associated with an increase in ICAM-1 expression on mesentery venular endothelium. In accordance, HO-1 inhibition did not enhance LPS-induced neutrophil migration and adhesion in ICAM-1-deficient mice. Furthermore, the treatment with a CO donor (dimanganese decacarbonyl, DMDC) that inhibits adhesion and migration of the neutrophils, reduced LPS-induced ICAM-1 expression. Moreover, neither DMDC nor ZnPP IX treatments changed LPS-induced beta(2)-integrin expression on neutrophils. The effect of CO on ICAM-1 expression seems to be dependent on soluble guanylate cyclase (sGC) activation, since 1H-(1,2,4)oxadiazolo (4,3-a)quinoxalin-1-one (sGC inhibitor) prevented the observed CO effects. Finally, it was observed that the nitric oxide (NO) anti-inflammatory effects on ICAM-1 expression appear to be indirectly mediated by HO-1 activation, since the inhibition of HO-1 prevented the inhibitory effect of the NO donor (S-nitroso-N-acetylpenicillamine) on LPS-induced ICAM-1 expression. Taken together, these results suggest that CO inhibits ICAM-1 expression on endothelium by a mechanism dependent on sGC activation. Thus, our findings identify the HO-1/CO/guanosine 3'5'-cyclic monophosphate pathway as a potential target for the development of novel pharmacotherapy to control neutrophil migration in inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Dal-Secco
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Majumder S, Rajaram M, Muley A, Reddy HS, Tamilarasan KP, Kolluru GK, Sinha S, Siamwala JH, Gupta R, Ilavarasan R, Venkataraman S, Sivakumar KC, Anishetty S, Kumar PG, Chatterjee S. Thalidomide attenuates nitric oxide-driven angiogenesis by interacting with soluble guanylyl cyclase. Br J Pharmacol 2010; 158:1720-34. [PMID: 19912234 DOI: 10.1111/j.1476-5381.2009.00446.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Nitric oxide (NO) promotes angiogenesis by activating endothelial cells. Thalidomide arrests angiogenesis by interacting with the NO pathway, but its putative targets are not known. Here, we have attempted to identify these targets. EXPERIMENTAL APPROACH Cell-based angiogenesis assays (wound healing of monolayers and tube formation in ECV304, EAhy926 and bovine arterial endothelial cells), along with ex vivo and in vivo angiogenesis assays, were used to explore interactions between thalidomide and NO. We also carried out in silico homology modelling and docking studies to elucidate possible molecular interactions of thalidomide and soluble guanylyl cyclase (sGC). KEY RESULTS Thalidomide inhibited pro-angiogenic functions in endothelial cell cultures, whereas 8-bromo-cGMP, sildenafil (a phosphodiesterase inhibitor) or a NO donor [sodium nitroprusside (SNP)] increased these functions. The inhibitory effects of thalidomide were reversed by adding 8-bromo-cGMP or sildenafil, but not by SNP. Immunoassays showed a concentration-dependent decrease of cGMP in endothelial cells with thalidomide, without affecting the expression level of sGC protein. These results suggested that thalidomide inhibited the activity of sGC. Molecular modelling and docking experiments revealed that thalidomide could interact with the catalytic domain of sGC, which would explain the inhibitory effects of thalidomide on NO-dependent angiogenesis. CONCLUSION AND IMPLICATIONS Our results showed that thalidomide interacted with sGC, suppressing cGMP levels in endothelial cells, thus exerting its anti-angiogenic effects. These results could lead to the formulation of thalidomide-based drugs to curb angiogenesis by targeting sGC.
Collapse
Affiliation(s)
- Syamantak Majumder
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, TN, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist, AVE8134, attenuates the progression of heart failure and increases survival in rats. Acta Pharmacol Sin 2009; 30:935-46. [PMID: 19503102 DOI: 10.1038/aps.2009.58] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM To investigate the efficacy of the peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, AVE8134, in cellular and experimental models of cardiac dysfunction and heart failure. METHODS In Sprague Dawley rats with permanent ligation of the left coronary artery (post-MI), AVE8134 was compared to the PPARgamma agonist rosiglitazone and in a second study to the ACE inhibitor ramipril. In DOCA-salt sensitive rats, efficacy of AVE8134 on cardiac hypertrophy and fibrosis was investigated. Finally, AVE8134 was administered to old spontaneously hypertensive rats (SHR) at a non-blood pressure lowering dose with survival as endpoint. In cellular models, we studied AVE8134 on hypertrophy in rat cardiomyocytes, nitric oxide signaling in human endothelial cells (HUVEC) and LDL-uptake in human MonoMac-6 cells. RESULTS In post-MI rats, AVE8134 dose-dependently improved cardiac output, myocardial contractility and relaxation and reduced lung and left ventricular weight and fibrosis. In contrast, rosiglitazone exacerbated cardiac dysfunction. Treatment at AVE8134 decreased plasma proBNP and arginine and increased plasma citrulline and urinary NOx/creatinine ratio. In DOCA rats, AVE8134 prevented development of high blood pressure, myocardial hypertrophy and cardiac fibrosis, and ameliorated endothelial dysfunction. Compound treatment increased cardiac protein expression and phosphorylation of eNOS. In old SHR, treatment with a low dose of AVE8134 improved cardiac and vascular function and increased life expectancy without lowering blood pressure. AVE8134 reduced phenylephrine-induced hypertrophy in adult rat cardiomyocytes. In HUVEC, Ser-1177-eNOS phosphorylation but not eNOS expression was increased. In monocytes, AVE8134 increased the expression of CD36 and the macrophage scavenger receptor 1, resulting in enhanced uptake of oxidized LDL. CONCLUSION The PPARalpha agonist AVE8134 prevents post-MI myocardial hypertrophy, fibrosis and cardiac dysfunction. AVE8134 has beneficial effects against hypertension-induced organ damages, resulting in decreased mortality. The compound exerts its protective properties by a direct effect on cardiomyocyte hypertrophy, but also indirectly via monocyte signaling and increased endothelial NO production.Acta Pharmacologica Sinica (2009) 30: 935-946; doi: 10.1038/aps.2009.58; published online 8 June 2009.
Collapse
|
15
|
Liu XM, Peyton KJ, Mendelev NN, Wang H, Tulis DA, Durante W. YC-1 stimulates the expression of gaseous monoxide-generating enzymes in vascular smooth muscle cells. Mol Pharmacol 2008; 75:208-17. [PMID: 18923065 DOI: 10.1124/mol.108.048314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The benzylindazole derivative 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) is an allosteric stimulator of soluble guanylate cyclase (sGC) that sensitizes the enzyme to the gaseous ligands carbon monoxide (CO) and nitric oxide (NO). In this study, we examined whether YC-1 also promotes the production of these gaseous monoxides by stimulating the expression of the inducible isoforms of heme oxygenase (HO-1) and NO synthase (iNOS) in vascular smooth muscle cells (SMCs). YC-1 increased HO-1 mRNA, protein, and promoter activity and potentiated cytokine-mediated expression of iNOS protein and NO synthesis by SMCs. The induction of HO-1 by YC-1 was unchanged by the sGC inhibitor, 1H-(1,2,4)oxadiazolo[4,3-alpha]quinozalin-1-one (ODQ) or by the protein kinase G inhibitors (8R,9S,11S)-(-)-2-methyl-9-methoxyl-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo(a,g)cyclocta9(cde)trinen-1-one (KT 5823) and YGRKKRRQRRRPPLRKKKKKH-amide (DT-2) and was not duplicated by 8-bromo-cGMP or the NO-independent sGC stimulator 5-cyclopropyl-2[1-(2-fluorobenzyl)-1H-pyrazolo [3,4-b] pyridine-3-yl] pyrimidin-4-ylamine (BAY 41-2272). However, the YC-1-mediated induction of HO-1 was inhibited by the phosphatidylinositol-3-kinase (PI3K) inhibitors wortmannin and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002). In contrast, the enhancement of cytokine-stimulated iNOS expression and NO production by YC-1 was prevented by ODQ and the protein kinase A inhibitor (9S,10S, 12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9, 12-epoxy-1H-diindolo(1,2,3-fg:3',2',1'-kl)pyrrolo(3,4-i)(1,6)-benzodiazocine-10-carboxylic acid hexyl ester (KT 5720) and was mimicked by 8-bromo-cGMP and BAY 41-2272. In conclusion, these studies demonstrate that YC-1 stimulates the expression of HO-1 and iNOS in vascular SMCs via the PI3K and sGC-cGMP-protein kinase A pathway, respectively. The ability of YC-1 to sensitize sGC to gaseous monoxides and simultaneously stimulate their production through the induction of HO-1 and iNOS provides a potent mechanism by which the cGMP-dependent and -independent biological actions of this agent are amplified.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | |
Collapse
|
16
|
Zhang J, Xie Z, Dong Y, Wang S, Liu C, Zou MH. Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem 2008; 283:27452-27461. [PMID: 18693249 DOI: 10.1074/jbc.m802578200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In endothelial cells, the AMP-activated protein kinase (AMPK) is stimulated by sheer stress or growth factors that stimulate release of nitric oxide (NO). We hypothesized that NO might act as an endogenous activator of AMPK in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to NO donors caused an increase in phosphorylation of both Thr-172 of AMPK and Ser-1177 of endothelial nitric oxide synthase, a downstream enzyme of AMPK. NO-induced activation of AMPK was not affected by inhibition of LKB1, an AMPK kinase. In contrast, inhibition of calcium calmodulin-dependent protein kinase kinase abolished the effect of NO in HUVECs. NO-induced AMPK activation in HeLa S3 cells was abolished by either 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), an intracellular Ca(2+) chelator, indicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent. Exposure of HUVECs or isolated mice aortas to either calcium ionophore A23187 or bradykinin significantly increased AMPK Thr-172 phosphorylation, which was abolished by N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase. Finally, A23187- or bradykinin-enhanced AMPK activation was significantly greater in aortas from wild type mice than those in the aortas of endothelial nitric oxide synthase knock-out mice. Taken together, we conclude that NO might act as an endogenous AMPK activator.
Collapse
Affiliation(s)
- Junhua Zhang
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Zhonglin Xie
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Yunzhou Dong
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shuangxi Wang
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Chao Liu
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Ming-Hui Zou
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
17
|
|
18
|
YC-1 attenuates homotypic human neutrophil aggregation through inhibition of phosphodiesterase activity. Eur J Pharmacol 2007; 579:395-402. [PMID: 18001706 DOI: 10.1016/j.ejphar.2007.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/04/2007] [Accepted: 10/16/2007] [Indexed: 11/22/2022]
Abstract
This study was undertaken to assess the effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP) and complement component 5a (C5a)-induced homotypic human neutrophil aggregation. YC-1 as well as the phosphodiesterase (PDE)4 inhibitors rolipram and Ro 20-1724, but not the PDE3 inhibitor milrinone, inhibited the aggregation responses stimulated by FMLP and C5a. In contrast, sodium nitroprusside (SNP) had no effect on FMLP- or C5a-induced neutrophil aggregation. Moreover, SNP together with YC-1 failed to modify the YC-1-induced responses. In addition, YC-1 and rolipram, but not milrinone, induced substantial increases in cAMP levels, which occurred through the inhibition of PDE activity but not an increase in adenylate cyclase function. Interestingly, adenosine deaminase abolished the inhibitory effects and cAMP levels of YC-1, rolipram, and Ro 20-1724. In conclusion, these results indicate that the inhibitory effect of YC-1 on homotypic neutrophil aggregation is attributed to an elevation in the cAMP concentration through inhibition of the activity of PDE, which may potentiate the autocrine functions of endogenous adenosine.
Collapse
|
19
|
Slupski M, Szadujkis-Szadurski L, Grześk G, Szadujkis-Szadurski R, Szadujkis-Szadurska K, Wlodarczyk Z, Masztalerz M, Piotrowiak I, Jasiński M. Guanylate cyclase activators influence reactivity of human mesenteric superior arteries retrieved and preserved in the same conditions as transplanted kidneys. Transplant Proc 2007; 39:1350-3. [PMID: 17580137 DOI: 10.1016/j.transproceed.2007.02.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION This study sought to investigate the mechanisms of relaxation induced by the (nitric oxide (NO)-independent soluble guanylyl cyclase (sGC) stimulators 3-[5'-hydroxymethyl-2'-furyl]-1-benzylindazole (YC-1) in human mesenteric arteries relaxed and precontracted with 1 micromol/L 5-hydroxytryptamine (serotonin). MATERIAL AND METHODS Human mesenteric arteries obtained during kidney retrieval were preserved in the same conditions as transplanted kidneys. All experiments were performed after reperfusion with Krebs buffer in 37 degrees C and 100% oxygen exposure. RESULTS In endothelium-intact rings, YC-1 (0.001 to 30 mmol/L) caused concentration-dependent relaxation (pEC(50): 6.59 +/- 0.12), which shifted to the right in endothelium-denuded rings. The sGC inhibitor 1H- [1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 10 mmol/L) partially attenuated the maximal responses to YC-1 (E(max) = 51.30% +/- 3.70%; n = 6) and displaced its curve to the right in intact and denuded vessels. Both, the NO synthesis inhibitor N-nitro-L-arginine methyl ester (100 mmol/L) and the NO scavenger carboxy-2-[4-carboxyphenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (100 mmol/L) significantly reduced YC-1 relaxation. The sodium pump inhibitor ouabain (1 micromol/L) produced a greater decrease in the vasodilator response of YC-1 (E(max) = 18.7% +/- 4.55%; n = 9). ODQ (10 micromol/L) plus 1 mumol/L ouabain abolished the relaxant response of YC-1 (E(max) = 9.4% +/- 2.94%, n = 9). CONCLUSIONS This study demonstrated that sodium pump stimulation by YC-1 as an additional mechanism of sGC activation independent of cGMP relaxed human mesenteric artery, including blockade of Ca(2+) influx. Furthermore, this study suggested an ability of NO to mediate relaxation of resistance-like arteries through the activation of soluble guanylate cyclase and K(+) channels.
Collapse
Affiliation(s)
- M Slupski
- Department of Transplantation and General Surgery, Nicolaus Copernicus University, Curi-Sklodowskiej 9, Bydgoszcz, Kuj-Pom, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhao Q, Du J, Gu H, Teng X, Zhang Q, Qin H, Liu N. Effects of YC-1 on hypoxia-inducible factor 1-driven transcription activity, cell proliferative vitality, and apoptosis in hypoxic human pancreatic cancer cells. Pancreas 2007; 34:242-7. [PMID: 17312464 DOI: 10.1097/01.mpa.0000250135.95144.b6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) on HIF-1-driven transcription activity, cell proliferative vitality, and apoptosis in hypoxic human pancreatic cancer cells. METHODS Human pancreatic cancer PC-3 cells were incubated under normoxic or hypoxic conditions. YC-1 was added to the media with different concentrations. The HIF-1alpha protein expression was detected by means of immunocytochemical staining and Western blotting. Semiquantitative reverse transcriptase polymerase chain reaction was used to determine the mRNA expression of HIF-1alpha, vascular endothelial growth factor (VEGF), and glucose phosphate isomerase (GPI). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry were used to detect the cells' proliferative vitality and apoptosis. RESULTS Hypoxic PC-3 cells expressed a higher level of HIF-alpha protein in nucleus compared with the normoxic controls. When the dose of YC-1 was at 100 micromol/L, the expression location of HIF-alpha shifted from nucleus to cytoplasm. Western blotting revealed that YC-1 reduced the level of HIF-1alpha protein expression, and the inhibitory effect was dose dependent. Moreover, YC-1 dose dependently inhibited mRNA expression levels of VEGF and GPI in hypoxic cells. YC-1 inhibited proliferative vitality and induced apoptosis of hypoxic PC-3 cells in a dose-dependent manner. CONCLUSIONS YC-1 inhibits HIF-1alpha expression in hypoxic pancreatic cancer cells, which is accompanied by the translocation of HIF-1alpha from nucleus to cytoplasm, decreased mRNA expression of VEGF and GPI, reduced cell proliferative vitality, and increased apoptosis. These results suggest that HIF-1 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Qiu Zhao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Perimenis P, Giannitsas K. Existing and future pharmacotherapy for erectile dysfunction. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.9.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
González-Luis G, Cogolludo A, Moreno L, Lodi F, Tamargo J, Pérez-Vizcaíno F, Villamor E. Relaxant Effects of the Soluble Guanylate Cyclase Activator and NO Sensitizer YC-1 in Piglet Pulmonary Arteries. Neonatology 2006; 90:66-72. [PMID: 16534188 DOI: 10.1159/000091968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 10/11/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND The indazole derivative YC-1 has been characterized as a nitric oxide (NO)-independent and heme dependent soluble guanylate cyclase (sGC) activator, which also sensitizes sGC to NO. OBJECTIVE To examine the effects of YC-1 on vascular relaxation in newborn and 2-week-old piglet pulmonary arteries. The effect of YC-1 on the relaxation induced by exogenous NO was also analyzed. METHODS Isolated rings from third branch pulmonary arteries and fifth-seventh-generation intrapulmonary arterioles were mounted in organ chambers for isometric tension recording. Arteries were precontracted with the thromboxane A2 mimetic U46619. RESULTS YC-1 induced relaxation was greater in 2-week-old pulmonary arteries and was abolished by the sGC inhibitor ODQ (10 microM). YC-1 induced relaxation was similar in conduit pulmonary arteries and arterioles. In the 2-week-old conduit pulmonary arteries, the response to YC-1 was significantly reduced when the endothelium was removed or after incubation with the NO synthase inhibitor L-NAME (0.1 mM). YC-1 augmented NO-induced relaxation in 2-week-old but not in neonatal conduit pulmonary arteries. CONCLUSIONS Our results indicate that YC-1 induced pulmonary vascular relaxation in conduit and resistance pulmonary arteries and these effects increased with postnatal age. In the 2-week-old conduit pulmonary arteries and besides being a direct activator of sGC, YC-1 produced endothelium-dependent relaxation and synergized with exogenous NO.
Collapse
Affiliation(s)
- Gema González-Luis
- Department of Pediatrics, University Hospital Maastricht, Research Institute Growth and Development, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Burnett AL, Musicki B, Jin L, Bivalacqua TJ. Nitric oxide/redox-based signalling as a therapeutic target for penile disorders. Expert Opin Ther Targets 2006; 10:445-57. [PMID: 16706684 DOI: 10.1517/14728222.10.3.445] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative and/or nitrosative stress is implicated in the pathogeneses of assorted penile disorders of clinical significance, notably erectile dysfunction, priapism and penile fibrosis. It is becoming increasingly recognised that the generation and activity of reactive oxygen and nitrogen species in the penis influence vascular homeostasis of this organ, with adverse effects exerted at cellular and molecular levels. Furthermore, these elements may interact with molecular signalling pathways operating in the penis, modulating their functional roles. This interaction in particular suggests that by accessing molecular targets associated with oxidative/nitrosative stress in the penis, new pharmacotherapeutic approaches may be developed to promote normal erectile ability and preserve erectile tissue health. This notion pertains to, but also extends beyond, interventions which predictably target components of the nitric oxide-based signal transduction pathway for the on-demand treatment of erectile dysfunction. The next line of pharmaceuticals for disorders of the penis, in general, may well spawn from an integrative understanding of the complex regulatory interactions influenced by, as well as influencing nitric oxide signalling in this organ.
Collapse
Affiliation(s)
- Arthur L Burnett
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-2411, USA.
| | | | | | | |
Collapse
|
24
|
Teixeira CE, Priviero FBM, Todd J, Webb RC. Vasorelaxing effect of BAY 41-2272 in rat basilar artery: involvement of cGMP-dependent and independent mechanisms. Hypertension 2006; 47:596-602. [PMID: 16391173 DOI: 10.1161/01.hyp.0000199914.36936.1b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Decreases in intrinsic NO cause cerebral vasospasms because of the dysregulation of cGMP formation by NO-mediated pathways. Because 5-cyclopropyl-2-{1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl}pyrimidin-4-ylamine (BAY 41-2272) is a potent soluble guanylyl cyclase (sGC) stimulator in an NO-independent manner, this study aimed to investigate the mechanisms underlying the relaxant effects of BAY 41-2272 in the rat basilar artery. BAY 41-2272 (0.0001 to 1 micromol/L) induced relaxations in a concentration-dependent manner, with pEC50 values of 8.13+/-0.03 and 7.63+/-0.05 in intact and denuded rings, respectively. The sGC inhibitor 1H-[1,2,4] oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ) markedly displaced the curve for BAY 41-2272 to the right in intact or denuded rings (&10-fold). The NO synthesis inhibitor NG-nitro-L-arginine methyl ester caused a rightward shift in the curve for BAY 41-2272 (4-fold), whereas the phosphodiesterase type 5 inhibitor sildenafil enhanced BAY 41-2272-induced relaxations (3- to 4-fold). The Na+-K+-ATPase inhibitor ouabain caused 3-fold rightward shifts in the curves for BAY 41-2272. Ca2+-induced contractions in K+ depolarized rings were significantly attenuated by BAY 41-2272 in an ODQ-insensitive manner. The NO donor glyceryl trinitrate and BAY 41-2272 caused rightward shifts in the contractile responses to serotonin. Their coincubation caused a synergistic inhibition of serotonin-induced contractions. BAY 41-2272 and glyceryl trinitrate increased cGMP levels (but not cAMP) by 10-fold and 4-fold above baseline, respectively, in an ODQ-sensitive manner. cGMP levels increased by 50-fold after coincubation. BAY 41-2272 potently relaxes the rat basilar artery in a synergistic fashion with NO. Targeting the sGC with selective activators, such as BAY 41-2272, may represent a new therapy to treat cerebrovascular disease.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912-3000, USA.
| | | | | | | |
Collapse
|
25
|
Teixeira CE, Priviero FBM, Webb RC. Molecular Mechanisms Underlying Rat Mesenteric Artery Vasorelaxation Induced by the Nitric Oxide-Independent Soluble Guanylyl Cyclase Stimulators BAY 41-2272 [5-Cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-4-ylamine] and YC-1 [3-(5′-Hydroxymethyl-2′-furyl)-1-benzyl Indazole]. J Pharmacol Exp Ther 2005; 317:258-66. [PMID: 16352702 DOI: 10.1124/jpet.105.095752] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the mechanisms of relaxation to the nitric oxide (NO)-independent soluble guanylyl cyclase (sGC) stimulators 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-4-ylamine (BAY 41-2272) and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) in the rat mesenteric artery. In endothelium-intact rings, BAY 41-2272 (0.0001-1 microM) and YC-1 (0.001-30 microM) caused concentration-dependent relaxations (pEC(50) values of 8.21 +/- 0.05 and 6.75 +/- 0.06, respectively), which were shifted to the right by 6-fold in denuded rings. The sGC inhibitor H-[1,2,4]oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ) (10 microM) partially attenuated the maximal responses to BAY 41-2272 and YC-1 and displaced their curves to the right by 9- to 10-fold in intact and 3-fold in denuded vessels. The NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (100 microM) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (100 microM) reduced BAY 41-2272 and YC-1 relaxations, whereas the phosphodiesterase type 5 inhibitor sildenafil (0.1 microM) potentiated these responses. The phosphatase inhibitor calyculin A (50 nM) reduced the relaxant responses, and high concentrations of BAY 41-2272 (1 micorM) and YC-1 (10 microM) inhibited Ca(2+)-induced contractions in K(+)-depolarized rings. BAY 41-2272 (0.1 microM) and YC-1 (1 microM) markedly elevated cGMP levels in an ODQ-sensitive manner. Coincubation of BAY 41-2272 or YC-1 with a NO donor resulted in a synergistic inhibition of phenylephrine-induced contractions paralleled by marked increases in cGMP levels. In conclusion, BAY 41-2272 and YC-1 relax the mesenteric artery through cGMP-dependent and -independent mechanisms, including blockade of Ca(2+) influx. The synergistic responses probably reflect the direct effects of NO and NO-independent sGC stimulators on the enzyme, thus representing a potential therapeutic effect by permitting reductions of nitrovasodilator dose.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Physiology, Medical College of Georgia, Augusta, 30912-3000, USA.
| | | | | |
Collapse
|
26
|
Schindler U, Strobel H, Schönafinger K, Linz W, Löhn M, Martorana PA, Rütten H, Schindler PW, Busch AE, Sohn M, Töpfer A, Pistorius A, Jannek C, Mülsch A. Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase. Mol Pharmacol 2005; 69:1260-8. [PMID: 16332991 DOI: 10.1124/mol.105.018747] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heme-enzyme soluble guanylyl cyclase (sGC) is an ubiquitous NO receptor, which mediates NO downstream signaling by the generation of cGMP. We studied the mechanism of action of the anthranilic acid derivatives 5-chloro-2-(5-chloro-thiophene-2-sulfonylamino-N-(4-(morpholine-4-sulfonyl)-phenyl)-benzamide sodium salt (HMR1766) (proposed international nonproprietary name, ataciguat sodium) and 2-(4-chloro-phenylsulfonylamino)-4,5-dimethoxy-N-(4-(thiomorpholine-4-sulfonyl)-phenyl)-benzamide (S3448) as a new class of sGC agonists. Both compounds activated different sGC preparations (purified from bovine lung, or crude from human corpus cavernosum) in a concentration-dependent and quickly reversible fashion (EC50 = 0.5-10 microM), with mixed-type activation kinetics. Activation of sGC by these compounds was additive to activation by NO donors, but instead of being inhibited, it was potentiated by the heme-iron oxidants 1H-[1,2,4]-oxdiazolo[3,4-a]quinoxalin-1-one (ODQ) and 4H-8-bromo-1,2,4-oxadiazolo(3,4-d) benz(b)(1,4)oxazin-1-one (NS2028), suggesting that the new compounds target the ferric heme sGC isoform. Protoporphyrin IX acted as a competitive activator, and zinc-protoporphyrin IX inhibited activation of heme-oxidized sGC by HMR1766 and S3448, whereas heme depletion of sGC by Tween 20 treatment reduced activation. Both compounds increased cGMP levels in cultured rat aortic smooth muscle cells; induced vasorelaxation of isolated endothelium-denuded rat aorta, porcine coronary arteries, and human corpus cavernosum (EC50 1 to 10 microM); and elicited phosphorylation of the cGMP kinase substrate vasodilator-stimulated phosphoprotein at Ser239. HMR1766 intravenous bolus injection decreased arterial blood pressure in anesthetized pigs. All of these pharmacological responses to the new compounds were enhanced by ODQ and NS2028. Our findings suggest that HMR1766 and S3448 preferentially activate the NO-insensitive heme-oxidized form of sGC, which exists to a variable extent in vascular tissues, and is a pharmacological target for these new vasodilator drugs.
Collapse
|
27
|
Wadsworth R, Stankevicius E, Simonsen U. Physiologically relevant measurements of nitric oxide in cardiovascular research using electrochemical microsensors. J Vasc Res 2005; 43:70-85. [PMID: 16276114 DOI: 10.1159/000089547] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 09/23/2005] [Indexed: 01/04/2023] Open
Abstract
Nitric oxide (NO) plays an important role in the regulation of blood flow. Pharmacological tools and a series of other techniques have been developed for studying the NO/L-arginine pathway, but it has proved difficult to make a quantitative link between effect and tissue NO concentration. NO microsensors have been applied with success for the measurement of NO in suspensions of mitochondria and cells, such as platelets and leukocytes, and in cell cultures, which together with other interventions or measurements are particularly useful for the examination of cell signalling related to the NO/L-arginine pathway. In isolated vascular segments, studies using the NO microsensor have defined the relationship between NO concentration and relaxation and revealed residual NO release in the presence of NO synthase inhibitors. Moreover, simultaneous measurements of NO concentration and vasorelaxation in isometric preparations have shown that agonist-induced relaxation is L-arginine dependent and NO release is reduced in hypertension. By placing NO microsensors in catheters, it is possible to measure NO in the living animal and man. This approach has been applied for the measurements of NO concentration in relation to increases in flow, erection, in conditions of hypoxia, and in endotoxemia. However, further methodological development of NO microsensors is necessary to avoid the influence of changes in temperature, pH and oxygen on the measurements.
Collapse
Affiliation(s)
- Roger Wadsworth
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, Scotland, UK
| | | | | |
Collapse
|
28
|
Chiang WC, Teng CM, Lin SL, Chen YM, Tsai TJ, Hsieh BS. YC-1-inhibited proliferation of rat mesangial cells through suppression of cyclin D1-independent of cGMP pathway and partially reversed by p38 MAPK inhibitor. Eur J Pharmacol 2005; 517:1-10. [PMID: 15950964 DOI: 10.1016/j.ejphar.2005.04.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 11/29/2022]
Abstract
This study was designed to investigate the effect of 1-benzyl-3-(5'-hydroxymethyl-2'-furyl) indazole (YC-1), a guanylate cyclase activator, upon the proliferation of rat mesangial cells and its underlying mechanism. YC-1 inhibited cell proliferation and DNA synthesis in a dose- and time-dependent manner. Flow cytometry cell-cycle studies revealed that YC-1 prevented the entry of cells from G1 into S phase. The expression of cyclin D1 and the kinase activity of cyclin D1/cyclin-dependent kinase (CDK)4 were lower within YC-1-treated cells, revealed by Western blotting, Northern blotting and kinase assays. YC-1 did not increase the intracellular cGMP concentration in mesangial cells. Inhibitors of soluble guanylate cyclase, protein kinase G, or protein kinase A also did not reverse the inhibitory effect elicited by YC-1, while co-treatment with p38 mitogen-activated protein kinase (MAPK) inhibitor could partially reverse the suppressive effect. YC-1 inhibited proliferation of mesangial cells and induced cell-cycle arrest by the reduction of cyclin D1 synthesis and cyclin D1/CDK4 kinase activity. This effect acts partially through p38 MAPK signal transduction activation and is independent of cGMP-signaling pathways.
Collapse
Affiliation(s)
- Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Priviero FBM, Baracat JS, Teixeira CE, Claudino MA, De Nucci G, Antunes E. MECHANISMS UNDERLYING RELAXATION OF RABBIT AORTA BY BAY 41-2272, A NITRIC OXIDE-INDEPENDENT SOLUBLE GUANYLATE CYCLASE ACTIVATOR. Clin Exp Pharmacol Physiol 2005; 32:728-34. [PMID: 16173929 DOI: 10.1111/j.1440-1681.2005.04262.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The compound BAY 41-2272 (5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine) has been described as a potent, nitric oxide (NO)-independent, stimulator of soluble guanylate cyclase. In the present study, the mechanisms underlying the relaxant effect of BAY 41-2272 in endothelium-intact and -denuded precontracted rabbit aortic rings were investigated. 2. Male New Zealand white rabbits were anaesthetized with pentobarbital sodium. Aortic rings were transferred to 10 mL organ baths containing oxygenated and warmed Krebs' solution. Tissues were connected to force-displacement transducers and changes in isometric force were recorded. Aortic rings were precontracted submaximally with phenylephrine (1 micromol/L). 3. The addition of BAY 41-2272 (0.01-10 micromol/L) to the organ bath produced concentration-dependent relaxations of the aortic rings with a higher potency in endothelium-intact (pEC50 6.59 +/- 0.05) compared with endothelium-denuded (pEC50 6.19 +/- 0.04; P < 0.05) preparations. No differences in maximal responses were observed in either preparation. The NO synthesis inhibitor NG-nitro-L-arginine methyl ester (100 micromol/L) produced a 2.1-fold rightward shift in endothelium-intact (P < 0.01) rings, but had no effect in endothelium-denuded rings. The soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 micromol/L) caused significant rightward shifts of the concentration-response curves to BAY 41-2272 of 4.9- and 2.6-fold in endothelium-intact and -denuded rings, respectively. The phosphodiesterase-5 inhibitor sildenafil (0.1 micromol/L) significantly potentiated the relaxant effects of BAY 41-2272 in both endothelium-intact and -denuded rings. 4. At 1 micromol/L, BAY 41-2272 significantly elevated the aortic cGMP content above basal levels in both endothelium-intact and -denuded rings. Furthermore, ODQ reduced BAY 41-2272-elicited increases in cGMP content by 17 and 90% in endothelium-intact and -denuded rings, respectively (P < 0.01). 5. In conclusion, BAY 41-2272 potently relaxes endothelium-intact and -denuded rabbit aortic rings. The basal release of endothelium-derived NO enhances BAY 41-2272-induced relaxations, suggesting a synergistic effect of BAY 41-2272 and NO on soluble guanylate cyclase. In addition, the endothelium-independent relaxation involves both GMP-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Fernanda B M Priviero
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Che Y, Ellis A, Li CG. Enhanced responsiveness to nitric oxide, nitroxyl anions, and nitrergic transmitter by 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole in the rat anococcygeus muscle. Nitric Oxide 2005; 13:118-24. [PMID: 15993633 DOI: 10.1016/j.niox.2005.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/08/2005] [Accepted: 05/17/2005] [Indexed: 11/24/2022]
Abstract
The effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) on responses to sodium nitroprusside (SNP), S-nitroso-N-acetyl-penicillamine (SNAP), the nitroxyl anion donor Angeli's salt, and nitrergic nerve stimulation, as well as the release of NO from nitrergic nerves, were studied in the rat isolated anococcygeus muscle. YC-1 (1-100 microM) produced concentration-dependent relaxations in contracted muscles, which were partially but significantly reduced by the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 1 and 10 microM). At a concentration that did not affect tissue tension, YC-1 (1 microM) significantly enhanced relaxations to SNP, SNAP, and Angeli's salt but did not affect relaxations to papaverine (10 microM). Nitrergic relaxations elicited by short periods (1 Hz for 10 s, 15 V) and long periods of EFS (5 Hz for 5 min, 15 V) were also enhanced by YC-1. YC-1 (100 microM), in an l-NAME and tetrodotoxin-insensitive manner, also increased the amount of NO detected in the organ bath media after the tissue was field stimulated (5 Hz for 5 min), which may have resulted from the electrolytic degradation of YC-1, as this effect was also seen in the absence of tissue. In summary, YC-1 enhanced relaxations to donors of NO, Angeli's salt, and nitrergic nerve stimulation in the rat anococcygeus muscle; however, the enhanced release of NO by YC-1 following nitrergic nerve stimulation was not a tissue-dependent effect.
Collapse
Affiliation(s)
- Yan Che
- School of Health Sciences, RMIT University, P.O. Box 71, Bundoora, Vic. 3083, Australia
| | | | | |
Collapse
|
31
|
Linder AE, McCluskey LP, Cole KR, Lanning KM, Webb RC. Dynamic association of nitric oxide downstream signaling molecules with endothelial caveolin-1 in rat aorta. J Pharmacol Exp Ther 2005; 314:9-15. [PMID: 15778264 DOI: 10.1124/jpet.105.083634] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Classically, nitric oxide (NO) formed by endothelial NO synthase (eNOS) freely diffuses from its generation site to smooth muscle cells where it activates soluble guanylyl cyclase (sGC), producing cGMP. Subsequently, cGMP activates both cGMP- and cAMP-dependent protein kinases [cGMP-dependent protein kinase (PKG) and cAMP-dependent protein kinase (PKA), respectively], leading to smooth muscle relaxation. In endothelial cells, eNOS has been localized to caveolae, small invaginations of the plasma membrane rich in cholesterol. Membrane cholesterol depletion impairs acetylcholine (ACh)-induced relaxation due to alteration in caveolar structure. Given the nature of NO to be more soluble in a hydrophobic environment than in water, and assuming that colocalization of components in a signal transduction cascade seems to be a critical determinant of signaling efficiency by eNOS activation, we hypothesize that sGC, PKA, and PKG activation may occur at the plasma membrane caveolae. In endothelium-intact rat aortic rings, the relaxation induced by ACh, by the sGC activator 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1), and by 8-bromo-cGMP was impaired in the presence of methyl-beta-cyclodextrin, a drug that disassembles caveolae by sequestering cholesterol from the membrane. sGC, PKG, and PKA were colocalized with caveolin-1 in aortic endothelium, and this colocalization was abolished by methyl-beta-cyclodextrin. Methyl-beta-cyclodextrin efficiently disassembled caveolae in endothelium. In summary, our results provide evidence of compartmentalization of sGC, PKG, and PKA in endothelial caveolae contributing to NO signaling cascade, giving new insights by which the endothelium mediates vascular smooth muscle relaxation.
Collapse
Affiliation(s)
- A Elizabeth Linder
- Medical College of Georgia, Department of Physiology (CA-3101), 1120 Fifteenth St., Augusta, GA 30912-3000, USA.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Lo YC, Tsou HH, Lin RJ, Wu DC, Wu BN, Lin YT, Chen IJ. Endothelium-dependent and -independent vasorelaxation by a theophylline derivative MCPT: roles of cyclic nucleotides, potassium channel opening and phosphodiesterase inhibition. Life Sci 2005; 76:931-44. [PMID: 15589969 DOI: 10.1016/j.lfs.2004.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 09/27/2004] [Indexed: 11/15/2022]
Abstract
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- In Vitro Techniques
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nucleotides, Cyclic/metabolism
- Organothiophosphorus Compounds/pharmacology
- Phosphodiesterase Inhibitors/metabolism
- Potassium Channels/metabolism
- Rats
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Yi-Ching Lo
- Department and post graduate institute of Pharmacology, College of Medicine, Kaohsiung Medical University, 100 Shin-Chuan 1st road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Netherton SJ, Maurice DH. Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Mol Pharmacol 2004; 67:263-72. [PMID: 15475573 DOI: 10.1124/mol.104.004853] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiogenesis is necessary during embryonic development and wound healing but can be detrimental in pathologies, including cancer. Because initiation of angiogenesis involves migration and proliferation of vascular endothelial cells (VECs) and cAMP-elevating agents inhibit these events, such agents may represent a novel therapeutic avenue to controlling angiogenesis. Intracellular cAMP levels are regulated by their synthesis by adenylyl cyclases and hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). In this report, we show that human VECs express variants of PDE2, PDE3, PDE4, and PDE5 families and demonstrate that the levels of these enzymes differ in VECs derived from aorta, umbilical vein, and microvascular structures. Selective inhibition of PDE2 did not increase cAMP in any VECs, whether in the absence or presence of forskolin, but it did inhibit migration of all VECs studied. Inhibition of PDE4 activity decreased migration, and in conjunction with forskolin, increased cAMP in all VECs studied. PDE3 inhibition potentiated forskolin-induced increases in cAMP and inhibited migration in VECs derived from aorta and umbilical vein but not in microvascular VECs. In experiments with combinations of PDE2, PDE3, and PDE4 inhibitors, a complex interaction between the abilities of these agents to limit human VEC migration was observed. Overall, our data are consistent with the hypothesis that PDE subtype inhibition allows different effects in distinct VEC populations and indicate that these agents may represent novel therapeutic agents to limit angiogenesis in complex human diseases.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/genetics
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- 3',5'-Cyclic-GMP Phosphodiesterases/genetics
- 3',5'-Cyclic-GMP Phosphodiesterases/metabolism
- Aorta
- Cell Movement/physiology
- Cyclic AMP/metabolism
- Cyclic AMP/physiology
- Cyclic Nucleotide Phosphodiesterases, Type 2
- Cyclic Nucleotide Phosphodiesterases, Type 3
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Cyclic Nucleotide Phosphodiesterases, Type 5
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiology
- Humans
- Kinetics
- Microcirculation/physiology
- Neovascularization, Physiologic/physiology
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/metabolism
- Quinolones/pharmacology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Umbilical Veins
Collapse
Affiliation(s)
- Stuart J Netherton
- Department of Pharmacology and Toxicology, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
35
|
Baracat JS, Teixeira CE, Okuyama CE, Priviero FBM, Faro R, Antunes E, De Nucci G. Relaxing effects induced by the soluble guanylyl cyclase stimulator BAY 41-2272 in human and rabbit corpus cavernosum. Eur J Pharmacol 2004; 477:163-9. [PMID: 14519420 DOI: 10.1016/j.ejphar.2003.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272) is a potent soluble guanylyl cyclase stimulator in a nitric oxide (NO)-independent manner. The relaxant effect of BAY 41-2272 was investigated in rabbit and human corpus cavernosum in vitro. BAY 41-2272 (0.01-10 microM) relaxed both rabbit (pEC(50)=6.82+/-0.06) and human (pEC(50)=6.12+/-0.10) precontracted cavernosal strips. The guanylyl cyclase inhibitor (ODQ, 10 microM) caused significant rightward shifts in the concentration-response curves for BAY 41-2272 in rabbit (4.7-fold) and human (2.3-fold) tissues. The NO synthesis inhibitor (N-nitro-L-arginine methyl ester (L-NAME), 100 microM) also produced similar rightward shifts, revealing that BAY 41-2272 acts synergistically with endogenous NO to elicit its relaxant effect. The results also indicate that ODQ is selective for the NO-stimulated enzyme, since relaxations evoked by BAY 41-2272 were only partly attenuated by ODQ. The present study shows that both BAY 41-2272 and sildenafil evoke relaxations independent of inhibition of haem in soluble guanylate cyclase. Moreover, there is no synergistic effect of the two compounds in corpus cavernosum.
Collapse
Affiliation(s)
- Juliana S Baracat
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, P.O. Box 6111, SP 13081-970, Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Lo YC, Hsiao HC, Wu DC, Lin RJ, Liang JC, Yeh JL, Chen IJ. A novel capsaicin derivative VOA induced relaxation in rat mesenteric and aortic arteries: involvement of CGRP, NO, cGMP, and endothelium-dependent activities. J Cardiovasc Pharmacol 2004; 42:511-20. [PMID: 14508237 DOI: 10.1097/00005344-200310000-00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The vasorelaxant effects of N-[4-O-[2-methoxy, phenoxyethylaminobutyl]-3-methoxy benzyl]-nonamide (VOA), a novel capsaicin derivative, and associated releasing activities of nitric oxide (NO) and calcitonin gene-related peptide (CGRP) were investigated in this study. Systemic administration of VOA decreased blood pressure and heart rate in a dose-dependent manner in both normotensive as well as spontaneously hypertensive rats. Nw-nitro-L-arginine methyl ester (L-NAME), glibenclamide, and capsazepine inhibited VOA-induced hypotension. In phenylephrine-precontracted rat aortic rings and mesenteric arteries with intact endothelium, VOA caused a concentration-dependent relaxation. This relaxation was reduced after endothelium was removed or pretreated with L-NAME, methylene blue, 1 H-[1,2,4]oxidazolol [4,3-a] quinoxalin-1-one, tetraethylammonium, glibenclamide, CGRP (8-37), or capsazepine, respectively. In endothelially denuded vessel rings, tetraethylammonium, glibenclamide, CGRP (8-37), and capsazepine also reduced VOA-induced relaxation. In high potassium (80 mmol/L)-precontracted rat aortic rings with intact endothelium, VOA failed to induce relaxation. VOA induced a concentration-dependent increase of CGRP-like enzyme immunoreactivity, which was also significantly inhibited by capsazepine. In human umbilical vein endothelial cells, VOA increased NO release and guanosine-3', 5'-cyclic monophosphate level, which were significantly inhibited by L-NAME. The Western blot analysis on human umbilical vein endothelial cells indicated that VOA increased the expression of endothelium nitric oxide synthase. In conclusion, VOA might exert its relaxation effects in rat vascular smooth muscle through the CGRP/KATP channel and the NO/ cGMP pathway.
Collapse
Affiliation(s)
- Yi-Ching Lo
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Aversa A, Pili M, Fabbri A, Spera E, Spera G. Erectile dysfunction: expectations beyond phosphodiesterase type 5 inhibition. J Endocrinol Invest 2004; 27:192-206. [PMID: 15129818 DOI: 10.1007/bf03346268] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the last few years the pathophysiological mechanisms of erection have been partially clarified, and the molecular machinery of the cellular components of the corpus cavernosum (CC) has been widely investigated. Since erection is a vascular event and the penis is a vascular organ, there must be an intact endothelium for an erection to occur. The regulation of penile tumescence inside the CC involves a balance between contracting and relaxing factors which regulate the functional state of smooth muscle cells. Recent studies have highlighted the importance of new local factors (i.e. phosphodiesterases, rho-kinases and endothelins), and pharmacological agents are available in the armamentarium of the specialist which are targeted to modulate the function of those mediators of erection. It is now well understood that male erectile dysfunction (ED) is a symptom rather than a disease; for this reason in the near future both general practitioners and specialists in internal medicine would have to interplay with sexual medicine. This review is intended to give the clinician some basic concepts of the pathophysiology of erection with relevance to the clinical practice, and to discuss the newest therapeutic approaches for those patients who do not respond to the treatment with oral inhibitors of phosphodiesterase Type 5.
Collapse
Affiliation(s)
- A Aversa
- Department of Medical Phisiopathology, University La Sapienza, Rome, Italy.
| | | | | | | | | |
Collapse
|
38
|
Hwang TL, Hung HW, Kao SH, Teng CM, Wu CC, Cheng SJS. Soluble guanylyl cyclase activator YC-1 inhibits human neutrophil functions through a cGMP-independent but cAMP-dependent pathway. Mol Pharmacol 2004; 64:1419-27. [PMID: 14645672 DOI: 10.1124/mol.64.6.1419] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
3-(5'-Hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a novel type of soluble guanylyl cyclase (sGC) activator, is useful in investigating the signaling of cGMP and may provide a new approach for treating cardiovascular diseases. Herein, YC-1 was demonstrated to inhibit the generation of superoxide anion (O2-) and the release of beta-glucuronidase release, to diminish the membrane-associated p47phox and to accelerate resequestration of cytosolic calcium in formyl-l-methionyl-l-leucyl-l-phenylalanine-activated human neutrophils. YC-1 not only directly promoted sGC activity and cGMP formation but also dramatically potentiated sodium nitroprusside-induced sGC activity and cGMP formation in human neutrophils. However, the synergistic increase in the amount of cGMP was inconsistent with its cellular response. Moreover, neither an sGC inhibitor nor protein kinase G inhibitors reversed the inhibitory effect of YC-1. Interestingly, YC-1 also increased the cAMP concentration and protein kinase (PK)A activity. The inhibitory effect of YC-1 was significantly enhanced by prostaglandin (PG)E1 and isoproterenol, and almost abolished by PKA inhibitors. These results show that cAMP, but not cGMP, mediates the YC-1-induced inhibition of human neutrophils. YC-1 increased the PGE1- and forskolin-induced but not 3-isobutyl-1-methylxanthine-produced cAMP formation, suggesting inhibition of phosphodiesterase. These findings thus reveal novel mechanism-mediated anti-inflammatory properties of YC-1 in human neutrophils, which can influence the progression of cardiovascular disease. cAMP, but not cGMP, plays an important role in the regulation of respiratory burst and degranulation in human neutrophils.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Rd., Kweishan 333, Taoyuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
In this review, we outline the current knowledge on the regulation of nitric oxide (NO)-sensitive guanylyl cyclase (GC). Besides NO, the physiological activator that binds to the prosthetic heme group of the enzyme, two novel classes of GC activators have been identified that may have broad pharmacological implications. YC-1 and YC-1-like substances act as NO sensitizers, whereas the substance BAY 58-2667 stimulates NO-sensitive GC NO-independently and preferentially activates the heme-free form of the enzyme. Sensitization and desensitization of NO/cGMP signaling have been reported to occur on the level of NO-sensitive GC; in the present study, an alternative mechanism is introduced explaining the adaptation of the NO-induced cGMP response by a long-term activation of the cGMP-degrading phosphodiesterase 5 (PDE5). Finally, regulation of GC expression and a possible modulation of GC activity by other factors are discussed.
Collapse
Affiliation(s)
- Andreas Friebe
- Abteilung für Pharmakologie, Medizinische Fakultät, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | | |
Collapse
|
40
|
Hsu HK, Juan SH, Ho PY, Liang YC, Lin CH, Teng CM, Lee WS. YC-1 inhibits proliferation of human vascular endothelial cells through a cyclic GMP-independent pathway. Biochem Pharmacol 2003; 66:263-71. [PMID: 12826268 DOI: 10.1016/s0006-2952(03)00244-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study was designed to investigate the effect of YC-1, 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole, in human umbilical vein endothelial cells (HUVECs) proliferation and its underlying mechanism. YC-1 at a range of concentrations (5-50 microM) inhibited DNA synthesis and decreased cell number in cultured HUVEC in a dose- and time-dependent manner. YC-1 was not cytotoxic at these concentrations. [3H]thymidine incorporation and flow cytometry analyses revealed that YC-1 treatment decreased DNA synthesis and arrested the cells at the G0/G1 phase of the cell cycle. Western blot analysis demonstrated that YC-1 (5-50 microM) increased the levels of cyclin-dependent kinase (CDK)-inhibitory proteins (CKIs), p21 and p27, but did not induce any significant changes of cyclins and CDKs. In the YC-1-treated HUVEC, the formation of CDK2-p21 complex, but not CDK2-p27 complex, was increased and the assayable CDK2 kinase activity was decreased. These changes were in a dose-dependent manner. In contrast, the formations of CDK4-p21 and CDK4-p27 complex were slightly increased and the assayable CDK4 kinase activity was slightly decreased (if there were any changes). Pretreatment with guanylyl cyclase inhibitors, 1H-(1,2,4)oxadiazolo[4,3-a]quinozalin-1-one (ODQ) and methylene blue, inhibited the YC-1-induced increase of cyclic GMP level, but did not change significantly the magnitude of the YC-1-induced inhibition of thymidine incorporation and cell number in HUVEC. These results indicate that YC-1-induced cell cycle arrest in HUVEC occurred when the cyclin-CDK system was inhibited just as p21 and p27 protein levels were augmented. This YC-1-induced antiproliferation effect in HUVEC is via a cyclic GMP-independent pathway.
Collapse
Affiliation(s)
- Hun-Kung Hsu
- Graduate Institute of Medical Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
41
|
Hwang TL, Wu CC, Guh JH, Teng CM. Potentiation of tumor necrosis factor-alpha expression by YC-1 in alveolar macrophages through a cyclic GMP-independent pathway. Biochem Pharmacol 2003; 66:149-56. [PMID: 12818375 DOI: 10.1016/s0006-2952(03)00202-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using cultured rat alveolar NR 8383 macrophages, this study investigated the effect of YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole], a soluble guanylyl cyclase (sGC) activator, on the production of tumor necrosis factor-alpha (TNF alpha). YC-1 enhanced lipopolysaccharide and interferon-gamma (LPS/IFN gamma)-induced TNF alpha formation in a concentration- and time-dependent fashion. YC-1 also caused an increasing effect on the TNF alpha mRNA level, suggesting that the transcriptional process was involved. However, further studies suggested that cyclic GMP did not mediate the potentiation of YC-1 on TNF alpha release, because (a) the sGC inhibitor and the protein kinase G inhibitor failed to block the effect; and (b) the cyclic GMP analogues, on the contrary, concentration-dependently diminished LPS/IFN gamma-induced TNF alpha synthesis. In agreement with this finding, YC-1 produced changes in cell function but no changes in cyclic GMP and cyclic AMP levels or sGC activity. Pretreatment of the cells with cyclooxygenase inhibitors, a p38 mitogen-activated protein kinase inhibitor, a mitogen-activated protein kinase kinase (MEK) inhibitor, and a tyrosine kinase inhibitor did not attenuate the potentiation of TNF alpha release by YC-1. Cycloheximide prevented the YC-1-enhanced TNF alpha formation, implying that new protein synthesis was required. Interestingly, protein kinase C inhibitors enhanced the potentiation of YC-1 to a greater extent. Nevertheless, a protein kinase C activator, phorbol 12-myristate 13-acetate, failed to suppress the potentiation of TNFalpha production by YC-1. In summary, potentiation of TNF alpha release by YC-1 in LPS/IFN gamma-activated alveolar macrophages is an additional mode of action of this compound that is independent of the elevation of cyclic GMP. Thus, caution needs to be used in attributing the YC-1-mediated response to the activation of sGC.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC.
| | | | | | | |
Collapse
|
42
|
|
43
|
KALSI JASS, REES ROWLANDW, HOBBS ADRIANJ, ROYLE MICHAEL, KELL PHILD, RALPH DAVIDJ, MONCADA SALVADOR, CELLEK SELIM. BAY41-2272, a Novel Nitric Oxide Independent Soluble Guanylate Cyclase Activator, Relaxes Human and Rabbit Corpus Cavernosum In Vitro. J Urol 2003. [DOI: 10.1016/s0022-5347(05)64009-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- JAS S. KALSI
- From the Wolfson Institute for Biomedical Research, University College London and Institute of Urology, Middlesex Hospital, London and Sussex Nuffield Hospital, Brighton, United Kingdom
| | - ROWLAND W. REES
- From the Wolfson Institute for Biomedical Research, University College London and Institute of Urology, Middlesex Hospital, London and Sussex Nuffield Hospital, Brighton, United Kingdom
| | - ADRIAN J. HOBBS
- From the Wolfson Institute for Biomedical Research, University College London and Institute of Urology, Middlesex Hospital, London and Sussex Nuffield Hospital, Brighton, United Kingdom
| | - MICHAEL ROYLE
- From the Wolfson Institute for Biomedical Research, University College London and Institute of Urology, Middlesex Hospital, London and Sussex Nuffield Hospital, Brighton, United Kingdom
| | - PHIL D. KELL
- From the Wolfson Institute for Biomedical Research, University College London and Institute of Urology, Middlesex Hospital, London and Sussex Nuffield Hospital, Brighton, United Kingdom
| | - DAVID J. RALPH
- From the Wolfson Institute for Biomedical Research, University College London and Institute of Urology, Middlesex Hospital, London and Sussex Nuffield Hospital, Brighton, United Kingdom
| | - SALVADOR MONCADA
- From the Wolfson Institute for Biomedical Research, University College London and Institute of Urology, Middlesex Hospital, London and Sussex Nuffield Hospital, Brighton, United Kingdom
| | - SELIM CELLEK
- From the Wolfson Institute for Biomedical Research, University College London and Institute of Urology, Middlesex Hospital, London and Sussex Nuffield Hospital, Brighton, United Kingdom
| |
Collapse
|
44
|
Cellek S. The Rho-kinase inhibitor Y-27632 and the soluble guanylyl cyclase activator BAY41-2272 relax rabbit vaginal wall and clitoral corpus cavernosum. Br J Pharmacol 2003; 138:287-90. [PMID: 12540518 PMCID: PMC1573674 DOI: 10.1038/sj.bjp.0705090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The effects of Y-27632, a Rho-kinase inhibitor and BAY41-2272, a soluble guanylyl cyclase activator, on the tone and nitrergic responses of rabbit vaginal wall and clitoral corpus cavernosum were investigated. Y-27632 and BAY41-2272 (10 nM-10 micro M) elicited concentration-dependent relaxation of phenylephrine-induced tone in both tissues. IC(50) values of Y-27632 for vaginal and clitoral tissues were 370+/-30 nM, and 467+/-14 nM, respectively. BAY41-2272 had IC(50) values of 478+/-54 nM and 304+/-38 nM respectively. The effect of the Y-27632 on the tissue tone was not affected by an inhibitor of nitric oxide synthase (L-NAME; 500 micro M). However, L-NAME reduced the potency of BAY41-2272 in the clitoral corpus cavernosum but not in the vaginal wall. BAY41-2272 enhanced nitrergic relaxation responses only in the clitoral corpus cavernosum. Y-27632 had no effect on nitrergic relaxations in either tissue. These results demonstrate that Y-27632 and BAY41-2272 elicit relaxation of the rabbit vaginal wall and clitoral corpus cavernosum.
Collapse
Affiliation(s)
- Selim Cellek
- Wolfson Institute for Biomedical Research, University College London, Gower Street, Cruciform Building, London WC1E 6BT.
| |
Collapse
|
45
|
Kotsis DH, Spence DM. Detection of ATP-induced nitric oxide in a biomimetic circulatory vessel containing an immobilized endothelium. Anal Chem 2003; 75:145-51. [PMID: 12530831 DOI: 10.1021/ac0258249] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conditions for the adhesion of bovine pulmonary artery endothelial cells (bPAECs) in microbore tubing of 250-microm i.d. are described. When immobilized to the lumen of microbore tubing, these cells represent a mimic of a circulatory vessel's endothelium. The microbore tubing is coated with 100 microg mL(-1) fibronectin in order to promote bPAEC adhesion to the lumen of the tubing. A series of micrographs of the cells inside of the tubing indicates that approximately 3.5 h is necessary for cell adhesion. In this study, adenosine triphosphate (ATP) is used to induce the release of nitric oxide from the endothelium mimic. The endothelium-derived NO is detected amperometrically at a parallel flow cell containing a glassy carbon working electrode modified with Nafion. Results indicate that detectable amounts of NO are only produced by the endothelium mimic when ATP is present in the buffer. The typical concentration of NO produced by the endothelium mimic upon the introduction of 100 microM ATP is approximately 0.80 microM. Based on the injection volume of ATP and the estimated number of cells on the tubing lumen, this value corresponds to approximately 1 amol of NO/cell. Moreover, shear stress alone does not provide the agonistic effect required for NO production in the submicromolar range.
Collapse
Affiliation(s)
- Damian H Kotsis
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA
| | | |
Collapse
|
46
|
Cellek S, Rees RW, Kalsi J. A Rho-kinase inhibitor, soluble guanylate cyclase activator and nitric oxide-releasing PDE5 inhibitor: novel approaches to erectile dysfunction. Expert Opin Investig Drugs 2002; 11:1563-73. [PMID: 12437503 DOI: 10.1517/13543784.11.11.1563] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Approximately 50% of men aged over 40 suffer from male erectile dysfunction. Treatment options have widened since the launch of the phosphodiesterase type 5 (PDE5) inhibitor, sildenafil citrate (Viagra trade mark ). However, a certain portion of the patient population, such as diabetics, do not gain significant benefit from PDE5 inhibitors, possibly due to a lack of endogenous nitric oxide. Therefore, new treatment modalities based on the absence of endogenous nitric oxide have been developed. Among them are Rho-kinase inhibitors, soluble guanylate cyclase activators and nitric oxide-releasing PDE5 inhibitors. The available data concerning these compounds will be summarised and their therapeutic potential for male erectile dysfunction will be discussed.
Collapse
Affiliation(s)
- Selim Cellek
- Wolfson Institute for Biomedical Research, University College London, Gower Street, Cruciform Building, London WC1E 6BT, UK
| | | | | |
Collapse
|
47
|
Kalsi JS, Cellek S, Muneer A, Kell PD, Ralph DJ, Minhas S. Current oral treatments for erectile dysfunction. Expert Opin Pharmacother 2002; 3:1613-29. [PMID: 12437495 DOI: 10.1517/14656566.3.11.1613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Erectile dysfunction (ED) is defined as the inability to achieve and maintain a penile erection adequate for satisfactory sexual intercourse. It is a significant male health problem of global dimensions affecting approximately 150 million men worldwide. A broad range of options are currently available for the management of ED. They include oral agents (phosphodiesterase 5 inhibitors, dopamine agonists and alpha-receptor blocking drugs), intracavernosal injection (papaverine, phentolamine, prostaglandin E1, vasoactive intestinal peptide), transurethral vasoactive agents (prostaglandin E1), vacuum erection devices, vascular surgery and penile prostheses. Here we review the physiology of penile erection and the currently available oral preparations. In addition, novel therapeutic strategies to improve erectile function are discussed.
Collapse
Affiliation(s)
- J S Kalsi
- The Institute of Urology and Nephrology, University College London, 48 Riding House Street, London, W1P 7NN, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Lin RJ, Wu BN, Shen KP, Huang CH, Liu ZI, Lin CY, Cheng CJ, Chen IJ. Xanthine-analog, KMUP-2, enhances cyclic GMP and K+ channel activities in rabbit aorta and corpus cavernosum with associated penile erection. Drug Dev Res 2002. [DOI: 10.1002/ddr.10048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
|
50
|
MIZUSAWA H, HEDLUND P, BRIONI J, SULLIVAN J, ANDERSSON KE. Nitric Oxide Independent Activation of Guanylate Cyclase by YC-1 Causes Erectile Responses in the Rat. J Urol 2002. [DOI: 10.1016/s0022-5347(05)65142-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- H. MIZUSAWA
- From the Department of Clinical Pharmacology, University of Lund, Sweden, and Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois
| | - P. HEDLUND
- From the Department of Clinical Pharmacology, University of Lund, Sweden, and Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois
| | - J.D. BRIONI
- From the Department of Clinical Pharmacology, University of Lund, Sweden, and Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois
| | - J.P. SULLIVAN
- From the Department of Clinical Pharmacology, University of Lund, Sweden, and Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois
| | - K.-E. ANDERSSON
- From the Department of Clinical Pharmacology, University of Lund, Sweden, and Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois
| |
Collapse
|