1
|
Ma S, Nakamura Y, Uemoto S, Yamamoto K, Hisaoka-Nakashima K, Morioka N. Intranasal Treatment with Cannabinoid 2 Receptor Agonist HU-308 Ameliorates Cold Sensitivity in Mice with Traumatic Trigeminal Neuropathic Pain. Cells 2024; 13:1943. [PMID: 39682692 DOI: 10.3390/cells13231943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Post-traumatic trigeminal neuropathy (PTTN) is a sensory abnormality caused by injury to the trigeminal nerve during orofacial surgery. However, existing analgesics are ineffective against PTTN. Abnormal microglial activation in the caudal part of the spinal trigeminal nucleus caudal part (Sp5C), where the central trigeminal nerve terminals reside, plays an important role in PTTN pathogenesis. Therefore, regulating microglial activity in Sp5C appears to be an important approach to controlling pain in PTTN. Cannabinoid receptor 2 (CB2) is expressed in immune cells including microglia, and its activation has anti-inflammatory effects. The current study demonstrates that the repeated intranasal administration of CB2 agonist HU-308 ameliorates the infraorbital nerve cut (IONC)-induced hyperresponsiveness to acetone (cutaneous cooling). The therapeutic efficacy of oral HU-308 was found to be less pronounced in alleviating cold hypersensitivity in IONC mice compared to intranasal administration, indicating the potential advantages of the intranasal route. Furthermore, repeated intranasal administration of HU-308 suppressed the activation of Sp5C microglia in IONC mice. Additionally, pretreatment with the CB2 antagonist, SR 144528, significantly blocked the anti-nociceptive effect of repeated intranasal administration of HU-308 on cold hypersensitization in IONC mice. These data suggest that the continuous stimulation of CB2 ameliorates PTTN-induced pain via the inhibition of microglial activation. Thus, CB2 agonists are potential candidates for novel therapeutic agents against PTTN.
Collapse
Affiliation(s)
- Simeng Ma
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Suzuna Uemoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kenta Yamamoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
2
|
Guo Y, Wei X, Pei J, Yang H, Zheng XL. Dissecting the role of cannabinoids in vascular health and disease. J Cell Physiol 2024; 239:e31373. [PMID: 38988064 DOI: 10.1002/jcp.31373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Cannabis, often recognized as the most widely used illegal psychoactive substance globally, has seen a shift in its legal status in several countries and regions for both recreational and medicinal uses. This change has brought to light new evidence linking cannabis consumption to various vascular conditions. Specifically, there is an association between cannabis use and atherosclerosis, along with conditions such as arteritis, reversible vasospasm, and incidents of aortic aneurysm or dissection. Recent research has started to reveal the mechanisms connecting cannabinoid compounds to atherosclerosis development. It is well known that the primary biological roles of cannabinoids operate through the activation of cannabinoid receptor types 1 and 2. Manipulation of the endocannabinoid system, either genetically or pharmacologically, is emerging as a promising approach to address metabolic dysfunctions related to obesity. Additionally, numerous studies have demonstrated the vasorelaxant properties and potential atheroprotective benefits of cannabinoids. In preclinical trials, cannabidiol is being explored as a treatment option for monocrotaline-induced pulmonary arterial hypertension. Although existing literature suggests a direct role of cannabinoids in the pathogenesis of atherosclerosis, the correlation between cannabinoids and other vascular diseases was only reported in some case series or observational studies, and its role and precise mechanisms remain unclear. Therefore, it is necessary to summarize and update previously published studies. This review article aims to summarize the latest clinical and experimental research findings on the relationship between cannabis use and vascular diseases. It also seeks to shed light on the potential mechanisms underlying these associations, offering a comprehensive view of current knowledge in this evolving field of study.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoyun Wei
- Department of Cardiology, The Fifth School of Clinical Medicine of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junyu Pei
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Haibo Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Punchihewage-Don AJ, Ranaweera PN, Parveen S. Defense mechanisms of Salmonella against antibiotics: a review. FRONTIERS IN ANTIBIOTICS 2024; 3:1448796. [PMID: 39816264 PMCID: PMC11731628 DOI: 10.3389/frabi.2024.1448796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 01/18/2025]
Abstract
Salmonella is a foodborne pathogenic bacterium that causes salmonellosis worldwide. Also, Salmonella is considered a serious problem for food safety and public health. Several antimicrobial classes including aminoglycosides, tetracyclines, phenols, and β-Lactams are used to treat Salmonella infections. Antibiotics have been prescribed for decades to treat infections caused by bacteria in human and animal healthcare. However, intensive use of antibiotics resulted in antibiotic resistance (AR) among several foodborne bacteria including Salmonella. Furthermore, multi-drug resistance (MDR) of Salmonella has increased dramatically. In addition to MDR Salmonella, extensively drug resistant (XDR) as well as pan drug resistant (PDR) Salmonella were reported globally. Therefore, increasing AR is becoming a serious universal public health crisis. Salmonella developed many mechanisms to ensure its survival against antimicrobials. The most prominent defense mechanisms against these antibiotics include enzymatic inactivation, expelling drugs from the cell through efflux pumps, altering the structure of drugs, and changing or protecting the targets of drugs. Additionally, the formation of biofilms and plasmid-mediated AR by Salmonella, enhancing its resistance to various antibiotics, making it a challenging pathogen in both healthcare and food industry settings. This review focuses exclusively on providing a detailed overview of the mechanisms of AR in Salmonella.
Collapse
Affiliation(s)
| | | | - Salina Parveen
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
4
|
Bo Y, Zhao X, Li L. Cardiotoxic effects of common and emerging drugs: role of cannabinoid receptors. Clin Sci (Lond) 2024; 138:413-434. [PMID: 38505994 DOI: 10.1042/cs20231156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.
Collapse
Affiliation(s)
- Yiming Bo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Rorabaugh BR, Guindon J, Morgan DJ. Role of Cannabinoid Signaling in Cardiovascular Function and Ischemic Injury. J Pharmacol Exp Ther 2023; 387:265-276. [PMID: 37739804 PMCID: PMC10658922 DOI: 10.1124/jpet.123.001665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/24/2023] Open
Abstract
Cardiovascular disease represents a leading cause of death, morbidity, and societal economic burden. The prevalence of cannabis use has significantly increased due to legalization and an increased societal acceptance of cannabis. Therefore, it is critically important that we gain a greater understanding of the effects and risks of cannabinoid use on cardiovascular diseases as well as the potential for cannabinoid-directed drugs to be used as therapeutics for the treatment of cardiovascular disease. This review summarizes our current understanding of the role of cannabinoid receptors in the pathophysiology of atherosclerosis and myocardial ischemia and explores their use as therapeutic targets in the treatment of ischemic heart disease. Endocannabinoids are elevated in patients with atherosclerosis, and activation of cannabinoid type 1 receptors (CB1Rs) generally leads to an enhancement of plaque formation and atherosclerosis. In contrast, selective activation of cannabinoid type 2 receptors (CB2Rs) appears to exert protective effects against atherosclerosis. Endocannabinoid signaling is also activated by myocardial ischemia. CB2R signaling appears to protect the heart from ischemic injury, whereas the role of CB1R in ischemic injury is less clear. This narrative review serves to summarize current research on the role of cannabinoid signaling in cardiovascular function with the goal of identifying critical knowledge gaps and future studies to address those gaps in a way that facilitates the development of new treatments and better cardiovascular health. SIGNIFICANCE STATEMENT: Cardiovascular diseases, including atherosclerosis and myocardial infarction, are a leading cause of death. Cannabinoid drugs have well known acute effects on cardiovascular function, including tachycardia and orthostatic hypotension. The recent legalization of marijuana and cannabinoids for both medical and recreational use has dramatically increased their prevalence of use. This narrative review on the role of cannabinoid signaling in cardiovascular disease contributes to a better understanding of this topic by integrating current knowledge and identifying critical gaps.
Collapse
Affiliation(s)
- Boyd R Rorabaugh
- Department of Biomedical Sciences (D.J.M.) and Department of Pharmaceutical Sciences (B.R.R.), Marshall University, Huntington, West Virginia; and Department of Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, Texas (J.G.)
| | - Josée Guindon
- Department of Biomedical Sciences (D.J.M.) and Department of Pharmaceutical Sciences (B.R.R.), Marshall University, Huntington, West Virginia; and Department of Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, Texas (J.G.)
| | - Daniel J Morgan
- Department of Biomedical Sciences (D.J.M.) and Department of Pharmaceutical Sciences (B.R.R.), Marshall University, Huntington, West Virginia; and Department of Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, Texas (J.G.)
| |
Collapse
|
6
|
Qiu S, Wu X, Geng D, Pan W, Li Z, Wang G, Li D, Li C, Feng S, Zhu L, Xu Y, Gao F. H 2O 2/NIR-sensitive "two-step" nano theranostic system based hollow mesoporous copper sulfide/hyaluronic acid/JWH133 as an optimally designed delivery system for multidimensional treatment of RA. Int J Biol Macromol 2023; 225:298-309. [PMID: 36372104 DOI: 10.1016/j.ijbiomac.2022.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Cannabinoid receptors are widely distributed in many cells in Rheumatoid arthritis RA and strengthening factor to boost the development of RA diseases. Here, the hollow mesoporous copper sulfide (CuS) was used as the carrier skeleton and the cannabinoid type 2 (CB2) receptor agonist JWH133 was efficiently loaded inside of CuS through adsorption, then the outer layer was modified with hyaluronic acid (HA) to prevent the leakage of internal drugs. After the CuS-JWH133@HA nano carrier reached the target area, HA responsive cracked under RA microenvironment to realize the first step of accurate drug delivery of JWH133, and the thermally responsive CuS under near-infrared (NIR) promoted the release of internal drugs. Then, JWH133 specifically combined CB2 receptors on the surface of macrophage, synovial cells and osteoblasts to realize the second step of drug delivery. The inflammatory factors secreted by cells are significantly inhibited, and the activity of osteoblasts was significantly enhanced. Therapeutic effect by CuS-JWH133@HA of RA was well verified by decreasing levels of inflammation in vivo and improvement of inflamed and swollen joints of mice. The CuS-JWH133@HA nanocomposite showed satisfactory multidimensional therapeutic effect of RA in vitro and in vivo, which provided a novel idea for RA treatment.
Collapse
Affiliation(s)
- Shang Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China; Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Xiunan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Dechun Geng
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Wenzhen Pan
- Department of Orthopedics, Pingyin People's Hospital, Shandong, Jinan 250000, People's Republic of China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Daen Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Cheng Li
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Shuo Feng
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Liang Zhu
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Yaozeng Xu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.
| |
Collapse
|
7
|
Dziemitko S, Harasim-Symbor E, Chabowski A. How do phytocannabinoids affect cardiovascular health? An update on the most common cardiovascular diseases. Ther Adv Chronic Dis 2023; 14:20406223221143239. [PMID: 36636553 PMCID: PMC9830002 DOI: 10.1177/20406223221143239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease (CVD) causes millions of deaths worldwide each year. Despite the great progress in therapies available for patients with CVD, some limitations, including drug complications, still exist. Hence, the endocannabinoid system (ECS) was proposed as a new avenue for CVDs treatment. The ECS components are widely distributed through the body, including the heart and blood vessels, thus the action of its endogenous and exogenous ligands, in particular, phytocannabinoids play a key role in various pathological states. The cardiovascular action of cannabinoids is complex as they affect vasculature and myocardium directly via specific receptors and exert indirect effects through the central and peripheral nervous system. The growing interest in phytocannabinoid studies, however, has extended the knowledge about their molecular targets as well as therapeutical properties; nonetheless, some areas of their actions are not yet fully recognized. Researchers have reported various cannabinoids, especially cannabidiol, as a promising approach to CVDs; hence, the purpose of this review is to summarize and update the cardiovascular actions of the most potent phytocannabinoids and the potential therapeutic role of ECS in CVDs, including ischemic reperfusion injury, arrhythmia, heart failure as well as hypertension.
Collapse
Affiliation(s)
- Sylwia Dziemitko
- Department of Physiology, Medical University of
Bialystok, Bialystok 15-222, Poland
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of
Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of
Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Musetti B, Bahnson EM, Thomson L. Cannabinoids in inflammation and atherosclerosis. MEDICINAL USAGE OF CANNABIS AND CANNABINOIDS 2023:159-169. [DOI: 10.1016/b978-0-323-90036-2.00016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Zamith Cunha R, Zannoni A, Salamanca G, De Silva M, Rinnovati R, Gramenzi A, Forni M, Chiocchetti R. Expression of cannabinoid (CB1 and CB2) and cannabinoid-related receptors (TRPV1, GPR55, and PPARα) in the synovial membrane of the horse metacarpophalangeal joint. Front Vet Sci 2023; 10:1045030. [PMID: 36937015 PMCID: PMC10020506 DOI: 10.3389/fvets.2023.1045030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Background The metacarpophalangeal joint undergoes enormous loading during locomotion and can therefore often become inflamed, potentially resulting in osteoarthritis (OA). There are studies indicating that the endocannabinoid system (ECS) modulates synovium homeostasis, and could be a promising target for OA therapy. Some cannabinoid receptors, which modulate proliferative and secretory responses in joint inflammation, have been functionally identified in human and animal synovial cells. Objective To characterize the cellular distribution of the cannabinoid receptors 1 (CB1R) and 2 (CB2R), and the cannabinoid-related receptors transient receptor potential vanilloid type 1 (TRPV1), G protein-related receptor 55 (GPR55) and peroxisome proliferator-activated receptor alpha (PPARα) in the synovial membrane of the metacarpophalangeal joint of the horse. Animals The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. Materials and methods The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. The expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in synovial tissues was studied using qualitative and quantitative immunofluorescence, and quantitative real-time reverse transcriptase PCR (qRT-PCR). Macrophage-like (MLS) and fibroblast-like (FLS) synoviocytes were identified by means of antibodies directed against IBA1 and vimentin, respectively. Results Both the mRNA and protein expression of the CB2R, TRPV1, GPR55, and PPARα were found in the synoviocytes and blood vessels of the metacarpophalangeal joints. The synoviocytes expressed the mRNA and protein of the CB1R in some of the horses investigated, but not in all. Conclusions and clinical importance Given the expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in the synovial elements of the metacarpophalangeal joint, these findings encouraged the development of new studies supporting the use of molecules acting on these receptors to reduce the inflammation during joint inflammation in the horse.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Alessandro Gramenzi
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- *Correspondence: Roberto Chiocchetti
| |
Collapse
|
10
|
Differential Regulation of MMPs, Apoptosis and Cell Proliferation by the Cannabinoid Receptors CB1 and CB2 in Vascular Smooth Muscle Cells and Cardiac Myocytes. Biomedicines 2022; 10:biomedicines10123271. [PMID: 36552027 PMCID: PMC9775096 DOI: 10.3390/biomedicines10123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabinoids (CB) are implicated in cardiovascular diseases via the two main receptor subtypes CB1R and CB2R. This study investigated whether cannabinoids regulate the activity of matrix metalloproteases (MMP-2, MMP-9) in vascular smooth muscle cells (VSMCs) and in cells of cardiac origin (H9c2 cell line). The influence of CB1- and CB2 receptor stimulation or inhibition on cell proliferation, apoptosis and glucose uptake was also evaluated. We used four compounds that activate or block CB receptors: arachidonyl-2-chloroethylamide (ACEA)-CB1R agonist, rimonabant-CB1R antagonist, John W. Huffman (JWH133)-CB2R agonist and CB2R antagonist-6-Iodopravadoline (AM630). Treatment of cells with the CB2R agonist JWH133 decreased cytokine activated secretion of proMMP-2, MMP-2 and MMP-9, reduced Fas ligand and caspase-3-mediated apoptosis, normalized the expression of TGF-beta1 and prevented cytokine-induced increase in glucose uptake into the cell. CB1R inhibition with rimonabant showed similar protective properties as the CB2R agonist JWH133, but to a lesser extent. In conclusion, CB1R and CB2R exert opposite effects on cell glucose uptake, proteolysis and apoptosis in both VSMCs and H9c2 cells. The CB2R agonist JWH133 demonstrated the highest protective properties. These findings may pave the way to a new treatment of cardiovascular diseases, especially those associated with extracellular matrix degradation.
Collapse
|
11
|
Avraamidou E, Nöthel M, Danisch M, Bindila L, Schmidt SV, Lutz B, Nickenig G, Jehle J. Myeloid But Not Endothelial Expression of the CB2 Receptor Promotes Atherogenesis in the Context of Elevated Levels of the Endocannabinoid 2-Arachidonoylglycerol. J Cardiovasc Transl Res 2022; 16:491-501. [PMID: 36178662 PMCID: PMC10151305 DOI: 10.1007/s12265-022-10323-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) is an inflammatory mediator and ligand for the cannabinoid receptors CB1 and CB2. We investigated the atherogenic mechanisms set in motion by 2-AG. Therefore, we created two atherosclerotic mouse models with distinct cell-specific knockouts of the CB2 receptor on either myeloid or endothelial cells. These mice were treated with JZL184, resulting in elevated plasma levels of 2-AG. After a high-fat high-cholesterol diet, atherosclerotic plaques were analyzed. The atherogenic effect of 2-AG was abrogated in mice lacking myeloid expression of the CB2 receptor but not in mice lacking endothelial expression of the CB2 receptor. In vitro, treatment of human monocytes with 2-AG led to the increased production of reactive oxygen species (ROS) and IL-1β. In conclusion, 2-AG shows an atherogenic effect in vivo, dependent on the presence of the CB2 receptor on myeloid cells. In addition, our in vitro data revealed 2-AG to promote inflammatory signalling in monocytes. 2-Arachidonoylglycerol shows an atherogenic effect that is abrogated in mice lacking myeloid expression of the CB2 receptor.
Collapse
Affiliation(s)
- Elina Avraamidou
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Venusberg-Campus 1, Building 13, 53127, Bonn, Germany
| | - Moritz Nöthel
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Venusberg-Campus 1, Building 13, 53127, Bonn, Germany.
| | - Melina Danisch
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Venusberg-Campus 1, Building 13, 53127, Bonn, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127, Bonn, NRW, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Georg Nickenig
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Venusberg-Campus 1, Building 13, 53127, Bonn, Germany
| | - Julian Jehle
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Venusberg-Campus 1, Building 13, 53127, Bonn, Germany
| |
Collapse
|
12
|
Hashiesh HM, Sharma C, Goyal SN, Jha NK, Ojha S. Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist. Front Pharmacol 2021; 12:702675. [PMID: 34393784 PMCID: PMC8363263 DOI: 10.3389/fphar.2021.702675] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system has attracted attention as a pharmacological target for several pathological conditions. Cannabinoid (CB2)-selective agonists have been the focus of pharmacological studies because modulation of the CB2 receptor (CB2R) can be useful in the treatment of pain, inflammation, arthritis, addiction, and cancer among other possible therapeutic applications while circumventing CNS-related adverse effects. Increasing number of evidences from different independent preclinical studies have suggested new perspectives on the involvement of CB2R signaling in inflammation, infection and immunity, thus play important role in cancer, cardiovascular, renal, hepatic and metabolic diseases. JWH133 is a synthetic agonist with high CB2R selectivity and showed to exert CB2R mediated antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory activities. Cumulative evidences suggest that JWH133 protects against hepatic injury, renal injury, cardiotoxicity, fibrosis, rheumatoid arthritis, and cancer as well as against oxidative damage and inflammation, inhibits fibrosis and apoptosis, and acts as an immunosuppressant. This review provides a comprehensive overview of the polypharmacological properties and therapeutic potential of JWH133. This review also presents molecular mechanism and signaling pathways of JWH133 under various pathological conditions except neurological diseases. Based on the available data, this review proposes the possibilities of developing JWH133 as a promising therapeutic agent; however, further safety and toxicity studies in preclinical studies and clinical trials in humans are warranted.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
El-Dahan KS, Machtoub D, Massoud G, Nasser SA, Hamam B, Kobeissy F, Zouein FA, Eid AH. Cannabinoids and myocardial ischemia: Novel insights, updated mechanisms, and implications for myocardial infarction. Curr Med Chem 2021; 29:1990-2010. [PMID: 34102966 DOI: 10.2174/0929867328666210608144818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
Cannabis is the most widely trafficked and abused illicit drug due to its calming psychoactive properties. It has been increasingly recognized as having potential health benefits and relatively less adverse health effects as compared to other illicit drugs; however, growing evidence clearly indicates that cannabis is associated with considerable adverse cardiovascular events. Recent studies have linked cannabis use to myocardial infarction (MI); yet, very little is known about the underlying mechanisms. A MI is a cardiovascular disease characterized by a mismatch in the oxygen supply and demand of the heart, resulting in ischemia and subsequent necrosis of the myocardium. Since cannabis is increasingly being considered a risk factor for MI, there is a growing need for better appreciating its potential health benefits and consequences. Here, we discuss the cellular mechanisms of cannabis that lead to an increased risk of MI. We provide a thorough and critical analysis of cannabinoids' actions, which include modulation of adipocyte biology, regional fat distribution, and atherosclerosis, as well as precipitation of hemodynamic stressors relevant in the setting of a MI. By critically dissecting the modulation of signaling pathways in multiple cell types, this paper highlights the mechanisms through which cannabis may trigger life-threatening cardiovascular events. This then provides a framework for future pharmacological studies which can identify targets or develop drugs that modulate cannabis' effects on the cardiovascular system as well as other organ systems. Cannabis' impact on the autonomic outflow, vascular smooth muscle cells, myocardium, cortisol levels and other hemodynamic changes are also mechanistically reviewed.
Collapse
Affiliation(s)
- Karim Seif El-Dahan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Dima Machtoub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Gaelle Massoud
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon
| | - Bassam Hamam
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, P.O. Box 146404, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha. Qatar
| |
Collapse
|
14
|
Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol 2021; 12:590201. [PMID: 34054510 PMCID: PMC8163236 DOI: 10.3389/fphar.2021.590201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mf Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Jing R, Pan W, Long T, Li Z, Li C. LINC00472 regulates vascular smooth muscle cell migration and proliferation via regulating miR-149-3p. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12960-12967. [PMID: 33095897 DOI: 10.1007/s11356-020-10761-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
LncRNAs are one group of gene modulators functioning via several mechanisms in pathological and physiological conditions. We noted that LINC00472 expression level is elevated in atherosclerotic coronary tissues compared with normal coronary artery samples. LINC00472 is also upregulated in vascular smooth muscle cells (VSMCs) induced by TNF-α and PDGF-BB. Ectopic expression of LINC00472 induced VSMC migration and proliferation. The predicted binding sequence between miR-149-3p and LINC00472 was analyzed by LncBase Predicted. Overexpression of miR-149-3p decreases the luciferase activity of wild-type reporter plasmid, but not the mutant one. Ectopic expression of LINC00472 suppresses the expression of miR-149-3p in VSMCs. Furthermore, we demonstrated that miR-149-3p expression is decreased in atherosclerotic coronary tissues. MiR-149-3p was downregulated in VSMCs induced by TNF-α and PDGF-BB. Overexpression of LINC00472 induces VSMC migration and proliferation via regulating miR-149-3p. These data suggested that LINC00472 acts a critical role in the migration and proliferation of VSMCs partly via modulating miR-149-3p.
Collapse
Affiliation(s)
- Ran Jing
- Cardiovascular Department, Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China
| | - Wei Pan
- Cardiovascular Department, Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China
| | - Tianyi Long
- Cardiovascular Department, Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China
| | - Zhenyu Li
- Geriatric Department of Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China
| | - Chuanchang Li
- Geriatric Department of Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China.
| |
Collapse
|
16
|
Abstract
![]()
Developing
drugs for the central nervous system (CNS) requires
fine chemical modifications, as a strict balance between size and
lipophilicity is necessary to improve the permeability through the
blood-brain barrier (BBB).
In this context, morpholine and its analogues represent valuable heterocycles,
due to their conformational and physicochemical properties. In fact,
the presence of a weak basic nitrogen atom and of an oxygen atom at
the opposite position provides a peculiar pKa value and a flexible conformation to the ring, thus allowing
it to take part in several lipophilic–hydrophilic interactions,
and to improve blood solubility and brain permeability of the overall
structure. In CNS-active compounds, morpholines are used (1) to enhance
the potency through molecular interactions, (2) to act as a scaffold
directing the appendages in the correct position, and (3) to modulate
pharmacokinetic/pharmacodynamic (PK/PD) properties. In this perspective,
selected morpholine-containing CNS drug candidates are discussed to
reveal the active pharmacophores accountable for the (1) modulation
of receptors involved in mood disorders and pain, (2) bioactivity
toward enzymes and receptors responsible for neurodegenerative diseases,
and (3) inhibition of enzymes involved in the pathology of CNS tumors.
The medicinal chemistry/pharmacological activity of morpholine derivatives
is discussed, in the effort to highlight the importance of morpholine
ring interactions in the active site of different targets, particularly
reporting binding features retrieved from PDB data, when available.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Calugi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
17
|
Karimian Azari E, Kerrigan A, O’Connor A. Naturally Occurring Cannabinoids and their Role in Modulation of Cardiovascular Health. J Diet Suppl 2020; 17:625-650. [DOI: 10.1080/19390211.2020.1790708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Aileen Kerrigan
- Research and Development department, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
18
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
19
|
Shi X, Pan S, Li L, Li Y, Ma W, Wang H, Xu C, Li L, Wang D. HIX003209 promotes vascular smooth muscle cell migration and proliferation through modulating miR-6089. Aging (Albany NY) 2020; 12:8913-8922. [PMID: 32463793 PMCID: PMC7288934 DOI: 10.18632/aging.103079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Accumulating references have showed that long noncoding RNAs (lncRNAs) act important roles in the development of human diseases. The role and expression of HIX003209 remains unclear in the pathogenesis of atherosclerosis. We showed that HIX003209 expression was upregulated in atherosclerotic coronary tissues compared to normal coronary artery samples. HIX003209 was overexpressed in vascular smooth muscle cells (VSMCs) induced by inflammatory mediators including tumor necrosis factor-α(TNF-α), ox-LDL and latelet-derived growth factor-BB (PDGF-BB). Ectopic expression of HIX003209 enhanced cell growth and migration and induced inflammatory mediators secretion such as interleukin 6 (IL-6), TNF-α and IL-1β in VSMCs. Furthermore, we showed that miR-6089 was downregulated in atherosclerotic coronary tissues compared to normal coronary artery samples. There was a negative association between expression of HIX003209 and miR-6089 in atherosclerotic coronary tissues. MiR-6089 expression was decreased in VSMCs induced by inflammatory mediators including TNF-α, ox-LDL and PDGF-BB. Dual luciferase analysis showed that miR-6089 overexpression decreased luciferase activity of HIX003209 WT-type 3’-UTR but not the mut-type 3’-UTR. Overexpression of HIX003209 suppressed the expression of miR-6089 in VSMCs. Ectopic expression of HIX003209 induced cell growth, migration and the secretion of inflammatory mediators via regulating miR-6089 expression. These data suggested that HIX003209 promoted VSMCs proliferation, migration and the secretion of inflammatory mediators partly via regulating miR-6089.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Emergency, Tianjin First Center Hospital, Tianjin 300192, People's Republic of China
| | - Shuang Pan
- Department of Physiology, School of Basic Medicine, Jinzhou Medicine University, Jinzhou 121000, Liaoning, People's Republic of China
| | - Li Li
- Clinical Nutrition Department, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, People's Republic of China
| | - Yongqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 3050005, Japan
| | - Wei Ma
- Department of Anatomy, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Han Wang
- Department of Vascular Surgery, Dalian University Affiliated Xinhua Hospital, Dalian 116021, Liaoning, People's Republic of China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, Liaoning, People's Republic of China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, People's Republic of China
| | - Dong Wang
- Neurosurgery Department, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, People's Republic of China
| |
Collapse
|
20
|
Li J, Ji J, Xu R, Li Z. Indole compounds with N-ethyl morpholine moieties as CB2 receptor agonists for anti-inflammatory management of pain: synthesis and biological evaluation. MEDCHEMCOMM 2019; 10:1935-1947. [PMID: 32952995 PMCID: PMC7478157 DOI: 10.1039/c9md00173e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/08/2019] [Indexed: 01/09/2023]
Abstract
The CB2 receptor plays a crucial role in analgesia and anti-inflammation. To develop novel CB2 agonists with high efficacy and selectivity, a series of indole derivatives with N-ethyl morpholine moieties (compounds 1-56) were designed, synthesized and biologically evaluated. Compounds 1, 2, 3, 46 and 53 exhibited high CB2 receptor affinity at low nanomolar concentrations and good receptor selectivity (EC50(CB1)/EC50(CB2) greater than 1000). The most active compound, compound 2, was more potent than the standard drug GW405833 for in vitro agonistic action on the CB2 receptor. More importantly, in a rat model for CFA-induced inflammatory hyperalgesia, compound 2 had a potent anti-inflammatory pain effect within 12 hours after administration. At the 1 h time point, compound 2 had a dose-dependent reversal for hyperalgesia with an estimated ED50 value of 1.097 mg kg-1. Moreover, compound 2 significantly suppressed the pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in CFA-induced lesions. These protective effects of compound 2 on inflammatory pain were superior to those of GW405833, suggesting that compound 2 may be a promising therapeutic drug that needs further validation.
Collapse
Affiliation(s)
- Jiaojiao Li
- Pharmacy School , Jiangsu Ocean University , Lianyungang 222005 , China
| | - Jing Ji
- Pharmacy School , Jiangsu Ocean University , Lianyungang 222005 , China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Jiangsu Ocean University , Lianyungang 222005 , China
| | - Ruibo Xu
- Pharmacy School , Jiangsu Ocean University , Lianyungang 222005 , China
| | - Zhengfu Li
- School of Computer Engineering , Jiangsu Ocean University , Lianyungang 222005 , Chinali .
| |
Collapse
|
21
|
Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors. Chem Biol Interact 2019; 297:16-24. [DOI: 10.1016/j.cbi.2018.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/23/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
|
22
|
Abstract
Cannabinoids influence cardiovascular variables in health and disease via multiple mechanisms. The chapter covers the impact of cannabinoids on cardiovascular function in physiology and pathology and presents a critical analysis of the proposed signalling pathways governing regulation of cardiovascular function by endogenously produced and exogenous cannabinoids. We know that endocannabinoid system is overactivated under pathological conditions and plays both a protective compensatory role, such as in some forms of hypertension, atherosclerosis and other inflammatory conditions, and a pathophysiological role, such as in disease states associated with excessive hypotension. This chapter focuses on the mechanisms affecting hemodynamics and vasomotor effects of cannabinoids in health and disease states, highlighting mismatches between some studies. The chapter will first review the effects of marijuana smoking on cardiovascular system and then describe the impact of exogenous cannabinoids on cardiovascular parameters in humans and experimental animals. This will be followed by analysis of the impact of cannabinoids on reactivity of isolated vessels. The article critically reviews current knowledge on cannabinoid induction of vascular relaxation by cannabinoid receptor-dependent and -independent mechanisms and dysregulation of vascular endocannabinoid signaling in disease states.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine.
| |
Collapse
|
23
|
Selective Activation of Cannabinoid Receptor 2 Attenuates Myocardial Infarction via Suppressing NLRP3 Inflammasome. Inflammation 2018; 42:904-914. [DOI: 10.1007/s10753-018-0945-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Anti-tumoral potential of MDA19 in human osteosarcoma via suppressing PI3K/Akt/mTOR signaling pathway. Biosci Rep 2018; 38:BSR20181501. [PMID: 30442873 PMCID: PMC6294623 DOI: 10.1042/bsr20181501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 01/18/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignancy of skeleton with higher mortality rates amongst children and young adults worldwide, whereas effective and secure therapies have also been sought by researches with ongoing efforts. The purpose of the present study was to investigate the impact of N′-[(3Z)-1-(1-hexyl)-2-oxo-1,2-dihydro-3H-indol-3-ylidene] benzohydrazide (MDA19) on OS and explore its potential mechanism. Cell Counting Kit-8 (CCK8) and colony formation assay were employed to evaluate the potential effect of MDA19 on U2OS and MG-63 cells proliferation. Moreover, transwell migration and invasion assay were performed to assess the influence of MDA19 on U2OS and MG-63 cells migration and invasion. In addition, Annexin V-FITC/propidium iodide (Annexin V-FITC/PI) staining and flow cytometry were used to examine apoptotic ratio of the U2OS and MG-63 cells. Meanwhile, Western blot analysis was applied to explore change of relevant mechanism proteins in OS cells treated with MDA19. Our study showed that MDA19 had anti-proliferative activity of OS cells in a dose- and time-dependent manner, simultaneously, inhibition of colony formation was also observed in U2OS and MG-63 cells after incubation of MDA19. Besides, MDA19 could significantly inhibit the number of migrated and invaded OS cells and markedly increase the OS cells apoptosis rate. Mechanistically, we detected detectable reductions in apoptosis related proteins, epithelial–mesenchymal transition (EMT)-related proteins and activity of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling in U2OS and MG-63 cells exposure to MDA19. Overall, the current study indicates in vitro anti-proliferative, anti-metastatic, and pro-apoptotic potential of MDA19 in U2OS and MG-63 cells. Our findings propose a clue for further studies with this compound in preclinical and clinical treatment for OS.
Collapse
|
25
|
The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 2018; 157:122-133. [PMID: 30138623 DOI: 10.1016/j.bcp.2018.08.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
The skin is the largest organ of the body and has a complex and very active structure that contributes to homeostasis and provides the first line defense against injury and infection. In the past few years it has become evident that the endocannabinoid system (ECS) plays a relevant role in healthy and diseased skin. Specifically, we review how the dysregulation of ECS has been associated to dermatological disorders such as atopic dermatitis, psoriasis, scleroderma and skin cancer. Therefore, the druggability of the ECS could open new research avenues for the treatment of the pathologies mentioned. Numerous studies have reported that phytocannabinoids and their biological analogues modulate a complex network pharmacology involved in the modulation of ECS, focusing on classical cannabinoid receptors, transient receptor potential channels (TRPs), and peroxisome proliferator-activated receptors (PPARs). The combined targeting of several end-points seems critical to provide better chances of therapeutically success, in sharp contrast to the one-disease-one-target dogma that permeates current drug discovery campaigns.
Collapse
|
26
|
Ng PY, McIntosh KA, Hargrave G, Ho KH, Paul A, Plevin R. Inhibition of cytokine-mediated JNK signalling by purinergic P2Y 11 receptors, a novel protective mechanism in endothelial cells. Cell Signal 2018; 51:59-71. [PMID: 30076967 DOI: 10.1016/j.cellsig.2018.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Previous research from our laboratory has demonstrated a novel phenomenon whereby GPCRs play a role in inhibiting cytokine-mediated c-Jun N-terminal kinase (JNK) signalling. So far this novel phenomenon seems to have been vastly overlooked, with little research in the area. Therefore, in this study we explored this further; by assessing the potential of P2YRs to mediate inhibition of cytokine-mediated JNK signalling and related functional outcomes in human endothelial cells. We utilised primary endothelial cells, and employed the use of endogenous activators of P2YRs and well characterised pharmacological inhibitors, to assess signalling parameters mediated by P2YRs, Interleukin-1β (IL-1β), TNFα and JNK. Activation of P2YRs with adenosine tri-phosphate (ATP) resulted in a time- and concentration-dependent inhibition of IL-1β-mediated phosphorylation of JNK and associated kinase activity. The effect was specific for cytokine-mediated JNK signalling, as ATP was without effect on JNK induced by other non-specific activators (e.g. sorbitol, anisomycin), nor effective against other MAPK pathways such as p38 and the canonical NFκB cascade. Pharmacological studies demonstrated a role for the P2Y11 receptor in mediating this effect, but not the P2Y1 nor the adenosine receptors (A1, A2A, A2B & A3). The novel Gαq/11 inhibitor YM254890 and a protein kinase A (PKA) inhibitor H89 both partially reversed ATP-mediated inhibition of IL-1β-stimulated JNK indicating involvement of both Gαq/11 and Gαs mediated pathways. ATP also partially reversed IL-1β-mediated induction of cyclo‑oxygenase-2 (COX-2) and E-selectin. Collectively, these studies indicate the potential for activation of purinergic receptors to protect the endothelium from inflammatory driven JNK activation and may be a new target for inflammatory disease therapy.
Collapse
Affiliation(s)
- Pei Y Ng
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Kathryn A McIntosh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK.
| | - Gillian Hargrave
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Ka H Ho
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| |
Collapse
|
27
|
Tang M, Cao X, Zhang K, Li Y, Zheng QY, Li GQ, He QH, Li SJ, Xu GL, Zhang KQ. Celastrol alleviates renal fibrosis by upregulating cannabinoid receptor 2 expression. Cell Death Dis 2018; 9:601. [PMID: 29789558 PMCID: PMC5964092 DOI: 10.1038/s41419-018-0666-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Renal fibrosis is the final manifestation of various chronic kidney diseases, and no effective therapy is available to prevent or reverse it. Celastrol, a triterpene that derived from traditional Chinese medicine, is a known potent anti-fibrotic agent. However, the underlying mechanisms of action of celastrol on renal fibrosis remain unknown. In this study, we found that celastrol treatment remarkably attenuated unilateral ureteral obstruction (UUO)-induced mouse renal fibrosis. This was evidenced by the significant reduction in tubular injury; collagen deposition; accumulation of fibronectin, collagen I, and α-smooth muscle actin; and the expression levels of pro-fibrotic factors Vim, Cola1, and TGF-β1 mRNA, as well as inflammatory responses. Celastrol showed similar effects in a folic acid-induced mouse renal fibrosis model. Furthermore, celastrol potentiated the expression of the anti-fibrotic factor cannabinoid receptor 2 (CB2R) in established mouse fibrotic kidney tissues and transforming growth factor β1 (TGF-β1)-stimulated human kidney 2 (HK-2) cells. In addition, the CB2R antagonist (SR144528) abolished celastrol-mediated beneficial effects on renal fibrosis. Moreover, UUO- or TGF-β1-induced activation of the pro-fibrotic factor SMAD family member 3 (Smad3) was markedly inhibited by celastrol. Inhibition of Smad3 activation by an inhibitor (SIS3) markedly reduced TGF-β1-induced downregulation of CB2R expression. In conclusion, our study provides the first direct evidence that celastrol significantly alleviated renal fibrosis, by contributing to the upregulation of CB2R expression through inhibiting Smad3 signaling pathway activation. Therefore, celastrol could be a potential drug for treating patients with renal fibrosis.
Collapse
Affiliation(s)
- Ming Tang
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xu Cao
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kun Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - You Li
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Quan-You Zheng
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Gui-Qing Li
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qian-Hui He
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shu-Jing Li
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Gui-Lian Xu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Ke-Qin Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
28
|
Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today 2018; 23:592-604. [PMID: 29331500 DOI: 10.1016/j.drudis.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. Cannabinoid receptor 1 (CB1) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB2) is more abundant in the periphery, including the immune cells. In obesity, global antagonism of overexpressed CB1 reduces bodyweight but leads to centrally mediated adverse psychological outcomes. Emerging research in isolated cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the periphery alleviates the pathologies associated with metabolic disease. Further, peripheral specific cannabinoid ligands can reverse aspects of the metabolic phenotype. This Keynote review will focus on current research on the functionality of peripheral modulation of the ECS for the treatment of obesity.
Collapse
|
29
|
Fulmer ML, Thewke DP. The Endocannabinoid System and Heart Disease: The Role of Cannabinoid Receptor Type 2. Cardiovasc Hematol Disord Drug Targets 2018; 18:34-51. [PMID: 29412125 PMCID: PMC6020134 DOI: 10.2174/1871529x18666180206161457] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
Decades of research has provided evidence for the role of the endocannabinoid system in human health and disease. This versatile system, consisting of two receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and metabolic enzymes has been implicated in a wide variety of disease states, ranging from neurological disorders to cancer. CB2 has gained much interest for its beneficial immunomodulatory role that can be obtained without eliciting psychotropic effects through CB1. Recent studies have shed light on a protective role of CB2 in cardiovascular disease, an ailment which currently takes more lives each year in Western countries than any other disease or injury. By use of CB2 knockout mice and CB2-selective ligands, knowledge of how CB2 signaling affects atherosclerosis and ischemia has been acquired, providing a major stepping stone between basic science and translational clinical research. Here, we summarize the current understanding of the endocannabinoid system in human pathologies and provide a review of the results from preclinical studies examining its function in cardiovascular disease, with a particular emphasis on possible CB2-targeted therapeutic interventions to alleviate atherosclerosis.
Collapse
Affiliation(s)
- Makenzie L. Fulmer
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Douglas P. Thewke
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
30
|
Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res 2017; 28:35-52. [PMID: 29222605 DOI: 10.1007/s10286-017-0488-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cardiovascular disease is now recognized as the number one cause of death in the world, and the size of the population at risk continues to increase rapidly. The dysregulation of the endocannabinoid (eCB) system plays a central role in a wide variety of conditions including cardiovascular disorders. Cannabinoid receptors, their endogenous ligands, as well as enzymes conferring their synthesis and degradation, exhibit overlapping distributions in the cardiovascular system. Furthermore, the pharmacological manipulation of the eCB system has effects on blood pressure, cardiac contractility, and endothelial vasomotor control. Growing evidence from animal studies supports the significance of the eCB system in cardiovascular disorders. OBJECTIVE To summarize the literature surrounding the eCB system in cardiovascular function and disease and the new compounds that may potentially extend the range of available interventions. RESULTS Drugs targeting CB1R, CB2R, TRPV1 and PPARs are proven effective in animal models mimicking cardiovascular disorders such as hypertension, atherosclerosis and myocardial infarction. Despite the setback of two clinical trials that exhibited unexpected harmful side-effects, preclinical studies are accelerating the development of more selective drugs with promising results devoid of adverse effects. CONCLUSION Over the last years, increasing evidence from basic and clinical research supports the role of the eCB system in cardiovascular function. Whereas new discoveries are paving the way for the identification of novel drugs and therapeutic targets, the close cooperation of researchers, clinicians and pharmaceutical companies is needed to achieve successful outcomes.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Physiology and Biophysics, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA, 23298, USA.
| | - Natasha Luquin
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Judith Navarro-Otano
- Neurology Service, Electromyography, Motor Control and Neuropathic Pain Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Zhou G, Wang L, Xu Y, Yang K, Luo L, Wang L, Li Y, Wang J, Shu G, Wang S, Gao P, Zhu X, Xi Q, Sun J, Zhang Y, Jiang Q. Diversity effect of capsaicin on different types of skeletal muscle. Mol Cell Biochem 2017; 443:11-23. [PMID: 29159769 DOI: 10.1007/s11010-017-3206-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
Capsaicin is a major pungent content in green and red peppers which are widely used as spice, and capsaicin may activate different receptors. To determine whether capsaicin has different effects on different types of skeletal muscle, we applied different concentrations (0, 0.01, and 0.02%) of capsaicin in the normal diet and conducted a four-week experiment on Sprague-Dawley rats. The fiber type composition, glucose metabolism enzyme activity, and different signaling molecules' expressions of receptors were detected. Our results suggested that capsaicin reduced the body fat deposition, while promoting the slow muscle-related gene expression and increasing the enzyme activity in the gastrocnemius and soleus muscles. However, fatty acid metabolism was significantly increased only in the soleus muscle. The study of intracellular signaling suggested that the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptors in the soleus muscle were more sensitive to capsaicin. In conclusion, the distribution of TRPV1 and cannabinoid receptors differs in different types of muscle, and the different roles of capsaicin in different types of muscle may be related to the different degrees of activation of receptors.
Collapse
Affiliation(s)
- Gan Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yaqiong Xu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Kelin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lv Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Leshan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
32
|
Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 2017; 15:151-166. [PMID: 28905873 DOI: 10.1038/nrcardio.2017.130] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Ho WSV, Kelly MEM. Cannabinoids in the Cardiovascular System. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:329-366. [PMID: 28826540 DOI: 10.1016/bs.apha.2017.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells. The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB1 and CB2 receptors or non-CB1/2 receptor targets. Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis. In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation.
Collapse
Affiliation(s)
- Wing S V Ho
- Vascular Biology Research Centre, St George's University of London, London, United Kingdom.
| | | |
Collapse
|
34
|
López-Dyck E, Andrade-Urzúa F, Elizalde A, Ferrer-Villada T, Dagnino-Acosta A, Huerta M, Osuna-Calleros Z, Rangel-Sandoval C, Sánchez-Pastor E. ACPA and JWH-133 modulate the vascular tone of superior mesenteric arteries through cannabinoid receptors, BK Ca channels, and nitric oxide dependent mechanisms. Pharmacol Rep 2017; 69:1131-1139. [PMID: 29128791 DOI: 10.1016/j.pharep.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/26/2017] [Accepted: 06/20/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Some cannabinoids, a family of compounds derived from Cannabis sativa (marijuana), have previously shown vasodilator effects in several studies, a feature that makes them suitable for the generation of a potential treatment for hypertension. The mechanism underlying this vasodilator effect in arteries is still controversial. In this report, we explored how the synthetic cannabinoids ACPA (CB1-selective agonist) and JWH-133 (CB2-selective agonist) regulate the vascular tone of rat superior mesenteric arteries. METHODS To screen the expression of CB1 (Cannabinoid receptor 1) and CB2 (Cannabinoid receptor 2) receptors in arterial rings or isolated smooth muscle cells obtained from the artery, immunocytochemistry, immunohistochemistry, and confocal microscopy were performed. In addition, the effects on vascular tone induced by the two cannabinoids were tested in isometric tension experiments in rings obtained from superior mesenteric arteries. The participation of voltage and calcium-activated potassium channel of big conductance (BKCa) and the role of nitric oxide (NO) release on the vascular effects induced by ACPA and JWH-133 were tested. RESULTS CB1 and CB2 receptors were highly expressed in the rat superior mesenteric artery, in both smooth muscle and endothelium. The vasodilation effect shown by ACPA was endothelium-dependent through a mechanism involving CB1 receptors, BKCa channel activation, and NO release; meanwhile, the vasodilator effect of JWH-133 was induced by the activation of CB2 receptors located in smooth muscle and by a CB2 receptor-independent mechanism inducing NO release. CONCLUSIONS CB1 and CB2 receptor activation in superior mesenteric artery causes vasorelaxation by mechanisms involving BKCa channels and NO release.
Collapse
Affiliation(s)
- Evelyn López-Dyck
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Alejandro Elizalde
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Tania Ferrer-Villada
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Zyanya Osuna-Calleros
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Enrique Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico.
| |
Collapse
|
35
|
Seleverstov O, Tobiasz A, Jackson JS, Sullivan R, Ma D, Sullivan JP, Davison S, Akkhawattanangkul Y, Tate DL, Costello T, Barnett S, Li W, Mari G, Dopico AM, Bukiya AN. Maternal alcohol exposure during mid-pregnancy dilates fetal cerebral arteries via endocannabinoid receptors. Alcohol 2017; 61:51-61. [PMID: 28554529 DOI: 10.1016/j.alcohol.2017.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/13/2017] [Accepted: 01/29/2017] [Indexed: 12/19/2022]
Abstract
Prenatal alcohol exposure often results in fetal alcohol syndrome and fetal alcohol spectrum disorders. Mechanisms of fetal brain damage by alcohol remain unclear. We used baboons (Papio spp.) to study alcohol-driven changes in the fetal cerebral artery endocannabinoid system. Pregnant baboons were subjected to binge alcohol exposure via gastric infusion three times during a period equivalent to the second trimester of human pregnancy. A control group was infused with orange-flavored drink that was isocaloric to the alcohol-containing solution. Cesarean sections were performed at a time equivalent to the end of the second trimester of human pregnancy. Fetal cerebral arteries were harvested and subjected to in vitro pressurization followed by pharmacological profiling. During each alcohol-infusion episode, maternal blood alcohol concentrations (BAC) reached 80 mg/dL, that is, equivalent to the BAC considered legal intoxication in humans. Circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) remained unchanged. Ultrasound studies on pregnant mothers revealed that fetal alcohol exposure decreased peak systolic blood velocity in middle cerebral arteries when compared to pre-alcohol levels. Moreover, ethanol-induced dilation was observed in fetal cerebral arteries pressurized in vitro. This dilation was abolished by the mixture of AM251 and AM630, which block cannabinoid receptors 1 and 2, respectively. In the presence of AM251, the cannabinoid receptor agonist AEA evoked a higher, concentration-dependent dilation of cerebral arteries from alcohol-exposed fetuses. The difference in AEA-induced cerebral artery dilation vanished in the presence of AM630. CB1 and CB2 receptor mRNA and protein levels were similar in cerebral arteries from alcohol-exposed and control-exposed fetuses. In summary, alcohol exposure dilates fetal cerebral arteries via endocannabinoid receptors and results in an increased function of CB2.
Collapse
|
36
|
Han D, Li X, Fan WS, Chen JW, Gou TT, Su T, Fan MM, Xu MQ, Wang YB, Ma S, Qiu Y, Cao F. Activation of cannabinoid receptor type II by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation. Oncotarget 2017; 8:64853-64866. [PMID: 29029396 PMCID: PMC5630296 DOI: 10.18632/oncotarget.17614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/21/2017] [Indexed: 12/16/2022] Open
Abstract
The poor survival of cells in ischemic sites diminishes the therapeutic efficacy of stem cell therapy. Previously we and others have reported that Cannabinoid receptor type II (CB2) is protective during heart ischemic injury for its anti-oxidative activity. However, whether CB2 activation could improve the survival and therapeutic efficacy of stem cells in ischemic myocardium and the underlying mechanisms remain elusive. Here, we showed evidence that CB2 agonist AM1241 treatment could improve the functional survival of adipose-derived mesenchymal stem cells (AD-MSCs) in vitro as well as in vivo. Moreover, AD-MSCs adjuvant with AM1241 improved cardiac function, and inhibited cardiac oxidative stress, apoptosis and fibrosis. To unveil possible mechanisms, AD-MSCs were exposed to hydrogen peroxide/serum deprivation to simulate the ischemic environment in myocardium. Results delineated that AM1241 blocked the apoptosis, oxidative damage and promoted the paracrine effects of AD-MSCs. Mechanistically, AM1241 activated signal transducers and activators of transcription 3 (Stat3) through the phosphorylation of Akt and ERK1/2. Moreover, the administration of AM630, LY294002, U0126 and AG490 (inhibitors for CB2, Akt, ERK1/2 and Stat3, respectively) could abolish the beneficial actions of AM1241. Our result support the promise of CB2 activation as an effective strategy to optimize stem cell-based therapy possibly through Stat3 activation.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen-Si Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiang-Wei Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tian-Tian Gou
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Miao-Miao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Meng-Qi Xu
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ya-Bin Wang
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ya Qiu
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
37
|
Hillger JM, le Roy B, Wang Z, Mulder-Krieger T, Boomsma DI, Slagboom PE, Danen EH, IJzerman AP, Heitman LH. Phenotypic screening of cannabinoid receptor 2 ligands shows different sensitivity to genotype. Biochem Pharmacol 2017; 130:60-70. [DOI: 10.1016/j.bcp.2017.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
|
38
|
Abstract
Cannabis sativa has long been used for medicinal purposes. To improve safety and efficacy, compounds from C. sativa were purified or synthesized and named under an umbrella group as cannabinoids. Currently, several cannabinoids may be prescribed in Canada for a variety of indications such as nausea and pain. More recently, an increasing number of reports suggest other salutary effects associated with endogenous cannabinoid signaling including cardioprotection. The therapeutic potential of cannabinoids is therefore extended; however, evidence is limited and mechanisms remain unclear. In addition, the use of cannabinoids clinically has been hindered due to pronounced psychoactive side effects. This review provides an overview on the endocannabinoid system, including known physiological roles, and conditions in which cannabinoid receptor signaling has been implicated.
Collapse
Affiliation(s)
- Yan Lu
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Hope D Anderson
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.,c Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
39
|
Varga ZV, Matyas C, Erdelyi K, Cinar R, Nieri D, Chicca A, Nemeth BT, Paloczi J, Lajtos T, Corey L, Hasko G, Gao B, Kunos G, Gertsch J, Pacher P. β-Caryophyllene protects against alcoholic steatohepatitis by attenuating inflammation and metabolic dysregulation in mice. Br J Pharmacol 2017; 175:320-334. [PMID: 28107775 DOI: 10.1111/bph.13722] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS β-Caryophyllene (BCP) is a plant-derived FDA approved food additive with anti-inflammatory properties. Some of its beneficial effects in vivo are reported to involve activation of cannabinoid CB2 receptors that are predominantly expressed in immune cells. Here, we evaluated the translational potential of BCP using a well-established model of chronic and binge alcohol-induced liver injury. METHODS In this study, we investigated the effects of BCP on liver injury induced by chronic plus binge alcohol feeding in mice in vivo by using biochemical assays, real-time PCR and histology analyses. Serum and hepatic BCP levels were also determined by GC/MS. RESULTS Chronic treatment with BCP alleviated the chronic and binge alcohol-induced liver injury and inflammation by attenuating the pro-inflammatory phenotypic `M1` switch of Kupffer cells and by decreasing the expression of vascular adhesion molecules intercellular adhesion molecule 1, E-Selectin and P-Selectin, as well as the neutrophil infiltration. It also beneficially influenced hepatic metabolic dysregulation (steatosis, protein hyperacetylation and PPAR-α signalling). These protective effects of BCP against alcohol-induced liver injury were attenuated in CB2 receptor knockout mice, indicating that the beneficial effects of this natural product in liver injury involve activation of these receptors. Following acute or chronic administration, BCP was detectable both in the serum and liver tissue homogenates but not in the brain. CONCLUSIONS Given the safety of BCP in humans, this food additive has a high translational potential in treating or preventing hepatic injury associated with oxidative stress, inflammation and steatosis. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Katalin Erdelyi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Daniela Nieri
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Balazs Tamas Nemeth
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Tamas Lajtos
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Lukas Corey
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Gyorgy Hasko
- Departments of Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| |
Collapse
|
40
|
Lee Y, Jo J, Chung HY, Pothoulakis C, Im E. Endocannabinoids in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2016; 311:G655-G666. [PMID: 27538961 DOI: 10.1152/ajpgi.00294.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/13/2016] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system mainly consists of endogenously produced cannabinoids (endocannabinoids) and two G protein-coupled receptors (GPCRs), cannabinoid receptors 1 and 2 (CB1 and CB2). This system also includes enzymes responsible for the synthesis and degradation of endocannabinoids and molecules required for the uptake and transport of endocannabinoids. In addition, endocannabinoid-related lipid mediators and other putative endocannabinoid receptors, such as transient receptor potential channels and other GPCRs, have been identified. Accumulating evidence indicates that the endocannabinoid system is a key modulator of gastrointestinal physiology, influencing satiety, emesis, immune function, mucosal integrity, motility, secretion, and visceral sensation. In light of therapeutic benefits of herbal and synthetic cannabinoids, the vast potential of the endocannabinoid system for the treatment of gastrointestinal diseases has been demonstrated. This review focuses on the role of the endocannabinoid system in gut homeostasis and in the pathogenesis of intestinal disorders associated with intestinal motility, inflammation, and cancer. Finally, links between gut microorganisms and the endocannabinoid system are briefly discussed.
Collapse
Affiliation(s)
- Yunna Lee
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Jeongbin Jo
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea; and
| |
Collapse
|
41
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
42
|
N-Oleoylethanolamine Reduces Inflammatory Cytokines and Adhesion Molecules in TNF-α-induced Human Umbilical Vein Endothelial Cells by Activating CB2 and PPAR-α. J Cardiovasc Pharmacol 2016; 68:280-291. [DOI: 10.1097/fjc.0000000000000413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Selective activation of CB2 receptor improves efferocytosis in cultured macrophages. Life Sci 2016; 161:10-8. [DOI: 10.1016/j.lfs.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023]
|
44
|
Dore A, Asproni B, Scampuddu A, Gessi S, Murineddu G, Cichero E, Fossa P, Merighi S, Bencivenni S, Pinna GA. Synthesis, molecular modeling and SAR study of novel pyrazolo[5,1-f][1,6]naphthyridines as CB 2 receptor antagonists/inverse agonists. Bioorg Med Chem 2016; 24:5291-5301. [PMID: 27624523 DOI: 10.1016/j.bmc.2016.08.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/05/2016] [Accepted: 08/27/2016] [Indexed: 01/03/2023]
Abstract
Pyrazolo[5,1-f][1,6]naphthyridine-carboxamide derivatives were synthesized and evaluated for the affinity at CB1 and CB2 receptors. Based on the AgOTf and proline-cocatalyzed multicomponent methodology, the ethyl 5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (12) and ethyl 5-(2,4-dichlorophenyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (13) intermediates were synthesized from the appropriate o-alkynylaldehydes, p-toluenesulfonyl hydrazide and ethyl pyruvate. Most of the novel compounds feature a p-tolyl (8a-i) or a 2,4-dichlorophenyl (8j) motif at the C5-position of the tricyclic pyrazolo[5,1-f][1,6]naphthyridine scaffold. Structural variation on the carboxamide moiety at the C2-position includes basic monocyclic, terpenoid and adamantine-based amines. Among these derivatives, compound 8h (N-adamant-1-yl-5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxamide) exhibited the highest CB2 receptor affinity (Ki=33nM) and a high degree of selectivity (KiCB1/KiCB2=173:1), whereas a similar trend in the near nM range was seen for the bornyl analogue (compound 8f, Ki=53nM) and the myrtanyl derivative 8j (Ki=67nM). Effects of 8h, 8f and 8j on forskolin-stimulated cAMP levels were determined, showing antagonist/inverse agonist properties for such compounds. Docking studies conducted for these derivatives and the reference antagonist/inverse agonist compound 4 (SR144528) disclosed the specific pattern of interactions probably related to the pyrazolo[5,1-f][1,6]naphthyridine scaffold as CB2 inverse agonists.
Collapse
Affiliation(s)
- Antonio Dore
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| | - Battistina Asproni
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy.
| | - Alessia Scampuddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| | - Stefania Gessi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.
| | - Gabriele Murineddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV n. 3, 16132 Genova, Italy
| | - Paola Fossa
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV n. 3, 16132 Genova, Italy
| | - Stefania Merighi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Serena Bencivenni
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Gérard A Pinna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| |
Collapse
|
45
|
Schmitt D, Levy R, Carroll B. Toxicological Evaluation of β-Caryophyllene Oil: Subchronic Toxicity in Rats. Int J Toxicol 2016; 35:558-67. [PMID: 27358239 DOI: 10.1177/1091581816655303] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In a subchronic toxicity study, administration of β-caryophyllene (BCP) oil by oral gavage to Wistar rats at dosages of 0, 150, 450, or 700 mg/kg/d for 90 days, including a 21-day recovery period, did not produce any significant toxicologic manifestations. The study design also included a 28-day interim sacrifice in the control and high-dose groups. The BCP oil test article was well tolerated as evidenced by the absence of major treatment-related changes in the general condition and appearance of the rats, neurobehavioral end points, growth, feed and water intake, ophthalmoscopic examinations, routine hematology and clinical chemistry parameters, urinalysis, and necropsy findings. The no observed adverse effect level was the highest dosage level administered of 700 mg/kg body weight/d for both male and female rats. The study was conducted as part of an investigation to examine the safety of BCP oil for its proposed use in medical food products.
Collapse
Affiliation(s)
- D Schmitt
- ToxStrategies, Inc, Naperville, IL, USA
| | - R Levy
- Primus Pharmaceuticals, Inc, Scottsdale, AZ, USA
| | - B Carroll
- Primus Pharmaceuticals, Inc, Scottsdale, AZ, USA
| |
Collapse
|
46
|
Fede C, Albertin G, Petrelli L, Sfriso MM, Biz C, De Caro R, Stecco C. Expression of the endocannabinoid receptors in human fascial tissue. Eur J Histochem 2016; 60:2643. [PMID: 27349320 PMCID: PMC4933831 DOI: 10.4081/ejh.2016.2643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022] Open
Abstract
Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation.
Collapse
|
47
|
Liu J, Zhang L, Ren Y, Gao Y, Kang L, Lu S. Matrine inhibits the expression of adhesion molecules in activated vascular smooth muscle cells. Mol Med Rep 2016; 13:2313-9. [PMID: 26783147 DOI: 10.3892/mmr.2016.4767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 12/07/2015] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease associated with increased expression of adhesion molecules in vascular smooth muscle cells (VSMCs). Matrine is a main active ingredient of Sophora flavescens roots, which are used to treat inflammatory diseases. However, the effects of matrine on the expression of adhesion molecules in VSMCs have largely remained elusive. Therefore, the present study investigated the effects of matrine on the expression of adhesion molecules in tumor necrosis factor (TNF)‑α‑stimulated human aortic smooth muscle cells (HASMCs). The results showed that matrine inhibited the expression of vascular cell adhesion molecule‑1 (VCAM‑1) and intercellular adhesion molecule‑1 (ICAM‑1) in TNF‑α‑stimulated HASMCs. Matrine markedly inhibited the TNF‑α‑induced expression of nuclear factor (NF)‑κB p65 and prevented the TNF‑α‑caused degradation of inhibitor of NF‑κB; it also inhibited TNF‑α‑induced activation of mitogen‑activated protein kinases (MAPKs). Furthermore, matrine inhibited the production of intracellular reactive oxygen species (ROS) in TNF‑α‑stimulated HASMCs. In conclusion, the results of the present study demonstrated that matrine inhibited the expression of VCAM‑1 and ICAM‑1 in TNF‑α‑stimulated HASMCs via the suppression of ROS production as well as NF‑κB and MAPK pathway activation. Therefore, matrine may have a potential therapeutic use for preventing the advancement of atherosclerotic lesions.
Collapse
Affiliation(s)
- Jun Liu
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Lihua Zhang
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Yingang Ren
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Yanli Gao
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Li Kang
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Shaoping Lu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| |
Collapse
|
48
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
49
|
Abstract
The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. In hypertension, there is evidence for changes in the expression of CB(1), and CB(1) antagonism reduces blood pressure in obese hypertensive and diabetic patients. The endocannabinoid system is also upregulated in cardiac pathologies. This is likely to be cardioprotective, via CB(2) and CB(1) (lesser extent). In the vasculature, endocannabinoids cause vasorelaxation through activation of multiple target sites, inhibition of calcium channels, activation of potassium channels, NO production and the release of vasoactive substances. Changes in the expression or function of any of these pathways alter the vascular effect of endocannabinoids. Endocannabinoids have positive (CB(2)) and negative effects (CB(1)) on the progression of atherosclerosis. However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.
Collapse
Affiliation(s)
- Saoirse Elizabeth O'Sullivan
- Faculty of Medicine and Health Sciences, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Room 4107, Uttoxeter Road, Derby, DE22 3DT, UK.
| |
Collapse
|
50
|
Zoja C, Locatelli M, Corna D, Villa S, Rottoli D, Nava V, Verde R, Piscitelli F, Di Marzo V, Fingerle J, Adam JM, Rothenhaeusler B, Ottaviani G, Bénardeau A, Abbate M, Remuzzi G, Benigni A. Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy. Nephron Clin Pract 2015; 132:59-69. [DOI: 10.1159/000442679] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/07/2015] [Indexed: 11/19/2022] Open
|