1
|
Mahieu L, González-González A, Rubio-Meléndez ME, Moya-Hernández M, Francis F, Ramírez CC. An Aphid Pest Superclone Benefits From a Facultative Bacterial Endosymbiont in a Host-Dependent Manner, Leading to Reproductive and Proteomic Changes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e22154. [PMID: 39397367 DOI: 10.1002/arch.22154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024]
Abstract
The English grain aphid, Sitobion avenae, is a significant agricultural pest affecting wheat, barley, and oats. In Chile, the most prevalent and persistent clone (superclone) of S. avenae harbors the facultative endosymbiont bacterium Regiella insecticola. To determine the role of this bacterium in the reproductive success of this superclone, the presence of R. insecticola was manipulated to assess its impact on (1) the reproductive performance of this clone on two host plant species (wheat and barley), (2) the production of winged morphs, (3) changes in the insects' proteomic profiles, and (4) the root/shoot ratio of plant. It was found that the reproductive performance of this S. avenae superclone varied across host plants, depending on the presence of the facultative bacterial endosymbiont. Aphids infected with R. insecticola showed higher reproductive success on wheat, while the opposite effect was observed on barley. Aphid biomass was greater when infected with R. insecticola, particularly on barley. Additionally, aphids harboring R. insecticola exhibited a higher proportion of winged individuals on both host plants. Protein regulation in aphids on wheat was lower compared to those on barley. A higher root/shoot biomass ratio was observed in wheat plants compared to barley when infested by R. insecticola-infected aphid. Thus, R. insecticola significantly influences the reproductive performance and proteomic profile of a S. avenae superclone, with these effects shaped by the host plant. This suggests that the interaction between the host plant and the facultative endosymbiont contributes to the ecological success of this superclone.
Collapse
Affiliation(s)
- Leandro Mahieu
- Gembloux Agro-Bio Tech-Université de Liège, Gembloux, Belgium
| | - Angélica González-González
- Centre for Molecular and Functional Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Eugenia Rubio-Meléndez
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Maule, Chile
| | - Mario Moya-Hernández
- Centre for Molecular and Functional Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - Claudio C Ramírez
- Centre for Molecular and Functional Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
3
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
4
|
D’Alessio S, Buckley KM, Kraev I, Hayes P, Lange S. Extracellular Vesicle Signatures and Post-Translational Protein Deimination in Purple Sea Urchin ( Strongylocentrotus purpuratus) Coelomic Fluid-Novel Insights into Echinodermata Biology. BIOLOGY 2021; 10:866. [PMID: 34571743 PMCID: PMC8464700 DOI: 10.3390/biology10090866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
The purple sea urchin (Strongylocentrotus purpuratus) is a marine invertebrate of the class Echinoidea that serves as an important research model for developmental biology, cell biology, and immunology, as well as for understanding regenerative responses and ageing. Peptidylarginine deiminases (PADs) are calcium-dependent enzymes that mediate post-translational protein deimination/citrullination. These alterations affect protein function and may also play roles in protein moonlighting. Extracellular vesicles (EVs) are membrane-bound vesicles that are released from cells as a means of cellular communication. Their cargo includes a range of protein and RNA molecules. EVs can be isolated from many body fluids and are therefore used as biomarkers in physiological and pathological responses. This study assessed EVs present in the coelomic fluid of the purple sea urchin (Strongylocentrotus purpuratus), and identified both total protein cargo as well as the deiminated protein cargo. Deiminated proteins in coelomic fluid EVs were compared with the total deiminated proteins identified in coelomic fluid to assess putative differences in deiminated protein targets. Functional protein network analysis for deiminated proteins revealed pathways for immune, metabolic, and gene regulatory functions within both total coelomic fluid and EVs. Key KEGG and GO pathways for total EV protein cargo furthermore showed some overlap with deimination-enriched pathways. The findings presented in this study add to current understanding of how post-translational deimination may shape immunity across the phylogeny tree, including possibly via PAD activity from microbiota symbionts. Furthermore, this study provides a platform for research on EVs as biomarkers in sea urchin models.
Collapse
Affiliation(s)
- Stefania D’Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (S.D.); (P.H.)
| | | | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (S.D.); (P.H.)
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (S.D.); (P.H.)
- UCL EGA Institute for Women’s Health, Maternal and Fetal Medicine, London WC1E 6AU, UK
| |
Collapse
|
5
|
Sun C, Liu R, Xia M, Hou Y, Wang X, Lu JJ, Liu B, Chen X. Nannocystin Ax, a natural elongation factor 1α inhibitor from Nannocystis sp., suppresses epithelial-mesenchymal transition, adhesion and migration in lung cancer cells. Toxicol Appl Pharmacol 2021; 420:115535. [PMID: 33848516 DOI: 10.1016/j.taap.2021.115535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT), the epithelial cells transdifferentiation into the mesenchymal cells, has been involved in cancer metastasis. Nannocystin ax (NAN) is a cyclodepsipeptide initially isolated from Myxobacterial genus, Nannocystis sp. with anticancer activities. This study was designed to explore the effect of NAN on TGF-β1-induced EMT in lung cancer cells. The morphological alteration was observed with a microscope. Western blotting and immunofluorescence assays were used to detect the protein expression and the localization. The adhesion and migration were evaluated by adhesion assay and wound healing assay. The mRNA expression of TGF-β receptor type I (TβRI) was determined by real-time PCR. NAN significantly restrained TGF-β1-induced EMT morphological changes, the protein expression of E-cadherin, N-cadherin, and Vimentin, etc. TGF-β1 activated phosphorylation and nuclear translocation of Smad2/3 were inhibited by NAN. Furthermore, NAN suppressed adhesion and migration triggered by TGF-β1. In addition, NAN significantly down-regulated TβRI on the transcriptional level directly. In summary, these results showed that NAN restrained TGF-β1-induced epithelial-mesenchymal transition, migration, and adhesion in human lung cancer cells. The underlying mechanism involved the inhibition of Smad2/3 and the TβRI signaling pathway. This study reveals the new anticancer effect and mechanism of NAN.
Collapse
Affiliation(s)
- Chong Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Mengwei Xia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
6
|
Engineered Ripening-Specific Accumulation of Polyamines Spermidine and Spermine in Tomato Fruit Upregulates Clustered C/D Box snoRNA Gene Transcripts in Concert with Ribosomal RNA Biogenesis in the Red Ripe Fruit. PLANTS 2020; 9:plants9121710. [PMID: 33291784 PMCID: PMC7762058 DOI: 10.3390/plants9121710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Ripening of tomato fruit leads, in general, to a sequential decrease in the endogenous levels of polyamines spermidine (SPD) and spermine (SPM), while the trend for the diamine putrescine (PUT) levels is generally an initial decrease, followed by a substantial increase, and thereafter reaching high levels at the red ripe fruit stage. However, genetic engineering fruit-specific expression of heterologous yeast S-adenosylmethionine (SAM) decarboxylase in tomato has been found to result in a high accumulation of SPD and SPM at the cost of PUT. This system enabled a genetic approach to determine the impact of increased endogenous levels of biogenic amines SPD and SPM in tomato (579HO transgenic line) and on the biogenesis, transcription, processing, and stability of ribosomal RNA (rRNA) genes in tomato fruit as compared with the non-transgenic 556AZ line. One major biogenetic process regulating transcription and processing of pre-mRNA complexes in the nucleus involves small nucleolar RNAs (snoRNAs). To determine the effect of high levels of SPD and SPM on these latter processes, we cloned, sequenced, and identified a box C/D snoRNA cluster in tomato, namely, SlSnoR12, SlU24a, Slz44a, and Slz132b. Similar to this snoRNA cluster housed on chromosome (Chr.) 6, two other noncoding C/D box genes, SlsnoR12.2 and SlU24b, with a 94% identity to those on Chr. 6 were found located on Chr. 3. We also found that other snoRNAs divisible into snoRNA subclusters A and B, separated by a uridine rich spacer, were decorated with other C/D box snoRNAs, namely, J10.3, Z131a/b, J10.1, and Z44a, followed by z132a, J11.3, z132b, U24, Z20, U24a, and J11. Several of these, for example, SlZ44a, Slz132b, and SlU24a share conserved sequences similar to those in Arabidopsis and rice. RNAseq analysis of high SPD/SPM transgenic tomatoes (579HO line) showed significant enrichment of RNA polymerases, ribosomal, and translational protein genes at the breaker+8 ripening stage as compared with the 556AZ control. Thus, these results indicate that SPD/SPM regulates snoRNA and rRNA expression directly or indirectly, in turn, affecting protein synthesis, metabolism, and other cellular activities in a positive manner.
Collapse
|
7
|
Bowden TJ, Kraev I, Lange S. Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca-The Blue Mussel ( Mytilus edulis), Soft Shell Clam ( Mya arenaria), Eastern Oyster ( Crassostrea virginica) and Atlantic Jacknife Clam ( Ensis leei). BIOLOGY 2020; 9:biology9120416. [PMID: 33255637 PMCID: PMC7760292 DOI: 10.3390/biology9120416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Simple Summary Oysters and clams form an important component of the food chain and food security and are of considerable commercial value worldwide. They are affected by pollution and climate change, as well as a range of infections, some of which are opportunistic. For aquaculture purposes they are furthermore of great commercial value and changes in their immune responses can also serve as indicators of changes in ocean environments. Therefore, studies into understanding new factors in their immune systems may aid new biomarker discovery and are of considerable value. This study assessed new biomarkers relating to changes in protein function in four economically important marine molluscs, the blue mussel, soft shell clam, Eastern oyster, and Atlantic jacknife clam. These findings indicate novel regulatory mechanisms of important metabolic and immunology related pathways in these mollusks. The findings provide new understanding to how these pathways function in diverse ways in different animal species as well as aiding new biomarker discovery for Mollusca aquaculture. Abstract Oysters and clams are important for food security and of commercial value worldwide. They are affected by anthropogenic changes and opportunistic pathogens and can be indicators of changes in ocean environments. Therefore, studies into biomarker discovery are of considerable value. This study aimed at assessing extracellular vesicle (EV) signatures and post-translational protein deimination profiles of hemolymph from four commercially valuable Mollusca species, the blue mussel (Mytilus edulis), soft shell clam (Mya arenaria), Eastern oyster (Crassostrea virginica), and Atlantic jacknife clam (Ensis leei). EVs form part of cellular communication by transporting protein and genetic cargo and play roles in immunity and host–pathogen interactions. Protein deimination is a post-translational modification caused by peptidylarginine deiminases (PADs), and can facilitate protein moonlighting in health and disease. The current study identified hemolymph-EV profiles in the four Mollusca species, revealing some species differences. Deiminated protein candidates differed in hemolymph between the species, with some common targets between all four species (e.g., histone H3 and H4, actin, and GAPDH), while other hits were species-specific; in blue mussel these included heavy metal binding protein, heat shock proteins 60 and 90, 2-phospho-D-glycerate hydrolyase, GTP cyclohydrolase feedback regulatory protein, sodium/potassium-transporting ATPase, and fibrinogen domain containing protein. In soft shell clam specific deimination hits included dynein, MCM3-associated protein, and SCRN. In Eastern oyster specific deimination hits included muscle LIM protein, beta-1,3-glucan-binding protein, myosin heavy chain, thaumatin-like protein, vWFA domain-containing protein, BTB domain-containing protein, amylase, and beta-catenin. Deiminated proteins specific to Atlantic jackknife clam included nacre c1q domain-containing protein and PDZ domain-containing protein In addition, some proteins were common as deiminated targets between two or three of the Bivalvia species under study (e.g., EP protein, C1q domain containing protein, histone H2B, tubulin, elongation factor 1-alpha, dominin, extracellular superoxide dismutase). Protein interaction network analysis for the deiminated protein hits revealed major pathways relevant for immunity and metabolism, providing novel insights into post-translational regulation via deimination. The study contributes to EV characterization in diverse taxa and understanding of roles for PAD-mediated regulation of immune and metabolic pathways throughout phylogeny.
Collapse
Affiliation(s)
- Timothy J. Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME 04469-5735, USA;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000
| |
Collapse
|
8
|
Bowden TJ, Kraev I, Lange S. Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:79-102. [PMID: 32731012 DOI: 10.1016/j.fsi.2020.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The American lobster (Homarus americanus) is a commercially important crustacean with an unusual long life span up to 100 years and a comparative animal model of longevity. Therefore, research into its immune system and physiology is of considerable importance both for industry and comparative immunology studies. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family that catalyses post-translational protein deimination via the conversion of arginine to citrulline. This can lead to structural and functional protein changes, sometimes contributing to protein moonlighting, in health and disease. PADs also regulate the cellular release of extracellular vesicles (EVs), which is an important part of cellular communication, both in normal physiology and in immune responses. Hitherto, studies on EVs in Crustacea are limited and neither PADs nor associated protein deimination have been studied in a Crustacean species. The current study assessed EV and deimination signatures in haemolymph of the American lobster. Lobster EVs were found to be a poly-dispersed population in the 10-500 nm size range, with the majority of smaller EVs, which fell within 22-115 nm. In lobster haemolymph, 9 key immune and metabolic proteins were identified to be post-translationally deiminated, while further 41 deiminated protein hits were identified when searching against a Crustacean database. KEGG (Kyoto encyclopedia of genes and genomes) and GO (gene ontology) enrichment analysis of these deiminated proteins revealed KEGG and GO pathways relating to a number of immune, including anti-pathogenic (viral, bacterial, fungal) and host-pathogen interactions, as well as metabolic pathways, regulation of vesicle and exosome release, mitochondrial function, ATP generation, gene regulation, telomerase homeostasis and developmental processes. The characterisation of EVs, and post-translational deimination signatures, reported in lobster in the current study, and the first time in Crustacea, provides insights into protein moonlighting functions of both species-specific and phylogenetically conserved proteins and EV-mediated communication in this long-lived crustacean. The current study furthermore lays foundation for novel biomarker discovery for lobster aquaculture.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science,Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
9
|
Zhang X, Antonelo D, Hendrix J, To V, Campbell Y, Von Staden M, Li S, Suman SP, Zhai W, Chen J, Zhu H, Schilling W. Proteomic Characterization of Normal and Woody Breast Meat from Broilers of Five Genetic Strains. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.8759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Woody breast (WB) is an emergent broiler myopathy that is macroscopically characterized by hardened areas of the Pectoralis major muscle. Five genetic strains (strains 1–5) of mixed-sex broilers were fed either a control or an amino acid (AA)-reduced diet (20% reduction of digestible lysine, total sulfur AAs, and threonine) for 8 wk. Differences between whole-muscle proteome profiles of normal breast (NB; n = 6 gels) and WB tissue (n = 6 gels) were characterized for (1) broiler strains 1–5 that were fed with a control diet and collected at 0 min; (2) strain 5 (control diet) that were collected at 15 min, 4 h, and 24 h; (3) strain 5 (0 min) that were fed with a control and an AA-reduced diet. Birds that yielded WB were heavier and had a greater pH at death (pH0min) than normal birds. Results indicated that 21 proteins were more abundant (P < 0.05) and 3 proteins were less abundant (P < 0.05) in WB compared with NB. The differentially abundant proteins in each comparison were consistently upregulated or downregulated in WB tissue although the different protein profiles were noticed for each comparison. Strains 2 and 5 had more protein profile differences between WB and NB meat than strains 1, 3, and 4, which potentially indicates a stronger genetic component for strains 2 and 5 with respect to WB formation. The proteins that were more abundant in WB compared to NB are involved in carbohydrate metabolism, oxidative stress, cytoskeleton structure, and transport and signaling. Ingenuity Pathway Analysis indicated that regulated pathways in WB were mainly related to carbohydrate metabolism, cellular repair, cellular organization and maintenance, and cell death and survival. The results support the potential causes of WB myopathy, including the presence of hypoxia, oxidative stress, increased apoptosis, misfolded proteins, and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wes Schilling
- Mississippi State University Department of Food Science, Nutrition and Health Promotion
| |
Collapse
|
10
|
Bicho RC, Roelofs D, Mariën J, Scott-Fordsmand JJ, Amorim MJB. Epigenetic effects of (nano)materials in environmental species - Cu case study in Enchytraeus crypticus. ENVIRONMENT INTERNATIONAL 2020; 136:105447. [PMID: 31924578 DOI: 10.1016/j.envint.2019.105447] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Chemical stressors can induce epigenomic changes, i.e., changes that are transferred to the next generation, even when the stressor is removed. Literature on chemical induced epigenetic effects in environmental species is scarce. We here provide the first results on epigenetic effects caused by nanomaterials with an environmental OECD standard soil model species Enchytraeus crypticus species. We assessed the epigenetic potential in terms of global DNA methylation, gene-specific methylation via bisulfite sequencing and MS-HRM (Methylation Sensitive - High Resolution Melting), and gene expression qPCR for genes involved in DNA methylation, histone modifications, non-coding RNA and stress response mechanisms). We have exposed E. crypticus in a multigenerational (MG) test design to Cu (copper oxide nanomaterials (CuO NMs) and copper salt (CuCl2)). To link possible epigenetic effects to population changes, we used exposure concentrations (ECx) that caused a 10% and 50% reduction in the reproductive output (10% and 50% are the standards for regulatory Risk Assessment), the organisms were exposed for five consecutive generations (F1-F5) plus two generations after transferring to clean media (F5-F7), 7 generations in a total of 224 days. Results showed that MG exposure to Cu increased global DNA methylation and corresponded with phenotypic effects (reproduction). Gene expression analyses showed changes in the epigenetic, stress and detoxification gene targets, depending on the generation and Cu form, also occurring in post-exposure generations, hence indicative of transgenerational effects. There were in general clear differences between organisms exposed to different Cu-forms, hence indicate nanoparticulate-specific effects.
Collapse
Affiliation(s)
- Rita C Bicho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Janine Mariën
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600 Silkeborg, Denmark
| | - Mónica J B Amorim
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
Jia Z, Zhao C, Wang M, Zhao X, Zhang W, Han T, Xia Q, Han Z, Lin R, Li X. Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome. Biomed Pharmacother 2020; 121:109558. [DOI: 10.1016/j.biopha.2019.109558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
|
12
|
Magnadóttir B, Kraev I, Guðmundsdóttir S, Dodds AW, Lange S. Extracellular vesicles from cod (Gadus morhua L.) mucus contain innate immune factors and deiminated protein cargo. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103397. [PMID: 31108150 DOI: 10.1016/j.dci.2019.103397] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Extracellular vesicles are released from cells and participate in cell communication via transfer of protein and genetic cargo derived from the parent cells. EVs play roles in normal physiology and immunity and are also linked to various pathological processes. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes with physiological and pathophysiological roles. PADs cause post-translational protein deimination, resulting in structural and, in some cases, functional changes in target proteins and are also linked to EV biogenesis. This study describes for the first time EVs isolated from cod mucosa. Mucosal EVs were characterised by electron microscopy, nanoparticle tracking analysis and EV-specific surface markers. Cod mucosal EVs were found to carry PAD, complement component C3 and C-reactive proteins. C3 was found to be deiminated in both whole mucus and mucosal EVs, with some differences, and further 6 deiminated immune and cytoskeletal proteins were identified in EVs by LC-MS/MS analysis. As mucosal surfaces of teleost fish reflect human mucosal surfaces, these findings may provide useful insights into roles of EVs in mucosal immunity throughout phylogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, MK7 6AA, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
13
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
14
|
Joseph JT, Poolakkalody NJ, Shah JM. Screening internal controls for expression analyses involving numerous treatments by combining statistical methods with reference gene selection tools. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:289-301. [PMID: 30804650 PMCID: PMC6352529 DOI: 10.1007/s12298-018-0608-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
Real-time PCR is always the method of choice for expression analyses involving comparison of a large number of treatments. It is also the favored method for final confirmation of transcript levels followed by high throughput methods such as RNA sequencing and microarray. Our analysis comprised 16 different permutation and combinations of treatments involving four different Agrobacterium strains and three time intervals in the model plant Arabidopsis thaliana. The routinely used reference genes for biotic stress analyses in plants showed variations in expression across some of our treatments. In this report, we describe how we narrowed down to the best reference gene out of 17 candidate genes. Though we initiated our reference gene selection process using common tools such as geNorm, Normfinder and BestKeeper, we faced situations where these software-selected candidate genes did not completely satisfy all the criteria of a stable reference gene. With our novel approach of combining simple statistical methods such as t test, ANOVA and post hoc analyses, along with the routine software-based analyses, we could perform precise evaluation and we identified two genes, UBQ10 and PPR as the best reference genes for normalizing mRNA levels in the context of 16 different conditions of Agrobacterium infection. Our study emphasizes the usefulness of applying statistical analyses along with the reference gene selection software for reference gene identification in experiments involving the comparison of a large number of treatments.
Collapse
Affiliation(s)
- Joyous T. Joseph
- Department of Plant Science, Central University of Kerala, Periye, Kasaragod, 671316 India
| | | | - Jasmine M. Shah
- Department of Plant Science, Central University of Kerala, Periye, Kasaragod, 671316 India
| |
Collapse
|
15
|
Xu X, Liu X, Yan Y, Wang W, Gebretsadik K, Qi X, Xu Q, Chen X. Comparative proteomic analysis of cucumber powdery mildew resistance between a single-segment substitution line and its recurrent parent. HORTICULTURE RESEARCH 2019; 6:115. [PMID: 31645969 PMCID: PMC6804742 DOI: 10.1038/s41438-019-0198-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/04/2019] [Accepted: 08/27/2019] [Indexed: 05/04/2023]
Abstract
Powdery mildew (PM) is considered a major cause of yield losses and reduced quality in cucumber worldwide, but the molecular basis of PM resistance remains poorly understood. A segment substitution line, namely, SSL508-28, was developed with dominant PM resistance in the genetic background of PM-susceptible cucumber inbred line D8. The substituted segment contains 860 genes. An iTRAQ-based comparative proteomic technology was used to map the proteomes of PM-inoculated and untreated (control) D8 and SSL508-28. The number of differentially regulated proteins (DRPs) in SSL508-28 was almost three times higher than that in D8. Fourteen DRPs were located in the substituted segment interval. Comparative gene expression analysis revealed that nodulin-related protein 1 (NRP1) may be a good candidate for PM resistance. Gene Ontology enrichment analysis showed that DRPs functioning in tetrapyrrole biosynthetic process, sulfur metabolic process and cell redox homeostasis were specifically enriched in the resistant line SSL508-28. DRPs categorized in the KEGG term photosynthesis increased in both lines upon PM infection, suggesting that the strategies used by cucumber may be different from those used by other crops to react to PM attacks at the initial stage. The measurement of hydrogen peroxide and superoxide anion production and net photosynthetic rate were consistent with the changes in protein abundance, suggesting that the proteomic results were reliable. There was a poor correlation between DRPs measured by iTRAQ and the corresponding gene expression changes measured by RNA-seq with the same experimental design. Taken together, these findings improve the understanding of the molecular mechanisms underlying the response of cucumber to PM infection.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Xueli Liu
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Yali Yan
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Wei Wang
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Kiros Gebretsadik
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| |
Collapse
|
16
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
17
|
Zhang W, Xiang M, Zheng C, Chen L, Ge J, Yan C, Liu X. [Eukaryotic translation elongation factor 1A1 positively regulates NOB1 expression to promote invasion and metastasis of hepatocellular carcinoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1195-1202. [PMID: 30377124 DOI: 10.3969/j.issn.1673-4254.2018.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the role of eukaryotic translation elongation factor 1A1 (eEF1A1) in regulating the invasion and metastasis of hepatocellular carcinoma (HCC) cells and the possible mechanism. METHODS qRT-PCR and Western blotting were used to detect the mRNA and protein expression of eEF1A1 and NOB1 in different HCC cell lines and normal liver cells. The invasion and migration abilities of HCC cells with eEF1A1 knockdown or overexpression were examined using Transwell chamber assay and RTCA assay, and the changes in NOB1 mRNA and protein expressions in the cells were detected. The effects of increasing NOB1 expression in HCCLM3-sheEF1A1 cells and decreasing NOB1 expression in eEF1A1-overexpressing MHCC97h cells on eEF1A1 expression and cell invasion and migration abilities were analyzed using Western blotting, Transwell chamber assay and RTCA assay. RESULTS The expressions of eEF1A1 and NOB1 were significantly increased in positive correlation in HCC cells as compared with normal hepatocytes. Knockdown of eEF1A1 significantly decreased the invasion and migration of HCC cells and reduced the mRNA and protein expression of NOB1 (P < 0.01). Overexpression of eEF1A1 significantly enhanced invasion and migration of HCC cells and increased NOB1 mRNA and protein expressions (P < 0.01). Increasing NOB1 expression in HCCLM3-sheEF1A1 cells led to the restoration of NOB1 expression and cell invasion and migration abilities (P < 0.01), whereas decreasing NOB1 in MHCC97h-eEF1A1 cells resulted in inhibition of NOB1 expression and cell invasion and migration (P < 0.01). CONCLUSIONS eEF1A1 positively regulates the expression of NOB1 to promote the invasion and migration of HCC cells in vitro.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Mingfeng Xiang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Chuqian Zheng
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Chen Yan
- Department of Rheumatology, 4Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiuxia Liu
- Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
18
|
Burglová K, Rylová G, Markos A, Prichystalova H, Soural M, Petracek M, Medvedikova M, Tejral G, Sopko B, Hradil P, Dzubak P, Hajduch M, Hlavac J. Identification of Eukaryotic Translation Elongation Factor 1-α 1 Gamendazole-Binding Site for Binding of 3-Hydroxy-4(1 H)-quinolinones as Novel Ligands with Anticancer Activity. J Med Chem 2018; 61:3027-3036. [PMID: 29498519 DOI: 10.1021/acs.jmedchem.8b00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we have identified the interaction site of the contraceptive drug gamendazole using computational modeling. The drug was previously described as a ligand for eukaryotic translation elongation factor 1-α 1 (eEF1A1) and found to be a potential target site for derivatives of 2-phenyl-3-hydroxy-4(1 H)-quinolinones (3-HQs), which exhibit anticancer activity. The interaction of this class of derivatives of 3-HQs with eEF1A1 inside cancer cells was confirmed via pull-down assay. We designed and synthesized a new family of 3-HQs and subsequently applied isothermal titration calorimetry to show that these compounds strongly bind to eEF1A1. Further, we found that some of these derivatives possess significant in vitro anticancer activity.
Collapse
Affiliation(s)
- Kristyna Burglová
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Gabriela Rylová
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Athanasios Markos
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Hana Prichystalova
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Miroslav Soural
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Marek Petracek
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Martina Medvedikova
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Gracian Tejral
- Department of Biophysics, Second Faculty of Medicine , Charles University , V Úvalu 84 , 150 06 Praha 5 , Czech Republic.,Department of Tissue Engineering , The Czech Academy of Sciences, Institute of Experimental Medicine , Vídeňská 1083 , 142 20 Praha 4 , Czech Republic.,University Center for Energy Efficient Buildings (UCEEB) , The Czech Technical University in Prague , Třinecká 1024 , 273 43 Bustehrad , Czech Republic
| | - Bruno Sopko
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine , Charles University and Motol University Hospital , V Úvalu 84 , 150 06 Praha 5 , Czech Republic.,Department of Tissue Engineering , The Czech Academy of Sciences, Institute of Experimental Medicine , Vídeňská 1083 , 142 20 Praha 4 , Czech Republic
| | - Pavel Hradil
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Jan Hlavac
- Department of Organic Chemistry, Faculty of Science , Palacký University , Tř. 17. listopadu 12 , 771 46 Olomouc , Czech Republic
| |
Collapse
|
19
|
Ahn CS, Kim JG, Shin MH, Lee YA, Kong Y. Comparison of Secretome Profile of Pathogenic and Non-Pathogenic Entamoeba histolytica. Proteomics 2018; 18:e1700341. [PMID: 29409117 DOI: 10.1002/pmic.201700341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/08/2018] [Indexed: 02/05/2023]
Abstract
The obligatory intracellular protozoan parasite Entamoeba histolytica causes amebic dysentery and liver abscess. E. histolytica adheres to the host tissues in a contact-dependent manner. E. histolytica excretory-secretory products (ESP) might play critical roles during invasion. We comparatively analyzed the secretome profile of E. histolytica pathogenic HM-1:IMSS and non-pathogenic Rahman strains. The two ESP revealed similar but distinct spotting patterns. In both ESP, alcohol dehydrogenase, enolase 1, and transketolase, which control classical carbohydrate metabolism and other moonlighting effects, constituted the most abundant fractions. We recognized differently secreted molecules. Secretion of cytoskeletal organization proteins (actin, actin binding protein, and EHI_068510), protein remodeling amino peptidase, and multifunctional elongation factor 1-α were increased in Rahman. Conversely, carbohydrate metabolizing enolase 1, alcohol dehydrogenase, transketolase, calponin, phosphoglucose mutase, malic enzyme and EHI_156420, xenobiotic scavenging superoxide dismutase and EHI_140740, and pyruvate:ferredoxin oxidoreductase and coronin (carbohydrate metabolism/detoxification) showed reduced secretion. Transcription levels of some genes involved in these processes also decreased. Changes of secretory behavior, especially decreased secretion of multifunctional carbohydrate metabolizing enzymes and detoxifying proteins that importantly participated in amoeba pathogenesis might reflect avirulent nature of Rahman strain in the host.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
20
|
Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One 2018; 13:e0191377. [PMID: 29342219 PMCID: PMC5771626 DOI: 10.1371/journal.pone.0191377] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic translation factors, especially initiation factors have garnered much attention with regards to their role in the onset and progression of different cancers. However, the expression levels and prognostic significance of translation elongation factors remain poorly explored in different cancers. In this study, we have investigated the mRNA transcript levels of seven translation elongation factors in different cancer types using Oncomine and TCGA databases. Furthermore, we have identified the prognostic significance of these factors using Kaplan-Meier Plotter and SurvExpress databases. We observed altered expression levels of all the elongation factors in different cancers. Higher expression of EEF1A2, EEF1B2, EEF1G, EEF1D, EEF1E1 and EEF2 was observed in most of the cancer types, whereas reverse trend was observed for EEF1A1. Overexpression of many factors predicted poor prognosis in breast (EEF1D, EEF1E1, EEF2) and lung cancer (EEF1A2, EEF1B2, EEF1G, EEF1E1). However, we didn’t see any common correlation of expression levels of elongation factors with survival outcomes across cancer types. Cancer subtype stratification showed association of survival outcomes and expression levels of elongation factors in specific sub-types of breast, lung and gastric cancer. Most interestingly, we observed a reciprocal relationship between the expression levels of the two EEF1A isoforms viz. EEF1A1 and EEF1A2, in most of the cancer types. Our results suggest that translation elongation factors can have a role in tumorigenesis and affect survival in cancer specific manner. Elongation factors have potential to serve as biomarkers and therapeutic drug targets, yet further study is required. Reciprocal relationship of differential expression between EEF1A isoforms observed in multiple cancer types indicates opposing roles in cancer and needs further investigation.
Collapse
Affiliation(s)
- Md. Khurshidul Hassan
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhimpur- Padanpur, Jatni, Khurda, Odisha, India
| | - Dinesh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhimpur- Padanpur, Jatni, Khurda, Odisha, India
| | - Monali Naik
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhimpur- Padanpur, Jatni, Khurda, Odisha, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhimpur- Padanpur, Jatni, Khurda, Odisha, India
- * E-mail:
| |
Collapse
|
21
|
Malecki J, Aileni VK, Ho AYY, Schwarz J, Moen A, Sørensen V, Nilges BS, Jakobsson ME, Leidel SA, Falnes PØ. The novel lysine specific methyltransferase METTL21B affects mRNA translation through inducible and dynamic methylation of Lys-165 in human eukaryotic elongation factor 1 alpha (eEF1A). Nucleic Acids Res 2017; 45:4370-4389. [PMID: 28108655 PMCID: PMC5416902 DOI: 10.1093/nar/gkx002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022] Open
Abstract
Lysine methylation is abundant on histone proteins, representing a dynamic regulator of chromatin state and gene activity, but is also frequent on many non-histone proteins, including eukaryotic elongation factor 1 alpha (eEF1A). However, the functional significance of eEF1A methylation remains obscure and it has remained unclear whether eEF1A methylation is dynamic and subject to active regulation. We here demonstrate, using a wide range of in vitro and in vivo approaches, that the previously uncharacterized human methyltransferase METTL21B specifically targets Lys-165 in eEF1A in an aminoacyl-tRNA- and GTP-dependent manner. Interestingly, METTL21B-mediated eEF1A methylation showed strong variation across different tissues and cell lines, and was induced by altering growth conditions or by treatment with certain ER-stress-inducing drugs, concomitant with an increase in METTL21B gene expression. Moreover, genetic ablation of METTL21B function in mammalian cells caused substantial alterations in mRNA translation, as measured by ribosomal profiling. A non-canonical function for eEF1A in organization of the cellular cytoskeleton has been reported, and interestingly, METTL21B accumulated in centrosomes, in addition to the expected cytosolic localization. In summary, the present study identifies METTL21B as the enzyme responsible for methylation of eEF1A on Lys-165 and shows that this modification is dynamic, inducible and likely of regulatory importance.
Collapse
Affiliation(s)
- Jedrzej Malecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Vinay Kumar Aileni
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Angela Y Y Ho
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Juliane Schwarz
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Vigdis Sørensen
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway
| | - Benedikt S Nilges
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Magnus E Jakobsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
22
|
Scaggiante B, Farra R, Dapas B, Baj G, Pozzato G, Grassi M, Zanconati F, Grassi G. Aptamer targeting of the elongation factor 1A impairs hepatocarcinoma cells viability and potentiates bortezomib and idarubicin effects. Int J Pharm 2016; 506:268-79. [PMID: 27094354 DOI: 10.1016/j.ijpharm.2016.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 02/05/2023]
Abstract
The high morbidity and mortality of hepatocellular carcinoma (HCC) is mostly due to the limited efficacy of the available therapeutic approaches. Here we explore the anti-HCC potential of an aptamer targeting the elongation factor 1A (eEF1A), a protein implicated in the promotion of HCC. As delivery methods, we have compared the effectiveness of cationic liposome and cholesterol-mediated approaches. A75 nucleotide long aptamer containing GT repetition (GT75) was tested in three HCC cell lines, HepG2, HuH7 and JHH6. When delivered by liposomes, GT75 was able to effectively reducing HCC cells viability in a dose and time dependent fashion. Particular sensitive were JHH6 where increased apoptosis with no effects on cell cycle were observed. GT75 effect was likely due to the interference with eEF1A activity as neither the mRNA nor the protein levels were significantly affected. Notably, cholesterol-mediated delivery of GT75 abrogated its efficacy due to cellular mis-localization as proven by fluorescence and confocal microscopic analysis. Finally, liposome-mediated delivery of GT75 improved the therapeutic index of the anticancer drugs bortezomib and idarubicin. In conclusion, liposome but not cholesterol-mediated delivery of GT75 resulted in an effective delivery of GT75, causing the impairment of the vitality of a panel of HCC derived cells.
Collapse
Affiliation(s)
| | - Rosella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | |
Collapse
|
23
|
Identification of proteins in susceptible and resistant Brassica oleracea responsive to Xanthomonas campestris pv. campestris infection. J Proteomics 2016; 143:278-285. [PMID: 26825537 DOI: 10.1016/j.jprot.2016.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/24/2015] [Accepted: 01/25/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Cruciferous plants are important edible vegetables widely consumed around the world, including cabbage, cauli-flower and broccoli. The main disease that affects crucifer plants is black rot, caused by Xanthomonas campestris pv. campestris (Xcc). In order to better understand this specific plant-pathogen interaction, proteins responsive to Xcc infection in resistant (União) and susceptible (Kenzan) Brassica oleracea cultivars were investigated by 2-DE followed by mass spectrometry. A total of 47 variable spots were identified and revealed that in the susceptible interaction there is a clear reduction in the abundance of proteins involved in energetic metabolism and defense. It was interesting to observe that in the resistant interaction, these proteins showed an opposite behavior. Based on our results, we conclude that resistance is correlated with the ability of the plant to keep sufficient photosynthesis metabolism activity to provide energy supplies necessary for an active defense. As a follow-up study, qRT-PCR analysis of selected genes was performed and revealed that most genes showed an up-regulation trend from 5 to 15days after inoculation (DAI), showing highest transcript levels at 15DAI. These results revealed the gradual accumulation of transcripts providing a more detailed view of the changes occurring during different stages of the plant-pathogen interaction. BIOLOGICAL SIGNIFICANCE In this study we have compared cultivars of Brassica oleracea (cabbage), susceptible and resistant to black rot, by using the classical 2-DE approach. We have found that resistance is correlated with the ability of the plant to keep sufficient photosynthesis metabolism activity to provide energy supplies necessary for an active defense.
Collapse
|
24
|
Ruiz P, Katsumiti A, Nieto JA, Bori J, Jimeno-Romero A, Reip P, Arostegui I, Orbea A, Cajaraville MP. Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2015; 111:107-20. [PMID: 26297043 DOI: 10.1016/j.marenvres.2015.07.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 05/21/2023]
Abstract
The aim of this work was to study short-term effects on antioxidant enzyme activities and long-term genotoxic and carcinogenic potential of CuO nanoparticles (NPs) in comparison to bulk CuO and ionic copper in mussels Mytilus galloprovincialis after 21 days exposure to 10 μg Cu L(-1). Then, mussels were kept for up to 122 days in clean water. Cu accumulation depended on the form of the metal and on the exposure time. CuO NPs were localized in lysosomes of digestive cells, as confirmed by TEM and X ray microanalysis. CuO NPs, bulk CuO and ionic copper produced different effects on antioxidant enzyme activities in digestive glands, overall increasing antioxidant activities. CuO NPs significantly induced catalase and superoxide dismutase activities. Fewer effects were observed in gills. Micronuclei frequency increased significantly in mussels exposed to CuO NPs and one organism treated with CuO NPs showed disseminated neoplasia. However, transcription levels of cancer-related genes did not vary significantly. Thus, short-term exposure to CuO NPs provoked oxidative stress and genotoxicity, but further studies are needed to determine whether these early events can lead to cancer development in mussels.
Collapse
Affiliation(s)
- Pamela Ruiz
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Alberto Katsumiti
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Jose A Nieto
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Jaume Bori
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Alba Jimeno-Romero
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Paul Reip
- Intrinsiq Materials Ltd, Cody Technology Park, Hampshire, UK
| | - Inmaculada Arostegui
- Department of Applied Mathematics, Statistics and Operations Research, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amaia Orbea
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain.
| |
Collapse
|
25
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
26
|
Migliaccio N, Ruggiero I, Martucci NM, Sanges C, Arbucci S, Tatè R, Rippa E, Arcari P, Lamberti A. New insights on the interaction between the isoforms 1 and 2 of human translation elongation factor 1A. Biochimie 2015. [PMID: 26212729 DOI: 10.1016/j.biochi.2015.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eukaryotic translation elongation factor 1A (eEF1A) is a moonlighting protein that besides to its canonical role in protein synthesis is also involved in many other cellular processes such as cell survival and apoptosis. In a previous work, we identified eEF1A Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and apoptosis of human cancer cells. We proposed that the phosphorylation of eEF1A by C-Raf required the presence of both eEF1A isoforms thus suggesting the formation of a potential eEF1A heterodimer owning regulatory properties. This study aimed at investigating the cellular localization and interaction between two eEF1A isoforms. To this end, we developed chimera proteins by adding at the N-terminal end of both eEF1A1 and eEF1A2 cyan fluorescence protein (mCerulean) and yellow fluorescence protein (mVenus), respectively. The fluorescent eEF1A1 and eEF1A2 chimeras were both addressed to COS-7 cells and found co-localized in the cytoplasm at the level of cellular membranes. We highlighted FRET between the labeled N-termini of eEF1A isoforms. The intra-molecular FRET of this chimera was about 17%. Our results provide novel information on the intracellular distribution and interaction of eEF1A isoforms.
Collapse
Affiliation(s)
- Nunzia Migliaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Immacolata Ruggiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicola M Martucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carmen Sanges
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Arbucci
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Via Gaetano Salvatore 486, I-80145 Naples, Italy.
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Bak JS. Bioprocess Evaluation of Water Soaking-Based Microbiological Biodegradation with Exposure of Cellulosic Microfibers Relevant to Bioconversion Efficiency. Appl Biochem Biotechnol 2015; 176:2290-302. [PMID: 26123084 DOI: 10.1007/s12010-015-1718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/15/2015] [Indexed: 11/28/2022]
Abstract
To verify the interconnective relationship between biodegradation efficiency and microfibril structure, recalcitrant rice straw (RS) was depolymerized using water soaking-based microbiological biodegradation (WSMB). This eco-friendly biosystem, which does not predominantly generate inhibitory metabolites, could increase both the hydrolytic accessibility and fermentation efficiency of RS. In detail, when swollen RS (with Fenton cascades) was simultaneously bio-treated with Phanerochaete chrysosporium for 12 days, the biodegradability was 65.0 % of the theoretical maximum at the stationary phase. This value was significantly higher than the 30.3 % measured from untreated RS. Similarly, the WSMB platform had an effect on the yield enhancement of ethanol productivity of 32.5 %. However, uniform exposure of fibril polymers appeared to have little impact on bioconversion yields. Additionally, the proteomic pools of the WSMB system were analyzed to understand either substrate-specific or nonspecific biocascades based on the change in microcomposite materials. Remarkably, regardless of modified microfibril chains, the significant pattern of 14 major proteins (|fold| > 2) was reasonably analogous in both systems, especially for lignocellulolysis-related targets.
Collapse
Affiliation(s)
- Jin Seop Bak
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea,
| |
Collapse
|
28
|
Critical role of eukaryotic elongation factor 1 alpha 1 (EEF1A1) in avian reovirus sigma-C-induced apoptosis and inhibition of viral growth. Arch Virol 2015; 160:1449-61. [PMID: 25854689 DOI: 10.1007/s00705-015-2403-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Avian reovirus (ARV) causes viral arthritis, chronic respiratory diseases, retarded growth and malabsorption syndrome. It is well established that the ARV sigma-C protein induces apoptosis in host cells. However, the underlying molecular mechanism of this induction is still unclear. We report here the identification of eukaryotic elongation factor 1 alpha 1 (EEF1A1) as the interacting partner of σC. We found that σC-induced apoptosis in DF-1 cells could be completely abolished by knockdown of EEF1A1 by siRNA. Furthermore, knockdown of EEF1A1 markedly reduced ARV-induced apoptosis associated with decreased caspase-9 and -3 activation and cytochrome C release, leading to increased ARV growth in host cells. Thus, EEF1A1 plays a critical role in σC-induced apoptosis and inhibition of viral growth.
Collapse
|
29
|
Abbas W, Kumar A, Herbein G. The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections. Front Oncol 2015; 5:75. [PMID: 25905039 PMCID: PMC4387925 DOI: 10.3389/fonc.2015.00075] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic translation elongation factors 1 alpha, eEF1A1 and eEF1A2, are not only translation factors but also pleiotropic proteins that are highly expressed in human tumors, including breast cancer, ovarian cancer, and lung cancer. eEF1A1 modulates cytoskeleton, exhibits chaperone-like activity and also controls cell proliferation and cell death. In contrast, eEF1A2 protein favors oncogenesis as shown by the fact that overexpression of eEF1A2 leads to cellular transformation and gives rise to tumors in nude mice. The eEF1A2 protein stimulates the phospholipid signaling and activates the Akt-dependent cell migration and actin remodeling that ultimately favors tumorigenesis. In contrast, inactivation of eEF1A proteins leads to immunodeficiency, neural and muscular defects, and favors apoptosis. Finally, eEF1A proteins interact with several viral proteins resulting in enhanced viral replication, decreased apoptosis, and increased cellular transformation. This review summarizes the recent findings on eEF1A proteins indicating that eEF1A proteins play a critical role in numerous human diseases through enhancement of oncogenesis, blockade of apoptosis, and increased viral pathogenesis.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences , Lahore , Pakistan
| | - Amit Kumar
- UPRES EA 4266, Laboratory of Pathogens and Inflammation, Department of Virology, CHRU Besançon, Université de Franche-Comté , Besançon , France
| | - Georges Herbein
- UPRES EA 4266, Laboratory of Pathogens and Inflammation, Department of Virology, CHRU Besançon, Université de Franche-Comté , Besançon , France
| |
Collapse
|
30
|
Wadhwa R, Ryu J, Ahn HM, Saxena N, Chaudhary A, Yun CO, Kaul SC. Functional significance of point mutations in stress chaperone mortalin and their relevance to Parkinson disease. J Biol Chem 2015; 290:8447-56. [PMID: 25645922 DOI: 10.1074/jbc.m114.627463] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mortalin/mtHsp70/Grp75 (mot-2), a heat shock protein 70 family member, is an essential chaperone, enriched in cancers, and has been shown to possess pro-proliferative and anti-apoptosis functions. An allelic form of mouse mortalin (mot-1) that differs by two amino acids, M618V and G624R, in the C terminus substrate-binding domain has been reported. Furthermore, genome sequencing of mortalin from Parkinson disease patients identified two missense mutants, R126W and P509S. In the present study, we investigated the significance of these mutations in survival, proliferation, and oxidative stress tolerance in human cells. Using mot-1 and mot-2 recombinant proteins and specific antibodies, we performed screening to find their binding proteins and then identified ribosomal protein L-7 (RPL-7) and elongation factor-1 α (EF-1α), which differentially bind to mot-1 and mot-2, respectively. We demonstrate that mot-1, R126W, or P509S mutant (i) lacks mot-2 functions involved in carcinogenesis, such as p53 inactivation and hTERT/hnRNP-K (heterogeneous nuclear ribonucleoprotein K) activation; (ii) causes increased level of endogenous oxidative stress; (iii) results in decreased tolerance of cells to exogenous oxidative stress; and (iv) shows differential binding and impact on the RPL-7 and EF-1α proteins. These factors may mediate the transformation of longevity/pro-proliferative function of mot-2 to the premature aging/anti-proliferative effect of mutants, and hence may have significance in cellular aging, Parkinson disease pathology, and prognosis.
Collapse
Affiliation(s)
- Renu Wadhwa
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| | - Jihoon Ryu
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea
| | - Hyo Min Ahn
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea
| | - Nishant Saxena
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| | - Anupama Chaudhary
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| | - Chae-Ok Yun
- the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea
| | - Sunil C Kaul
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| |
Collapse
|
31
|
Luan R, Cheng H, Li L, Zhao Q, Liu H, Wu Z, Zhao L, Yang J, Hao J, Yin Z. Maternal Lipopolysaccharide Exposure Promotes Immunological Functional Changes in Adult Offspring CD4+ T Cells. Am J Reprod Immunol 2015; 73:522-35. [PMID: 25640465 DOI: 10.1111/aji.12364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/02/2015] [Indexed: 01/12/2023] Open
Abstract
PROBLEM Maternal immune activation (MIA) is a risk factor for autism and schizophrenia. However, how MIA affects offspring immune function remains unknown. METHOD OF STUDY To investigate the effect of MIA on the offspring, pregnant C57BL/6J mice were given an intraperitoneal injection of 50 μg/kg lipopolysaccharide (LPS) on gestational day 12.5. RESULTS Adult LPS-treated offspring were hyper-reactive to LPS, and enhanced tumor necrosis factor-α production was observed. CD4+ T cells from LPS offspring had an elevated percentage of interferon (IFN)-γ(+) CD4+ T cells and interleukin (IL)-17A+ CD4+ T cells in the spleen, IL-17A+ CD4+ T cells in the liver, and CD4+ Foxp3+ T cells in the spleen. LPS offspring CD4+ T cells showed increased proliferation and an enhanced survival rate. DNA microarray analysis of resting LPS offspring CD4+ T cells identified eight up-regulated genes, most of which encoded transcription factors. Quantitative liquid chromatography-mass spectrometry identified 18 up-regulated proteins in resting LPS offspring CD4+ T cells and five up-regulated proteins in activated LPS offspring CD4+ T cells, most of which participated in the PANTHER Gene Ontology metabolic process. CONCLUSIONS Our results showed that MIA to LPS up-regulated proteins involved in metabolic process in CD4+ T cells from LPS offspring that might contribute to the hyperactivated immune response of adult LPS offspring.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Li
- Caner Research Center, Shandong University, Jinan, Shandong, China.,Periodical Department, Binzhou Medical University, Yantai, Shandong, China
| | - Qiang Zhao
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Liqing Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinghua Yang
- Caner Research Center, Shandong University, Jinan, Shandong, China
| | - Jianlei Hao
- Biomedical Translational Research Institute, International Immunology Center, Jinan University, Guangzhou, China
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Biomedical Translational Research Institute, International Immunology Center, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Bak JS. Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium. Microbiologyopen 2014; 4:151-66. [PMID: 25470354 PMCID: PMC4335982 DOI: 10.1002/mbo3.228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023] Open
Abstract
Plant biomass can be utilized by a lignocellulose-degrading fungus, Phanerochaete chrysosporium, but the metabolic and regulatory mechanisms involved are not well understood. A polyomics-based analysis (metabolomics, proteomics, and transcriptomics) of P. chrysosporium has been carried out using statistically optimized conditions for lignocellulolytic reaction. Thirty-nine metabolites and 123 genes (14 encoded proteins) that consistently exhibited altered regulation patterns were identified. These factors were then integrated into a comprehensive map that fully depicts all signaling cascades involved in P. chrysosporium. Despite the diversity of these cascades, they showed complementary interconnection among themselves, ensuring the efficiency of passive biosystem and thereby yielding energy expenditure for the cells. Particularly, many factors related to intracellular regulatory networks showed compensating activity in homeostatic lignocellulolysis. In the main platform of proactive biosystem, although several deconstruction-related targets (e.g., glycoside hydrolase, ureidoglycolate hydrolase, transporters, and peroxidases) were systematically utilized, well-known supporters (e.g., cellobiose dehydrogenase and ferroxidase) were rarely generated.
Collapse
Affiliation(s)
- Jin Seop Bak
- Department of Chemical and Biomolecular Engineering, Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
33
|
Bak JS. Extracellular breakdown of lignocellulosic biomass by Dichomitus squalens: peroxidation-based platform and homeostatic regulation. Biotechnol Lett 2014; 37:349-58. [DOI: 10.1007/s10529-014-1676-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/09/2014] [Indexed: 11/24/2022]
|
34
|
Zhang S, Wang W, Gu Q, Xue J, Cao H, Tang Y, Xu X, Cao J, Zhou J, Wu J, Ding WQ. Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation. Free Radic Biol Med 2014; 69:96-107. [PMID: 24447893 DOI: 10.1016/j.freeradbiomed.2014.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/29/2023]
Abstract
Radiation-induced skin injury is a serious concern during radiotherapy. However, the molecular mechanism underlying the pathogenesis of radiation-induced skin injury has not been extensively reported. Most biological functions are performed and regulated by proteins and noncoding RNAs, including microRNAs (miRNAs). The interplay between mRNA and miRNA has been implicated in disease initiation and progression. Technical advances in genomics and proteomics have enabled the exploration of the etiology of diseases and have the potential to broaden our understanding of the molecular pathogenesis of radiation-induced skin injury. In this study, we compared the protein and miRNA expression in rat skin irradiated with a 45-Gy electron beam with expression from adjacent normal tissues. We found 24 preferentially expressed proteins and 12 dysregulated miRNAs in irradiated skin. By analyzing the protein and miRNA profiles using bioinformatics tools, we identified a possible interaction between miR-214 and peroxiredoxin-6 (PRDX-6). Next, we investigated the expression of PRDX-6 and the consequences of its dysregulation. PRDX-6 is suppressed by radiation-inducible miR-214 and is involved in the pathogenesis of radiation-induced skin injury. Overexpression of PRDX-6 conferred radioresistance on cells, decreased cell apoptosis, and preserved mitochondrial integrity after radiation exposure. In addition, in vivo transfection with PRDX-6 reduced radiation-induced reactive oxygen species and the malondialdehyde concentration and ameliorated radiation-induced skin damage in rats. Our present findings illustrate the molecular changes during radiation-induced skin injury and the important role of PRDX-6 in ameliorating this damage in rats.
Collapse
Affiliation(s)
- Shuyu Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Wenjie Wang
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Qing Gu
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiao Xue
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Han Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yiting Tang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Xiaohui Xu
- Department of General Surgery, Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Jundong Zhou
- Department of Radio-oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215001, China
| | - Jinchang Wu
- Department of Radio-oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215001, China
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
35
|
Badowiec A, Weidner S. Proteomic changes in the roots of germinating Phaseolus vulgaris seeds in response to chilling stress and post-stress recovery. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:389-398. [PMID: 24594390 DOI: 10.1016/j.jplph.2013.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 06/03/2023]
Abstract
Plants respond to different environmental cues in a complex way, entailing changes at the cellular and physiological levels. An important step to understand the molecular foundation of stress response in plants is the analysis of stress-responsive proteins. In this work we attempted to investigate and compare changes in the abundance of proteins in the roots of bean (Phaseolus vulgaris L.) germinating under long continuous chilling conditions (10°C, 16 days), exposed to short rapid chilling during germination (10°C, 24h), as well as subjected to recovery from stress (25°C, 24h). The results we obtained indicate that germination under continuous chilling causes alterations in the accumulation of the proteins involved in stress response, energy production, translation, vesicle transport, secondary metabolism and protein degradation. The subsequent recovery influences the accumulation of the proteins implicated in calcium-dependent signal transduction pathways, secondary metabolism and those promoting cell division and expansion. Subjecting the germinating bean seeds to short rapid chilling stress resulted in a transient changes in the relative content of the proteins taking part in energy production, DNA repair, RNA processing and translation. Short stress triggers also the mechanisms of protection against oxidative stress and promotes expression of anti-stress proteins. Subjecting bean seeds to the subsequent recovery influences the abundance of the proteins involved in energy metabolism, protection against stress and production of phytohormones. The exposure to long and short chilling did not result in the alterations of any proteins common to both treatments. The same situation was observed with respect to the recovery after stresses. Bean response to chilling is therefore strongly correlated with the manner and length of exposure to low temperature, which causes divergent proteomic alterations in the roots.
Collapse
Affiliation(s)
- Anna Badowiec
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-719 Olsztyn, Poland.
| | - Stanisław Weidner
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-719 Olsztyn, Poland
| |
Collapse
|
36
|
Abbas W, Khan KA, Kumar A, Tripathy MK, Dichamp I, Keita M, Mahlknecht U, Rohr O, Herbein G. Blockade of BFA-mediated apoptosis in macrophages by the HIV-1 Nef protein. Cell Death Dis 2014; 5:e1080. [PMID: 24556695 PMCID: PMC3944234 DOI: 10.1038/cddis.2014.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 12/14/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022]
Abstract
HIV-1 Nef protein has key roles at almost all stages of the viral life cycle. We assessed the role of Nef and of the translation elongation factor eEF1A in primary human macrophages. Nuclear retention experiments and inhibition of the exportin-t (Exp-t) pathway suggested that cytoplasmic relocalization of eEF1A, mediated by Exp-t occurs in Nef-treated monocyte-derived macrophages (MDMs). We observed the presence of tRNA in the Nef/eEF1A complexes. Nucleocytoplasmic relocalization of the Nef/eEF1A complexes prevented stress-induced apoptosis of MDMs treated with brefeldin A. Blockade of stress-induced apoptosis of MDMs treated with HIV-1 Nef resulted from enhanced nucleocytoplasmic transport of eEF1A with decreased release of mitochondrial cytochrome c, and from increased tRNA binding to cytochrome c, ultimately leading to an inhibition of caspase activation. Our results indicate that HIV-1 Nef, through the nucleocytoplasmic relocalization of eEF1A and tRNAs, enhances resistance to stress-induced apoptosis in primary human macrophages.
Collapse
Affiliation(s)
- W Abbas
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - K A Khan
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - A Kumar
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - M K Tripathy
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - I Dichamp
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - M Keita
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - U Mahlknecht
- University of Heidelberg Medical Center, St. Lukas Klinik Solingen, Solingen D-42697, Germany
| | - O Rohr
- Institut de Parasitologie et Pathologie Tropicale, EA 4438, Strasbourg University, 3 rue Koeberlé, Strasbourg 67000, France
| | - G Herbein
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| |
Collapse
|
37
|
Blanch A, Robinson F, Watson IR, Cheng LS, Irwin MS. Eukaryotic translation elongation factor 1-alpha 1 inhibits p53 and p73 dependent apoptosis and chemotherapy sensitivity. PLoS One 2013; 8:e66436. [PMID: 23799104 PMCID: PMC3682968 DOI: 10.1371/journal.pone.0066436] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022] Open
Abstract
The p53 family of transcription factors is a key regulator of cell proliferation and death. In this report we identify the eukaryotic translation elongation factor 1-alpha 1 (eEF1A1) to be a novel p53 and p73 interacting protein. Previous studies have demonstrated that eEF1A1 has translation-independent roles in cancer. We report that overexpression of eEF1A1 specifically inhibits p53-, p73- and chemotherapy-induced apoptosis resulting in chemoresistance. Short-interfering RNA-mediated silencing of eEF1A1 increases chemosensitivity in cell lines bearing wild type p53, but not in p53 null cells. Furthermore, silencing of eEF1A1 partially rescues the chemoresistance observed in response to p53 or p73 knockdown, suggesting that eEF1A1 is a negative regulator of the pro-apoptotic function of p53 and p73. Thus, in the context of p53-family signaling, eEF1A1 has anti-apoptotic properties. These findings identify a novel mechanism of regulation of the p53 family of proteins by eEF1A1 providing additional insight into potential targets to sensitize tumors to chemotherapy.
Collapse
Affiliation(s)
- Alvaro Blanch
- Department of Paediatrics and Cell Biology Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Robinson
- Department of Paediatrics and Cell Biology Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ian R. Watson
- Department of Paediatrics and Cell Biology Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lynn S. Cheng
- Department of Paediatrics and Cell Biology Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Meredith S. Irwin
- Department of Paediatrics and Cell Biology Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Yoon M, Choi JI, Kim GH, Kim DH, Park DH. Proteomic analysis of Spirogyra varians mutant with high starch content and growth rate induced by gamma irradiation. Bioprocess Biosyst Eng 2013; 36:765-74. [DOI: 10.1007/s00449-013-0902-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 01/15/2013] [Indexed: 11/28/2022]
|
39
|
A connected set of genes associated with programmed cell death implicated in controlling the hypersensitive response in maize. Genetics 2012; 193:609-20. [PMID: 23222653 DOI: 10.1534/genetics.112.147595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rp1-D21 is a maize auto-active resistance gene conferring a spontaneous hypersensitive response (HR) of variable severity depending on genetic background. We report an association mapping strategy based on the Mutant Assisted Gene Identification and Characterization approach to identify naturally occurring allelic variants associated with phenotypic variation in HR. Each member of a collection of 231 diverse inbred lines of maize constituting a high-resolution association mapping panel were crossed to a parental stock heterozygous for Rp1-D21, and the segregating F(1) generation testcrosses were evaluated for phenotypes associated with lesion severity for 2 years at two locations. A genome-wide scan for associations with HR was conducted with 47,445 SNPs using a linear mixed model that controlled for spurious associations due to population structure. Since the ability to identify candidate genes and the resolution of association mapping are highly influenced by linkage disequilibrium (LD), we examined the extent of genome-wide LD. On average, marker pairs separated by >10 kbp had an r(2) value of <0.1. Genomic regions surrounding SNPs significantly associated with HR traits were locally saturated with additional SNP markers to establish local LD structure and precisely identify candidate genes. Six significantly associated SNPs at five loci were detected. At each locus, the associated SNP was located within or immediately adjacent to candidate causative genes predicted to play significant roles in the control of programmed cell death and especially in ubiquitin pathway-related processes.
Collapse
|
40
|
Negrutskii B, Vlasenko D, El'skaya A. From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A. Expert Rev Proteomics 2012; 9:71-83. [PMID: 22292825 DOI: 10.1586/epr.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphoproteomics is often aimed at deciphering the modified components of signaling pathways in certain organisms, tissues and pathologies. Phosphorylation of housekeeping proteins, albeit important, usually attracts less attention. Here, we provide targeted analysis of eukaryotic translation elongation factor 1A (eEF1A), which is the main element of peptide elongation machinery. There are 97% homologous A1 and A2 isoforms of eEF1A; their expression in mammalian tissues is mutually exclusive and differentially regulated in development. The A2 isoform reveals proto-oncogenic properties and specifically interacts with some cellular proteins. Several tyrosine residues shown experimentally to be phosphorylated in eEF1A1 are hardly solution accessible, so their phosphorylation could be linked with structural rearrangement of the protein molecule. The possible role of tyrosine phosphorylation in providing the background for structural differences between the 'extended' A1 isoform and the compact oncogenic A2 isoform is discussed. The 'road map' for targeted analysis of any protein of interest using phosphoproteomics data is presented.
Collapse
Affiliation(s)
- Boris Negrutskii
- Institute of Molecular Biology & Genetics, National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine.
| | | | | |
Collapse
|
41
|
Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:543-55. [PMID: 22555874 DOI: 10.1002/wrna.1118] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vast majority of proteins are believed to have one specific function. Throughout the course of evolution, however, some proteins have acquired additional functions to meet the demands of a complex cellular milieu. In some cases, changes in RNA or protein processing allow the cell to make the most of what is already encoded in the genome to produce slightly different forms. The eukaryotic elongation factor 1 (eEF1) complex subunits, however, have acquired such moonlighting functions without alternative forms. In this article, we discuss the canonical functions of the components of the eEF1 complex in translation elongation as well as the secondary interactions they have with other cellular factors outside of the translational apparatus. The eEF1 complex itself changes in composition as the complexity of eukaryotic organisms increases. Members of the complex are also subject to phosphorylation, a potential modulator of both canonical and non-canonical functions. Although alternative functions of the eEF1A subunit have been widely reported, recent studies are shedding light on additional functions of the eEF1B subunits. A thorough understanding of these alternate functions of eEF1 is essential for appreciating their biological relevance.
Collapse
Affiliation(s)
- Arjun N Sasikumar
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | | | | |
Collapse
|
42
|
Abbas W, Khan KA, Tripathy MK, Dichamp I, Keita M, Rohr O, Herbein G. Inhibition of ER stress-mediated apoptosis in macrophages by nuclear-cytoplasmic relocalization of eEF1A by the HIV-1 Nef protein. Cell Death Dis 2012; 3:e292. [PMID: 22476100 PMCID: PMC3358010 DOI: 10.1038/cddis.2012.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
HIV-1 Nef protein has key roles at almost all stages of the viral life cycle. We assessed the role of the Nef/eEF1A (eukaryotic translation elongation factor 1-alpha) complex in nucleocytoplasmic shuttling in primary human macrophages. Nuclear retention experiments and inhibition of the exportin-t (Exp-t) pathway suggested that cytoplasmic relocalization of eEF1A, mediated by Exp-t, occurs in Nef-treated monocyte-derived macrophages (MDMs). We observed the presence of tRNA in the Nef/eEF1A complexes. Nucleocytoplasmic relocalization of the Nef/eEF1A complexes prevented stress-induced apoptosis of MDMs treated with brefeldin-A. Blockade of stress-induced apoptosis of MDMs treated with HIV-1 Nef resulted from enhanced nucleocytoplasmic transport of eEF1A with decreased release of mitochondrial cytochrome c, and from increased tRNA binding to cytochrome c, ultimately leading to an inhibition of caspase activation. Our results indicate that HIV-1 Nef, through the nucleocytoplasmic relocalization of eEF1A and tRNAs, enhances resistance to stress-induced apoptosis in primary human macrophages.
Collapse
Affiliation(s)
- W Abbas
- Department of Virology, University of Franche-Comte, EA 4266, INSERM IFR 133, CHU Besancon, Besançon F-25030, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Imabuchi R, Ohmiya Y, Kwon HJ, Onodera S, Kitamura N, Kurokawa T, Gong JP, Yasuda K. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: comparisons with the normal articular cartilage. BMC Musculoskelet Disord 2011; 12:213. [PMID: 21955995 PMCID: PMC3192715 DOI: 10.1186/1471-2474-12-213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 09/29/2011] [Indexed: 11/10/2022] Open
Abstract
Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN) hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N, N'-Dimetyl acrylamide), at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.
Collapse
Affiliation(s)
- Ryusei Imabuchi
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hamrita B, Nasr HB, Hammann P, Kuhn L, Guillier CL, Chaieb A, Khairi H, Chahed K. An elongation factor-like protein (EF-Tu) elicits a humoral response in infiltrating ductal breast carcinomas: An immunoproteomics investigation. Clin Biochem 2011; 44:1097-1104. [DOI: 10.1016/j.clinbiochem.2011.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
45
|
Sun H, Paulin L, Alatalo E, Asiegbu FO. Response of living tissues of Pinus sylvestris to the saprotrophic biocontrol fungus Phlebiopsis gigantea. TREE PHYSIOLOGY 2011; 31:438-51. [PMID: 21551358 DOI: 10.1093/treephys/tpr027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The saprotrophic fungus Phlebiopsis gigantea has been used for several years as a biocontrol agent against the conifer pathogen Heterobasidion annosum. Although the effectiveness of P. gigantea in biocontrol has been shown empirically, the long-term effect on living conifer trees as well as the mechanism underlying its antagonistic activity is still unknown. An additional concern is the potential of P. gigantea to acquire a necrotrophic habit through adaptation to living wood tissues. By using a combination of histochemical, molecular and transcript profiling (454 sequencing), we investigated under in vitro conditions the necrotrophic capability of P. gigantea and induced localized resistance as a mechanism for its biocontrol action. Pinus sylvestris seedlings (10 years old) were challenged on the xylem surface with P. gigantea or H. annosum. Both fungi provoked strong necrotic lesions, but after prolonged incubation, P. gigantea lesions shrank and ceased to expand further. Tree seedlings pre-treated with P. gigantea further restricted H. annosum-induced necrosis and had more lignified cells. The 454 sequencing revealed elevated transcript levels of genes important for lignification, cell death regulation and jasmonic acid signalling. The results suggest that induced localized resistance is a contributory factor for the biocontrol efficacy of P. gigantea, and it has a limited necrotrophic capability compared with H. annosum.
Collapse
Affiliation(s)
- Hui Sun
- Department of Forest Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
46
|
Hashimoto K, Ishima T. Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol. PLoS One 2011; 6:e17431. [PMID: 21390260 PMCID: PMC3046984 DOI: 10.1371/journal.pone.0017431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/29/2011] [Indexed: 01/29/2023] Open
Abstract
Cilostazol, a type-3 phosphodiesterase (PDE3) inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP(3)) receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK), and the Ras/Raf/ERK/MAPK) significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, Chiba, Japan.
| | | |
Collapse
|
47
|
Dai C, Liang D, Li H, Sasaki M, Dawson TM, Dawson VL. Functional identification of neuroprotective molecules. PLoS One 2010; 5:e15008. [PMID: 21124846 PMCID: PMC2991347 DOI: 10.1371/journal.pone.0015008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022] Open
Abstract
The central nervous system has the capacity to activate profound neuroprotection following sub-lethal stress in a process termed preconditioning. To gain insight into this potent survival response we developed a functional cloning strategy that identified 31 putative neuroprotective genes of which 28 were confirmed to provide protection against oxygen-glucose deprivation (OGD) or excitotoxic exposure to N-methyl-D-aspartate (NMDA) in primary rat cortical neurons. These results reveal that the brain possesses a wide and diverse repertoire of neuroprotective genes. Further characterization of these and other protective signals could provide new treatment opportunities for neurological injury from ischemia or neurodegenerative disease.
Collapse
Affiliation(s)
- Cheng Dai
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dong Liang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Huiwu Li
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Masayuki Sasaki
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (VLD); (TMD)
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (VLD); (TMD)
| |
Collapse
|
48
|
Smirlis D, Duszenko M, Ruiz AJ, Scoulica E, Bastien P, Fasel N, Soteriadou K. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 2010; 3:107. [PMID: 21083891 PMCID: PMC3136144 DOI: 10.1186/1756-3305-3-107] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022] Open
Abstract
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.
Collapse
Affiliation(s)
- Despina Smirlis
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Bas, Sofias Ave,, 11521 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Eukaryotic translation elongation factor 1A (eEF1A) is one of the most abundant protein synthesis factors. eEF1A is responsible for the delivery of all aminoacyl-tRNAs to the ribosome, aside from initiator and selenocysteine tRNAs. In addition to its roles in polypeptide chain elongation, unique cellular and viral activities have been attributed to eEF1A in eukaryotes from yeast to plants and mammals. From preliminary, speculative associations to well characterized biochemical and biological interactions, it is clear that eEF1A, of all the translation factors, has been ascribed the most functions outside of protein synthesis. A mechanistic understanding of these non-canonical functions of eEF1A will shed light on many important biological questions, including viral-host interaction, subcellular organization, and the integration of key cellular pathways.
Collapse
Affiliation(s)
- Maria K Mateyak
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA
| | | |
Collapse
|
50
|
Koehler CJ, Strozynski M, Kozielski F, Treumann A, Thiede B. Isobaric peptide termini labeling for MS/MS-based quantitative proteomics. J Proteome Res 2009; 8:4333-41. [PMID: 19655813 DOI: 10.1021/pr900425n] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its introduction, isobaric peptide labeling has played an important role in relative quantitative comparisons of proteomes. This paper describes isobaric peptide termini labeling (IPTL), a novel approach for the identification and quantification of two differentially labeled states using MS/MS spectra. After endoproteinase Lys-C digestion, peptides were labeled at C-terminal lysine residues with either 2-methoxy-4,5-dihydro-1H-imidazole (MDHI) or with tetradeuterated MDHI-d(4). Subsequently, their N-termini were derivatized either with tetradeuterated succinic anhydride (SA-d(4)) or with SA. The mixed isotopic labeling results in isobaric masses and provided several quantification data points per peptide. The suitability of this approach is demonstrated with MS and MS/MS analyses of Lys-C digests of standard proteins. A conceptually simple quantification strategy with a dynamic range of 25 is achieved through the use of Mascot score ratios. The utility of IPTL for the analysis of proteomes was verified by comparing the well-characterized effect of the antimitotic inhibitor S-Trityl-l-Cysteine (STLC) on HeLa cells that were treated for either 24 or 48 h with the inhibitor. Many apoptosis-linked proteins were identified as being differentially regulated, confirming the suitability of IPTL for the analysis of complex proteomes.
Collapse
|