1
|
Blázquez MA. Polyamines: Their Role in Plant Development and Stress. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:95-117. [PMID: 38382905 DOI: 10.1146/annurev-arplant-070623-110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This review focuses on the intricate relationship between plant polyamines and the genetic circuits and signaling pathways that regulate various developmental programs and the defense responses of plants when faced with biotic and abiotic aggressions. Particular emphasis is placed on genetic evidence supporting the involvement of polyamines in specific processes, such as the pivotal role of thermospermine in regulating xylem cell differentiation and the significant contribution of polyamine metabolism in enhancing plant resilience to drought. Based on the numerous studies describing effects of the manipulation of plant polyamine levels, two conceptually different mechanisms for polyamine activity are discussed: direct participation of polyamines in translational regulation and the indirect production of hydrogen peroxide as a defensive mechanism against pathogens. By describing the multifaceted functions of polyamines, this review underscores the profound significance of these compounds in enabling plants to adapt and thrive in challenging environments.
Collapse
Affiliation(s)
- Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain;
| |
Collapse
|
2
|
D'Incà R, Mattioli R, Tomasella M, Tavazza R, Macone A, Incocciati A, Martignago D, Polticelli F, Fraudentali I, Cona A, Angelini R, Tavazza M, Nardini A, Tavladoraki P. A Solanum lycopersicum polyamine oxidase contributes to the control of plant growth, xylem differentiation, and drought stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:960-981. [PMID: 38761363 DOI: 10.1111/tpj.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.
Collapse
Affiliation(s)
- Riccardo D'Incà
- Department of Science, University Roma Tre, 00146, Rome, Italy
| | | | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | | | - Fabio Polticelli
- Department of Science, University Roma Tre, 00146, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, 00146, Rome, Italy
| | | | - Alessandra Cona
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Riccardo Angelini
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Mario Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Paraskevi Tavladoraki
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| |
Collapse
|
3
|
Bajguz A, Piotrowska-Niczyporuk A. Biosynthetic Pathways of Hormones in Plants. Metabolites 2023; 13:884. [PMID: 37623827 PMCID: PMC10456939 DOI: 10.3390/metabo13080884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Phytohormones exhibit a wide range of chemical structures, though they primarily originate from three key metabolic precursors: amino acids, isoprenoids, and lipids. Specific amino acids, such as tryptophan, methionine, phenylalanine, and arginine, contribute to the production of various phytohormones, including auxins, melatonin, ethylene, salicylic acid, and polyamines. Isoprenoids are the foundation of five phytohormone categories: cytokinins, brassinosteroids, gibberellins, abscisic acid, and strigolactones. Furthermore, lipids, i.e., α-linolenic acid, function as a precursor for jasmonic acid. The biosynthesis routes of these different plant hormones are intricately complex. Understanding of these processes can greatly enhance our knowledge of how these hormones regulate plant growth, development, and physiology. This review focuses on detailing the biosynthetic pathways of phytohormones.
Collapse
Affiliation(s)
- Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | | |
Collapse
|
4
|
Li X, Yan Z, Zhang M, Wang J, Xin P, Cheng S, Kou L, Zhang X, Wu S, Chu J, Yi C, Ye K, Wang B, Li J. SnoRNP is essential for thermospermine-mediated development in Arabidopsis thaliana. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2-11. [PMID: 36385591 DOI: 10.1007/s11427-022-2235-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022]
Abstract
Polyamines have been discovered for hundreds of years and once considered as a class of phytohormones. Polyamines play critical roles in a range of developmental processes. However, the molecular mechanisms of polyamine signaling pathways remain poorly understood. Here, we measured the contents of main types of polyamines, and found that endogenous level of thermospermine (T-Spm) in Arabidopsis thaliana is comparable to those of classic phytohormones and is significantly lower than those of putrescine (Put), spermidine (Spd), and spermine (Spm). We further found a nodule-like structure around the junction area connecting the shoot and root of the T-Spm biosynthetic mutant acl5 and obtained more than 50 suppressors of acl5nodule structure (san) through suppressor screening. An in-depth study of two san suppressors revealed that NAP57 and NOP56, core components of box H/ACA and C/D snoRNPs, were essential for T-Spm-mediated nodule-like structure formation and plant height. Furthermore, analyses of rRNA modifications showed that the overall levels of pseudouridylation and 2'-O-methylation were compromised in san1 and san2 respectively. Taken together, these results establish a strong genetic relationship between rRNA modification and T-Spm-mediated growth and development, which was previously undiscovered in all organisms.
Collapse
Affiliation(s)
- Xilong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zongyun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shujing Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Songlin Wu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
5
|
Yu X, Lara NAH, Carbajal EM, Milla-Lewis SR. QTL mapping of morphological characteristics that correlated to drought tolerance in St. Augustinegrass. PLoS One 2022; 17:e0268004. [PMID: 35500017 PMCID: PMC9060340 DOI: 10.1371/journal.pone.0268004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
St. Augustinegrass is a warm-season grass species widely utilized as turf in the southeastern U.S. It shows significant variation in plant growth and morphological characteristics, some of which are potentially associated with drought tolerance. However, the genetic basis of these variations is not well understood. Detecting quantitative trait loci (QTL) associated with morphological traits will provide a foundation for the application of genetic and molecular breeding in St. Augustinegrass. In this study, we report QTL associated with morphological traits, including leaf blade width (LW), leaf blade length (LL), canopy density (CD), and shoot growth orientation (SGO) in a St. Augustinegrass ‘Raleigh’ x ‘Seville’ mapping population containing 115 F1 hybrids. Phenotypic data were collected from one greenhouse and two field trials. Single and joint trial analyses were performed, finding significant phenotypic variance among the hybrids for all traits. Interval mapping (IM) and multiple QTL method (MQM) analysis detected seven QTL for CD, four for LL, five for LW, and two for SGO, which were distributed on linkage groups RLG1, RLG9, SLG3, SLG7, SLG8 and SLG9. In addition, three genomic regions where QTL colocalized were identified on Raleigh LG1 and Seville LG3. One genomic region on Seville LG3 overlapped with two previously reported drought-related QTL for leaf relative water content (RWC) and percent green cover (GC). Several candidate genes related to plant development and drought stress response were identified within QTL intervals. The QTL identified in this study represent a first step in identifying genes controlling morphological traits that might accelerate progress in selection of St. Augustinegrass lines with lower water usage.
Collapse
Affiliation(s)
- Xingwang Yu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Nicolas A. H. Lara
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Esdras M. Carbajal
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Susana R. Milla-Lewis
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
6
|
Li Z, Yang X, Li W, Wen Z, Duan J, Jiang Z, Zhang D, Xie X, Wang X, Li F, Li D, Zhang Y. SAMDC3 enhances resistance to Barley stripe mosaic virus by promoting the ubiquitination and proteasomal degradation of viral γb protein. THE NEW PHYTOLOGIST 2022; 234:618-633. [PMID: 35075654 DOI: 10.1111/nph.17993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications (PTMs) play important roles in virus-host interplay. We previously demonstrated that Barley stripe mosaic virus (BSMV) γb protein is phosphorylated by different host kinases to support or impede viral infection. However, whether and how other types of PTMs participate in BSMV infection remains to be explored. Here, we report that S-adenosylmethionine decarboxylase 3 (SAMDC3) from Nicotiana benthamiana or wheat (Triticum aestivum) interacts with γb. BSMV infection induced SAMDC3 expression. Overexpression of SAMDC3 led to the destabilization of γb and reduction in viral infectivity, whereas knocking out NbSAMDC3 increased susceptibility to BSMV. NbSAMDC3 positively regulated the 26S proteasome-mediated degradation of γb via its PEST domain. Further mechanistic studies revealed that γb can be ubiquitinated in planta and that NbSAMDC3 promotes the proteasomal degradation of γb by increasing γb ubiquitination. We also found evidence that ubiquitination occurs at nonlysine residues (Ser-133 and Cys-144) within γb. Together, our results provide a function for SAMDC3 in defence against BSMV infection through targeting of γb abundance, which contributes to our understanding of how a plant host deploys the ubiquitin-proteasome system to mount defences against viral infections.
Collapse
Affiliation(s)
- Zhaolei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinxin Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangning Duan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xialin Xie
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Translational and post-translational regulation of polyamine metabolic enzymes in plants. J Biotechnol 2021; 344:1-10. [PMID: 34915092 DOI: 10.1016/j.jbiotec.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/19/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Polyamines are small organic and basic polycations that perform essential regulatory functions in all living organisms. Fluctuations in polyamine content have been observed to occur during growth, development and under stress conditions, implying that polyamines play pivotal roles in diverse cellular and physiological processes. To achieve polyamine homeostasis, the entire metabolic pathway is subjected to a fine-tuned regulation of its biosynthetic and catabolic genes and enzymes. In this review, we describe and discuss the most important mechanisms implicated in the translational and post-translational regulation of polyamine metabolic enzymes in plants. At the translational level, we emphasize the role of polyamines in the modulation of upstream open reading frame (uORF) activities that control the translation of polyamine biosynthetic and catabolic mRNAs. At the post-translational level, different aspects of the regulation of polyamine metabolic proteins are depicted, such as the proteolytic activation of enzyme precursors, the importance of dimerization in protein stability as well as in protein intracellular localization.
Collapse
|
8
|
Jia T, Hou J, Iqbal MZ, Zhang Y, Cheng B, Feng H, Li Z, Liu L, Zhou J, Feng G, Nie G, Ma X, Liu W, Peng Y. Overexpression of the white clover TrSAMDC1 gene enhanced salt and drought resistance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:147-160. [PMID: 34038811 DOI: 10.1016/j.plaphy.2021.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/14/2021] [Indexed: 05/20/2023]
Abstract
S-adenosylmethionine decarboxylase (SAMDC) mediates the biosynthesis of polyamines (PAs) and plays a positive role in plants' response to adversity stress tolerance. In this study, we isolated a SAMDC gene from white clover, which is located in mitochondria. It was strongly induced when white clover exposed to drought (15% PEG6000), salinity (200 mM NaCl), 20 μM spermidine, 100 μM abscisic acid, and 10 mM H2O2, especially in leaves. The INVSc1 yeast introduced with TrSAMDC1 had tolerance to drought, salt, and oxidative stress. Overexpression of TrSAMDC1 in Arabidopsis showed higher fresh weight and dry weight under drought and salt treatment and without growth inhibition under normal conditions. Leaf senescence induced by drought and saline was further delayed in transgenic plants, regardless of cultivation in 1/2 MS medium and soil. During drought and salt stress, transgenic plants exhibited a significant increase in relative water content, maximum photosynthesis efficiency (Fv/Fm), performance index on the absorption basis (PIABS), activities of antioxidant protective enzymes such as SOD, POD, CAT, and APX, and a significant decrease in accumulation of MDA and H2O2 as compared to the WT. The concentrations of total PAs, putrescine, spermidine, and spermidine in transgenic lines were higher in transgenic plants than in WT under normal and drought conditions. These results suggested that TrSAMDC1 could effectively mitigate abiotic stresses without the expense of production and be a potential candidate gene for improving the drought and salt resistance of crops.
Collapse
Affiliation(s)
- Tong Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jieru Hou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youzhi Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huahao Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiqiong Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Tang X, Wu L, Wang F, Tian W, Hu X, Jin S, Zhu H. Ectopic Expression of GhSAMDC3 Enhanced Salt Tolerance Due to Accumulated Spd Content and Activation of Salt Tolerance-Related Genes in Arabidopsis thaliana. DNA Cell Biol 2021; 40:1144-1157. [PMID: 34165351 DOI: 10.1089/dna.2020.6064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyamines (PAs), especially spermidine and spermine (which are involved in various types of abiotic stress tolerance), have been reported in many plant species. In this study, we identified 14 putative S-adenosylmethionine decarboxylase genes (GhSAMDC1-14) in upland cotton. Based on phylogenetic and expression analyses conducted under different abiotic stresses, we selected and transferred GhSAMDC3 into Arabidopsis thaliana. Compared to the wild type, transgenic plants displayed rapid growth and increases in average leaf area and leaf number of 52% and 36%, respectively. In transgenic plants, the germination vigor and rate were markedly enhanced under NaCl treatment, and the plant survival rate increased by 50% under 300 mM NaCl treatment. The spermidine content was significantly increased, possibly due to the synthesis of a series of PAs and oxidant and antioxidant genes, resulting in improved salinity tolerance in Arabidopsis. Various salinity resistance-related genes were upregulated in transgenic plants. Together, these results indicate that ectopic expression of GhSAMDC3 raised salinity tolerance by the accumulation of spermidine and activation of salinity tolerance-related genes in A. thaliana.
Collapse
Affiliation(s)
- Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, China
| | - Fanlong Wang
- College of Agronomy, Shihezi University, Shihezi, China
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, China
| | - Shuangxia Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| |
Collapse
|
10
|
Kaszler N, Benkő P, Bernula D, Szepesi Á, Fehér A, Gémes K. Polyamine Metabolism Is Involved in the Direct Regeneration of Shoots from Arabidopsis Lateral Root Primordia. PLANTS 2021; 10:plants10020305. [PMID: 33562616 PMCID: PMC7915173 DOI: 10.3390/plants10020305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
Plants can be regenerated from various explants/tissues via de novo shoot meristem formation. Most of these regeneration pathways are indirect and involve callus formation. Besides plant hormones, the role of polyamines (PAs) has been implicated in these processes. Interestingly, the lateral root primordia (LRPs) of Arabidopsis can be directly converted to shoot meristems by exogenous cytokinin application. In this system, no callus formation takes place. We report that the level of PAs, especially that of spermidine (Spd), increased during meristem conversion and the application of exogenous Spd improved its efficiency. The high endogenous Spd level could be due to enhanced synthesis as indicated by the augmented relative expression of PA synthesis genes (AtADC1,2, AtSAMDC2,4, AtSPDS1,2) during the process. However, the effect of PAs on shoot meristem formation might also be dependent on their catabolism. The expression of Arabidopsis POLYAMINE OXIDASE 5 (AtPAO5) was shown to be specifically high during the process and its ectopic overexpression increased the LRP-to-shoot conversion efficiency. This was correlated with Spd accumulation in the roots and ROS accumulation in the converting LRPs. The potential ways how PAO5 may influence direct shoot organogenesis from Arabidopsis LRPs are discussed.
Collapse
Affiliation(s)
- Nikolett Kaszler
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
| | - Péter Benkő
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
| | - Dóra Bernula
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
| | - Ágnes Szepesi
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
- Correspondence: author: (A.F.); (K.G.); Tel.: +36-62-546-962 (A.F.); +36-62-544-307 (K.G.)
| | - Katalin Gémes
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
- Correspondence: author: (A.F.); (K.G.); Tel.: +36-62-546-962 (A.F.); +36-62-544-307 (K.G.)
| |
Collapse
|
11
|
Zhu H, Tian W, Zhu X, Tang X, Wu L, Hu X, Jin S. Ectopic expression of GhSAMDC 1 improved plant vegetative growth and early flowering through conversion of spermidine to spermine in tobacco. Sci Rep 2020; 10:14418. [PMID: 32879344 PMCID: PMC7468128 DOI: 10.1038/s41598-020-71405-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 01/11/2023] Open
Abstract
Polyamines play essential roles in plant development and various stress responses. In this study, one of the cotton S-adenosylmethionine decarboxylase (SAMDC) genes, GhSAMDC1, was constructed in the pGWB17 vector and overexpressed in tobacco. Leaf area and plant height increased 25.9-36.6% and 15.0-27.0%, respectively, compared to the wild type, and flowering time was advanced by 5 days in transgenic tobacco lines. Polyamine and gene expression analyses demonstrated that a decrease in spermidine and an increase in total polyamines and spermine might be regulated by NtSPDS4 and NtSPMS in transgenic plants. Furthermore, exogenous spermidine, spermine and spermidine synthesis inhibitor dicyclohexylamine were used for complementary tests, which resulted in small leaves and dwarf plants, big leaves and early flowering, and big leaves and dwarf plants, respectively. These results indicate that spermidine and spermine are mainly involved in the vegetative growth and early flowering stages, respectively. Expression analysis of flowering-related genes suggested that NtSOC1, NtAP1, NtNFL1 and NtFT4 were upregulated in transgenic plants. In conclusion, ectopic GhSAMDC1 is involved in the conversion of spermidine to spermine, resulting in rapid vegetative growth and early flowering in tobacco, which could be applied to genetically improve plants.
Collapse
Affiliation(s)
- Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China.
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xuefeng Zhu
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Shuangxia Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
12
|
Liu J, Yang R, Jian N, Wei L, Ye L, Wang R, Gao H, Zheng Q. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance. PLANT, CELL & ENVIRONMENT 2020; 43:1348-1359. [PMID: 32176351 DOI: 10.1111/pce.13757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 05/08/2023]
Abstract
Brassinosteroids (BRs) are known to improve salt tolerance of plants, but not in all situations. Here, we show that a certain concentration of 24-epibrassinolide (EBL), an active BR, can promote the tolerance of canola under high-salt stress, but the same concentration is disadvantageous under low-salt stress. We define this phenomenon as hormonal stress-level-dependent biphasic (SLDB) effects. The SLDB effects of EBL on salt tolerance in canola are closely related to H2 O2 accumulation, which is regulated by polyamine metabolism, especially putrescine (Put) oxidation. The inhibition of EBL on canola under low-salt stress can be ameliorated by repressing Put biosynthesis or diamine oxidase activity to reduce H2 O2 production. Genetic and phenotypic results of bri1-9, bak1, bes1-D, and bzr1-1D mutants and overexpression lines of BRI1 and BAK1 in Arabidopsis indicate that a proper enhancement of BR signaling benefits plants in countering salt stress, whereas excessive enhancement is just as harmful as a deficiency. These results highlight the involvement of crosstalk between BR signaling and Put metabolism in H2 O2 accumulation, which underlies the dual role of BR in plant salt tolerance.
Collapse
Affiliation(s)
- Jinlong Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ni Jian
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Long Wei
- College of Natural Resources and Environmental Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Liaoliao Ye
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ruihua Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Qingsong Zheng
- College of Natural Resources and Environmental Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Kovács L, Mendel Á, Szentgyörgyi A, Fekete S, Söre F, Posta K, Kiss E. Comparative analysis of overexpressed Fragaria vesca S-adenosyl-l-methionine synthase (FvSAMS) and decarboxylase (FvSAMDC) during salt stress in transgenic Nicotiana benthamiana. PLANT GROWTH REGULATION 2020; 91:53-73. [DOI: 10.1007/s10725-020-00587-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 02/03/2020] [Indexed: 01/03/2025]
Abstract
AbstractWe investigated the effect of overexpressing Fragaria vesca L. cv. Rügen S-adenosyl-l-methionine synthase (FvSAMS) and decarboxylase (FvSAMDC) genes on control and salt stressed Nicotiana benthamiana Domin plants. According to previous studies the overproduction of both proteins enhances the abiotic stress tolerance of plants, but the two enzymes have not yet been studied in one experimental system. We found that the transgenic plants subjected to long-term salt stress displayed higher levels of tolerance than the wild type (WT). In contrast to several earlier studies no antagonistic effect between ethylene and polyamine biosynthesis was observed in our experimental system. Overexpression of FvSAMDC had higher impact on the plant physiological parameters both in control and salt stress conditions, than that of FvSAMS. Based on the data measured in the FvSAMDC lines there appears to be a positive correlation between the free polyamine levels and the proline content as well as the amount of ethylene, while there is a negative correlation between the free polyamine levels and the lignin content in the plants exposed to salt stress. The transformation vectors contained the CaMV35S promoter, the coding sequence of FvSAMS and FvSAMDC fused with synthetic green fluorescent protein (sGFP). We detected the subcellular localization of both enzymes and examined the possible stress induced changes in their distribution. In the case of FvSAMS::sGFP nuclear, nucleolar, cytoplasmic (near to the plasmalemma), plastid membrane, whereas in FvSAMDC::sGFP nuclear and homogenous cytoplasmic localization was detected. Therefore, SAM is assumed to be produced in situ for numerous biochemical reactions.
Collapse
|
14
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
15
|
Xing M, Su H, Liu X, Yang L, Zhang Y, Wang Y, Fang Z, Lv H. Morphological, transcriptomics and phytohormone analysis shed light on the development of a novel dwarf mutant of cabbage (Brassica oleracea). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110283. [PMID: 31779912 DOI: 10.1016/j.plantsci.2019.110283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 05/28/2023]
Abstract
Plant dwarf mutants generally exhibit delayed growth, delayed development, short internodes, and abnormal leaves and flowers and are ideal materials to explore the molecular mechanism of plant growth and development. In the current study, we first discovered a spontaneous cabbage (Brassica oleracea) dwarf mutant 99-198dw, which exhibits a dwarf stature, wrinkled leaves, non-heading, and substantially reduced self-fertility compared with the wild-type 99-198; however, the underlying molecular mechanism of its dwarfism is unknown. Here, we performed comparative phenotype, transcriptome and phytohormone analyses between 99-198 and 99-198dw. Cytological analysis showed that an increase in cell size, a reduction in cell layers, chloroplast degradation and a reduction in mitochondria were observed in 99-198dw. RNA-Seq showed that a total of 3801 differentially expressed genes (DEGs) were identified, including 2203 upregulated and 1598 downregulated genes in the dwarf mutant. Key genes in stress-resistant pathways were mostly upregulated, including salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), ethylene (ET), etc., while the DEGs reported to be related to plant height, such as those involved in the gibberellin (GA), brassinolide (BR), indole-3-acetic acid (IAA), and strigolactone (SL) pathways were mostly downregulated. In addition, the DEGs in the cell division pathway were all downregulated, which is consistent with the cytokinesis defects detected by cytological analysis. The changes in the GA4, JA, ET, SA and ABA contents measured by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) absolute quantification were consistent with the transcriptome analysis. Further hormone treatment tests showed that the exogenous application of GA, BR, 6BA, paclobutrazol (PC), etc. did not rescue the phenotype, implying that the change in phytohormones is due to but not the cause of the dwarf trait. It was speculated that mutation of certain DEG related to cell division or participating in signalling pathway of phytohormones like GA, BR, IAA, and SL were the cause of dwarf. These results are informative for the elucidation of the underlying regulatory network in 99-198dw and enrich our understanding of plant dwarf traits at the molecular level.
Collapse
Affiliation(s)
- Miaomiao Xing
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Henan Su
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
16
|
Vuosku J, Muilu-Mäkelä R, Avia K, Suokas M, Kestilä J, Läärä E, Häggman H, Savolainen O, Sarjala T. Thermospermine Synthase ( ACL5) and Diamine Oxidase ( DAO) Expression Is Needed for Zygotic Embryogenesis and Vascular Development in Scots Pine. FRONTIERS IN PLANT SCIENCE 2019; 10:1600. [PMID: 31921249 PMCID: PMC6934065 DOI: 10.3389/fpls.2019.01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/14/2019] [Indexed: 05/27/2023]
Abstract
Unlike in flowering plants, the detailed roles of the enzymes in the polyamine (PA) pathway in conifers are poorly known. We explored the sequence conservation of the PA biosynthetic genes and diamine oxidase (DAO) in conifers and flowering plants to reveal the potential functional diversification of the enzymes between the plant lineages. The expression of the genes showing different selective constraints was studied in Scots pine zygotic embryogenesis and early seedling development. We found that the arginine decarboxylase pathway is strongly preferred in putrescine production in the Scots pine as well as generally in conifers and that the reduced use of ornithine decarboxylase (ODC) has led to relaxed purifying selection in ODC genes. Thermospermine synthase (ACL5) genes evolve under strong purifying selection in conifers and the DAO gene is also highly conserved in pines. In developing Scots pine seeds, the expression of both ACL5 and DAO increased as embryogenesis proceeded. Strong ACL5 expression was present in the procambial cells of the embryo and in the megagametophyte cells destined to die via morphologically necrotic cell death. Thus, the high sequence conservation of ACL5 genes in conifers may indicate the necessity of ACL5 for both embryogenesis and vascular development. Moreover, the result suggests the involvement of ACL5 in morphologically necrotic cell death and supports the view of the genetic regulation of necrosis in Scots pine embryogenesis and in plant development. DAO transcripts were located close to the cell walls and between the walls of adjacent cells in Scots pine zygotic embryos and in the roots of young seedlings. We propose that DAO, in addition to the role in Put oxidation for providing H2O2 during the cell-wall structural processes, may also participate in cell-to-cell communication at the mRNA level. To conclude, our findings indicate that the PA pathway of Scots pines possesses several special functional characteristics which differ from those of flowering plants.
Collapse
Affiliation(s)
- Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | | | - Komlan Avia
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Johanna Kestilä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Esa Läärä
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Outi Savolainen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Tytti Sarjala
- Production Systems, Natural Resources Institute Finland, Espoo, Finland
| |
Collapse
|
17
|
Nambeesan SU, Mattoo AK, Handa AK. Nexus Between Spermidine and Floral Organ Identity and Fruit/Seed Set in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:1033. [PMID: 31608074 PMCID: PMC6774279 DOI: 10.3389/fpls.2019.01033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Polyamines (PAs) constituting putrescine (Put), spermidine (Spd), and spermine (Spm) are ubiquitous in all organisms and play essential roles in the growth and developmental processes in living organisms, including plants. Evidences obtained through genetic, biochemical, and transgenic approaches suggest a tight homeostasis for cellular PA levels. Altered cellular PA homeostasis is associated with abnormal phenotypes. However, the mechanisms involved for these abnormalities are not yet fully understood, nor is it known whether cellular ratios of different polyamines play any role(s) in specific plant processes. We expressed a yeast spermidine synthase gene (ySpdSyn) under a constitutive promoter CaMV35S in tomato and studied the different phenotypes that developed. The constitutive expression of ySpdSyn resulted in variable flower phenotypes in independent transgenic lines, some of which lacked fruit and seed set. Quantification of PA levels in the developing flowers showed that the transgenic plants without fruit and seed set had significantly reduced Spd levels as well as low Spd/Put ratio compared to the transgenic lines with normal fruit and seed set. Transcript levels of SlDELLA, GA-20oxidase-1, and GA-3oxidase-2, which impact gibberellin (GA) metabolism and signaling, were significantly reduced in bud tissue of transgenic lines that lacked fruit and seed set. These findings indicate that PAs, particularly Spd, impact floral organ identity and fruit set in tomato involving GA metabolism and signaling. Furthermore, we suggest that a nexus exists between PA ratios and developmental programs in plants.
Collapse
Affiliation(s)
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Avtar K. Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
18
|
Effect of Thermospermine on the Growth and Expression of Polyamine-Related Genes in Rice Seedlings. PLANTS 2019; 8:plants8080269. [PMID: 31390771 PMCID: PMC6724145 DOI: 10.3390/plants8080269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
A mutant defective in the biosynthesis of thermospermine, acaulis5 (acl5), shows a dwarf phenotype with excess xylem vessels in Arabidopsis thaliana. Exogenous supply of thermospermine remarkably represses xylem differentiation in the root of seedlings, indicating the role of thermospermine in proper repression of xylem differentiation. However, the effect of thermospermine has rarely been investigated in other plant species. In this paper, we examined its effect on the growth and gene expression in rice seedlings. When grown with thermospermine, rice seedlings had no clearly enlarged metaxylem vessels in the root. Expression of OsACL5 was reduced in response to thermospermine, suggesting a negative feedback control of thermospermine biosynthesis like in Arabidopsis. Unlike Arabidopsis, however, rice showed up-regulation of phloem-expressed genes, OsHB5 and OsYSL16, by one-day treatment with thermospermine. Furthermore, expression of OsPAO2 and OsPAO6, encoding extracellular polyamine oxidase whose orthologs are not present in Arabidopsis, was induced by both thermospermine and spermine. These results suggest that thermospermine affects the expression of a subset of genes in rice different from those affected in Arabidopsis.
Collapse
|
19
|
Sen S, Ghosh D, Mohapatra S. Modulation of polyamine biosynthesis in Arabidopsis thaliana by a drought mitigating Pseudomonas putida strain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:180-188. [PMID: 29886249 DOI: 10.1016/j.plaphy.2018.05.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 05/25/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) are a diverse group of beneficial soil bacteria that help plants in myriad ways. They are implicated in the processes of general growth and development, as well as stress mitigation. Although the physiology of plant-PGPR interaction for abiotic stress tolerance has been well reported, the underlying molecular mechanisms in this phenomenon are not clearly understood. Among the many endogenous molecules that have been reported to impart abiotic stress tolerance in plants are a group of aliphatic amines called polyamines. Here, we report the impact of a free living, drought-mitigating rhizobacterial strain, Pseudomonas putida GAP-P45 on the expression of key genes in the polyamine metabolic pathway and the accumulation of the three major polyamines, putrescine, spermidine and spermine in water-stressed Arabidopsis thaliana. We observed that, inoculation of A. thaliana with P. putida GAP-P45 with or without water-stress, caused significant fluctuations in the expression of most polyamine biosynthetic genes (ADC, AIH, CPA, SPDS, SPMS and SAMDC) and cellular polyamine levels at different days of analysis post treatments. The enhanced accumulation of free cellular putrescine and spermidine observed in this study correlated positively with the water stress tolerant phenotype of A. thaliana in response to P. putida GAP-P45 inoculation reported in our previous study (Ghosh et al., 2017). Our data point towards (a) transcriptional regulation of polyamine biosynthetic genes and (b) complex post transcriptional regulation and/or interconversion/canalization of polyamines, by P. putida GAP-P45 under normal and water-stressed conditions.
Collapse
Affiliation(s)
- Sunetra Sen
- Department of Biological Sciences, Birla Institute of Technology and Science (Pilani), Hyderabad Campus, India
| | - Daipayan Ghosh
- Department of Biological Sciences, Birla Institute of Technology and Science (Pilani), Hyderabad Campus, India
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science (Pilani), Hyderabad Campus, India.
| |
Collapse
|
20
|
Ferreira DA, Martins MCM, Cheavegatti-Gianotto A, Carneiro MS, Amadeu RR, Aricetti JA, Wolf LD, Hoffmann HP, de Abreu LGF, Caldana C. Metabolite Profiles of Sugarcane Culm Reveal the Relationship Among Metabolism and Axillary Bud Outgrowth in Genetically Related Sugarcane Commercial Cultivars. FRONTIERS IN PLANT SCIENCE 2018; 9:857. [PMID: 29988592 PMCID: PMC6027322 DOI: 10.3389/fpls.2018.00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/01/2018] [Indexed: 05/04/2023]
Abstract
Metabolic composition is known to exert influence on several important agronomic traits, and metabolomics, which represents the chemical composition in a cell, has long been recognized as a powerful tool for bridging phenotype-genotype interactions. In this work, sixteen truly representative sugarcane Brazilian varieties were selected to explore the metabolic networks in buds and culms, the tissues involved in the vegetative propagation of this species. Due to the fact that bud sprouting is a key trait determining crop establishment in the field, the sprouting potential among the genotypes was evaluated. The use of partial least square discriminant analysis indicated only mild differences on bud outgrowth potential under controlled environmental conditions. However, primary metabolite profiling provided information on the variability of metabolic features even under a narrow genetic background, typical for modern sugarcane cultivars. Metabolite-metabolite correlations within and between tissues revealed more complex patterns for culms in relation to buds, and enabled the recognition of key metabolites (e.g., sucrose, putrescine, glutamate, serine, and myo-inositol) affecting sprouting ability. Finally, those results were associated with the genetic background of each cultivar, showing that metabolites can be potentially used as indicators for the genetic background.
Collapse
Affiliation(s)
- Danilo A. Ferreira
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
- Genetics and Molecular Biology Graduate Program, University of Campinas, Campinas, Brazil
| | - Marina C. M. Martins
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Adriana Cheavegatti-Gianotto
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Monalisa S. Carneiro
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Rodrigo R. Amadeu
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Juliana A. Aricetti
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Lucia D. Wolf
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Hermann P. Hoffmann
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Luis G. F. de Abreu
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
- Max-Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| |
Collapse
|
21
|
Abstract
The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.
Collapse
|
22
|
Abstract
Themospermine is a structural isomer of spermine and is present in some bacteria and most of plants. An Arabidopsis mutant, acaulis5 (acl5), that is defective in the biosynthesis of thermospermine displays excessive proliferation of xylem vessels with dwarfed growth. Recent studies using acl5 and its suppressor mutants that recover the growth without thermospermine have revealed that thermospermine plays a key role in the negative control of the proliferation of xylem vessels through enhancing translation of specific mRNAs that contain a conserved upstream open-reading-frame (uORF) in the 5' leader region.
Collapse
Affiliation(s)
- Taku Takahashi
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, kita-ku, 700-8530, Okayama, Japan.
| |
Collapse
|
23
|
Abstract
Plant mutants in polyamine pathway genes are ideal for investigating their roles in stress responses. Here we describe easy-to-perform methods for phenotyping Arabidopsis mutants under abiotic stress. These include measurements of root growth, chlorophyll content, water loss, electrolyte leakage, and content of the reactive oxygen species hydrogen peroxide (H2O2) and superoxide anion (O2-). Growth of Arabidopsis seedlings is described that enables transfer to different media for stress treatment without damaging roots.
Collapse
Affiliation(s)
- Thomas Berberich
- Laboratory Center, Senckenberg Biodiversity and Climate Research Center (SBiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany.
| | - G H M Sagor
- Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
24
|
Majumdar R, Shao L, Turlapati SA, Minocha SC. Polyamines in the life of Arabidopsis: profiling the expression of S-adenosylmethionine decarboxylase (SAMDC) gene family during its life cycle. BMC PLANT BIOLOGY 2017; 17:264. [PMID: 29281982 PMCID: PMC5745906 DOI: 10.1186/s12870-017-1208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 12/08/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arabidopsis has 5 paralogs of the S-adenosylmethionine decarboxylase (SAMDC) gene. Neither their specific role in development nor the role of positive/purifying selection in genetic divergence of this gene family is known. While some data are available on organ-specific expression of AtSAMDC1, AtSAMDC2, AtSAMDC3 and AtSAMDC4, not much is known about their promoters including AtSAMDC5, which is believed to be non-functional. RESULTS (1) Phylogenetic analysis of the five AtSAMDC genes shows similar divergence pattern for promoters and coding sequences (CDSs), whereas, genetic divergence of 5'UTRs and 3'UTRs was independent of the promoters and CDSs; (2) while AtSAMDC1 and AtSAMDC4 promoters exhibit high activity (constitutive in the former), promoter activities of AtSAMDC2, AtSAMDC3 and AtSAMDC5 are moderate to low in seedlings (depending upon translational or transcriptional fusions), and are localized mainly in the vascular tissues and reproductive organs in mature plants; (3) based on promoter activity, it appears that AtSAMDC5 is both transcriptionally and translationally active, but based on it's coding sequence it seems to produce a non-functional protein; (4) though 5'-UTR based regulation of AtSAMDC expression through upstream open reading frames (uORFs) in the 5'UTR is well known, no such uORFs are present in AtSAMDC4 and AtSAMDC5; (5) the promoter regions of all five AtSAMDC genes contain common stress-responsive elements and hormone-responsive elements; (6) at the organ level, the activity of AtSAMDC enzyme does not correlate with the expression of specific AtSAMDC genes or with the contents of spermidine and spermine. CONCLUSIONS Differential roles of positive/purifying selection were observed in genetic divergence of the AtSAMDC gene family. All tissues express one or more AtSAMDC gene with significant redundancy, and concurrently, there is cell/tissue-specificity of gene expression, particularly in mature organs. This study provides valuable information about AtSAMDC promoters, which could be useful in future manipulation of crop plants for nutritive purposes, stress tolerance or bioenergy needs. The AtSAMDC1 core promoter might serve the need of a strong constitutive promoter, and its high expression in the gametophytic cells could be exploited, where strong male/female gametophyte-specific expression is desired; e.g. in transgenic modification of crop varieties.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
- USDA-ARS, SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA
| | - Lin Shao
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Swathi A. Turlapati
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Subhash C. Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| |
Collapse
|
25
|
Affiliation(s)
- Raili Ruonala
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;, ,
| | - Donghwi Ko
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;, ,
| | - Ykä Helariutta
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;, ,
| |
Collapse
|
26
|
Choubey A, Rajam MV. Transcriptome response and developmental implications of RNAi-mediated ODC knockdown in tobacco. Funct Integr Genomics 2017; 17:399-412. [PMID: 28011999 DOI: 10.1007/s10142-016-0539-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022]
Abstract
Polyamines (PAs) are ubiquitously present polycationic compounds that play a critical role in various growth and developmental processes including stress responses in plants. Yet, their specific functions and mode of action remain largely unknown. In the present study, we have targeted tobacco ornithine decarboxylase gene (ODC) by RNA interference to modulate cellular PA levels and study the effects at different developmental time points. Down-regulation of ODC resulted in significant physiological and morphological anomalies including reduced leaf size, reduced chlorophyll and carotene content, decreased abiotic stress tolerance, early onset of senescence, delayed flowering, partial male and female sterility, reduced seed setting, delayed seed germination, reduced seed viability, and poor in vitro regeneration response from leaf explants. Also, for the first time, microarray analysis has been attempted to study genome-wide gene expression changes in response to lowered PA titers in an ODC knockdown line. A number of transcription factors, auxin- and ethylene-responsive genes, stress-induced genes, lignin-biosynthesis genes, photosynthesis-related genes, senescence-associated genes, membrane proteins, and protein kinases were found to be affected, suggesting a probable list of PA-responsive genes. Transcriptome analysis has also indicated many genes, which could directly or indirectly be responsible for regulating the PA metabolic pathway. Various phenotypic changes observed upon ODC knockdown along with the identification of a number of gene targets means it is a step forward in envisaging possible mechanisms of PA action and for assigning them with specific roles in various developmental processes they are known to be a part of.
Collapse
Affiliation(s)
- Ami Choubey
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - M V Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
27
|
Ahmed S, Ariyaratne M, Patel J, Howard AE, Kalinoski A, Phuntumart V, Morris PF. Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:146-155. [PMID: 28330558 DOI: 10.1016/j.plantsci.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 05/25/2023]
Abstract
Changes in the levels of polyamines are correlated with the activation or repression of developmental response pathways, but the role of polyamine transporters in the regulation of polyamine homeostasis and thus indirectly gene expression, has not been previously addressed. Here we show that the A. thaliana and rice transporters AtPUT5 and OsPUT1 were localized to the ER, while the AtPUT2, AtPUT3, and OsPUT3 were localized to the chloroplast by transient expression in N. benthamiana. A. thaliana plants that were transformed with OsPUT1 under the control the PUT5 promoter were delayed in flowering by 16days. In contrast, put5 mutants flowered four days earlier than WT plants. The delay of flowering was associated with significantly higher levels of spermidine and spermidine conjugates in the leaves prior to flowering. A similar delay in flowering was also noted in transgenic lines with constitutive expression of either OsPUT1 or OsPUT3. All three transgenic lines had larger rosette leaves, thicker flowering stems, and produced more siliques than wild type plants. In contrast, put5 plants had smaller leaves, thinner flowering stems, and produced fewer siliques. Constitutive expression of PUTs was also associated with an extreme delay in both plant senescence and maturation rate of siliques. These experiments provide the first genetic evidence of polyamine transport in the timing of flowering, and indicate the importance of polyamine transporters in the regulation of flowering and senescence pathways.
Collapse
Affiliation(s)
- Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Menaka Ariyaratne
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Jigar Patel
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Alexander E Howard
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo, 3000 Arlington Ave. Toledo, OH 43614, United States
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States.
| |
Collapse
|
28
|
Zhao F, Durner J, Winkler JB, Traidl-Hoffmann C, Strom TM, Ernst D, Frank U. Pollen of common ragweed (Ambrosia artemisiifolia L.): Illumina-based de novo sequencing and differential transcript expression upon elevated NO 2/O 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:503-514. [PMID: 28284545 DOI: 10.1016/j.envpol.2017.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 05/28/2023]
Abstract
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic annual ruderal plant and native to Northern America, but now also spreading across Europe. Air pollution and climate change will not only affect plant growth, pollen production and duration of the whole pollen season, but also the amount of allergenic encoding transcripts and proteins of the pollen. The objective of this study was to get a better understanding of transcriptional changes in ragweed pollen upon NO2 and O3 fumigation. This will also contribute to a systems biology approach to understand the reaction of the allergenic pollen to air pollution and climate change. Ragweed plants were grown in climate chambers under controlled conditions and fumigated with enhanced levels of NO2 and O3. Illumina sequencing and de novo assembly revealed significant differentially expressed transcripts, belonging to different gene ontology (GO) terms that were grouped into biological process and molecular function. Transcript levels of the known Amb a ragweed encoding allergens were clearly up-regulated under elevated NO2, whereas the amount of allergen encoding transcripts was more variable under elevated O3 conditions. Moreover transcripts encoding allergen known from other plants could be identified. The transcriptional changes in ragweed pollen upon elevated NO2 fumigation indicates that air pollution will alter the transcriptome of the pollen. The changed levels of allergenic encoding transcripts may have an influence on the total allergenic potential of ragweed pollen.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Biochemical Plant Pathology, Technische Universität München, Center of Life and Food Sciences Weihenstephan, Freising-Weihenstephan, Germany.
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Augsburg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| | - Tim-Matthias Strom
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| |
Collapse
|
29
|
Liu Z, Liu P, Qi D, Peng X, Liu G. Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:90-99. [PMID: 28178573 DOI: 10.1016/j.jplph.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Leymus chinensis is an important perennial forage grass natively distributed in the Eurasian Steppe. However, little is known about the molecular mechanism of its adaptation to extreme environmental conditions. Based on L. chinensis cold-treated sequence database, a highly expressed S-adenosylmethionine decarboxylase gene (LcSAMDC1) was isolated from L. chinensis. Gene structure analysis showed that LcSAMDC1 has two introns and three exons as well as three non-overlapping ORFs in its mRNA sequence. One hour of cold exposure caused a significant up-regulation of LcSAMDC1, while abscisic acid (ABA), salt, and osmotic stresses slightly induced its expression. Analysis of gene expression in different tissues showed that LcSAMDC1 was expressed ubiquitously, with higher levels in the young spike and rhizome. Overexpression of the main ORF of LcSAMDC1 in transgenic Arabidopsis promoted increased tolerance to cold and salt stress relative to wild type Arabidopsis. The concentration of polyamines, proline, and chlorophyll was significantly higher in transgenic Arabidopsis, and spermine of polyamines increased more under cold than under salt stress. These results suggest that LcSAMDC1 was induced in response to cold and could influence the production of polyamines involved in stress tolerance of L. chinensis. Moreover, transgenic expression of LcSAMDC1 could be used to improve the abiotic resistance of crops.
Collapse
Affiliation(s)
- Zhujiang Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Panpan Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
30
|
Zhao M, Liu H, Deng Z, Chen J, Yang H, Li H, Xia Z, Li D. Molecular cloning and characterization of S-adenosylmethionine decarboxylase gene in rubber tree ( Hevea brasiliensis). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:281-290. [PMID: 28461717 PMCID: PMC5391351 DOI: 10.1007/s12298-017-0417-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 05/24/2023]
Abstract
S-Adenosylmethionine decarboxylase (SAMDC) is a key rate-limiting enzyme involved in polyamines biosynthesis, and it plays important roles in plant growth, development and stresses response. However, no SAMDC gene was reported in rubber tree. Here we report characteristics of an SAMDC gene (HbSAMDC1) in rubber tree. HbSAMDC1 contains a 1080 bp open reading frame (ORF) encoding 359 amino acids. Quantitative real-time PCR analyses revealed that HbSAMDC1 exhibited distinct expression patterns in different tissues and was regulated by various stresses, including drought, cold, salt, wounding, and H2O2 treatments. HbSAMDC1 5' untranslated region (UTR) contains a highly conserved overlapping tiny and small upstream ORFs (uORFs), encoding 2 and 52 amino acid residues, respectively. No introns were located in the main ORF of HbSAMDC1, whereas two introns were found in the 5' UTR. In transgenic tobaccos, the highly conserved small uORF of HbSAMDC1 is found to be responsible for translational repression of downstream β-glucuronidase reporter. To our knowledge, this is the first report on molecular cloning, expression profiles, and 5' UTR characteristics of HbSAMDC1. These results lay solid foundation for further elucidating HbSAMDC1 function in rubber tree.
Collapse
Affiliation(s)
- Manman Zhao
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| | - Zhi Deng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| | - Jiangshu Chen
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| | - Hong Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| | - Huiping Li
- College of Agriculture, Hainan University, Haikou, 570228 China
| | - Zhihui Xia
- College of Agriculture, Hainan University, Haikou, 570228 China
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, 571737 China
| |
Collapse
|
31
|
Alabdallah O, Ahou A, Mancuso N, Pompili V, Macone A, Pashkoulov D, Stano P, Cona A, Angelini R, Tavladoraki P. The Arabidopsis polyamine oxidase/dehydrogenase 5 interferes with cytokinin and auxin signaling pathways to control xylem differentiation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:997-1012. [PMID: 28199662 DOI: 10.1093/jxb/erw510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plants, the polyamines putrescine, spermidine, spermine (Spm), and thermospermine (Therm-Spm) participate in several physiological processes. In particular, Therm-Spm is involved in the control of xylem differentiation, having an auxin antagonizing effect. Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine catabolism. In Arabidopsis, five PAOs are present, among which AtPAO5 catalyzes the back-conversion of Spm, Therm-Spm, and N1-acetyl-Spm to spermidine. In the present study, it is shown that two loss-of-function atpao5 mutants and a 35S::AtPAO5 Arabidopsis transgenic line present phenotypical differences from the wild-type plants with regard to stem and root elongation, differences that are accompanied by changes in polyamine levels and the number of xylem vessels. It is additionally shown that cytokinin treatment, which up-regulates AtPAO5 expression in roots, differentially affects protoxylem differentiation in 35S::AtPAO5, atpao5, and wild-type roots. Together with these findings, Therm-Spm biosynthetic genes, as well as auxin-, xylem-, and cytokinin-related genes (such as ACL5, SAMDC4, PIN1, PIN6, VND6, VND7, ATHB8, PHB, CNA, PXY, XTH3, XCP1, and AHP6) are shown to be differentially expressed in the various genotypes. These data suggest that AtPAO5, being involved in the control of Therm-Spm homeostasis, participates in the tightly controlled interplay between auxin and cytokinins that is necessary for proper xylem differentiation.
Collapse
Affiliation(s)
| | - Abdellah Ahou
- Department of Sciences, University 'ROMA TRE', Rome, Italy
| | | | | | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', University of Rome 'La Sapienza', Rome, Italy
| | - Dimitre Pashkoulov
- Società Agricola Floramiata Servizi srl, 53025 Piancastagnaio, Siena, Italy
| | - Pasquale Stano
- Department of Sciences, University 'ROMA TRE', Rome, Italy
| | | | | | | |
Collapse
|
32
|
de Oliveira LF, Elbl P, Navarro BV, Macedo AF, Dos Santos ALW, Floh EIS, Cooke J. Elucidation of the polyamine biosynthesis pathway during Brazilian pine (Araucaria angustifolia) seed development. TREE PHYSIOLOGY 2017; 37:116-130. [PMID: 28175909 DOI: 10.1093/treephys/tpw107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 05/25/2023]
Abstract
Polyamines (PAs), such as spermidine and spermine, as well as amino acids that are substrates for their biosynthesis, are known to be essential for plant development. However, little is known about the gene expression and metabolic switches associated with the ornithine/arginine and PA biosynthetic pathway during seed development in conifers. To understand these metabolic switches, the enzyme activity of arginine decarboxylase and ornithine decarboxylase, as well as the contents of PAs and amino acids were evaluated in three Araucaria angustifolia (Bertol. Kuntze) seed developmental stages in combination with expression profile analyses of genes associated with the ornithine/arginine and PA biosynthetic pathway. Twelve genes were selected for further analysis and it was shown that the expression profiles of AaADC and AaSAMDC were up-regulated during zygotic embryo development. Polyamines and amino acids were found to accumulate differently in embryos and megagametophytes, and the transition from the globular to the cotyledonary stage was marked by an increase in free and conjugated spermidine and spermine contents. Putrescine is made from arginine, which was present at low content at the late embryogenesis stage, when high content of citrulline was observed. Differences in amino acids, PAs and gene expression profiles of biosynthetic genes at specific seed stages and at each seed transition stage were investigated, providing insights into molecular and physiological aspects of conifer embryogenesis for use in future both basic and applied studies.
Collapse
Affiliation(s)
- Leandro F de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Paula Elbl
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Bruno V Navarro
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Amanda F Macedo
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - André L W Dos Santos
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Eny I S Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | | |
Collapse
|
33
|
Cai Q, Fukushima H, Yamamoto M, Ishii N, Sakamoto T, Kurata T, Motose H, Takahashi T. The SAC51 Family Plays a Central Role in Thermospermine Responses in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1583-92. [PMID: 27388339 DOI: 10.1093/pcp/pcw113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/09/2016] [Indexed: 05/09/2023]
Abstract
The acaulis5 (acl5) mutant of Arabidopsis thaliana is defective in the biosynthesis of thermospermine and shows a dwarf phenotype associated with excess xylem differentiation. SAC51 was identified from a dominant suppressor of acl5, sac51-d, and encodes a basic helix-loop-helix protein. The sac51-d mutant has a premature termination codon in an upstream open reading frame (uORF) that is conserved among all four members of the SAC51 family, SAC51 and SACL1-SACL3 This suggests that thermospermine cancels the inhibitory effect of the uORF in main ORF translation. Another suppressor, sac57-d, has a mutation in the conserved uORF of SACL3 To define further the function of the SAC51 family in the thermospermine response, we analyzed T-DNA insertion mutants of each gene. Although sacl1-1 may not be a null allele, the quadruple mutant showed a semi-dwarf phenotype but with an increased level of thermospermine and decreased sensitivity to exogenous thermospermine that normally represses xylem differentiation. The sac51-1 sacl3-1 double mutant was also insensitive to thermospermine. These results suggest that SAC51 and SACL3 play a key role in thermospermine-dependent negative control of thermospermine biosynthesis and xylem differentiation. Using 5' leader-GUS (β-glucuronidase) fusion constructs, however, we detected a significant enhancement of the GUS activity by thermospermine only in SAC51 and SACL1 constructs. Furthermore, while acl5-1 sac51-1 showed the acl5 dwarf phenotype, acl5-1 sacl3-1 exhibited an extremely tiny-plant phenotype. These results suggest a complex regulatory network for the thermospermine response in which SAC51 and SACL3 function in parallel pathways.
Collapse
Affiliation(s)
- Qingqing Cai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroko Fukushima
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mai Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Nami Ishii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tomoaki Sakamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroyasu Motose
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
34
|
Le Deunff E, Lecourt J. Non-specificity of ethylene inhibitors: 'double-edged' tools to find out new targets involved in the root morphogenetic programme. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:353-61. [PMID: 26434926 DOI: 10.1111/plb.12405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 05/23/2023]
Abstract
In the last decade, genetic and pharmacological approaches have been used to explore ethylene biosynthesis and perception in order to study the role of ethylene and ethylene/auxin interaction in root architecture development. However, recent findings with pharmacological approaches highlight the non-specificity of commonly used inhibitors. This suggests that caution is required for interpreting these studies and that the use of pharmacological agents is a 'double-edged' tool. On one hand, non-specific effects make interpretation difficult unless other experiments, such as with different mutants or with multiple diversely acting chemicals, are conducted. On the other hand, the non-specificity of inhibitors opens up the possibility of uncovering some ligands or modulators of new receptors such as plant glutamate-like receptors and importance of some metabolic hubs in carbon and nitrogen metabolism such as the pyridoxal phosphate biosynthesis involved in the regulation of the root morphogenetic programme. Identification of such targets is a critical issue to improve the efficiency of absorption of macronutrients in relation to root the morphogenetic programme.
Collapse
Affiliation(s)
- E Le Deunff
- Normandie Université, UMR EVA, F-14032, Caen cedex, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie, Nutritions NCS, INRA F-14032 Caen cedex, France
| | - J Lecourt
- East Malling Research, East Malling, Kent, UK
| |
Collapse
|
35
|
Mo HJ, Sun YX, Zhu XL, Wang XF, Zhang Y, Yang J, Yan GJ, Ma ZY. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. PLANTA 2016; 243:1023-39. [PMID: 26757733 DOI: 10.1007/s00425-015-2463-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/25/2015] [Indexed: 05/06/2023]
Abstract
Cotton S-adenosylmethionine decarboxylase-, rather than spermine synthase-, mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. Spermine (Spm) signaling is correlated with plant resistance to the fungal pathogen Verticillium dahliae. We identified genes for key rate-limiting enzymes in the biosynthesis of Spm, namely S-adenosylmethionine decarboxylase (GhSAMDC) and Spm synthase (GhSPMS). These were found by screening suppression subtractive hybridization and cDNA libraries of cotton (Gossypium) species tolerant to Verticillium wilt. Both were induced early and strongly by inoculation with V. dahliae and application of plant hormones. Silencing of GhSPMS or GhSAMDC in cotton leaves led to a significant accumulation of upstream substrates and, ultimately, enhanced plant susceptibility to Verticillium infection. Exogenous supplementation of Spm to the silenced cotton plants improved resistance. When compared with the wild type (WT), constitutive expression of GhSAMDC in Arabidopsis thaliana was associated with greater Verticillium wilt resistance and higher accumulations of Spm, salicylic acid, and leucine during the infection period. By contrast, transgenic Arabidopsis plants that over-expressed GhSPMS were unexpectedly more susceptible than the WT to V. dahliae and they also had impaired levels of putrescine (Put) and salicylic acid (SA). The susceptibility exhibited in GhSPMS-overexpressing Arabidopsis plants was partially reversed by the exogenous supply of Put or SA. In addition, the responsiveness of those two transgenic Arabidopsis lines to V. dahliae was associated with an alteration in transcripts of genes involved in plant resistance to epidermal penetrations and amino acid signaling. Together, these results suggest that GhSAMDC-, rather than GhSPMS-, mediated spermine biosynthesis contributes to plant resistance against V. dahliae through SA- and leucine-correlated signaling.
Collapse
Affiliation(s)
- Hui-Juan Mo
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan-Xiang Sun
- Institute of Genetics and Breeding, Langfang Teachers University, Langfang, 065000, China
| | - Xiao-Li Zhu
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xing-Fen Wang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Gui-Jun Yan
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
- School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - Zhi-Ying Ma
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
36
|
Tavladoraki P, Cona A, Angelini R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. FRONTIERS IN PLANT SCIENCE 2016; 7:824. [PMID: 27446096 PMCID: PMC4923165 DOI: 10.3389/fpls.2016.00824] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/26/2016] [Indexed: 05/18/2023]
Abstract
Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeostasis and as sources of biologically-active reaction products. CuAOs and PAOs have been found at high level in the cell-wall of several species belonging to Fabaceae and Poaceae families, respectively, especially in tissues fated to undertake extensive wall loosening/stiffening events and/or in cells undergoing programmed cell death (PCD). Apoplastic CuAOs and PAOs have been shown to play a key role as a source of H2O2 in light- or developmentally-regulated differentiation events, thus influencing cell-wall architecture and maturation as well as PCD. Moreover, growing evidence suggests a key role of intracellular CuAOs and PAOs in several facets of plant development. Here, we discuss recent advances in understanding the contribution of different CuAOs/PAOs, as well as their cross-talk with different intracellular and apoplastic metabolic pathways, in tissue differentiation and organ development.
Collapse
|
37
|
Belda-Palazón B, Almendáriz C, Martí E, Carbonell J, Ferrando A. Relevance of the Axis Spermidine/eIF5A for Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2016; 7:245. [PMID: 26973686 PMCID: PMC4773603 DOI: 10.3389/fpls.2016.00245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/13/2016] [Indexed: 05/22/2023]
Abstract
One key role of the essential polyamine spermidine in eukaryotes is to provide the 4-aminobutyl moiety group destined to the post-translational modification of a lysine in the highly conserved translation factor eIF5A. This modification is catalyzed by two sequential enzymatic steps leading to the activation of eIF5A by the conversion of one conserved lysine to the unusual amino acid hypusine. The active translation factor facilitates the sequence-specific translation of polyproline sequences that otherwise cause ribosome stalling. In spite of the well-characterized involvement of active eIF5A in the translation of proline repeat-rich proteins, its biological role has been recently elucidated only in mammals, and it is poorly described at the functional level in plants. Here we describe the alterations in plant growth and development caused by RNAi-mediated conditional genetic inactivation of the hypusination pathway in Arabidopsis thaliana by knocking-down the enzyme deoxyhypusine synthase. We have uncovered that spermidine-mediated activation of eIF5A by hypusination is involved in several aspects of plant biology such as the control of flowering time, the aerial and root architecture, and root hair growth. In addition this pathway is required for adaptation to challenging growth conditions such as high salt and high glucose medium and to elevated concentrations of the plant hormone ABA. We have also performed a bioinformatic analysis of polyproline-rich containing proteins as putative eIF5A targets to uncover their organization in clusters of protein networks to find molecular culprits for the disclosed phenotypes. This study represents a first attempt to provide a holistic view of the biological relevance of the spermidine-dependent hypusination pathway for plant growth and development.
Collapse
|
38
|
Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y, Guan C, Zhang Z, Li J, Zhang J, Chen S, Wen J, Ma C, Tu J, Shen J, Fu T, Yi B. Genome-Wide Association Study Provides Insight into the Genetic Control of Plant Height in Rapeseed (Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1102. [PMID: 27512396 PMCID: PMC4961929 DOI: 10.3389/fpls.2016.01102] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/12/2016] [Indexed: 05/18/2023]
Abstract
Plant height is a key morphological trait of rapeseed. In this study, we measured plant height of a rapeseed population across six environments. This population contains 476 inbred lines representing the major Chinese rapeseed genepool and 44 lines from other countries. The 60K Brassica Infinium® SNP array was utilized to genotype the association panel. A genome-wide association study (GWAS) was performed via three methods, including a robust, novel, nonparametric Anderson-Darling (A-D) test. Consequently, 68 loci were identified as significantly associated with plant height (P < 5.22 × 10(-5)), and more than 70% of the loci (48) overlapped the confidence intervals of reported QTLs from nine mapping populations. Moreover, 24 GWAS loci were detected with selective sweep signals, which reflected the signatures of historical semi-dwarf breeding. In the linkage disequilibrium (LD) decay range up-and downstream of 65 loci (r (2) > 0.1), we found plausible candidates orthologous to the documented Arabidopsis genes involved in height regulation. One significant association found by GWAS colocalized with the established height locus BnRGA in rapeseed. Our results provide insights into the genetic basis of plant height in rapeseed and may facilitate marker-based breeding.
Collapse
Affiliation(s)
- Chengming Sun
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Lei Yan
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Sheng Liu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Chunyun Guan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, College of Agronomy, Hunan Agricultural UniversityChangsha, China
| | - Zhenqian Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, College of Agronomy, Hunan Agricultural UniversityChangsha, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Technology Research Center, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Jiangsu Academy of Agricultural ScienceNanjing, China
| | - Song Chen
- Key Laboratory of Cotton and Rapeseed, Jiangsu Academy of Agricultural ScienceNanjing, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Bin Yi
| |
Collapse
|
39
|
Ghuge SA, Tisi A, Carucci A, Rodrigues-Pousada RA, Franchi S, Tavladoraki P, Angelini R, Cona A. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions. PLANTS 2015; 4:489-504. [PMID: 27135338 PMCID: PMC4844406 DOI: 10.3390/plants4030489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H2O2) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.
Collapse
Affiliation(s)
- Sandip A Ghuge
- Institute of Crystallography, Consiglio Nazionale delle Ricerche (CNR), Monterotondo 00015, Italy.
| | - Alessandra Tisi
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
| | - Andrea Carucci
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
| | | | - Stefano Franchi
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
| | - Paraskevi Tavladoraki
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome 00136, Italy.
| | - Riccardo Angelini
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome 00136, Italy.
| | - Alessandra Cona
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome 00136, Italy.
| |
Collapse
|
40
|
Imamura T, Fujita K, Tasaki K, Higuchi A, Takahashi H. Characterization of spermidine synthase and spermine synthase--The polyamine-synthetic enzymes that induce early flowering in Gentiana triflora. Biochem Biophys Res Commun 2015; 463:781-6. [PMID: 26056006 DOI: 10.1016/j.bbrc.2015.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Abstract
Polyamines are essential for several living processes in plants. However, regulatory mechanisms of polyamines in herbaceous perennial are almost unknown. Here, we identified homologs of two Arabidopsis polyamine-synthetic enzymes, spermidine synthase (SPDS) and spermine synthase (SPMS) denoted as GtSPDS and GtSPMS, from the gentian plant, Gentiana triflora. Our results showed that recombinant proteins of GtSPDS and GtSPMS possessed SPDS and SPMS activities, respectively. The expression levels of GtSPDS and GtSPMS increased transiently during vegetative to reproductive growth phase and overexpression of the genes hastened flowering, suggesting that these genes are involved in flowering induction in gentian plants.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Keisuke Tasaki
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Atsumi Higuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan.
| |
Collapse
|
41
|
Nambeesan SU, Mandel JR, Bowers JE, Marek LF, Ebert D, Corbi J, Rieseberg LH, Knapp SJ, Burke JM. Association mapping in sunflower (Helianthus annuus L.) reveals independent control of apical vs. basal branching. BMC PLANT BIOLOGY 2015; 15:84. [PMID: 25887675 PMCID: PMC4407831 DOI: 10.1186/s12870-015-0458-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/13/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Shoot branching is an important determinant of plant architecture and influences various aspects of growth and development. Selection on branching has also played an important role in the domestication of crop plants, including sunflower (Helianthus annuus L.). Here, we describe an investigation of the genetic basis of variation in branching in sunflower via association mapping in a diverse collection of cultivated sunflower lines. RESULTS Detailed phenotypic analyses revealed extensive variation in the extent and type of branching within the focal population. After correcting for population structure and kinship, association analyses were performed using a genome-wide collection of SNPs to identify genomic regions that influence a variety of branching-related traits. This work resulted in the identification of multiple previously unidentified genomic regions that contribute to variation in branching. Genomic regions that were associated with apical and mid-apical branching were generally distinct from those associated with basal and mid-basal branching. Homologs of known branching genes from other study systems (i.e., Arabidopsis, rice, pea, and petunia) were also identified from the draft assembly of the sunflower genome and their map positions were compared to those of associations identified herein. Numerous candidate branching genes were found to map in close proximity to significant branching associations. CONCLUSIONS In sunflower, variation in branching is genetically complex and overall branching patterns (i.e., apical vs. basal) were found to be influenced by distinct genomic regions. Moreover, numerous candidate branching genes mapped in close proximity to significant branching associations. Although the sunflower genome exhibits localized islands of elevated linkage disequilibrium (LD), these non-random associations are known to decay rapidly elsewhere. The subset of candidate genes that co-localized with significant associations in regions of low LD represents the most promising target for future functional analyses.
Collapse
Affiliation(s)
- Savithri U Nambeesan
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA, 30602, USA.
- Present address: Department of Horticulture, University of Georgia, Athens, GA, 30602, USA.
| | - Jennifer R Mandel
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA, 30602, USA.
- Present address: Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA.
| | - John E Bowers
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Laura F Marek
- North Central Regional Plant Introduction Station, Iowa State University/USDA-ARS, Ames, IA, 50014, USA.
| | - Daniel Ebert
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Jonathan Corbi
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA, 30602, USA.
- Present address: Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Steven J Knapp
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - John M Burke
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
42
|
Quan J, Zhang C, Zhang S, Meng S, Zhao Z, Xu X. Molecular cloning and expression analysis of the MTN gene during adventitious root development in IBA-induced tetraploid black locust. Gene 2014; 553:140-50. [PMID: 25305345 DOI: 10.1016/j.gene.2014.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/10/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022]
Abstract
5'-Methylthioadenosine (MTA) nucleosidase (MTN) plays a key role in the methionine (Met) recycling pathway of plants. Here, we report the isolation of the 1158 bp full-length, cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) MTN (TrbMTN), which contains an open reading frame of 810 bp that encodes a 269 amino acid protein. The amino acid sequence of TrbMTN has more than 88% sequence identity to the MTNs from other plants, with a closer phylogenetic relationship to MTNs from legumes than to MTNs from other plants. Subcellular localization analysis revealed that the TrbMTN gene localizes mainly to the cell membrane and cytoplasm of onion epidermal cells. Indole-3-butyric acid (IBA)-treated cuttings showed higher TrbMTN transcript levels than untreated control cuttings during root primordium and adventitious root formation. TrbMTN and key Met cycle genes showed differential expression in shoots, leaves, stems, and roots, with the highest expression observed in stems. IBA-treated cuttings also showed higher TrbMTN activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbMTN gene might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings.
Collapse
Affiliation(s)
- Jine Quan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Chunxia Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Sheng Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Sen Meng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Zhong Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Xuexuan Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
43
|
Quan J, Zhang S, Zhang C, Meng S, Zhao Z, Xu X. Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust. PLoS One 2014; 9:e108709. [PMID: 25285660 PMCID: PMC4186884 DOI: 10.1371/journal.pone.0108709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/02/2014] [Indexed: 11/29/2022] Open
Abstract
S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings.
Collapse
Affiliation(s)
- Jine Quan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Sheng Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Chunxia Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Sen Meng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Zhong Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- * E-mail: (ZZ); (XXX)
| | - Xuexuan Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- * E-mail: (ZZ); (XXX)
| |
Collapse
|
44
|
Kim DW, Watanabe K, Murayama C, Izawa S, Niitsu M, Michael AJ, Berberich T, Kusano T. Polyamine Oxidase5 Regulates Arabidopsis Growth through Thermospermine Oxidase Activity. PLANT PHYSIOLOGY 2014; 165:1575-1590. [PMID: 24906355 PMCID: PMC4119040 DOI: 10.1104/pp.114.242610] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The major plant polyamines (PAs) are the tetraamines spermine (Spm) and thermospermine (T-Spm), the triamine spermidine, and the diamine putrescine. PA homeostasis is governed by the balance between biosynthesis and catabolism; the latter is catalyzed by polyamine oxidase (PAO). Arabidopsis (Arabidopsis thaliana) has five PAO genes, AtPAO1 to AtPAO5, and all encoded proteins have been biochemically characterized. All AtPAO enzymes function in the back-conversion of tetraamine to triamine and/or triamine to diamine, albeit with different PA specificities. Here, we demonstrate that AtPAO5 loss-of-function mutants (pao5) contain 2-fold higher T-Spm levels and exhibit delayed transition from vegetative to reproductive growth compared with that of wild-type plants. Although the wild type and pao5 are indistinguishable at the early seedling stage, externally supplied low-dose T-Spm, but not other PAs, inhibits aerial growth of pao5 mutants in a dose-dependent manner. Introduction of wild-type AtPAO5 into pao5 mutants rescues growth and reduces the T-Spm content, demonstrating that AtPAO5 is a T-Spm oxidase. Recombinant AtPAO5 catalyzes the conversion of T-Spm and Spm to triamine spermidine in vitro. AtPAO5 specificity for T-Spm in planta may be explained by coexpression with T-Spm synthase but not with Spm synthase. The pao5 mutant lacking T-Spm oxidation and the acl5 mutant lacking T-Spm synthesis both exhibit growth defects. This study indicates a crucial role for T-Spm in plant growth and development.
Collapse
Affiliation(s)
- Dong Wook Kim
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan (D.W.K., K.W., C.M., S.I., T.K.);Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290, Japan (M.N.);University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 (A.J.M.); andBiodiversity and Climate Research Center, D-60325 Frankfurt am Main, Germany (T.B.)
| | - Kanako Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan (D.W.K., K.W., C.M., S.I., T.K.);Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290, Japan (M.N.);University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 (A.J.M.); andBiodiversity and Climate Research Center, D-60325 Frankfurt am Main, Germany (T.B.)
| | - Chihiro Murayama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan (D.W.K., K.W., C.M., S.I., T.K.);Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290, Japan (M.N.);University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 (A.J.M.); andBiodiversity and Climate Research Center, D-60325 Frankfurt am Main, Germany (T.B.)
| | - Sho Izawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan (D.W.K., K.W., C.M., S.I., T.K.);Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290, Japan (M.N.);University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 (A.J.M.); andBiodiversity and Climate Research Center, D-60325 Frankfurt am Main, Germany (T.B.)
| | - Masaru Niitsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan (D.W.K., K.W., C.M., S.I., T.K.);Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290, Japan (M.N.);University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 (A.J.M.); andBiodiversity and Climate Research Center, D-60325 Frankfurt am Main, Germany (T.B.)
| | - Anthony J Michael
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan (D.W.K., K.W., C.M., S.I., T.K.);Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290, Japan (M.N.);University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 (A.J.M.); andBiodiversity and Climate Research Center, D-60325 Frankfurt am Main, Germany (T.B.)
| | - Thomas Berberich
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan (D.W.K., K.W., C.M., S.I., T.K.);Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290, Japan (M.N.);University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 (A.J.M.); andBiodiversity and Climate Research Center, D-60325 Frankfurt am Main, Germany (T.B.)
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan (D.W.K., K.W., C.M., S.I., T.K.);Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290, Japan (M.N.);University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 (A.J.M.); andBiodiversity and Climate Research Center, D-60325 Frankfurt am Main, Germany (T.B.)
| |
Collapse
|
45
|
Tiburcio AF, Altabella T, Bitrián M, Alcázar R. The roles of polyamines during the lifespan of plants: from development to stress. PLANTA 2014; 240:1-18. [PMID: 24659098 DOI: 10.1007/s00425-014-2055-9] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant development and participate in abiotic and biotic stress responses. A tight regulation of PA homeostasis is required, since depletion or overaccumulation of PAs can be detrimental for cell viability in many organisms. In plants, homeostasis is achieved by modulation of PA biosynthesis, conjugation, catabolism, and transport. However, recent data indicate that such mechanisms are not mere modulators of PA pools but actively participate in PA functions. Examples are found in the spermidine-dependent eiF5A hypusination required for cell division, PA hydroxycinnamic acid conjugates required for pollen development, and the involvement of thermospermine in cell specification. Recent advances also point to implications of PA transport in stress tolerance, PA-dependent transcriptional and translational modulation of genes and transcripts, and posttranslational modifications of proteins. Overall, the molecular mechanisms identified suggest that PAs are intricately coordinated and/or mediate different stress and developmental pathways during the lifespan of plants.
Collapse
|
46
|
Baima S, Forte V, Possenti M, Peñalosa A, Leoni G, Salvi S, Felici B, Ruberti I, Morelli G. Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module. MOLECULAR PLANT 2014; 7:1006-1025. [PMID: 24777988 DOI: 10.1093/mp/ssu051] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The role of auxin as main regulator of vascular differentiation is well established, and a direct correlation between the rate of xylem differentiation and the amount of auxin reaching the (pro)cambial cells has been proposed. It has been suggested that thermospermine produced by ACAULIS5 (ACL5) and bushy and dwarf2 (BUD2) is one of the factors downstream to auxin contributing to the regulation of this process in Arabidopsis. Here, we provide an in-depth characterization of the mechanism through which ACL5 modulates xylem differentiation. We show that an increased level of ACL5 slows down xylem differentiation by negatively affecting the expression of homeodomain-leucine zipper (HD-ZIP) III and key auxin signaling genes. This mechanism involves the positive regulation of thermospermine biosynthesis by the HD-ZIP III protein Arabidopsis thaliana homeobox8 tightly controlling the expression of ACL5 and BUD2. In addition, we show that the HD-ZIP III protein REVOLUTA contributes to the increased leaf vascularization and long hypocotyl phenotype of acl5 likely by a direct regulation of auxin signaling genes such as like auxin resistant2 (LAX2) and LAX3. We propose that proper formation and differentiation of xylem depend on a balance between positive and negative feedback loops operating through HD-ZIP III genes.
Collapse
Affiliation(s)
- Simona Baima
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, Rome 00178, Italy
| | - Valentina Forte
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, Rome 00178, Italy
| | - Marco Possenti
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, Rome 00178, Italy
| | - Andrés Peñalosa
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, Rome 00178, Italy
| | - Guido Leoni
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, Rome 00178, Italy; Present address: Department of Physics, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Sergio Salvi
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, Rome 00178, Italy
| | - Barbara Felici
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, Rome 00178, Italy; Present address: Soil-Plant System Studies Research Centre, Agricultural Research Council, Via della Navicella 2-4, 00184, Rome, Italy
| | - Ida Ruberti
- Institute of Biology, Molecular Medicine and NanoBiotechnology, National Research Council, P.le A. Moro 5, Rome 00185, Italy
| | - Giorgio Morelli
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, Rome 00178, Italy.
| |
Collapse
|
47
|
Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014; 2014:701596. [PMID: 24804192 PMCID: PMC3996477 DOI: 10.1155/2014/701596] [Citation(s) in RCA: 564] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 01/30/2023] Open
Abstract
Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity stress at different levels and an integrated approach of combining molecular tools with physiological and biochemical techniques are imperative for the development of salt-tolerant varieties of plants in salt-affected areas. Recent research has identified various adaptive responses to salinity stress at molecular, cellular, metabolic, and physiological levels, although mechanisms underlying salinity tolerance are far from being completely understood. This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress.
Collapse
Affiliation(s)
- Bhaskar Gupta
- Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
48
|
Jiménez-Bremont JF, Marina M, Guerrero-González MDLL, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:95. [PMID: 24672533 PMCID: PMC3957736 DOI: 10.3389/fpls.2014.00095] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/25/2014] [Indexed: 05/19/2023]
Abstract
During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.
Collapse
Affiliation(s)
- Juan F. Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | - María Marina
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | | | - Franco R. Rossi
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Diana Sánchez-Rangel
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | | | - Oscar A. Ruiz
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Andrés Gárriz
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| |
Collapse
|
49
|
Liu T, Chen JA, Wang W, Simon M, Wu F, Hu W, Chen JB, Zheng H. A combined proteomic and transcriptomic analysis on sulfur metabolism pathways of Arabidopsis thaliana under simulated acid rain. PLoS One 2014; 9:e90120. [PMID: 24595051 PMCID: PMC3940841 DOI: 10.1371/journal.pone.0090120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
With rapid economic development, most regions in southern China have suffered acid rain (AR) pollution. In our study, we analyzed the changes in sulfur metabolism in Arabidopsis under simulated AR stress which provide one of the first case studies, in which the systematic responses in sulfur metabolism were characterized by high-throughput methods at different levels including proteomic, genomic and physiological approaches. Generally, we found that all of the processes related to sulfur metabolism responded to AR stress, including sulfur uptake, activation and also synthesis of sulfur-containing amino acid and other secondary metabolites. Finally, we provided a catalogue of the detected sulfur metabolic changes and reconstructed the coordinating network of their mutual influences. This study can help us to understand the mechanisms of plants to adapt to AR stress.
Collapse
Affiliation(s)
- Tingwu Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
- Department of Biology, Huaiyin Normal University, Huaian, Jiangsu, P. R. China
| | - Juan A. Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Wenhua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Martin Simon
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Feihua Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Wenjun Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Juan B. Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Hailei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, P. R. China
- * E-mail:
| |
Collapse
|
50
|
Moschou PN, Roubelakis-Angelakis KA. Polyamines and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1285-96. [PMID: 24218329 DOI: 10.1093/jxb/ert373] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyamines (PAs) have been considered as important molecules for survival. However, evidence reinforces that PAs are also implicated, directly or indirectly, in pathways regulating programmed cell death (PCD). Direct correlation of PAs with cell death refers to their association with particular biological processes, and their physical contact with molecules or structures involved in cell death. Indirectly, PAs regulate PCD through their metabolic derivatives, such as catabolic and interconversion products. Cytotoxic products of PA metabolism are involved in PCD cascades, whereas it remains largely elusive how PAs directly control pathways leading to PCD. In this review, we present and compare advances in PA-dependent PCD in animals and plants.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | | |
Collapse
|