1
|
Aslan EI, Ozkara G, Kilicarslan O, Ser OS, Bostan C, Yildiz A, Diren Borekcioglu A, Ozturk O, Kucukhuseyin O, Yilmaz Aydogan H. Receptor for advanced glycation end products polymorphisms in coronary artery ectasia. Gene 2024; 916:148450. [PMID: 38588932 DOI: 10.1016/j.gene.2024.148450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Although the implication of receptor of advanced glycation endproducts (RAGE) has been reported in coronary artery disease, its roles in coronary artery ectasia (CAE) have remained undetermined. Furthermore, the effect of RAGE polymorfisms were not well-defined in scope of soluble RAGE (sRAGE) levels. Thus, we aimed to investigate the influence of the functional polymorphisms of RAGE -374T > A (rs1800624) and G82S (rs2070600) in CAE development. METHODS This prospective observational study was conducted in 2 groups selected of 2452 patients who underwent elective coronary angiography (CAG) for evaluation after positive noninvasive heart tests. Group-I included 98 patients with non-obstructive coronary artery disease and CAE, and Group-II (control) included 100 patients with normal coronary arteries. SNPs were genotyped by real-time PCR using Taqman® genotyping assay. Serum sRAGE and soluble lectin-like oxidized receptor-1 (sOLR1) were assayed by ELISA and serum lipids were measured enzymatically. RESULTS The frequencies of the RAGE -374A allele and -374AA genotype were significantly higher in CAE patients compared to controls (p < 0.001). sRAGE levels were not different between study groups, while sOLR1 levels were elevated in CAE (p = 0.004). In controls without systemic disease, -374A allele was associated with low sRAGE levels (p < 0.05), but this association was not significant in controls with HT. Similarly, sRAGE levels of CAE patients with both HT and T2DM were higher than those no systemic disease (p = 0.02). The -374A allele was also associated with younger patient age and higher platelet count in the CAE group in both total and subgroup analyses. In the correlation analyses, the -374A allele was also negatively correlated with age and positively correlated with Plt in all of these CAE groups. In the total CAE group, sRAGE levels also showed a positive correlation with age and a negative correlation with HDL-cholesterol levels. On the other hand, a negative correlation was observed between sRAGE and Plt in the total, hypertensive and no systemic disease control subgroups. Multivariate logistic regression analysis confirmed that the -374A allele (p < 0.001), hyperlipidemia (p < 0.05), and high sOLR1 level (p < 0.05) are risk factors for CAE. ROC curve analysis shows that RAGE -374A allele has AUC of 0.713 (sensitivity: 83.7 %, specificity: 59.0 %), which is higher than HLD (sensitivity: 59.2 %, specificity: 69.0 %), HT (sensitivity: 62.4 %, specificity: 61.1 %) and high sOLR1 level (≥0.67 ng/ml)) (sensitivity: 59.8 %, specificity: 58.5 %). CONCLUSION Beside the demonstration of the relationship between -374A allele and increased risk of CAE for the first time, our results indicate that antihypertensive and antidiabetic treatment in CAE patients causes an increase in sRAGE levels. The lack of an association between the expected -374A allele and low sRAGE levels in total CAE group was attributed to the high proportion of hypertensive patients and hence to antihypertensive treatment. Moreover, the RAGE -374A allele is associated with younger age at CAE and higher Plt, suggesting that -374A may also be associated with platelet activation, which plays a role in the pathogenesis of CAE. However, our data need to be confirmed in a large study for definitive conclusions.
Collapse
Affiliation(s)
- Ezgi Irmak Aslan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Istanbul Nisantasi University, Istanbul, Turkey.
| | - Gulcin Ozkara
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Department of Medical Biology, Bezmialem Vakıf University, Istanbul, Turkey.
| | - Onur Kilicarslan
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ozgur Selim Ser
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Cem Bostan
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ahmet Yildiz
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ayca Diren Borekcioglu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Ozlem Kucukhuseyin
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Hulya Yilmaz Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
2
|
Liu M, Jiang H, Momeni MR. Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol 2024; 273:132732. [PMID: 38823748 DOI: 10.1016/j.ijbiomac.2024.132732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Mohammad Reza Momeni
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
4
|
Batnozic Varga M, Held M, Wagner J, Arvaj N, Sestan M, Sapina M, Kifer N, Grguric D, Crkvenac Gornik K, Gagro A, Frkovic M, Jelusic M. The Association of HMGB1 and RAGE Gene Polymorphisms with IgA Vasculitis. Biochem Genet 2024; 62:2268-2278. [PMID: 37902913 DOI: 10.1007/s10528-023-10536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/22/2023] [Indexed: 11/01/2023]
Abstract
High-mobility group box 1 (HMGB1) is a pleiotropic cytokine that propagates inflammation by its extracellular action of interacting with the receptor for advanced glycation end products (RAGE). Both HMGB1 and RAGE play multiple roles in the pathogenesis of a variety of inflammatory and autoimmune diseases. We investigated the association of five single-nucleotide polymorphisms (SNPs) of the HMGB1 gene (rs1412125, rs2249825, rs1045411, rs1060348, rs41369348) and four SNPs of the RAGE gene (rs1800624, rs1800625, rs2070600, rs3134940) with the susceptibility and clinical features of paediatric patients with IgA vasculitis (IgAV), also known as Henoch-Schönlein's purpura. This case‒control study included 103 children with IgAV (experimental group) and 150 age-matched healthy individuals (control group). The strength of the association between different groups and alleles or genotypes of HMGB1 and RAGE was estimated using odds ratios (ORs) and 95% confidence intervals (CIs). The HMGB1 polymorphisms rs41369348, rs1045411, rs2249825 and rs1412125 were associated with the development of generalized purpuric rash, and rs1412125 was associated with IgAV nephritis (IgAVN). The RAGE polymorphism rs2070600 might be linked to the development of arthritis in IgAV patients. There was no statistically significant association between the analysed polymorphisms and susceptibility to IgAV. This is the first study to propose an association between several HMGB1 and RAGE polymorphisms and different phenotypes in the clinical course of IgAV in a paediatric population. Further research on other polymorphisms of HMGB1 and RAGE should be conducted in a larger number of patients.
Collapse
Affiliation(s)
- Mateja Batnozic Varga
- Department of Paediatrics, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine Osijek, University Hospital Centre Osijek, Osijek, Croatia
| | - Martina Held
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nena Arvaj
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mario Sestan
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Matej Sapina
- Department of Paediatrics, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine Osijek, University Hospital Centre Osijek, Osijek, Croatia
| | - Nastasia Kifer
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Danica Grguric
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Kristina Crkvenac Gornik
- Department of Laboratory Diagnostics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Alenka Gagro
- Department of Paediatrics, Children's Hospital Zagreb, Zagreb, Croatia
| | - Marijan Frkovic
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Marija Jelusic
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
5
|
Grauen Larsen H, Sun J, Sjögren M, Borné Y, Engström G, Nilsson P, Orho-Melander M, Goncalves I, Nilsson J, Melander O, Schiopu A. The Gly82Ser polymorphism in the receptor for advanced glycation endproducts increases the risk for coronary events in the general population. Sci Rep 2024; 14:11567. [PMID: 38773223 PMCID: PMC11109115 DOI: 10.1038/s41598-024-62385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) has pro-inflammatory and pro-atherogenic effects. Low plasma levels of soluble RAGE (sRAGE), a decoy receptor for RAGE ligands, have been associated with increased risk for major adverse coronary events (MACE) in the general population. We performed a genome-wide association study to identify genetic determinants of plasma sRAGE in 4338 individuals from the cardiovascular arm of the Malmö Diet and Cancer study (MDC-CV). Further, we explored the associations between these genetic variants, incident first-time MACE and mortality in 24,640 unrelated individuals of European ancestry from the MDC cohort. The minor alleles of four single nucleotide polymorphisms (SNPs): rs2070600, rs204993, rs116653040, and rs7306778 were independently associated with lower plasma sRAGE. The minor T (vs. C) allele of rs2070600 was associated with increased risk for MACE [HR 1.13 95% CI (1.02-1.25), P = 0.016]. Neither SNP was associated with mortality. This is the largest study to demonstrate a link between a genetic sRAGE determinant and CV risk. Only rs2070600, which enhances RAGE function by inducing a Gly82Ser polymorphism in the ligand-binding domain, was associated with MACE. The lack of associations with incident MACE for the other sRAGE-lowering SNPs suggests that this functional RAGE modification is central for the observed relationship.
Collapse
Affiliation(s)
- Helena Grauen Larsen
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital Malmö, 21428, Malmö, Sweden
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
| | - Marketa Sjögren
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
| | - Yan Borné
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
| | - Peter Nilsson
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital Malmö, 21428, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, 21428, Malmö, Sweden
- Department of Internal Medicine, Skane University Hospital Lund, 22242, Lund, Sweden
| | - Alexandru Schiopu
- Department of Internal Medicine, Skane University Hospital Lund, 22242, Lund, Sweden.
- Department of Translational Medicine, Lund University, 21428, Malmö, Sweden.
- Nicolae Simionescu Institute of Cellular Biology and Pathology, 050568, Bucharest, Romania.
| |
Collapse
|
6
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
7
|
Rojas A, Lindner C, Schneider I, Gonzalez I, Uribarri J. The RAGE Axis: A Relevant Inflammatory Hub in Human Diseases. Biomolecules 2024; 14:412. [PMID: 38672429 PMCID: PMC11048448 DOI: 10.3390/biom14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile;
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile;
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
8
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Srivastava R, Shaik AM, Suzer B, Ibraim IC, Landucci G, Tifrea DF, Singer M, Jamal L, Edwards RA, Vahed H, Brown L, BenMohamed L. Antiviral and Anti-Inflammatory Therapeutic Effect of RAGE-Ig Protein against Multiple SARS-CoV-2 Variants of Concern Demonstrated in K18-hACE2 Mouse and Syrian Golden Hamster Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:576-585. [PMID: 38180084 DOI: 10.4049/jimmunol.2300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-β) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California, Irvine, School of Medicine, Irvine, CA
| | - Gary Landucci
- High Containment Facility, University of California, Irvine, School of Medicine, Irvine, CA
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine, CA
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Leila Jamal
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine, CA
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA
| | | | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, School of Medicine, Irvine, CA
- Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, CA
| |
Collapse
|
9
|
Hajizadeh-Sharafabad F, Shojaei-Zarghani S, Sharifi-Zahabi E, Gerami F, Pashaei MR. Associations of circulating advanced glycation end products and their soluble receptors with cancer risk: A systematic review and meta-analysis of observational studies. Glycoconj J 2024; 41:35-46. [PMID: 38498243 DOI: 10.1007/s10719-024-10147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 03/20/2024]
Abstract
Advanced glycation end products (AGE) in complex with their receptors (RAGE) cause a chronic inflammatory state in the body, which is the major mechanism in cancer development. This study aimed to conduct a systematic review and meta-analysis on the observational studies investigating the association between AGEs / sRAGE and cancer incidence. The PubMed, Scopus, and Web of Science databases were comprehensively searched to identify papers focused on the associations of sRAGE and AGEs with cancer incidence up to May 2023. Eight studies with a total of 7690 participants were included in the analysis to evaluate the association between circulating sRAGE and cancer incidence. The results indicated that circulating sRAGE (per 100 ng/L) had a significant inverse association with cancer incidence (RR 0.977; 95% CI 0.956, 0.999; p = 0.036; I 2 = 73.3%). The association between AGEs and cancer incidence was evaluated in 8 studies with a total of 3718 individuals. Serum concentrations of AGEs (per 100 µg/L) were not associated with the risk of cancer incidence (RR 0.988; 95% CI 0.974, 1.002; p = 0.08; I2 = 78.8%). Our findings revealed that a higher circulating sRAGE may have a protective effect against cancer incidence.
Collapse
Affiliation(s)
| | | | - Elham Sharifi-Zahabi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzad Gerami
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Robin H, Trudeau C, Robbins A, Chung E, Rahman E, Gangmark-Strickland O, Licari FW, Winden DR, Orr DL, Arroyo JA, Reynolds PR. A Potential Role for the Receptor for Advanced Glycation End-Products (RAGE) in the Development of Secondhand Smoke-Induced Chronic Sinusitis. Curr Issues Mol Biol 2024; 46:729-740. [PMID: 38248349 PMCID: PMC10814859 DOI: 10.3390/cimb46010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Chronic sinusitis (CS) is characterized by sinonasal inflammation, mucus overproduction, and edematous mucosal tissue. CS impacts one in seven adults and estimates suggest up to 15% of the general U.S. population may be affected. This research sought to assess a potential role for receptors for advanced glycation end-products (RAGE), an inflammatory receptor expressed in tissues exposed to secondhand smoke (SHS). Human sinus tissue sections were stained for RAGE and S100s, common RAGE ligands. Wild-type mice and mice that over-express RAGE in sinonasal epithelium (RAGE TG) were maintained in room air (RA) or exposed to secondhand smoke (SHS) via a nose-only delivery system five days a week for 6 weeks. Mouse sections were stained for RAGE and tissue lysates were assayed for cleaved caspase 3, cytokines, or matrix metalloproteases. We discovered increased RAGE expression in sinus tissue following SHS exposure and in sinuses from RAGE TG mice in the absence of SHS. Cleaved caspase-3, cytokines (IL-1β, IL-3, and TNF-α), and MMPs (-9 and -13) were induced by SHS and in tissues from RAGE TG mice. These results expand the inflammatory role of RAGE signaling, a key axis in disease progression observed in smokers. In this relatively unexplored area, enhanced understanding of RAGE signaling during voluntary and involuntary smoking may help to elucidate potential therapeutic targets that may attenuate the progression of smoke-related CS.
Collapse
Affiliation(s)
- Hannah Robin
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Courtney Trudeau
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Adam Robbins
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Emily Chung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Erum Rahman
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | | | - Frank W. Licari
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Duane R. Winden
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Dan L. Orr
- Oral & Maxillofacial Surgery, University Medical Center, Las Vegas, NV 89102, USA
| | - Juan A. Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
11
|
Schneider K, Arandjelovic S. Apoptotic cell clearance components in inflammatory arthritis. Immunol Rev 2023; 319:142-150. [PMID: 37507355 PMCID: PMC10615714 DOI: 10.1111/imr.13256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints that affects ~1% of the human population. Joint swelling and bone erosion, hallmarks of RA, contribute to disability and, sometimes, loss of life. Mechanistically, disease is driven by immune dysregulation characterized by circulating autoantibodies, inflammatory mediators, tissue degradative enzymes, and metabolic dysfunction of resident stromal and recruited immune cells. Cell death by apoptosis has been therapeutically explored in animal models of RA due to the comparisons drawn between synovial hyperplasia and paucity of apoptosis in RA with the malignant transformation of cancer cells. Several efforts to induce cell death have shown benefits in reducing the development and/or severity of the disease. Apoptotic cells are cleared by phagocytes in a process known as efferocytosis, which differs from microbial phagocytosis in its "immuno-silent," or anti-inflammatory, nature. Failures in efferocytosis have been linked to autoimmune disease, whereas administration of apoptotic cells in RA models effectively inhibits inflammatory indices, likely though efferocytosis-mediated resolution-promoting mechanisms. However, the nature of signaling pathways elicited and the molecular identity of clearance mediators in RA are understudied. Furthermore, canonical efferocytosis machinery elements also play important non-canonical functions in homeostasis and pathology. Here, we discuss the roles of efferocytosis machinery components in models of RA and discuss their potential involvement in disease pathophysiology.
Collapse
Affiliation(s)
- Kevin Schneider
- University of Virginia, Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Charlottesville, VA, USA
| | - Sanja Arandjelovic
- University of Virginia, Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Charlottesville, VA, USA
| |
Collapse
|
12
|
Ren W, Zhao L, Sun Y, Wang X, Shi X. HMGB1 and Toll-like receptors: potential therapeutic targets in autoimmune diseases. Mol Med 2023; 29:117. [PMID: 37667233 PMCID: PMC10478470 DOI: 10.1186/s10020-023-00717-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
HMGB1, a nucleoprotein, is expressed in almost all eukaryotic cells. During cell activation and cell death, HMGB1 can function as an alarm protein (alarmin) or damage-associated molecular pattern (DAMP) and mediate early inflammatory and immune response when it is translocated to the extracellular space. The binding of extracellular HMGB1 to Toll-like receptors (TLRs), such as TLR2 and TLR4 transforms HMGB1 into a pro-inflammatory cytokine, contributing to the occurrence and development of autoimmune diseases. TLRs, which are members of a family of pattern recognition receptors, can bind to endogenous DAMPs and activate the innate immune response. Additionally, TLRs are key signaling molecules mediating the immune response and play a critical role in the host defense against pathogens and the maintenance of immune balance. HMGB1 and TLRs are reported to be upregulated in several autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and autoimmune thyroid disease. The expression levels of HMGB1 and some TLRs are upregulated in tissues of patients with autoimmune diseases and animal models of autoimmune diseases. The suppression of HMGB1 and TLRs inhibits the progression of inflammation in animal models. Thus, HMGB1 and TLRs are indispensable biomarkers and important therapeutic targets for autoimmune diseases. This review provides comprehensive strategies for treating or preventing autoimmune diseases discovered in recent years.
Collapse
Affiliation(s)
- Wenxuan Ren
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xichang Wang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
13
|
Chaurasiya A, Khilari AA, Kazi R, Jaiswal MR, Bhoite GM, Padwal MK, Momin AA, Shanmugam D, Kulkarni MJ. Nanopore Sequencing of RAGE Gene Polymorphisms and Their Association with Type 2 Diabetes. ACS OMEGA 2023; 8:25727-25738. [PMID: 37521601 PMCID: PMC10373474 DOI: 10.1021/acsomega.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/22/2023] [Indexed: 08/01/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane protein that interacts with its ligands, advanced glycation end products (AGEs). AGEs are elevated in diabetes and diabetic complications, leading to increased oxidative stress and activation of pro-inflammatory pathways facilitated by AGE-RAGE signaling. Polymorphisms in the RAGE gene can potentially affect AGE-RAGE interaction and its downstream signaling, which plays a crucial role in the progression of diabetes and its complications. In this study, we used nanopore sequencing for genotyping of RAGE polymorphism and identified a maximum number of 33 polymorphisms, including two previously unreported novel mutations in a cohort of healthy, type 2 diabetics without nephropathy and type 2 diabetics with nephropathy in order to identify associations. Two novel RAGE polymorphisms in the intron 8 and 3'UTR region at genomic locations 32181834 and 32181132, respectively, were detected with a low frequency. For four previously reported polymorphisms, cross-validation by PCR-RFLP showed 99.75% concordance with nanopore sequencing. Analysis of genotype distribution and allele frequencies revealed that five single nucleotide polymorphisms, i.e., rs1800625, rs3131300, rs3134940, rs2070600, and rs9391855, were associated with an increased risk for type 2 diabetes.
Collapse
Affiliation(s)
- Arvindkumar
H. Chaurasiya
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajinkya A. Khilari
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rubina Kazi
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
| | - Meera R. Jaiswal
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gouri M. Bhoite
- Department
of Biochemistry, Bharati Vidyapeeth (DTU)
Dental College, Pune 411043, India
| | - Meghana K. Padwal
- Department
of Biochemistry, Bharati Vidyapeeth (DTU)
Medical College, Pune 411043, India
| | - Abdulrahaman A. Momin
- Department
of Biochemistry, Bharati Vidyapeeth (DTU)
Medical College, Pune 411043, India
| | - Dhanasekaran Shanmugam
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J. Kulkarni
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Reddy VP, Aryal P, Soni P. RAGE Inhibitors in Neurodegenerative Diseases. Biomedicines 2023; 11:biomedicines11041131. [PMID: 37189749 DOI: 10.3390/biomedicines11041131] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Nonenzymatic reactions of reducing sugars with primary amino groups of amino acids, proteins, and nucleic acids, followed by oxidative degradations would lead to the formation of advanced glycation endproducts (AGEs). The AGEs exert multifactorial effects on cell damage leading to the onset of neurological disorders. The interaction of AGEs with the receptors for advanced glycation endproducts (RAGE) contribute to the activation of intracellular signaling and the expression of the pro-inflammatory transcription factors and various inflammatory cytokines. This inflammatory signaling cascade is associated with various neurological diseases, including Alzheimer's disease (AD), secondary effects of traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and diabetic neuropathy, and other AGE-related diseases, including diabetes and atherosclerosis. Furthermore, the imbalance of gut microbiota and intestinal inflammation are also associated with endothelial dysfunction, disrupted blood-brain barrier (BBB) and thereby the onset and progression of AD and other neurological diseases. AGEs and RAGE play an important role in altering the gut microbiota composition and thereby increase the gut permeability and affect the modulation of the immune-related cytokines. The inhibition of the AGE-RAGE interactions, through small molecule-based therapeutics, prevents the inflammatory cascade of events associated with AGE-RAGE interactions, and thereby attenuates the disease progression. Some of the RAGE antagonists, such as Azeliragon, are currently in clinical development for treating neurological diseases, including AD, although currently there have been no FDA-approved therapeutics based on the RAGE antagonists. This review outlines the AGE-RAGE interactions as a leading cause of the onset of neurological diseases and the current efforts on developing therapeutics for neurological diseases based on the RAGE antagonists.
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Puspa Aryal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Pallavi Soni
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
15
|
Rojas A, Lindner C, Schneider I, González I, Morales MA. Contributions of the receptor for advanced glycation end products axis activation in gastric cancer. World J Gastroenterol 2023; 29:997-1010. [PMID: 36844144 PMCID: PMC9950863 DOI: 10.3748/wjg.v29.i6.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Compelling shreds of evidence derived from both clinical and experimental research have demonstrated the crucial contribution of receptor for advanced glycation end products (RAGE) axis activation in the development of neoplasms, including gastric cancer (GC). This new actor in tumor biology plays an important role in the onset of a crucial and long-lasting inflammatory milieu, not only by supporting phenotypic changes favoring growth and dissemination of tumor cells, but also by functioning as a pattern-recognition receptor in the inflammatory response to Helicobacter pylori infection. In the present review, we aim to highlight how the overexpression and activation of the RAGE axis contributes to the proliferation and survival of GC cells as and their acquisition of more invasive phenotypes that promote dissemination and metastasis. Finally, the contribution of some single nucleotide polymorphisms in the RAGE gene as susceptibility or poor prognosis factors is also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
16
|
The Potential Influence of Advanced Glycation End Products and (s)RAGE in Rheumatic Diseases. Int J Mol Sci 2023; 24:ijms24032894. [PMID: 36769213 PMCID: PMC9918052 DOI: 10.3390/ijms24032894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Advanced glycation end products (AGEs) are a class of compounds formed by nonenzymatic interactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs can alter the protein structure and activate one of their receptors, specifically the receptor for advanced glycation end products (RAGE). These phenomena impair the functions of cells, extracellular matrix, and tissues. RAGE is expressed by a variety of cells and has been linked to chronic inflammatory autoimmune disorders such as rheumatoid arthritis, systemic lupus erythematosus, and Sjögren's syndrome. The soluble (s)RAGE cleavage product is a positively charged 48-kDa cleavage product that retains the ligand binding site but loses the transmembrane and signaling domains. By acting as a decoy, this soluble receptor inhibits the pro-inflammatory processes mediated by RAGE and its ligands. In the present review, we will give an overview of the role of AGEs, sRAGE, and RAGE polymorphisms in several rheumatic diseases. AGE overproduction may play a role in the pathogenesis and is linked to accelerated atherosclerosis. Low serum sRAGE concentrations are linked to an increased cardiovascular risk profile and a poor prognosis. Some RAGE polymorphisms may be associated with increased disease susceptibility. Finally, sRAGE levels can be used to track disease progression.
Collapse
|
17
|
Birben E, Şahiner ÜM, Kalaycı CÖ. Determination of the effects of advanced glycation end products receptor polymorphisms and its activation on structural cell responses and inflammation in asthma. Turk J Med Sci 2023; 53:160-170. [PMID: 36945930 PMCID: PMC10387853 DOI: 10.55730/1300-0144.5569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/30/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Advanced glycation end products receptor (RAGE) is a pattern recognition receptor which attracted attention in chronic airway diseases recently. This study aimed to determine the association of RAGE with asthma and the cellular responses resulting from RAGE signaling pathway activation. METHODS Asthmatic (n = 362) and healthy (n = 134) children were genotyped by PCR-RFLP. Plasma sRAGE levels were determined by ELISA. Lung structural cells were stimulated with AGEs (advanced glycation end products) and control BSA. Expressions of cytokines and protein levels were determined by real-time PCR and ELISA. RESULTS : Gly82Ser and -374 T/A polymorphisms in RAGE gene were associated with lower plasma sRAGE levels (p < 0.001 and p < 0.025, respectively). AGE stimulation increased the expression of RAGE (p = 0.002), ICAM-1 (p = 0.010) and VCAM-1 (p = 0.002) in endothelial cells; TIMP-1 (p = 0.003) and MCP-1 (p = 0.005) in fibroblasts. AGE stimulation increased protein levels of IL-6 (p < 0.001) in endothelial cells; VEGF (p = 0.025) and IL-8 (p < 0.001) in fibroblasts; IL-1b (p < 0.001) and VEGF (p = 0.007) in epithelial cells. DISCUSSION Activation of RAGE pathway may contribute to asthma pathogenesis by increasing the expression of several asthmarelated genes. These findings suggest that suppression of RAGE signaling may be an alternative candidate for treating asthma.
Collapse
Affiliation(s)
- Esra Birben
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Ümit Murat Şahiner
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Can Ömer Kalaycı
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Kim Y, Park H, Kim Y, Kim SH, Lee JH, Yang H, Kim SJ, Li CM, Lee H, Na DH, Moon S, Shin Y, Kam TI, Lee HW, Kim S, Song JJ, Jung YK. Pathogenic Role of RAGE in Tau Transmission and Memory Deficits. Biol Psychiatry 2022; 93:829-841. [PMID: 36759256 DOI: 10.1016/j.biopsych.2022.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND In tauopathies, brain regions with tau accumulation strongly correlate with clinical symptoms, and spreading of misfolded tau along neural network leads to disease progression. However, the underlying mechanisms by which tau proteins enter neurons during pathological propagation remain unclear. METHODS To identify membrane receptors responsible for neuronal propagation of tau oligomers, we established a cell-based tau uptake assay and screened complementary DNA expression library. Tau uptake and propagation were analyzed in vitro and in vivo using a microfluidic device and stereotactic injection. The cognitive function of mice was assessed using behavioral tests. RESULTS From a genome-wide cell-based functional screening, RAGE (receptor for advanced glycation end products) was isolated to stimulate the cellular uptake of tau oligomers. Rage deficiency reduced neuronal uptake of pathological tau prepared from rTg4510 mouse brains or cerebrospinal fluid from patients with Alzheimer's disease and slowed tau propagation between neurons cultured in a 3-chamber microfluidic device. RAGE levels were increased in the brains of rTg4510 mice and tau oligomer-treated neurons. Rage knockout decreased tau transmission in the brains of nontransgenic mice after injection with Alzheimer's disease patient-derived tau and ameliorated memory loss after injection with GFP-P301L-tau-AAV. Treatment of RAGE antagonist FPS-ZM1 blocked transsynaptic tau propagation and inflammatory responses and alleviated cognitive impairment in rTg4510 mice. CONCLUSIONS These results suggest that in neurons and microglia, RAGE binds to pathological tau and facilitates neuronal tau pathology progression and behavioral deficits in tauopathies.
Collapse
Affiliation(s)
- Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea; School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Park
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Youngwon Kim
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seo-Hyun Kim
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Hoon Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Hanseul Yang
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seo Jin Kim
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cathena Meiling Li
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Haneul Lee
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Do-Hyeong Na
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seowon Moon
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yumi Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Han-Woong Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong-Keun Jung
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea; School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Srimadh Bhagavatham SK, Pulukool SK, Pradhan SS, R S, Ashok Naik A, V M DD, Sivaramakrishnan V. Systems biology approach delineates critical pathways associated with disease progression in rheumatoid arthritis. J Biomol Struct Dyn 2022:1-22. [PMID: 36047508 DOI: 10.1080/07391102.2022.2115555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease leading to inflammation, cartilage cell death, synoviocyte proliferation, and increased and impaired differentiation of osteoclasts and osteoblasts leading to joint erosions and deformities. Transcriptomics, proteomics, and metabolomics datasets were analyzed to identify the critical pathways that drive the RA pathophysiology. Single nucleotide polymorphisms (SNPs) associated with RA were analyzed for the functional implications, clinical outcomes, and blood parameters later validated by literature. SNPs associated with RA were grouped into pathways that drive the immune response and cytokine production. Further gene set enrichment analysis (GSEA) was performed on gene expression omnibus (GEO) data sets of peripheral blood mononuclear cells (PBMCs), synovial macrophages, and synovial biopsies from RA patients showed enrichment of Th1, Th2, Th17 differentiation, viral and bacterial infections, metabolic signalling and immunological pathways with potential implications for RA. The proteomics data analysis presented pathways with genes involved in immunological signaling and metabolic pathways, including vitamin B12 and folate metabolism. Metabolomics datasets analysis showed significant pathways like amino-acyl tRNA biosynthesis, metabolism of amino acids (arginine, alanine aspartate, glutamate, glutamine, phenylalanine, and tryptophan), and nucleotide metabolism. Furthermore, our commonality analysis of multi-omics datasets identified common pathways with potential implications for joint remodeling in RA. Disease-modifying anti-rheumatic drugs (DMARDs) and biologics treatments were found to modulate many of the pathways that were deregulated in RA. Overall, our analysis identified molecular signatures associated with the observed symptoms, joint erosions, potential biomarkers, and therapeutic targets in RA. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Saiswaroop R
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Ashwin Ashok Naik
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| |
Collapse
|
20
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
21
|
Singh H, Agrawal DK. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev Res 2022; 83:1257-1269. [PMID: 35781678 PMCID: PMC9474610 DOI: 10.1002/ddr.21971] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a 45 kDa transmembrane receptor of immunoglobulin family that can bind to various endogenous and exogenous ligands and initiate the inflammatory downstream signaling pathways. RAGE is involved in various disorders including cardiovascular and neurodegenerative diseases, cancer, and diabetes. This review summarizes the structural features of RAGE and its various isoforms along with their pathological effects. Mainly, the article emphasized on the translational significance of antagonizing the interactions of RAGE with its ligands using small molecules reported in the last 5 years and discusses future approaches that could be employed to block the interactions in the treatment of chronic inflammatory ailments. The RAGE inhibitors described in this article could prove as a powerful approach in the management of immune‐inflammatory diseases. A critical review of the literature suggests that there is a dire need to dive deeper into the molecular mechanism of action to resolve critical issues that must be addressed to understand RAGE‐targeting therapy and long‐term blockade of RAGE in human diseases.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
22
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
23
|
Yamaguchi K, Iwamoto H, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Fujitaka K, Hamada H, Hattori N. Association of the RAGE/RAGE-ligand axis with interstitial lung disease and its acute exacerbation. Respir Investig 2022; 60:531-542. [PMID: 35504814 DOI: 10.1016/j.resinv.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The receptor for advanced glycation end product (RAGE) is a transmembrane receptor highly expressed in type 1 pneumocytes of healthy lungs. RAGE is considered to play a homeostatic role in the lung, as RAGE knockout mice develop lung fibrosis as they age. In contrast, RAGE can bind numerous ligands, including high-mobility group box 1 (HMGB1). These interactions initiate pro-inflammatory signaling associated with the pathogenesis of lung injury and interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF). ILD is a broad category of diffuse parenchymal lung disease characterized by various extents of lung fibrosis and inflammation, and IPF is a common and progressive ILD of unknown cause. The prognosis of patients with IPF is poor, and acute exacerbation of IPF (AE-IPF) is one of the main causes of death. Recent reports indicate that acute exacerbations can occur in other ILDs (AE-ILD). Notably, ILD is frequently observed in patients with lung cancer, and AE-ILD after surgical procedures or the initiation of chemotherapy for concomitant lung cancer are clinically important due to their association with increased mortality. In this review, we summarize the associations of RAGE/soluble RAGE (sRAGE)/RAGE ligands with the pathogenesis and clinical course of ILD, including IPF and AE-IPF. Additionally, the potential use of sRAGE and RAGE ligands as predictive markers of AE-IPF and cancer treatment-triggered AE-ILD is also discussed.
Collapse
Affiliation(s)
- Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan.
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| |
Collapse
|
24
|
Sin S, Lim MN, Kim J, Bak SH, Kim WJ. Association between plasma sRAGE and emphysema according to the genotypes of AGER gene. BMC Pulm Med 2022; 22:58. [PMID: 35144588 PMCID: PMC8832795 DOI: 10.1186/s12890-022-01848-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Higher soluble receptor for advanced glycation end product (sRAGE) levels are considered to be associated with severe emphysema. However, the relationship remains uncertain when the advanced glycation end-product specific receptor (AGER) gene is involved. We aimed to analyse the association between sRAGE levels and emphysema according to the genotypes of rs2070600 in the AGER gene. Methods We genotyped rs2070600 and measured the plasma concentration of sRAGE in each participant. Emphysema was quantified based on the chest computed tomography findings. We compared sRAGE levels based on the presence or absence and severity of emphysema in each genotype. Multiple logistic and linear regression models were used for the analyses. Results A total of 436 participants were included in the study. Among them, 64.2% had chronic obstructive pulmonary disease and 34.2% had emphysema. Among the CC-genotyped participants, the sRAGE level was significantly higher in participants without emphysema than in those with emphysema (P < 0.001). In addition, sRAGE levels were negatively correlated with emphysema severity in CC-genotyped patients (r = − 0.268 P < 0.001). Multiple regression analysis revealed that sRAGE was an independent protective factor for the presence of emphysema (adjusted odds ratio, 0.24; 95% confidence interval (CI) 0.11–0.51) and severity of emphysema (β = − 3.28, 95% CI − 4.86 to − 1.70) in CC-genotyped participants. Conclusion Plasma sRAGE might be a biomarker with a protective effect on emphysema among CC-genotyped patients of rs2070600 on the AGER gene. This is important in determining the target group for the future prediction and treatment of emphysema. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01848-9.
Collapse
Affiliation(s)
- Sooim Sin
- Department of Internal Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Myung-Nam Lim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - So Hyeon Bak
- Department of Radiology, , School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
25
|
Keefe J, Yao C, Hwang SJ, Courchesne P, Lee GY, Dupuis J, Mizgerd JP, O’Connor G, Washko GR, Cho MH, Silverman EK, Levy D. An Integrative Genomic Strategy Identifies sRAGE as a Causal and Protective Biomarker of Lung Function. Chest 2022; 161:76-84. [PMID: 34237330 PMCID: PMC8783029 DOI: 10.1016/j.chest.2021.06.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There are few clinically useful circulating biomarkers of lung function and lung disease. We hypothesized that genome-wide association studies (GWAS) of circulating proteins in conjunction with GWAS of pulmonary traits represents a clinically relevant approach to identifying causal proteins and therapeutically useful insights into mechanisms related to lung function and disease. STUDY QUESTION Can an integrative genomic strategy using GWAS of plasma soluble receptor for advanced glycation end-products (sRAGE) levels in conjunction with GWAS of lung function traits identify putatively causal relations of sRAGE to lung function? STUDY DESIGN AND METHODS Plasma sRAGE levels were measured in 6,861 Framingham Heart Study participants and GWAS of sRAGE was conducted to identify protein quantitative trait loci (pQTL), including cis-pQTL variants at the sRAGE protein-coding gene locus (AGER). We integrated sRAGE pQTL variants with variants from GWAS of lung traits. Colocalization of sRAGE pQTL variants with lung trait GWAS variants was conducted, and Mendelian randomization was performed using sRAGE cis-pQTL variants to infer causality of sRAGE for pulmonary traits. Cross-sectional and longitudinal protein-trait association analyses were conducted for sRAGE in relation to lung traits. RESULTS Colocalization identified shared genetic signals for sRAGE with lung traits. Mendelian randomization analyses suggested protective causal relations of sRAGE to several pulmonary traits. Protein-trait association analyses demonstrated higher sRAGE levels to be cross-sectionally and longitudinally associated with preserved lung function. INTERPRETATION sRAGE is produced by type I alveolar cells, and it acts as a decoy receptor to block the inflammatory cascade. Our integrative genomics approach provides evidence for sRAGE as a causal and protective biomarker of lung function, and the pattern of associations is suggestive of a protective role of sRAGE against restrictive lung physiology. We speculate that targeting the AGER/sRAGE axis may be therapeutically beneficial for the treatment and prevention of inflammation-related lung disease.
Collapse
Affiliation(s)
- Joshua Keefe
- Framingham Heart Study, Framingham, MA,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Chen Yao
- Framingham Heart Study, Framingham, MA,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Paul Courchesne
- Framingham Heart Study, Framingham, MA,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gha Young Lee
- Framingham Heart Study, Framingham, MA,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Joseph P. Mizgerd
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - George O’Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Michael H. Cho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Edwin K. Silverman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD,CORRESPONDENCE TO: Daniel Levy, MD
| |
Collapse
|
26
|
Manigrasso MB, Rabbani P, Egaña-Gorroño L, Quadri N, Frye L, Zhou B, Reverdatto S, Ramirez LS, Dansereau S, Pan J, Li H, D’Agati VD, Ramasamy R, DeVita RJ, Shekhtman A, Schmidt AM. Small-molecule antagonism of the interaction of the RAGE cytoplasmic domain with DIAPH1 reduces diabetic complications in mice. Sci Transl Med 2021; 13:eabf7084. [PMID: 34818060 PMCID: PMC8669775 DOI: 10.1126/scitranslmed.abf7084] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The macro- and microvascular complications of type 1 and 2 diabetes lead to increased disease severity and mortality. The receptor for advanced glycation end products (RAGE) can bind AGEs and multiple proinflammatory ligands that accumulate in diabetic tissues. Preclinical studies indicate that RAGE antagonists have beneficial effects on numerous complications of diabetes. However, these antagonists target the extracellular domains of RAGE, which bind distinct RAGE ligands at diverse sites in the immunoglobulin-like variable domain and two constant domains. The cytoplasmic tail of RAGE (ctRAGE) binds to the formin, Diaphanous-1 (DIAPH1), and this interaction is important for RAGE signaling. To comprehensively capture the breadth of RAGE signaling, we developed small-molecule antagonists of ctRAGE-DIAPH1 interaction, termed RAGE229. We demonstrated that RAGE229 is effective in suppressing RAGE-DIAPH1 binding, Förster resonance energy transfer, and biological activities in cellular assays. Using solution nuclear magnetic resonance spectroscopy, we defined the molecular underpinnings of the interaction of RAGE229 with RAGE. Through in vivo experimentation, we showed that RAGE229 assuaged short- and long-term complications of diabetes in both male and female mice, without lowering blood glucose concentrations. Last, the treatment with RAGE229 reduced plasma concentrations of TNF-α, IL-6, and CCL2/JE-MCP1 in diabetic mice, in parallel with reduced pathological and functional indices of diabetes-like kidney disease. Targeting ctRAGE-DIAPH1 interaction with RAGE229 mitigated diabetic complications in rodents by attenuating inflammatory signaling.
Collapse
Affiliation(s)
- Michaele B. Manigrasso
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Piul Rabbani
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY 10016, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Laura Frye
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Boyan Zhou
- Departments of Population Health (Biostatistics) and Environmental Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Lisa S. Ramirez
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Stephen Dansereau
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Jinhong Pan
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Huilin Li
- Departments of Population Health (Biostatistics) and Environmental Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Vivette D. D’Agati
- Department of Pathology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Robert J. DeVita
- RJD Medicinal Chemistry and Drug Discovery Consulting LLC, Westfield, NJ 07091, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
27
|
Perkins TN, Oury TD. The perplexing role of RAGE in pulmonary fibrosis: causality or casualty? Ther Adv Respir Dis 2021; 15:17534666211016071. [PMID: 34275342 PMCID: PMC8293846 DOI: 10.1177/17534666211016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease in which most patients die within 3 years of diagnosis. With an unknown etiology, IPF results in progressive fibrosis of the lung parenchyma, diminishing normal lung function, which results in respiratory failure, and eventually, death. While few therapies are available to reduce disease progression, patients continue to advance toward respiratory failure, leaving lung transplantation the only viable option for survival. As incidence and mortality rates steadily increase, the need for novel therapeutics is imperative. The receptor for advanced glycation endproducts (RAGE) is most highly expressed in the lungs and plays a significant role in a number of chronic lung diseases. RAGE has long been linked to IPF; however, confounding data from both human and experimental studies have left an incomplete and perplexing story. This review examines the present understanding of the role of RAGE in human and experimental models of IPF, drawing parallels to recent advances in RAGE biology. Moreover, this review discusses the role of RAGE in lung injury response, type 2 immunity, and cellular senescence, and how such mechanisms may relate to RAGE as both a biomarker of disease progression and potential therapeutic target in IPF.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, S-784 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Marulanda K, Mercel A, Gillis DC, Sun K, Gambarian M, Roark J, Weiss J, Tsihlis ND, Karver MR, Centeno SR, Peters EB, Clemons TD, Stupp SI, McLean SE, Kibbe MR. Intravenous Delivery of Lung-Targeted Nanofibers for Pulmonary Hypertension in Mice. Adv Healthc Mater 2021; 10:e2100302. [PMID: 34061473 PMCID: PMC8273153 DOI: 10.1002/adhm.202100302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Pulmonary hypertension is a highly morbid disease with no cure. Available treatments are limited by systemic adverse effects due to non-specific biodistribution. Self-assembled peptide amphiphile (PA) nanofibers are biocompatible nanomaterials that can be modified to recognize specific biological markers to provide targeted drug delivery and reduce off-target toxicity. Here, PA nanofibers that target the angiotensin I-converting enzyme and the receptor for advanced glycation end-products (RAGE) are developed, as both proteins are overexpressed in the lung with pulmonary hypertension. It is demonstrated that intravenous delivery of RAGE-targeted nanofibers containing the targeting epitope LVFFAED (LVFF) significantly accumulated within the lung in a chronic hypoxia-induced pulmonary hypertension mouse model. Using 3D light sheet fluorescence microscopy, it is shown that LVFF nanofiber localization is specific to the diseased pulmonary tissue with immunofluorescence analysis demonstrating colocalization of the targeted nanofiber to RAGE in the hypoxic lung. Furthermore, biodistribution studies show that significantly more LVFF nanofibers localized to the lung compared to major off-target organs. Targeted nanofibers are retained within the pulmonary tissue for 24 h after injection. Collectively, these data demonstrate the potential of a RAGE-targeted nanomaterial as a drug delivery platform to treat pulmonary hypertension.
Collapse
Affiliation(s)
- Kathleen Marulanda
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Alexandra Mercel
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - David C Gillis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Kui Sun
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Maria Gambarian
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Joshua Roark
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Jenna Weiss
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Mark R Karver
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - S Ruben Centeno
- Department of Pediatrics, University of North Carolina, 260 MacNider Building CB# 7220, Chapel Hill, NC, 27599, USA
| | - Erica B Peters
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Tristan D Clemons
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Sean E McLean
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| |
Collapse
|
29
|
Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021; 22:ijms22136904. [PMID: 34199060 PMCID: PMC8268101 DOI: 10.3390/ijms22136904] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.
Collapse
|
30
|
Taguchi K, Fukami K, Elias BC, Brooks CR. Dysbiosis-Related Advanced Glycation Endproducts and Trimethylamine N-Oxide in Chronic Kidney Disease. Toxins (Basel) 2021; 13:361. [PMID: 34069405 PMCID: PMC8158751 DOI: 10.3390/toxins13050361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually filtered and excreted by the kidneys. With the decline of renal function, uremic toxins are accumulated in the systemic circulation and tissues, which hastens the progression of CKD and concomitant comorbidities. Gut microbial dysbiosis, defined as an imbalance of the gut microbial community, is one of the comorbidities of CKD. Meanwhile, gut dysbiosis plays a pathological role in accelerating CKD progression through the production of further uremic toxins in the gastrointestinal tracts. Therefore, the gut-kidney axis has been attracting attention in recent years as a potential therapeutic target for stopping CKD. Trimethylamine N-oxide (TMAO) generated by gut microbiota is linked to the progression of cardiovascular disease and CKD. Also, advanced glycation endproducts (AGEs) not only promote CKD but also cause gut dysbiosis with disruption of the intestinal barrier. This review summarizes the underlying mechanism for how gut microbial dysbiosis promotes kidney injury and highlights the wide-ranging interventions to counter dysbiosis for CKD patients from the view of uremic toxins such as TMAO and AGEs.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| |
Collapse
|
31
|
Perkins TN, Donnell ML, Oury TD. The axis of the receptor for advanced glycation endproducts in asthma and allergic airway disease. Allergy 2021; 76:1350-1366. [PMID: 32976640 DOI: 10.1111/all.14600] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Asthma is a generalized term that describes a scope of distinct pathologic phenotypes of variable severity, which share a common complication of reversible airflow obstruction. Asthma is estimated to affect almost 400 million people worldwide, and nearly ten percent of asthmatics have what is considered "severe" disease. The majority of moderate to severe asthmatics present with a "type 2-high" (T2-hi) phenotypic signature, which pathologically is driven by the type 2 cytokines Interleukin-(IL)-4, IL-5, and IL-13. However, "type 2-low" (T2-lo) phenotypic signatures are often associated with more severe, steroid-refractory neutrophilic asthma. A wide range of clinical and experimental studies have found that the receptor for advanced glycation endproducts (RAGE) plays a significant role in the pathogenesis of asthma and allergic airway disease (AAD). Current experimental data indicates that RAGE is a critical mediator of the type 2 inflammatory reactions which drive the development of T2-hi AAD. However, clinical studies demonstrate that increased RAGE ligands and signaling strongly correlate with asthma severity, especially in severe neutrophilic asthma. This review presents an overview of the current understandings of RAGE in asthma pathogenesis, its role as a biomarker of disease, and future implications for mechanistic studies, and potential therapeutic intervention strategies.
Collapse
Affiliation(s)
- Timothy N. Perkins
- Department of Pathology University of Pittsburgh School of Medicine Pittsburgh PA USA
| | - Mason L. Donnell
- Department of Pathology University of Pittsburgh School of Medicine Pittsburgh PA USA
| | - Tim D. Oury
- Department of Pathology University of Pittsburgh School of Medicine Pittsburgh PA USA
| |
Collapse
|
32
|
Gu X, Shu D, Ying S, Dai Y, Zhang Q, Chen X, Chen H, Dai W. Roxithromycin attenuates inflammation via modulation of RAGE-influenced calprotectin expression in a neutrophilic asthma model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:494. [PMID: 33850891 PMCID: PMC8039670 DOI: 10.21037/atm-21-859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Roxithromycin (RXM), a macrolide antibiotic, exhibits anti-asthmatic effects, but its specific mechanism of action remains elusive. We evaluated the effects of RXM on airway inflammation, the expression of calprotectin, and the activity of the receptor of advanced glycation end products (RAGE) to determine whether RXM alleviates inflammation by regulating RAGE activation, and thereby calprotectin expression, in neutrophilic asthma. Methods Male Brown Norway rats were sensitized with ovalbumin (OVA) and Freund’s complete adjuvant (FCA) mixture, followed by OVA challenge to induce neutrophilic asthma. RXM (30 mg/kg) or FPS-ZM1 (RAGE inhibitor, 1.5 mg/kg) was administered 30 min prior to each challenge. The infiltration of airway inflammatory cells and cytokines, as well as the expression of calprotectin and RAGE, was assessed. Results The expression of airway inflammatory cells and cytokines was found to be significantly elevated in OVA + FCA-induced rats. Increased expression of both calprotectin and RAGE was also detected in OVA + FCA-induced asthma [bronchoalveolar lavage fluid (BALF) calprotectin: 15.07±1.79 vs. 3.86±0.69 ng/mL; serum calprotectin: 20.47±1.64 vs. 9.29±1.31 ng/mL; lung tissue homogenates calprotectin: 28.82±1.01 vs. 12.02±1.38 ng/mg; BALF RAGE: 762.93±36.47 vs. 294.25±45.92 ng/mL; serum RAGE: 906.43±58.95 vs. 505.60±30.16 ng/mL; lung tissue homogenates RAGE: 1,585.24±177.59 vs. 461.53±63.40 ng/mg; all P<0.001]. However, all of these changes were interrupted by RXM and FPS-ZM1. Conclusions RXM exerted similar effects as the RAGE inhibitor FPS-ZM1 in terms of reducing airway inflammation and downregulating the expression of calprotectin and RAGE in a neutrophilic asthma model. Our findings provide novel insights into the mechanisms underlying the effect of RXM pretreatment on neutrophilic asthma. Furthermore, FPS-ZM1 may be useful as an intervention specific to the neutrophilic asthma phenotype.
Collapse
Affiliation(s)
- Xiaofei Gu
- Department of Neurology Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Respiratory and Critical Care Medicine, Yuhang First People's Hospital, Hangzhou, China.,Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danni Shu
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanrong Dai
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huijun Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, China
| | - Wei Dai
- Department of Neurology Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Deo P, Dhillon VS, Chua A, Thomas P, Fenech M. APOE ε4 Carriers Have a Greater Propensity to Glycation and sRAGE Which Is Further Influenced by RAGE G82S Polymorphism. J Gerontol A Biol Sci Med Sci 2021; 75:1899-1905. [PMID: 31677348 DOI: 10.1093/gerona/glz259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 11/14/2022] Open
Abstract
APOE ε4 allele is an established risk factor for Alzheimer's disease and hypercholesterolemia. However, its association with metabolic and genetic risk factors related to glycation is not clear. We tested the hypothesis that, apart from high plasma cholesterol, APOE ε4 carriers may also have higher advanced glycation end products (AGEs) and total soluble extracellular domain of RAGE (sRAGE) and that these biomarkers may be modified by the common Gly82Ser (G82S) polymorphism (rs2070600) in the RAGE gene. To test this, we measured these biomarkers in 172 healthy cognitively normal individuals, of which 32 were APOE ε4 carriers and 140 noncarriers. APOE ε4 carriers showed higher levels of cholesterol (p < .001), glyoxal (p < .001), fluorescent AGEs (p < .001), Nε-carboxymethyllysine (p < .001) and sRAGE (p = .018) when compared to noncarriers. Furthermore, sRAGE was also higher in those that did not carry the A allele of the RAGE gene that codes for serine instead of glycine (p = .034). Our study indicates that APOE ε4 carriers have a greater propensity to glycation than noncarriers which may further increase their risk for diabetes and dementia. The increased sRAGE levels in APOE ε4 carriers suggests a defensive response against AGEs that may be further influenced by the RAGE G82S polymorphism.
Collapse
Affiliation(s)
- Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide
| | - Varinderpal S Dhillon
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide.,CSIRO Health and Biosecurity, Adelaide, Australia
| | - Ann Chua
- CSIRO Health and Biosecurity, Adelaide, Australia.,Student and Academic Services, University of South Australia, Adelaide
| | | | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide.,CSIRO Health and Biosecurity, Adelaide, Australia.,Genome Health Foundation, North Brighton, Australia
| |
Collapse
|
34
|
Yalcin Kehribar D, Cihangiroglu M, Sehmen E, Avci B, Capraz A, Yildirim Bilgin A, Gunaydin C, Ozgen M. The receptor for advanced glycation end product (RAGE) pathway in COVID-19. Biomarkers 2021; 26:114-118. [PMID: 33284049 PMCID: PMC7814566 DOI: 10.1080/1354750x.2020.1861099] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronavirus disease-2019 (COVID-19) with lung involvement frequently causes morbidity and mortality. Advanced age appears to be the most important risk factor. The receptor for advanced glycation end-product (RAGE) pathway is considered to play important roles in the physiological aging and pathogenesis of lung diseases. This study aimed to investigate the possible relationship between COVID-19 and RAGE pathway. MATERIALS AND METHODS This study included 23 asymptomatic patients and 35 patients with lung involvement who were diagnosed with COVID-19 as well as 22 healthy volunteers. Lung involvement was determined using computed tomography. Serum soluble-RAGE (sRAGE) levels were determined using enzyme-linked immunosorbent assay. RESULTS The sRAGE levels were significantly higher in the asymptomatic group than in the control group. Age, fibrinogen, C-reactive protein, and ferritin levels were higher and the sRAGE level was lower in the patients with lung involvement than in the asymptomatic patients. CONCLUSIONS In this study, patients with high sRAGE levels were younger and had asymptomatic COVID-19. Patients with low sRAGE levels were elderly patients with lung involvement, which indicates that the RAGE pathway plays an important role in the aggravation of COVID-19.
Collapse
Affiliation(s)
- Demet Yalcin Kehribar
- Ondokuz Mayis University, Faculty of Medicine, Department of Internal Medicine, Samsun, Turkey
| | - Mustafa Cihangiroglu
- Amasya University, Faculty of Medicine, Department of Infection Disease, Amasya, Turkey
| | - Emine Sehmen
- Samsun Education and Reseach Hospital, Department of Infection Disease, Samsun, Turkey
| | - Bahattin Avci
- Department of Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Kurupelit, Turkey
| | - Aylin Capraz
- Amasya University, Faculty of Medicine, Department of Infection Disease, Amasya, Turkey
| | - Ayse Yildirim Bilgin
- Amasya University, Faculty of Medicine, Department of Infection Disease, Amasya, Turkey
| | - Caner Gunaydin
- Faculty of Medicine Ringgold Standard Institution, Ondokuz Mayis University, Samsun, Turkey
| | - Metin Ozgen
- Faculty of Medicine Ringgold Standard Institution, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
35
|
C RC, Lukose B, Rani P. G82S RAGE polymorphism influences amyloid-RAGE interactions relevant in Alzheimer's disease pathology. PLoS One 2020; 15:e0225487. [PMID: 33119615 PMCID: PMC7595441 DOI: 10.1371/journal.pone.0225487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/05/2020] [Indexed: 11/18/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) has been implicated in the pathophysiology of Alzheimers disease(AD) due to its ability to bind amyloid-beta (Aβ42) and mediate inflammatory response. G82S RAGE polymorphism is associated with AD but the molecular mechanism for this association is not understood. Our previous in silico study indicated a higher binding affinity for mutated G82S RAGE, which could be caused due to changes in N linked glycosylation at residue N81. To confirm this hypothesis, in the present study molecular dynamics (MD) simulations were used to simulate the wild type (WT) and G82S glycosylated structures of RAGE to identify the global structural changes and to find the binding efficiency with Aβ42 peptide. Binding pocket analysis of the MD trajectory showed that cavity/binding pocket in mutant G82S glycosylated RAGE variants is more exposed and accessible to external ligands compared to WT RAGE, which can enhance the affinity of RAGE for Aβ. To validate the above concept, an in vitro binding study was carried using SHSY5Y cell line expressing recombinant WT and mutated RAGE variant individually to which HiLyte Fluor labeled Aβ42 was incubated at different concentrations. Saturated binding kinetics method was adopted to determine the Kd values for Aβ42 binding to RAGE. The Kd value for Aβ42- WT and Aβ42-mutant RAGE binding were 92±40 nM (95% CI-52 to 152nM; R2-0.92) and 45±20 nM (95% CI -29 to 64nM; R2-0.93), respectively. The Kd value of <100nM observed for both variants implicates RAGE as a high-affinity receptor for Aβ42 and mutant RAGE has higher affinity compared to WT. The alteration in binding affinity is responsible for activation of the inflammatory pathway as implicated by enhanced expression of TNFα and IL6 in mutant RAGE expressing cell line which gives a mechanistic view for the G82S RAGE association with AD.
Collapse
Affiliation(s)
- Rani Cathrine. C
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| | - Bincy Lukose
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| | - P. Rani
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
36
|
Gao L, Wang J, Jiang Y, Wei S, Shang S, Chen C, Dang L, Huo K, Deng M, Wang J, Qu Q. Relationship Between Peripheral Transport Proteins and Plasma Amyloid-β in Patients with Alzheimer's Disease Were Different from Cognitively Normal Controls: A Propensity Score Matching Analysis. J Alzheimers Dis 2020; 78:699-709. [PMID: 33016902 DOI: 10.3233/jad-191320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Transport proteins, soluble LRP1 (sLRP1) and soluble RAGE (sRAGE), play a pivotal role in the peripheral clearance of plasma amyloid-β (Aβ). However, their relationship is seldom discussed, especially in Alzheimer's disease (AD). OBJECTIVE To explore whether their relationship in patients with AD varied from those in cognitively normal (CN) controls. METHODS We initially recruited 70 patients with AD and 725 CN controls, then applied propensity score matching (PSM) analysis to balance the differences between two groups. Plasma levels of sLRP1, sRAGE, and Aβ were measured using commercial ELISA kits and log transformed when skewed distributed. The relationship between sLRP1/sRAGE and plasma Aβ were analyzed using Pearson's correlation analysis followed by multiple linear regression separately in the original population and matched participants. RESULTS After PSM, 70 patients with AD and 140 matched controls were included for further analysis. Log sLRP1 was positively correlated with plasma Aβ40 in matched CN controls (r = 0.222, p = 0.008) but not in patients with AD (r = 0.137, p = 0.260). After multivariable adjustment, Log sLRP1 remained significantly associated with plasma Aβ40 in the CN group (β= 7.347, p = 0.014) but not in the AD group (β= 10.409, p = 0.105). In contrast, Log sLRP1 was not correlated with plasma Aβ42 in patients with AD or CN controls, and Log sRAGE was consistently not associated with plasma Aβ40 or Aβ42 in either group. CONCLUSION The significant correlation between sLRP1 and plasma Aβ40 present in CN controls was not found in patients with AD, suggesting that their relationship was different in AD. However, the specific mechanisms and its influence on cerebral amyloid burden require further validation.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Jiang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meiying Deng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Wang
- Huxian Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
37
|
Steenbeke M, De Bruyne S, De Buyzere M, Lapauw B, Speeckaert R, Petrovic M, Delanghe JR, Speeckaert MM. The role of soluble receptor for advanced glycation end-products (sRAGE) in the general population and patients with diabetes mellitus with a focus on renal function and overall outcome. Crit Rev Clin Lab Sci 2020; 58:113-130. [PMID: 32669010 DOI: 10.1080/10408363.2020.1791045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isoforms of the receptor for advanced glycation end-product (RAGE) protein, which lack the transmembrane and the signaling (soluble RAGE or sRAGE) domains are hypothesized to counteract the detrimental action of the full-length receptor by acting as a decoy, and they provide a potential tool to treat RAGE-associated diseases. Multiple studies have explored the relationship between sRAGE and endogenous secretory RAGE and its polymorphism and obesity, metabolic syndrome, atherosclerosis, kidney function, and increased mortality in the general population. In addition, sRAGE may be a key player in the pathogenesis of diabetes mellitus and its microvascular (e.g. kidney disease) as well as macrovascular (e.g. cardiovascular disease) complications. In this review, we focus on the role of sRAGE as a biomarker in these specific areas. As there is a lack of an underlying unifying hypothesis about how sRAGE changes according to the disease condition or risk factor, there is a call to incorporate all three players of the AGE-RAGE axis into a new universal biomarker/risk marker: (AGE + RAGE)/sRAGE. However, the measurement of RAGE in humans is not practical as it is a cell-bound receptor for which tissue is required for analysis. A high AGE/sRAGE ratio may be a valuable alternative and practical universal biomarker/risk marker for diseases associated with the AGE-RAGE axis, irrespective of low or high serum sRAGE concentrations.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Sander De Bruyne
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| | - Marc De Buyzere
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | | | - Mirko Petrovic
- Department of Geriatrics, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium.,Research Foundation Flanders, Brussels, Belgium
| |
Collapse
|
38
|
Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF, Shekhtman A, Ramasamy R, Schmidt AM. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Front Cardiovasc Med 2020; 7:37. [PMID: 32211423 PMCID: PMC7076074 DOI: 10.3389/fcvm.2020.00037] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity and diabetes are leading causes of cardiovascular morbidity and mortality. Although extensive strides have been made in the treatments for non-diabetic atherosclerosis and its complications, for patients with diabetes, these therapies provide less benefit for protection from cardiovascular disease (CVD). These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify, especially as the epidemics of obesity and diabetes continue to expand. Hence, as hyperglycemia is a defining feature of diabetes, it is logical to probe the impact of the specific consequences of hyperglycemia on the vessel wall, immune cell perturbation, and endothelial dysfunction-all harbingers to the development of CVD. In this context, high levels of blood glucose stimulate the formation of the irreversible advanced glycation end products, the products of non-enzymatic glycation and oxidation of proteins and lipids. AGEs accumulate in diabetic circulation and tissues and the interaction of AGEs with their chief cellular receptor, receptor for AGE or RAGE, contributes to vascular and immune cell perturbation. The cytoplasmic domain of RAGE lacks endogenous kinase activity; the discovery that this intracellular domain of RAGE binds to the formin, DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction, identifies the specific cellular means by which RAGE functions and highlights a new target for therapeutic interruption of RAGE signaling. In human subjects, prominent signals for RAGE activity include the presence and levels of two forms of soluble RAGE, sRAGE, and endogenous secretory (es) RAGE. Further, genetic studies have revealed single nucleotide polymorphisms (SNPs) of the AGER gene (AGER is the gene encoding RAGE) and DIAPH1, which display associations with CVD. This Review presents current knowledge regarding the roles for RAGE and DIAPH1 in the causes and consequences of diabetes, from obesity to CVD. Studies both from human subjects and animal models are presented to highlight the breadth of evidence linking RAGE and DIAPH1 to the cardiovascular consequences of these metabolic disorders.
Collapse
Affiliation(s)
- Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Gautham Yepuri
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Lisa S. Ramirez
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Sergey Reverdatto
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Paul F. Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Alexander Shekhtman
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
39
|
Hung SC, Wang SS, Li JR, Chen CS, Lin CY, Chang LW, Chiu KY, Cheng CL, Ou YC, Yang SF. Impact of RAGE polymorphisms on urothelial cell carcinoma clinicopathologic characteristics and long-term survival. Urol Oncol 2019; 37:573.e9-573.e17. [DOI: 10.1016/j.urolonc.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
|
40
|
Yamaguchi K, Iwamoto H, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Ohshimo S, Fujitaka K, Hamada H, Hattori N. Serum high-mobility group box 1 is associated with the onset and severity of acute exacerbation of idiopathic pulmonary fibrosis. Respirology 2019; 25:275-280. [PMID: 31270920 DOI: 10.1111/resp.13634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/02/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE High-mobility group box 1 (HMGB1) is a known mediator of acute lung injury through the acceleration of pro-inflammatory -signalling. Previous studies showed that HMGB1 is increased in the lung and circulation of patients with acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF). This study investigated the predictive value of circulatory HMGB1 for disease progression and prognosis of IPF in the stable phase and AE phase. METHODS In total, 76 patients with stable IPF, 17 patients with AE-IPF, 37 patients with chronic obstructive pulmonary disease (COPD) and 74 healthy controls were included. Serum HMGB1 levels were compared among the four groups and the associations of HMGB1 levels with the onset of AE and prognosis were evaluated in patients with stable IPF. The prognostic value of HMGB1 was determined in AE-IPF. RESULTS Serum HMGB1 levels in patients with stable IPF were significantly higher than those in healthy controls, and in patients with AE-IPF they were even higher than the levels in either of these groups (6.26 ± 5.27, 3.42 ± 2.69 and 19.20 ± 16.76 ng/mL, respectively). There was no significant difference in serum HMGB1 levels between stable IPF patients and COPD patients. Higher levels of HMGB1 were associated with earlier onset of AE in stable IPF patients and with shorter survival in AE-IPF patients (P = 0.030 and 0.001, respectively). CONCLUSION Higher levels of serum HMGB1 predict earlier onset of AE in stable IPF patients and shorter survival in AE-IPF patients, indicating that HMGB1 is associated with acute deterioration of the disease.
Collapse
Affiliation(s)
- Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
41
|
Wadén JM, Dahlström EH, Elonen N, Thorn LM, Wadén J, Sandholm N, Forsblom C, Groop PH. Soluble receptor for AGE in diabetic nephropathy and its progression in Finnish individuals with type 1 diabetes. Diabetologia 2019; 62:1268-1274. [PMID: 31127314 PMCID: PMC6559996 DOI: 10.1007/s00125-019-4883-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/26/2019] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Activation of the receptor for AGE (RAGE) has been shown to be associated with diabetic nephropathy. The soluble isoform of RAGE (sRAGE) is considered to function as a decoy receptor for RAGE ligands and thereby protects against diabetic complications. A possible association between sRAGE and diabetic nephropathy is still, however, controversial and a more comprehensive analysis of sRAGE with respect to diabetic nephropathy in type 1 diabetes is therefore warranted. METHODS sRAGE was measured in baseline serum samples from 3647 participants with type 1 diabetes from the nationwide multicentre Finnish Diabetic Nephropathy (FinnDiane) Study. Associations between sRAGE and diabetic nephropathy, as well as sRAGE and diabetic nephropathy progression, were evaluated by regression, competing risks and receiver operating characteristic curve analyses. The non-synonymous SNP rs2070600 (G82S) was used to test causality in the Mendelian randomisation analysis. RESULTS Baseline sRAGE concentrations were highest in participants with diabetic nephropathy, compared with participants with a normal AER or those with microalbuminuria. Baseline sRAGE was associated with progression from macroalbuminuria to end-stage renal disease (ESRD) in the competing risks analyses, but this association disappeared when eGFR was entered into the model. The SNP rs2070600 was strongly associated with sRAGE concentrations and with progression from macroalbuminuria to ESRD. However, Mendelian randomisation analysis did not support a causal role for sRAGE in progression to ESRD. CONCLUSIONS/INTERPRETATION sRAGE is associated with progression from macroalbuminuria to ESRD, but does not add predictive value on top of conventional risk factors. Although sRAGE is a biomarker of diabetic nephropathy, in light of the Mendelian randomisation analysis it does not seem to be causally related to progression from macroalbuminuria to ESRD.
Collapse
Affiliation(s)
- Jenny M Wadén
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Emma H Dahlström
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Nina Elonen
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Lena M Thorn
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Johan Wadén
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | | |
Collapse
|
42
|
Message from the new Editors-in-Chief. Genes Immun 2019; 20:338-339. [DOI: 10.1038/s41435-018-0043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 11/08/2022]
|
43
|
The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for Inflammatory Bowel Diseases. Mucosal Immunol 2019; 12:468-478. [PMID: 30542111 DOI: 10.1038/s41385-018-0119-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic inflammatory conditions of the intestinal tract. IBD are believed to result from an inappropriate immune response against the intestinal flora in genetically predisposed patients. The precise etiology of these diseases is not fully understood, therefore treatments rely on the dampening of symptoms, essentially inflammation, rather than on the cure of the disease. Despite the availability of biologics, such as anti-TNF antibodies, some patients remain in therapeutic failure and new treatments are thus needed. The multiligand receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor implicated in inflammatory reactions and immune system activation. Here, we investigated the role of RAGE in intestinal inflammation and its potential as a therapeutic target in IBD. We showed that RAGE was upregulated in inflamed tissues from IBD patients compared to controls. Rage-/- mice were less susceptible to intestinal and colonic inflammation development than WT mice. WT mice treated with the RAGE-specific inhibitor FPS-ZM1 experienced less severe enteritis and colitis. We demonstrated that RAGE could induce intestinal inflammation by promoting oxidative stress and endothelial activation which were diminished by FPS-ZM1 treatment. Our results revealed the RAGE signaling pathway as a promising therapeutic target for IBD patients.
Collapse
|
44
|
Sanders KA, Delker DA, Huecksteadt T, Beck E, Wuren T, Chen Y, Zhang Y, Hazel MW, Hoidal JR. RAGE is a Critical Mediator of Pulmonary Oxidative Stress, Alveolar Macrophage Activation and Emphysema in Response to Cigarette Smoke. Sci Rep 2019; 9:231. [PMID: 30659203 PMCID: PMC6338799 DOI: 10.1038/s41598-018-36163-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE), a cell membrane receptor, recognizes ligands produced by cigarette smoke (CS) and has been implicated in the pathogenesis of COPD. We demonstrate that deletion or pharmacologic inhibition of RAGE prevents development of CS-induced emphysema. To identify molecular pathways by which RAGE mediates smoking related lung injury we performed unbiased gene expression profiling of alveolar macrophages (AM) obtained from RAGE null and C57BL/6 WT mice exposed to CS for one week or four months. Pathway analysis of RNA expression identified a number of genes integral to the pathogenesis of COPD impacted by the absence of RAGE. Altered expression of antioxidant response genes and lung protein 4-HNE immunostaining suggest attenuated oxidative stress in the RAGE null mice despite comparable CS exposure and lung leukocyte burden as the WT mice. Reduced endoplasmic reticulum stress in response to CS exposure also was observed in the AM from RAGE null mice. These findings provide novel insight into the sources of oxidative stress, macrophage activation, and the pathogenesis of lung disease due to CS exposure.
Collapse
Affiliation(s)
- Karl A Sanders
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Don A Delker
- Division of Gastroenterology, Hepatology, and Nutrition, University of Utah, Salt Lake City, Utah, USA
| | - Tom Huecksteadt
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Emily Beck
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tanna Wuren
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Yuntian Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mark W Hazel
- Division of Gastroenterology, Hepatology, and Nutrition, University of Utah, Salt Lake City, Utah, USA
| | - John R Hoidal
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| |
Collapse
|
45
|
Insights into the effects of N-glycosylation on the characteristics of the VC1 domain of the human receptor for advanced glycation end products (RAGE) secreted by Pichia pastoris. Glycoconj J 2019; 36:27-38. [DOI: 10.1007/s10719-018-09855-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 01/11/2023]
|
46
|
Jafari Nakhjavani MR, Jafarpour M, Ghorbanihaghjo A, Abedi Azar S, Malek Mahdavi A. Relationship between serum-soluble receptor for advanced glycation end products (sRAGE) and disease activity in rheumatoid arthritis patients. Mod Rheumatol 2019; 29:943-948. [PMID: 30474471 DOI: 10.1080/14397595.2018.1551107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objective: Considering the important role of serum soluble receptor for advanced glycation end product (sRAGE/RAGE)-ligand system in rheumatoid arthritis (RA), this study aimed to evaluate serum sRAGE levels in RA patients compared to healthy subjects and to assess whether there is an association between sRAGE levels and disease characteristics in RA.Methods: In this cross-sectional study, 60 RA patients according to the ACR/EULAR 2010 criteria and 30 age- and sex-matched healthy controls were included. In patients, clinical examination was performed and disease activity score 28 (DAS-28) measure of disease activity was assessed. Serum sRAGE level was measured using ELISA kit.Results: The mean ± SD age of patients and controls was 54.86 ± 11.65 and 50.71 ± 3.72 years, respectively). Serum sRAGE level was significantly higher in RA patients (median [25th and 75th percentiles], 1000.3 [792.00, 1486.8]) compared to healthy controls (median [25th and 75th percentiles], 293.25 [220.35, 364.24]) (p < .001). There was significant difference in serum sRAGE level according to the activity of disease (p < .001). There were significant positive correlations between serum sRAGE level with disease activity (r = 0.67, p < .001), ESR (r = 0.411, p = .001) and CRP (r = 0.273, p = .035). There were no significant correlations between serum sRAGE level with demographic characteristics as well as biochemical measurements including serum creatinine, BUN, RF, and Anti-CCP (p > .05).Conclusions: Our study revealed higher serum sRAGE levels in RA patients compared to healthy controls, which correlated positively with disease activity.
Collapse
Affiliation(s)
| | - Mahdi Jafarpour
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abedi Azar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Promoter methylation cooperates with SNPs to modulate RAGE transcription and alter UC risk. Biochem Biophys Rep 2018; 17:17-22. [PMID: 30519644 PMCID: PMC6260414 DOI: 10.1016/j.bbrep.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 10/07/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) located in the promoter region of the receptor for advanced glycation end products (RAGE) gene have been linked to the activity of RAGE. However, contrary to our expectation, we previously detected no correlation between SNPs within the RAGE promoter and ulcerative colitis (UC) risk in a case-control study. Here, we investigated the methylation of the RAGE promoter and analyzed the collective contribution of methylation and SNPs to UC risk. We found that RAGE promoter hypomethylation was more common in UC patients compared to controls (70% vs. 30%, respectively), as determined via bisulfite sequencing PCR (BSP) and methylation-specific PCR (MSP). Furthermore, we investigated the cooperativity of promoter methylation and SNPs and found that either of two SNPs (rs1800624 or rs1800625) and promoter methylation jointly contributed to UC risk (30 UC patients vs. 30 controls, P < 0.05). There was no correlation between UC risk and either methylation or SNPs when analyzed separately. This lack of correlation is likely due to promoter methylation repressing gene transcription, whereas SNPs in the RAGE promoter region activate RAGE transcription. We found that variant allele carriers with promoter hypomethylation were at an increased risk for UC (rs1800624, OR = 10, 95% CI: 1.641-60.21, P = 0.009; rs1800625, OR = 4.8, 95% CI: 1.074-21.447, P = 0.039). Furthermore, our data revealed that the RAGE mRNA levels in variant allele carriers with promoter hypomethylation were significantly higher compared to those with promoter hypermethylation (P < 0.05) as well as to those in wild-type allele individuals exhibiting promoter hypomethylation (P < 0.05). We therefore speculate that the methylation status and SNPs present in the RAGE promoter region alter RAGE transcription, thereby impacting UC risk. We also propose that the methylation status and RAGE promoter genotype could jointly serve as clinical biomarkers to assist in UC risk assessment.
Collapse
|
48
|
A Granulocyte-Specific Protein S100A12 as a Potential Prognostic Factor Affecting Aggressiveness of Therapy in Patients with Juvenile Idiopathic Arthritis. J Immunol Res 2018; 2018:5349837. [PMID: 30426025 PMCID: PMC6217747 DOI: 10.1155/2018/5349837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/16/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Defining new prognostic biomarkers has become one of the most promising perspectives for the long-term care of patients with juvenile idiopathic arthritis (JIA). The new efficient indicators of disease activity and potential response to treatment are crucial in establishing new therapeutic plans in accordance with the “treat to target” strategy. One of the most studied proteins is called S100A12, which is an alarmin specific for granulocytes, considered as a marker of their activity. Materials and Methods Study involved 80 patients diagnosed with JIA. Children with systemic subtype were not included in the study. In 53 cases, blood samples were obtained in two time points. Results from the study group were compared to 29 age- and sex-matched healthy individuals. Results Serum S100A12 levels were higher in JIA than in healthy controls at the study baseline (11.67 ± 6.59 vs. 6.01 ± 2.33 ng/ml). There were no significant differences in S100A12 values between assessed subtypes of JIA. The highest concentrations were observed in patients within a disease flare. S100A12 levels were not dependent from using glucocorticosteroids. The studied protein appeared to be an efficient biomarker for JIA patients: 100% specificity as a diagnostic marker (cut-off level: 10.73 ng/ml) and 100% sensitivity as an indicator of exacerbations within a 3-month observation (cut-off level: 5.48 ng/ml). Conclusions S100A12 may become an important factor influencing decisions on aggressiveness of JIA therapy. Further elaboration on the clinical algorithm is necessary for that protein to be included in everyday practice.
Collapse
|
49
|
HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell Death Dis 2018; 9:1004. [PMID: 30258050 PMCID: PMC6158296 DOI: 10.1038/s41419-018-1019-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/09/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Abstract
Dysfunctional mitochondria have been shown to enhance cancer cell proliferation, reduce apoptosis, and increase chemoresistance. Chemoresistance develops in nearly all patients with colorectal cancer, leading to a decrease in the therapeutic efficacies of anticancer agents. However, the effect of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission on chemoresistance in colorectal cancer is unclear. Here, we found that the release of high-mobility group box 1 protein (HMGB1) in conditioned medium from dying cells by chemotherapeutic drugs and resistant cells, which triggered Drp1 phosphorylation via its receptor for advanced glycation end product (RAGE). RAGE signals ERK1/2 activation to phosphorylate Drp1 at residue S616 triggerring autophagy for chemoresistance and regrowth in the surviving cancer cells. Abolishment of Drp1 phosphorylation by HMGB1 inhibitor and RAGE blocker significantly enhance sensitivity to the chemotherapeutic treatment by suppressing autophagy. Furthermore, patients with high phospho-Drp1Ser616 are associated with high risk on developing tumor relapse, poor 5-year disease-free survival (DFS) and 5-year overall survival (OS) after neoadjuvant chemoradiotherapy (neoCRT) treatment in locally advanced rectal cancer (LARC). Moreover, patients with RAGE-G82S polymorphism (rs2070600) are associated with high phospho-Drp1Ser616 within tumor microenvironment. These findings suggest that the release of HMGB1 from dying cancer cells enhances chemoresistance and regrowth via RAGE-mediated ERK/Drp1 phosphorylation.
Collapse
|
50
|
Palanissami G, Paul SFD. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review. Discov Oncol 2018; 9:295-325. [DOI: 10.1007/s12672-018-0342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
|