1
|
Fung KY, de Geus ED, Ying L, Cumming H, Bourke N, Foster SC, Hertzog PJ. Expression of Interferon Epsilon in Mucosal Epithelium is Regulated by Elf3. Mol Cell Biol 2024; 44:334-343. [PMID: 38975675 PMCID: PMC11296529 DOI: 10.1080/10985549.2024.2366207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Interferon epsilon (IFNε) is a unique type I interferon (IFN) that shows distinct constitutive expression in reproductive tract epithelium. Understanding how IFNε expression is regulated is critical for the mechanism of action in protecting the mucosa from infection. Combined computational and experimental investigation of the promoter of IFNε predicted transcription factor binding sites for the ETS family of transcription factors. We demonstrate here that Ifnε is regulated by Elf3, an epithelial restricted member of the ETS family. It is co-expressed with IFNε at the epithelium of uterus, lung and intestine, and we focused on regulation of IFNε expression in the uterus. Promoter reporter studies demonstrated that Elf3 was a strong driver of Ifnε expression; knockdown of Elf3 reduced expression levels of IFNε; Elf3 regulated Ifnε expression and chromatin immunoprecipitation (ChIP) confirmed the direct binding of Elf3 to the IFNε promoter. These data show that Elf3 is important in regulating protective mucosal immunity by driving constitutive expression of IFNε to protect mucosal tissues from infection in at least three organ systems.
Collapse
Affiliation(s)
- Ka Yee Fung
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Eveline D. de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Helen Cumming
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nollaig Bourke
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Samuel C. Foster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Cao LL, Kagan JC. Targeting innate immune pathways for cancer immunotherapy. Immunity 2023; 56:2206-2217. [PMID: 37703879 PMCID: PMC10591974 DOI: 10.1016/j.immuni.2023.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
The innate immune system is critical for inducing durable and protective T cell responses to infection and has been increasingly recognized as a target for cancer immunotherapy. In this review, we present a framework wherein distinct innate immune signaling pathways activate five key dendritic cell activities that are important for T cell-mediated immunity. We discuss molecular pathways that can agonize these activities and highlight that no single pathway can agonize all activities needed for durable immunity. The immunological distinctions between innate immunotherapy administration to the tumor microenvironment versus administration via vaccination are examined, with particular focus on the strategies that enhance dendritic cell migration, interferon expression, and interleukin-1 family cytokine production. In this context, we argue for the importance of appreciating necessity vs. sufficiency when considering the impact of innate immune signaling in inflammation and protective immunity and offer a conceptual guideline for the development of efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Longyue L Cao
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Anfossi R, Vivar R, Ayala P, González-Herrera F, Espinoza-Pérez C, Osorio JM, Román-Torres M, Bolívar S, Díaz-Araya G. Interferon-β decreases LPS-induced neutrophil recruitment to cardiac fibroblasts. Front Cell Dev Biol 2023; 11:1122408. [PMID: 37799272 PMCID: PMC10547890 DOI: 10.3389/fcell.2023.1122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction: Cardiac fibroblasts (CF) are crucial cells in damaged heart tissues, expressing TLR4, IFN-receptor and responding to lipopolysaccharide (LPS) and interferon-β (IFN-β) respectively. While CF interact with immune cells; however, their relationship with neutrophils remains understudied. Additionally, theimpact of LPS and IFN-β on CF-neutrophil interaction is poorly understood. Methods: Isolated CF from adult rats were treated with LPS, with or without IFN-β. This study examined IL-8 secretion, ICAM-1 and VCAM-1 expression, and neutrophil recruitment, as well as their effects on MMPs activity. Results: LPS triggered increased IL-8 expression and secretion, along with elevated ICAM-1 and VCAM-1 expression, all of which were blocked by TAK-242. Pre-treatment with IFN-β countered these LPS effects. LPS treated CF showed higher neutrophil recruitment (migration and adhesion) compared to unstimulated CF, an effect prevented by IFN-β. Ruxolitinib blocked these IFN-β anti-inflammatory effects, implicating JAK signaling. Analysis of culture medium zymograms from CF alone, and CF-neutrophils interaction, revealed that MMP2 was mainly originated from CF, while MMP9 could come from neutrophils. LPS and IFN-β boosted MMP2 secretion by CF. MMP9 activity in CF was low, and LPS or IFN-β had no significant impact. Pre-treating CF with LPS, IFN-β, or both before co-culture with neutrophils increased MMP2. Neutrophil co-culture increased MMP9 activity, with IFN-β pre-treatment reducing MMP9 compared to unstimulated CF. Conclusion: In CF, LPS induces the secretion of IL-8 favoring neutrophils recruitment and these effects were blocked by IFN-. The results highlight that CF-neutrophil interaction appears to influence the extracellular matrix through MMPs activity modulation.
Collapse
Affiliation(s)
- Renatto Anfossi
- Unidad de Farmacia, Hospital Regional del Libertador Bernardo O’Higgins, Rancagua, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Raúl Vivar
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Instituto de Farmacología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pedro Ayala
- Facultad de Medicina, Pontifica Universidad Católica de Chile, Santiago de Chile, Chile
| | | | - Claudio Espinoza-Pérez
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - José Miguel Osorio
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Román-Torres
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Samir Bolívar
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Guillermo Díaz-Araya
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Naik NG, Lee SC, Veronese BHS, Ma Z, Toth Z. Interaction of HDAC2 with SARS-CoV-2 NSP5 and IRF3 Is Not Required for NSP5-Mediated Inhibition of Type I Interferon Signaling Pathway. Microbiol Spectr 2022; 10:e0232222. [PMID: 36173315 PMCID: PMC9603796 DOI: 10.1128/spectrum.02322-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 01/04/2023] Open
Abstract
Over the last 2 years, several global virus-host interactome studies have been published with SARS-CoV-2 proteins with the purpose of better understanding how specific viral proteins can subvert or utilize different cellular processes to promote viral infection and pathogenesis. However, most of the virus-host protein interactions have not yet been confirmed experimentally, and their biological significance is largely unknown. The goal of this study was to verify the interaction of NSP5, the main protease of SARS-CoV-2, with the host epigenetic factor histone deacetylase 2 (HDAC2) and test if HDAC2 is required for NSP5-mediated inhibition of the type I interferon signaling pathway. Our results show that NSP5 can significantly reduce the expression of a subset of immune response genes such as IL-6, IL-1β, and IFNβ, which requires NSP5's protease activity. We also found that NSP5 can inhibit Sendai virus-, RNA sensor-, and DNA sensor-mediated induction of IFNβ promoter, block the IFN response pathway, and reduce the expression of IFN-stimulated genes. We also provide evidence for HDAC2 interacting with IRF3, and NSP5 can abrogate their interaction by binding to both IRF3 and HDAC2. In addition, we found that HDAC2 plays an inhibitory role in the regulation of IFNβ and IFN-induced promoters, but our results indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNβ gene expression. Taken together, our data show that NSP5 interacts with HDAC2 but NSP5 inhibits the IFNβ gene expression and interferon-signaling pathway in an HDAC2-independent manner. IMPORTANCE SARS-CoV-2 has developed multiple strategies to antagonize the host antiviral response, such as blocking the IFN signaling pathway, which favors the replication and spreading of the virus. A recent SARS-CoV-2 protein interaction mapping revealed that the main viral protease NSP5 interacts with the host epigenetic factor HDAC2, but the interaction was not confirmed experimentally and its biological importance remains unclear. Here, we not only verified the interaction of HDAC2 with NSP5, but we also found that HDAC2 also binds to IRF3, and NSP5 can disrupt the IRF3-HDAC2 complex. Furthermore, our results show that NSP5 can efficiently repress the IFN signaling pathway regardless of whether viral infections, RNA, or DNA sensors activated it. However, our data indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNβ promoter induction and IFNβ gene expression.
Collapse
Affiliation(s)
- Nenavath Gopal Naik
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - See-Chi Lee
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Beatriz H. S. Veronese
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zhe Ma
- UF Health Cancer Center, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- UF Genetics Institute, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
5
|
Krauter S, Büscher N, Bräuchle E, Ortega Iannazzo S, Penner I, Krämer N, Gogesch P, Thomas S, Kreutz M, Dejung M, Freiwald A, Butter F, Waibler Z, Plachter B. An Attenuated Strain of Human Cytomegalovirus for the Establishment of a Subviral Particle Vaccine. Vaccines (Basel) 2022; 10:vaccines10081326. [PMID: 36016214 PMCID: PMC9413975 DOI: 10.3390/vaccines10081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe disease conditions either following congenital transmission of the virus or viral reactivation in immunosuppressed individuals. Consequently, the establishment of a protective vaccine is of high medical need. Several candidates have been tested in preclinical and clinical studies, yet no vaccine has been licensed. Subviral dense bodies (DB) are a promising vaccine candidate. We have recently provided a GMP-compliant protocol for the production of DB, based on a genetically modified version of the HCMV laboratory strain Towne, expressing the pentameric complex of envelope protein gH-gL-pUL128-131 (Towne-UL130rep). In this work, we genetically attenuated Towne-UL130rep by abrogating the expression of the tegument protein pUL25 and by fusing the destabilizing domain ddFKBP to the N-terminus of the IE1- and IE2-proteins of HCMV. The resulting strain, termed TR-VAC, produced high amounts of DB under IE1/IE2 repressive conditions and concomitant supplementation of the viral terminase inhibitor letermovir to the producer cell culture. TR-VAC DB retained the capacity to induce neutralizing antibodies. A complex pattern of host protein induction was observed by mass spectrometry following exposure of primary human monocytes with TR-VAC DB. Human monocyte-derived dendritic cells (DC) moderately increased the expression of activation markers and MHC molecules upon stimulation with TR-VAC DB. In a co-culture with autologous T cells, the TR-VAC DB-stimulated DC induced a robust HCMV-specific T cell-activation and –proliferation. Exposure of donor-derived monocytic cells to DB led to the activation of a rapid innate immune response. This comprehensive data set thus shows that TR-VAC is an optimal attenuated seed virus strain for the production of a DB vaccine to be tested in clinical studies.
Collapse
Affiliation(s)
- Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Eric Bräuchle
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Samira Ortega Iannazzo
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Nadine Krämer
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Patricia Gogesch
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Simone Thomas
- Leibniz Institute for Immunotherapy, Regensburg and Klinik und Poliklinik für Innere Medizin III, Hämatologie und Internistische Onkologie, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Marina Kreutz
- Leibniz Institute for Immunotherapy, Regensburg and Klinik und Poliklinik für Innere Medizin III, Hämatologie und Internistische Onkologie, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Anja Freiwald
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Falk Butter
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Zoe Waibler
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-179232
| |
Collapse
|
6
|
Scott MA, Woolums AR, Swiderski CE, Thompson AC, Perkins AD, Nanduri B, Karisch BB, Goehl DR. Use of nCounter mRNA profiling to identify at-arrival gene expression patterns for predicting bovine respiratory disease in beef cattle. BMC Vet Res 2022; 18:77. [PMID: 35197051 PMCID: PMC8864212 DOI: 10.1186/s12917-022-03178-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/17/2022] [Indexed: 01/21/2023] Open
Abstract
Background Transcriptomics has identified at-arrival differentially expressed genes associated with bovine respiratory disease (BRD) development; however, their use as prediction molecules necessitates further evaluation. Therefore, we aimed to selectively analyze and corroborate at-arrival mRNA expression from multiple independent populations of beef cattle. In a nested case-control study, we evaluated the expression of 56 mRNA molecules from at-arrival blood samples of 234 cattle across seven populations via NanoString nCounter gene expression profiling. Analysis of mRNA was performed with nSolver Advanced Analysis software (p < 0.05), comparing cattle groups based on the diagnosis of clinical BRD within 28 days of facility arrival (n = 115 Healthy; n = 119 BRD); BRD was further stratified for severity based on frequency of treatment and/or mortality (Treated_1, n = 89; Treated_2+, n = 30). Gene expression homogeneity of variance, receiver operator characteristic (ROC) curve, and decision tree analyses were performed between severity cohorts. Results Increased expression of mRNAs involved in specialized pro-resolving mediator synthesis (ALOX15, HPGD), leukocyte differentiation (LOC100297044, GCSAML, KLF17), and antimicrobial peptide production (CATHL3, GZMB, LTF) were identified in Healthy cattle. BRD cattle possessed increased expression of CFB, and mRNA related to granulocytic processes (DSG1, LRG1, MCF2L) and type-I interferon activity (HERC6, IFI6, ISG15, MX1). Healthy and Treated_1 cattle were similar in terms of gene expression, while Treated_2+ cattle were the most distinct. ROC cutoffs were used to generate an at-arrival treatment decision tree, which classified 90% of Treated_2+ individuals. Conclusions Increased expression of complement factor B, pro-inflammatory, and type I interferon-associated mRNA hallmark the at-arrival expression patterns of cattle that develop severe clinical BRD. Here, we corroborate at-arrival mRNA markers identified in previous transcriptome studies and generate a prediction model to be evaluated in future studies. Further research is necessary to evaluate these expression patterns in a prospective manner. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03178-8.
Collapse
Affiliation(s)
- Matthew A Scott
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, 79015, USA.
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS, 39762, USA
| | - Cyprianna E Swiderski
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Alexis C Thompson
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS, 39762, USA
| | - Andy D Perkins
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS, 39762, USA
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Dan R Goehl
- Professional Beef Services, LLC, Canton, MO, 63435, USA
| |
Collapse
|
7
|
Abstract
Mediators of the initiation, development, and recurrence of periodontitis include the oral microbiome embedded in subgingival plaque and the host immune response to a dysbiosis within this dynamic and complex microbial community. Although mediators have been studied extensively, researchers in the field have been unable to fully ascribe certain clinical presentations of periodontitis to their nature. Emergence of high-throughput sequencing technologies has resulted in better characterization of the microbial oral dysbiosis that extends beyond the extensively studied putative bacterial periodontopathogens to a shift in the oral virome composition during disease conditions. Although the biological dark matter inserted by retroviruses was once believed to be nonfunctional, research has revealed that it encodes historical viral-eukaryotic interactions and influences host development. The objective of this review is to evaluate the proposed association of herpesviruses to the etiology and pathogenesis of periodontal disease and survey the highly abundant prokaryotic viruses to delineate their potential roles in biofilm dynamics, as well as their interactions with putative bacterial periodontopathogens and eukaryotic cells. The findings suggest that potential novel periodontal therapies targeting or utilizing the oral virome can alleviate certain clinical presentations of periodontitis. Perhaps it is time to embrace the viral dark matter within the periodontal environment to fully comprehend the pathogenesis and systemic implications of periodontitis.
Collapse
Affiliation(s)
- April Martínez
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ryutaro Kuraji
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Life Science DentistryThe Nippon Dental UniversityTokyoJapan
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Yvonne L. Kapila
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Bandyopadhyay S, Douglass J, Kapell S, Khan N, Feitosa-Suntheimer F, Klein JA, Temple J, Brown-Culbertson J, Tavares AH, Saeed M, Lau NC. DNA templates with blocked long 3' end single-stranded overhangs (BL3SSO) promote bona fide Cas9-stimulated homology-directed repair of long transgenes into endogenous gene loci. G3-GENES GENOMES GENETICS 2021; 11:6275753. [PMID: 33989385 PMCID: PMC8496256 DOI: 10.1093/g3journal/jkab169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
Knock-in of large transgenes by Cas9-mediated homology-directed repair (HDR) is an extremely inefficient process. Although the use of single-stranded oligonucleotides (ssODN) as an HDR donor has improved the integration of smaller transgenes, they do not support efficient insertion of large DNA sequences. In an effort to gain insights into the mechanism(s) governing the HDR-mediated integration of larger transgenes and to improve the technology, we conducted knock-in experiments targeting the human EMX1 locus and applied rigorous genomic PCR analyses in the human HEK293 cell line. This exercise revealed an unexpected molecular complication arising from the transgene HDR being initiated at the single homology arm and the subsequent genomic integration of plasmid backbone sequences. To pivot around this problem, we devised a novel PCR-constructed template containing blocked long 3' single-stranded overhangs (BL3SSO) that greatly improved the efficiency of bona fide Cas9-stimulated HDR at the EMX1 locus. We further refined BL3SSO technology and successfully used it to insert GFP transgenes into two important interferon-stimulated genes (ISGs) loci, Viperin/RSAD2, and ISG15. This study demonstrates the utility of the BL3SSO platform for inserting long DNA sequences into both constitutive and inducible endogenous loci to generate novel human cell lines for the study of important biological processes.
Collapse
Affiliation(s)
- Saptaparni Bandyopadhyay
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph Douglass
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Sebastian Kapell
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Nazimuddin Khan
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | | | - Jenny A Klein
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jasmine Temple
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Jayce Brown-Culbertson
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alexander H Tavares
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA.,Genome Science Institute, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
9
|
Wang H, Gao L, Qi M, Su P, Xiong X, Zhao J, Hu J, Han B. BTF3 promotes stemness and inhibits TypeⅠInterferon signaling pathway in triple-negative breast cancer. Biochem Biophys Res Commun 2020; 537:22-28. [PMID: 33383560 DOI: 10.1016/j.bbrc.2020.12.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is a major challenge in clinical practice due to its aggressiveness and lack of targeted treatment. Cancer stem-like traits contribute to tumorigenesis and immune privilege of TNBC. However, the relationship of stemness and immunosurveillance remains unclear. Here, we demonstrate that BTF3 expression is related with stem-like properties in TNBC cells. BTF3 modulates stemness, migration and proliferation of TNBC in vitro. Bioinformatics analysis revealed that interferon signaling pathways and IRF7, both of which participate in the immune escape of TNBC, are closely related to BTF3 in TNBC cells. Knockdown of BTF3 activates IRF7 expression through increased degradation of BMI1, a protein that can represses IRF7 transcription by directly binding to its promotor region. BTF3 links stem-like traits and the interferon signaling pathway, revealing the potential connection of stemness and immunomodulation in TNBC. Clinically, we suggest that BTF3 is predictive of poor prognosis in patients with TNBC. Together, our findings highlight an important role of BTF3 in regulating the progression of TNBC cells.
Collapse
Affiliation(s)
- Hexiang Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, 250012, Jinan, China; Department of Pathology, Qingdao Hiser Hospital, 266034, Qingdao, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, 250012, Jinan, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jian Zhao
- Department of Thoracic Surgery, Shandong University Qilu Hospital, 250012, Jinan, China
| | - Jing Hu
- Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, 250012, Jinan, China; Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China.
| |
Collapse
|
10
|
Neelakantan S, Oemar B, Johnson K, Rath N, Salganik M, Berman G, Pelletier K, Cox L, Page K, Messing D, Tarabar S. Safety, Tolerability, and Pharmacokinetics of PF-06823859, an Anti-Interferon β Monoclonal Antibody: A Randomized, Phase I, Single- and Multiple-Ascending-Dose Study. Clin Pharmacol Drug Dev 2020; 10:307-316. [PMID: 33352008 DOI: 10.1002/cpdd.887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022]
Abstract
This double-blind, randomized, placebo-controlled, dose-ascending, first-in-human study (NCT02766621) assessed the safety, tolerability, and pharmacokinetics (PK) of PF-06823859, an anti-interferon β monoclonal antibody. Healthy subjects were randomized to single ascending doses (SADs) of intravenous PF-06823859 30, 100, 300, 900, or 2000 mg or placebo; to multiple ascending doses (MADs) of subcutaneous PF-06823859 100 or 300 mg or placebo (once every 2 weeks for a total of 3 doses); or to MAD of intravenous PF-06823859 600 mg or placebo (once every 3 weeks or once every 4 weeks for a total of 2 doses). The incidence, severity, and causal relationship of adverse events (AEs) were assessed, along with immunogenicity and PK. In total, 62 subjects were randomized to treatment (SAD, n = 35; MAD, n = 27). There were 76 treatment-emergent all-causality AEs in the SAD (PF-06823859: n = 25; placebo: n = 4) and MAD (PF-06823859: n = 40; placebo: n = 7) cohorts. In the SAD cohorts, all treatment-emergent all-causality AEs were mild in severity; 4 AEs of moderate severity were identified in the MAD cohorts. No dose-limiting AEs, serious AEs, treatment-related discontinuations, dose reductions, or deaths occurred. PF-06823859 exposure increased dose-proportionally, with half-life values ranging between 23 and 35 days. The estimated subcutaneous bioavailability was 43% to 44%. Immunogenicity incidence rates were low (antidrug antibodies, 12.5%; neutralizing antibodies, 2.1%). No immunogenically related clinical responses of concern were observed. In conclusion, PF-06823859 demonstrated an acceptable safety, tolerability, and PK profile that supports clinical development for treating disorders associated with increased interferon β levels, such as dermatomyositis or systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - Barry Oemar
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Kristen Johnson
- Center for Therapeutic Innovation, Pfizer Inc, New York, New York, USA
| | | | - Mikhail Salganik
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | | | | | - Lori Cox
- Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Karen Page
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Dean Messing
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Sanela Tarabar
- Pfizer Clinical Research Unit, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Bolivar S, Espitia-Corredor JA, Olivares-Silva F, Valenzuela P, Humeres C, Anfossi R, Castro E, Vivar R, Salas-Hernández A, Pardo-Jiménez V, Díaz-Araya G. In cardiac fibroblasts, interferon-beta attenuates differentiation, collagen synthesis, and TGF-β1-induced collagen gel contraction. Cytokine 2020; 138:155359. [PMID: 33160814 DOI: 10.1016/j.cyto.2020.155359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Cardiac fibroblasts (CF) play a key role in the homeostasis of the extracellular matrix in cardiac tissue and are newly recognized as inflammatory supporter cells. Besides, CF-to-Cardiac myofibroblast differentiation is commanded by TGF-b, through SMAD signaling pathways, and these last cells are strongly implicated in cardiac fibrosis. In the heart IFN-β is produced by CF; however, the role of IFN-β, STAT proteins, and STAT-homo or heterodimers in the regulation of CF function with or without a fibrotic environment is unknown. CF were isolated from hearts of adult rats, and by western blot analysis we studied STAT1, STAT2, and STAT3 phosphorylation and through specific siRNA against these proteins we analyzed their role in CF functions such as differentiation (α-SMA expression); and pro-collagen type-I synthesis and secretion expression levels; collagen gels contraction and CF migration. In cultured adult rats CF, IFN-β increases phosphorylation of STAT1, STAT2, and STAT3. Both STAT1 and STAT2 were involved in decreasing α-SMA and CF migration induced by TGF-β1. Also, IFN-β through STAT1 regulated pro-collagen type-I protein expression levels, and collagen gels contraction induced by TGF-β1. STAT3 was not involved in any effects of IFN-β studied. In conclusion, IFN-β through STAT1 and STAT2 shows antifibrotic effects on CF TGF-β1-treated, whereas STAT3 did not participate in such effect.
Collapse
Affiliation(s)
- S Bolivar
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - J A Espitia-Corredor
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - F Olivares-Silva
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - P Valenzuela
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - C Humeres
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - R Anfossi
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - E Castro
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - R Vivar
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - A Salas-Hernández
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - V Pardo-Jiménez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - G Díaz-Araya
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
12
|
Thomas TP, Grisanti LA. The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Front Physiol 2020; 11:529075. [PMID: 33041853 PMCID: PMC7522448 DOI: 10.3389/fphys.2020.529075] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a leading cause of death worldwide. While there are multiple etiologies contributing to the development of heart failure, all cause result in impairments in cardiac function that is characterized by changes in cardiac remodeling and compliance. Fibrosis is associated with nearly all forms of heart failure and is an important contributor to disease pathogenesis. Inflammation also plays a critical role in the heart and there is a large degree of interconnectedness between the inflammatory and fibrotic response. This review discusses the cellular and molecular mechanisms contributing to inflammation and fibrosis and the interplay between the two.
Collapse
Affiliation(s)
- Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
13
|
Oosenbrug T, van de Graaff MJ, Haks MC, van Kasteren S, Ressing ME. An alternative model for type I interferon induction downstream of human TLR2. J Biol Chem 2020; 295:14325-14342. [PMID: 32796029 DOI: 10.1074/jbc.ra120.015283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/10/2020] [Indexed: 11/06/2022] Open
Abstract
Surface-exposed Toll-like receptors (TLRs) such as TLR2 and TLR4 survey the extracellular environment for pathogens. TLR activation initiates the production of various cytokines and chemokines, including type I interferons (IFN-I). Downstream of TLR4, IFNβ secretion is only vigorously triggered in macrophages when the receptor undergoes endocytosis and switches signaling adaptor; surface TLR4 engagement predominantly induces proinflammatory cytokines via the signaling adaptor MyD88. It is unclear whether this dichotomy is generally applicable to other TLRs, cell types, or differentiation states. Here, we report that diverse TLR2 ligands induce an IFN-I response in human monocyte-like cells, but not in differentiated macrophages. This TLR2-dependent IFN-I signaling originates from the cell surface and depends on MyD88; it involves combined activation of the transcription factors IRF3 and NF-κB, driven by the kinases TBK1 and TAK1-IKKβ, respectively. TLR2-stimulated monocytes produced modest IFNβ levels that caused productive downstream signaling, reflected by STAT1 phosphorylation and expression of numerous interferon-stimulated genes. Our findings reveal that the outcome of TLR2 signaling includes an IFN-I response in human monocytes, which is lost upon macrophage differentiation, and differs mechanistically from IFN-I-induction through TLR4. These findings point to molecular mechanisms tailored to the differentiation state of a cell and the nature of receptors activated to control and limit TLR-triggered IFN-I responses.
Collapse
Affiliation(s)
- Timo Oosenbrug
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel J van de Graaff
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander van Kasteren
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Ahn D, Prince A. Participation of the IL-10RB Related Cytokines, IL-22 and IFN-λ in Defense of the Airway Mucosal Barrier. Front Cell Infect Microbiol 2020; 10:300. [PMID: 32637365 PMCID: PMC7318800 DOI: 10.3389/fcimb.2020.00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The airway epithelial barrier is a major barrier protecting against clinically significant infections of the lung. Its integrity is often compromised due to mechanical, chemical, or infectious causes. Opportunistic bacterial pathogens are poised to cause parenchymal infection and become difficult to eradicate due to adaptive metabolic changes, biofilm formation, and the acquisition of antimicrobial resistance and fitness genes. Enhancing mucosal defenses by modulating the cytokines that regulate barrier functions, such as interleukin-22 (IL-22) and interferon-λ (IFN-λ), members of the IL-10 family of cytokines, is an attractive approach to prevent these infections that are associated with high morbidity and mortality. These cytokines both signal through the cognate receptor IL-10RB, have related protein structures and common downstream signaling suggesting shared roles in host respiratory defense. They are typically co-expressed in multiple models of infections, but with differing kinetics. IL-22 has an important role in the producing antimicrobial peptides, upregulating expression of junctional proteins in the airway epithelium and working in concert with other inflammatory cytokines such as IL-17. Conversely, IFN-λ, a potent antiviral in influenza infection with pro-inflammatory properties, appears to decrease junctional integrity allowing for bacterial and immune cell translocation. The effects of these cytokines are pleotropic, with pathogen and tissue specific consequences. Understanding how these cytokines work in the mucosal defenses of the respiratory system may suggest potential targets to prevent invasive infections of the damaged lung.
Collapse
Affiliation(s)
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
15
|
Karimi Y, Giles EC, Vahedi F, Chew MV, Nham T, Loukov D, Lee AJ, Bowdish DME, Ashkar AA. IFN- β signalling regulates RAW 264.7 macrophage activation, cytokine production, and killing activity. Innate Immun 2020; 26:172-182. [PMID: 31615311 PMCID: PMC7144030 DOI: 10.1177/1753425919878839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
Type I IFN holds a critical role in host defence, providing protection against pathogenic organisms through coordinating a pro-inflammatory response. Type I IFN provides additional protection through mitigating this inflammatory response, preventing immunopathology. Within the context of viral infections, type I IFN signalling commonly results in successful viral clearance. Conversely, during bacterial infections, the role of type I IFN is less predictable, leading to either detrimental or beneficial outcomes. The factors responsible for the variability in the role of type I IFN remain unclear. Here, we aimed to elucidate differences in the effect of type I IFN signalling on macrophage functioning in the context of TLR activation. Using RAW 264.7 macrophages, we observed the influence of type I IFN to be dependent on the type of TLR ligand, length of TLR exposure and the timing of IFN-β signalling. However, in all conditions, IFN-β increased the production of the anti-inflammatory cytokine IL-10. Examination of RAW 264.7 macrophage function showed type I IFN to induce an activated phenotype by up-regulating MHC II expression and enhancing killing activity. Our results support a context-dependent role for type I IFN in regulating RAW 264.7 macrophage activity.
Collapse
Affiliation(s)
| | | | - Fatemeh Vahedi
- Department of Pathology and Molecular Medicine,
McMaster Immunology Research Centre, McMaster University, Canada
| | - Marianne V Chew
- Department of Pathology and Molecular Medicine,
McMaster Immunology Research Centre, McMaster University, Canada
| | - Tina Nham
- Department of Pathology and Molecular Medicine,
McMaster Immunology Research Centre, McMaster University, Canada
| | - Dessi Loukov
- Department of Pathology and Molecular Medicine,
McMaster Immunology Research Centre, McMaster University, Canada
| | - Amanda J Lee
- Department of Pathology and Molecular Medicine,
McMaster Immunology Research Centre, McMaster University, Canada
| | - Dawn ME Bowdish
- Department of Pathology and Molecular Medicine,
McMaster Immunology Research Centre, McMaster University, Canada
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine,
McMaster Immunology Research Centre, McMaster University, Canada
| |
Collapse
|
16
|
Ignatz EH, Braden LM, Benfey TJ, Caballero-Solares A, Hori TS, Runighan CD, Fast MD, Westcott JD, Rise ML. Impact of rearing temperature on the innate antiviral immune response of growth hormone transgenic female triploid Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2020; 97:656-668. [PMID: 31891812 DOI: 10.1016/j.fsi.2019.12.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
AquAdvantage Salmon (growth hormone transgenic female triploid Atlantic salmon) are a faster-growing alternative to conventional farmed diploid Atlantic salmon. To investigate optimal rearing conditions for their commercial production, a laboratory study was conducted in a freshwater recirculating aquaculture system (RAS) to examine the effect of rearing temperature (10.5 °C, 13.5 °C, 16.5 °C) on their antiviral immune and stress responses. When each temperature treatment group reached an average weight of 800 g, a subset of fish were intraperitoneally injected with either polyriboinosinic polyribocytidylic acid (pIC, a viral mimic) or an equal volume of sterile phosphate-buffered saline (PBS). Blood and head kidney samples were collected before injection and 6, 24 and 48 h post-injection (hpi). Transcript abundance of 7 antiviral biomarker genes (tlr3, lgp2, stat1b, isg15a, rsad2, mxb, ifng) was measured by real-time quantitative polymerase chain reaction (qPCR) on head kidney RNA samples. Plasma cortisol levels from blood samples collected pre-injection and from pIC and PBS groups at 24 hpi were quantified by ELISA. While rearing temperature and treatment did not significantly affect circulating cortisol, all genes tested were significantly upregulated by pIC at all three temperatures (except for tlr3, which was only upregulated in the 10.5 °C treatment). Target gene activation was generally observed at 24 hpi, with most transcript levels decreasing by 48 hpi in pIC-injected fish. Although a high amount of biological variability in response to pIC was evident across all treatments, rearing temperature significantly influenced transcript abundance and/or fold-changes comparing time- and temperature-matched pIC- and PBS-injected fish for several genes (tlr3, lgp2, stat1b, isg15a, rsad2 and ifng) at 24 hpi. As an example, significantly higher fold-changes of rsad2, isg15a and ifng were found in fish reared at 10.5 °C when compared to 16.5 °C. Multivariate analysis confirmed that rearing temperature modulated antiviral immune response. The present experiment provides novel insight into the relationship between rearing temperature and innate antiviral immune response in AquAdvantage Salmon.
Collapse
Affiliation(s)
- Eric H Ignatz
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada; Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Laura M Braden
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Tillmann J Benfey
- University of New Brunswick, Department of Biology, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.
| | - Albert Caballero-Solares
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Tiago S Hori
- Center for Aquaculture Technologies Canada, 20 Hope Street, Souris, PE, C0A 2B0, Canada.
| | - C Dawn Runighan
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada.
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Jillian D Westcott
- Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada.
| | - Matthew L Rise
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
17
|
Bacteriophage and the Innate Immune System: Access and Signaling. Microorganisms 2019; 7:microorganisms7120625. [PMID: 31795262 PMCID: PMC6956183 DOI: 10.3390/microorganisms7120625] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Bacteriophage and the bacteria they infect are the dominant members of the gastrointestinal microbiome. While bacteria are known to be central to maintenance of the structure, function, and health of the microbiome, it has only recently been recognized that phage too might serve a critical function. Along these lines, bacteria are not the only cells that are influenced by bacteriophage, and there is growing evidence of bacteriophage effects on epithelial, endothelial, and immune cells. The innate immune system is essential to protecting the Eukaryotic host from invading microorganisms, and bacteriophage have been demonstrated to interact with innate immune cells regularly. Here, we conduct a systematic review of the varying mechanisms allowing bacteriophage to access and interact with cells of the innate immune system and propose the potential importance of these interactions.
Collapse
|
18
|
Carrillo-Jimenez A, Deniz Ö, Niklison-Chirou MV, Ruiz R, Bezerra-Salomão K, Stratoulias V, Amouroux R, Yip PK, Vilalta A, Cheray M, Scott-Egerton AM, Rivas E, Tayara K, García-Domínguez I, Garcia-Revilla J, Fernandez-Martin JC, Espinosa-Oliva AM, Shen X, St George-Hyslop P, Brown GC, Hajkova P, Joseph B, Venero JL, Branco MR, Burguillos MA. TET2 Regulates the Neuroinflammatory Response in Microglia. Cell Rep 2019; 29:697-713.e8. [PMID: 31618637 DOI: 10.1016/j.celrep.2019.09.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/18/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenomic mechanisms regulate distinct aspects of the inflammatory response in immune cells. Despite the central role for microglia in neuroinflammation and neurodegeneration, little is known about their epigenomic regulation of the inflammatory response. Here, we show that Ten-eleven translocation 2 (TET2) methylcytosine dioxygenase expression is increased in microglia upon stimulation with various inflammogens through a NF-κB-dependent pathway. We found that TET2 regulates early gene transcriptional changes, leading to early metabolic alterations, as well as a later inflammatory response independently of its enzymatic activity. We further show that TET2 regulates the proinflammatory response in microglia of mice intraperitoneally injected with LPS. We observed that microglia associated with amyloid β plaques expressed TET2 in brain tissue from individuals with Alzheimer's disease (AD) and in 5xFAD mice. Collectively, our findings show that TET2 plays an important role in the microglial inflammatory response and suggest TET2 as a potential target to combat neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Alejandro Carrillo-Jimenez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | | | - Rocio Ruiz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Karina Bezerra-Salomão
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Vassilis Stratoulias
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rachel Amouroux
- MRC London Institute of Medical Sciences/Institute of Clinical Sciences Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ping Kei Yip
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Eloy Rivas
- Department of Pathology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Khadija Tayara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Juan Garcia-Revilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Juan Carlos Fernandez-Martin
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Ana Maria Espinosa-Oliva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Xianli Shen
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0SP, UK
| | - Guy Charles Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Petra Hajkova
- MRC London Institute of Medical Sciences/Institute of Clinical Sciences Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jose Luis Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miguel Ramos Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| | - Miguel Angel Burguillos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| |
Collapse
|
19
|
HCMV-encoded US7 and US8 act as antagonists of innate immunity by distinctively targeting TLR-signaling pathways. Nat Commun 2019; 10:4670. [PMID: 31604943 PMCID: PMC6789044 DOI: 10.1038/s41467-019-12641-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/21/2019] [Indexed: 01/04/2023] Open
Abstract
The mechanisms by which many human cytomegalovirus (HCMV)-encoded proteins help the virus to evade immune surveillance remain poorly understood. In particular, it is unknown whether HCMV proteins arrest Toll-like receptor (TLR) signaling pathways required for antiviral defense. Here, we report that US7 and US8 as key suppressors that bind both TLR3 and TLR4, facilitating their destabilization by distinct mechanisms. US7 exploits the ER-associated degradation components Derlin-1 and Sec61, promoting ubiquitination of TLR3 and TLR4. US8 not only disrupts the TLR3-UNC93B1 association but also targets TLR4 to the lysosome, resulting in rapid degradation of the TLR. Accordingly, a mutant HCMV lacking the US7-US16 region has an impaired ability to hinder TLR3 and TLR4 activation, and the impairment is reversed by the introduction of US7 or US8. Our findings reveal an inhibitory effect of HCMV on TLR signaling, which contributes to persistent avoidance of the host antiviral response to achieve viral latency. Human cytomegalovirus (HCMV) has evolved several mechanisms to evade the host immune response. Here, Park et al. show that HCMV-encoded US7 and US8 proteins bind TLR3 and TLR4 and facilitate TLR degradation by distinct mechanisms, including ER-associated and lysosomal degradation.
Collapse
|
20
|
Microbial recognition by GEF-H1 controls IKKε mediated activation of IRF5. Nat Commun 2019; 10:1349. [PMID: 30902986 PMCID: PMC6430831 DOI: 10.1038/s41467-019-09283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
During infection, transcription factor interferon regulatory factor 5 (IRF5) is essential for the control of host defense. Here we show that the microtubule-associated guanine nucleotide exchange factor (GEF)-H1, is required for the phosphorylation of IRF5 by microbial muramyl-dipeptides (MDP), the minimal structural motif of peptidoglycan of both Gram-positive and Gram-negative bacteria. Specifically, GEF-H1 functions in a microtubule based recognition system for microbial peptidoglycans that mediates the activation of IKKε which we identify as a new upstream IKKα/β and IRF5 kinase. The deletion of GEF-H1 or dominant-negative variants of GEF-H1 prevent activation of IKKε and phosphorylation of IRF5. The GEF-H1-IKKε-IRF5 signaling axis functions independent of NOD-like receptors and is critically required for the recognition of intracellular peptidoglycans and host defenses against Listeria monocytogenes. The transcription factor IRF5 is essential for immune defense against pathogens. Here, the authors show that the microtubule-associated factor GEF-H1 plays a critical role in host defense against Listeria monocytogenes in macrophages via activation of the IRF5 kinase IKKε.
Collapse
|
21
|
Palikhe S, Ohashi W, Sakamoto T, Hattori K, Kawakami M, Andoh T, Yamazaki H, Hattori Y. Regulatory Role of GRK2 in the TLR Signaling-Mediated iNOS Induction Pathway in Microglial Cells. Front Pharmacol 2019; 10:59. [PMID: 30778300 PMCID: PMC6369205 DOI: 10.3389/fphar.2019.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a ubiquitous member of the GRK family that restrains cellular activation by G protein-coupled receptor (GPCR) phosphorylation leading to receptor desensitization and internalization, but has been identified to regulate a variety of signaling molecules, among which may be associated with inflammation. In this study, we attempted to establish the regulatory role of GRK2 in the Toll-like receptor (TLR) signaling pathway for inducible nitric oxide synthase (iNOS) expression in microglial cells. When mouse MG6 cells were stimulated with the TLR4 ligands lipopolysaccharide (LPS) and paclitaxel, we found that interferon regulatory factor 1 (IRF1) protein expression and activation was upregulated, transcription of interferon-β (IFN-β) was accelerated, induction/activation of STAT1 and activation of STAT3 were promoted, and subsequently iNOS expression was upregulated. The ablation of GRK2 by small interfering RNAs (siRNAs) not only eliminated TLR4-mediated upregulation of IRF1 protein expression and nuclear translocation but also suppressed the activation of the STAT pathway, resulting in negating the iNOS upregulation. The TLR3-mediated changes in IRF1 and STAT1/3, leading to iNOS induction, were also abrogated by siRNA knockdown of GRK2. Furthermore, transfection of GRK2 siRNA blocked the exogenous IFN-β supplementation-induced increases in phosphorylation of STAT1 as well as STAT3 and abrogated the augmentation of iNOS expression in the presence of exogenous IFN-β. Taken together, our results show that GRK2 regulates the activation of IRF1 as well as the activation of the STAT pathway, leading to upregulated transcription of iNOS in activated microglial cells. Modulation of the TLR signaling pathway via GRK2 in microglia may be a novel therapeutic target for treatment of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuya Sakamoto
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaaki Kawakami
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiromi Yamazaki
- Faculty of Nursing Science, Tsuruga Nursing University, Tsuruga, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- The Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Tobetsu, Japan
| |
Collapse
|
22
|
Britto CJ, Niu N, Khanal S, Huleihel L, Herazo-Maya JD, Thompson A, Sauler M, Slade MD, Sharma L, Dela Cruz CS, Kaminski N, Cohn LE. BPIFA1 regulates lung neutrophil recruitment and interferon signaling during acute inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 316:L321-L333. [PMID: 30461288 DOI: 10.1152/ajplung.00056.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bpifa1 (BPI fold-containing group A member 1) is an airway host-protective protein with immunomodulatory properties that binds to LPS and is regulated by infectious and inflammatory signals. Differential expression of Bpifa1 has been widely reported in lung disease, yet the biological significance of this observation is unclear. We sought to understand the role of Bpifa1 fluctuations in modulating lung inflammation. We treated wild-type (WT) and Bpifa1-/- mice with intranasal LPS and performed immunological and transcriptomic analyses of lung tissue to determine the immune effects of Bpifa1 deficiency. We show that neutrophil (polymorphonuclear cells, PMNs) lung recruitment and transmigration to the airways in response to LPS is impaired in Bpifa1-/- mice. Transcriptomic analysis revealed a signature of 379 genes that differentiated Bpifa1-/- from WT mice. During acute lung inflammation, the most downregulated genes in Bpifa1-/- mice were Cxcl9 and Cxcl10. Bpifa1-/- mice had lower bronchoalveolar lavage concentrations of C-X-C motif chemokine ligand 10 (Cxcl10) and Cxcl9, interferon-inducible PMN chemokines. This was consistent with lower expression of IFNγ, IFNλ, downstream IFN-stimulated genes, and IFN-regulatory factors, which are important for the innate immune response. Administration of Cxcl10 before LPS treatment restored the inflammatory response in Bpifa1-/- mice. Our results identify a novel role for Bpifa1 in the regulation of Cxcl10-mediated PMN recruitment to the lungs via IFNγ and -λ signaling during acute inflammation.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Naiqian Niu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Sara Khanal
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Luai Huleihel
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Jose D Herazo-Maya
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Alison Thompson
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Martin D Slade
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut.,Yale University School of Public Health, Department of Environmental Health Sciences , New Haven, Connecticut
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Lauren E Cohn
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
23
|
Llopiz D, Ruiz M, Silva L, Sarobe P. Enhancement of Antitumor Vaccination by Targeting Dendritic Cell-Related IL-10. Front Immunol 2018; 9:1923. [PMID: 30233565 PMCID: PMC6129595 DOI: 10.3389/fimmu.2018.01923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding mechanisms associated to dendritic cell (DC) functions has allowed developing new antitumor therapeutic vaccination strategies. However, these vaccines have demonstrated limited clinical results. Although the low immunogenicity of tumor antigens used and the presence of tumor-associated suppressive factors may in part account for these results, intrinsic vaccine-related factors may also be involved. Vaccines modulate DC functions by inducing activating and inhibitory signals that determine ensuing T cell responses. In this mini review, we focus on IL-10, inhibitory cytokine induced in DC upon vaccination, which defines a suppressive cell subset, discussing its implications as a potential target in combined vaccination immunotherapies.
Collapse
Affiliation(s)
- Diana Llopiz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Ruiz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Leyre Silva
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pablo Sarobe
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
24
|
Behrouzi A, Vaziri F, Riazi Rad F, Amanzadeh A, Fateh A, Moshiri A, Khatami S, Siadat SD. Comparative study of pathogenic and non-pathogenic Escherichia coli outer membrane vesicles and prediction of host-interactions with TLR signaling pathways. BMC Res Notes 2018; 11:539. [PMID: 30068381 PMCID: PMC6071399 DOI: 10.1186/s13104-018-3648-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The intestine is the major defensive barrier in the body by having more than 60% of the immune cells in the intestinal mucosa. The aim of this study was to evaluate the Toll like receptor (TLR) signaling pathways and immune response profiles, against outer membrane vesicles (OMVs) in pathogenic and non-pathogenic strains of Escherichia coli. Results Our results demonstrated that despite inducing inflammatory and regulatory responses to OMVs released by both strains, there is a remarkable difference in the nature and severity of these responses between the two strains. Following the production and release of OMV by the pathogenic strain, the expressions of the pro-inflammatory cytokines were significantly elevated, in comparison to the non-pathogenic strains. Eventually, our findings suggest that OMV released by the pathogen strain might be colonized, causing inflammation, eliminating the tight junctions of epithelial cells and damaging underlying cells, without the presence of IL-17 at the inflammation site. This could have happened to prevent the development of more severe inflammation, which could lead to the inhibition of colonization. The production of IL-10 is also preventing such inflammations. On the other hand, OMV released by non-pathogenic E. coli appears to influence intestinal homeostasis by causing more anti-inflammatory responses and mild inflammation. Electronic supplementary material The online version of this article (10.1186/s13104-018-3648-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
25
|
Sköld AE, Mathan TSM, van Beek JJP, Flórez-Grau G, van den Beukel MD, Sittig SP, Wimmers F, Bakdash G, Schreibelt G, de Vries IJM. Naturally produced type I IFNs enhance human myeloid dendritic cell maturation and IL-12p70 production and mediate elevated effector functions in innate and adaptive immune cells. Cancer Immunol Immunother 2018; 67:1425-1436. [PMID: 30019146 PMCID: PMC6132867 DOI: 10.1007/s00262-018-2204-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/06/2018] [Indexed: 12/23/2022]
Abstract
There has recently been a paradigm shift in the field of dendritic cell (DC)-based immunotherapy, where several clinical studies have confirmed the feasibility and advantageousness of using directly isolated human blood-derived DCs over in vitro differentiated subsets. There are two major DC subsets found in blood; plasmacytoid DCs (pDCs) and myeloid DCs (mDCs), and both have been tested clinically. CD1c+ mDCs are highly efficient antigen-presenting cells that have the ability to secrete IL-12p70, while pDCs are professional IFN-α-secreting cells that are shown to induce innate immune responses in melanoma patients. Hence, combining mDCs and pDCs poses as an attractive, multi-functional vaccine approach. However, type I IFNs have been reported to inhibit IL-12p70 production and mDC-induced T-cell activation. In this study, we investigate the effect of IFN-α on mDC maturation and function. We demonstrate that both recombinant IFN-α and activated pDCs strongly enhance mDC maturation and increase IL-12p70 production. Co-cultured mDCs and pDCs additionally have beneficial effect on NK and NKT-cell activation and also enhances IFN-γ production by allogeneic T cells. In contrast, the presence of type I IFNs reduces the proliferative T-cell response. The mere presence of a small fraction of activated pDCs is sufficient for these effects and the required ratio between the subsets is non-stringent. Taken together, these results support the usage of mDCs and pDCs combined into one immunotherapeutic vaccine with broad immunostimulatory features.
Collapse
Affiliation(s)
- Annette E Sköld
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Till S M Mathan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands
| | - Jasper J P van Beek
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands
| | - Michelle D van den Beukel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands
| | - Simone P Sittig
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands
| | - Florian Wimmers
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands
| | - Ghaith Bakdash
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands
- Allergic Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage, United Kingdom
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 26/28, 6525 GA, Nijmegen, The Netherlands.
- Department of Medical Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Steffen S, Abraham S, Herbig M, Schmidt F, Blau K, Meisterfeld S, Beissert S, Guck J, Günther C. Toll-Like Receptor-Mediated Upregulation of CXCL16 in Psoriasis Orchestrates Neutrophil Activation. J Invest Dermatol 2018; 138:344-354. [DOI: 10.1016/j.jid.2017.08.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/27/2017] [Indexed: 12/27/2022]
|
27
|
Mahadik K, Prakhar P, Rajmani RS, Singh A, Balaji KN. c-Abl-TWIST1 Epigenetically Dysregulate Inflammatory Responses during Mycobacterial Infection by Co-Regulating Bone Morphogenesis Protein and miR27a. Front Immunol 2018; 9:85. [PMID: 29449840 PMCID: PMC5799226 DOI: 10.3389/fimmu.2018.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Mycobacteria propelled modulation of host responses is of considerable interest in the face of emerging drug resistance. Although it is known that Abl tyrosine kinases affect entry and persistence of mycobacteria, mechanisms that couple c-Abl to proximal signaling pathways during immunity are poorly understood. Loss-of-function of c-Abl through Imatinib, in a mouse model of tuberculosis or RNA interference, identified bone morphogenesis protein (BMP) signaling as its cellular target. We demonstrate that c-Abl promotes mycobacterial survival through epigenetic modification brought about by KAT5-TWIST1 at Bmp loci. c-Abl-BMP signaling deregulated iNOS, aggravating the inflammatory balance. Interestingly, BMP signaling was observed to have far-reaching effects on host immunity, as it attenuated TLR3 pathway by engaging miR27a. Significantly, these events were largely mediated via WhiB3 and DosR/S/T but not SecA signaling pathway of mycobacteria. Our findings suggest molecular mechanisms of host pathways hijacked by mycobacteria and expand our understanding of c-Abl inhibitors in potentiating innate immune responses.
Collapse
Affiliation(s)
- Kasturi Mahadik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - R S Rajmani
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
28
|
Odendall C, Voak AA, Kagan JC. Type III IFNs Are Commonly Induced by Bacteria-Sensing TLRs and Reinforce Epithelial Barriers during Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3270-3279. [PMID: 28954888 PMCID: PMC5679450 DOI: 10.4049/jimmunol.1700250] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
Type III IFNs (IFN-λs) are secreted factors that are well-known for their antiviral activities. However, their regulation and functions during bacterial infections are unclear. In this article, we report that the regulation of IFN-λ genes did not track with mechanisms that control type I IFN expression in response to TLRs. Whereas type I IFNs were only expressed from TLRs present on endosomes, type III IFNs could be induced by TLRs that reside at the plasma membrane and that detect various bacterial products. The mechanisms that regulate type III IFN gene expression tracked with those that promote inflammatory cytokine and chemokine expression. Importantly, rIFN-λs enhanced epithelial barriers in vitro, preventing transcellular bacteria dissemination. We therefore propose that in addition to their functions in cell-intrinsic antiviral immunity, type III IFNs protect epithelial barrier integrity, an activity that would benefit the host during any infectious encounter.
Collapse
Affiliation(s)
- Charlotte Odendall
- Harvard Medical School, Boston, MA 02115;
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115; and
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Andrew A Voak
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Jonathan C Kagan
- Harvard Medical School, Boston, MA 02115;
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115; and
| |
Collapse
|
29
|
Kumthip K, Yang D, Li NL, Zhang Y, Fan M, Sethuraman A, Li K. Pivotal role for the ESCRT-II complex subunit EAP30/SNF8 in IRF3-dependent innate antiviral defense. PLoS Pathog 2017; 13:e1006713. [PMID: 29084253 PMCID: PMC5679654 DOI: 10.1371/journal.ppat.1006713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/09/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
The activation of interferon (IFN)-regulatory factor-3 (IRF3), characterized by phosphorylation and nuclear translocation of the latent transcription factor, is central to initiating innate antiviral responses. Whereas much has been learned about the upstream pathways and signaling mechanisms leading to IRF3 activation, how activated IRF3 operates in the nucleus to control transcription of IFNs remains obscure. Here we identify EAP30 (a.k.a, SNF8/VPS22), an endosomal sorting complex required for transport (ESCRT)-II subunit, as an essential factor controlling IRF3-dependent antiviral defense. Depletion of EAP30, but not other ESCRT-II subunits, compromised IRF3-dependent induction of type I and III IFNs, IFN-stimulated genes (ISGs) and chemokines by double-stranded RNA or viruses. EAP30, however, was dispensable for the induction of inflammatory mediators of strict NF-κB target. Significantly, knockdown of EAP30 also impaired the establishment of an antiviral state against vesicular stomatitis virus and hepatitis C virus, which are of distinct viral families. Mechanistically, EAP30 was not required for IRF3 activation but rather acted at a downstream step. Specifically, a fraction of EAP30 localized within the nucleus, where it formed a complex with IRF3 and its transcriptional co-activator, CREB-binding protein (CBP), in a virus-inducible manner. These interactions promoted IRF3 binding to target gene promoters such as IFN-β, IFN-λ1 and ISG56. Together, our data describe an unappreciated role for EAP30 in IRF3-dependent innate antiviral response in the nucleus.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Darong Yang
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Nan L. Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Yunzhi Zhang
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meiyun Fan
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Aarti Sethuraman
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
30
|
Anti-inflammatory mechanisms of neovestitol from Brazilian red propolis in LPS-activated macrophages. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
31
|
Reciprocal regulation of TLR2-mediated IFN-β production by SHP2 and Gsk3β. Sci Rep 2017; 7:6807. [PMID: 28754897 PMCID: PMC5533723 DOI: 10.1038/s41598-017-07316-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022] Open
Abstract
Toll-like receptor 2 (TLR2) mediates the innate immune response to bacterial lipopeptides and peptidoglycans by stimulating the production of inflammatory cytokines. However, the mechanisms by which TLR2 signaling regulates type I interferon (IFN)-β production are poorly understood. Here, we identified Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) as a negative regulator of TLR2-induced IFN-β production. Pharmacological inhibition or reduced expression of SHP2 potentiated TLR2 agonist-mediated IFN-β transcription and STAT1 activation, whereas overexpression of SHP2 impaired IFN-β transcription and STAT1 activation. SHP2 physically associated with the glycogen synthase kinase 3β (Gsk3β) in an agonist-dependent manner. Gsk3β positively regulates transcription of IFN-β following TLR2 stimulation by inhibiting the phosphorylation of SHP2. SHP2 inhibited the transcriptional activity of IRF-1 and IRF-8 at the IFN-β promoter. Remarkably, IRF-1 and IRF-8 are recruited to the IFN-β promoter in a SHP2 phosphatase activity-dependent manner. These findings provide insight into the mechanisms by which SHP2 and Gsk3β work together to modulate TLR2-mediated IFN-β production in macrophages.
Collapse
|
32
|
Caballero-Solares A, Hall JR, Xue X, Eslamloo K, Taylor RG, Parrish CC, Rise ML. The dietary replacement of marine ingredients by terrestrial animal and plant alternatives modulates the antiviral immune response of Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2017; 64:24-38. [PMID: 28242361 DOI: 10.1016/j.fsi.2017.02.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/23/2017] [Indexed: 05/09/2023]
Abstract
The effects of replacing marine ingredients by terrestrial ingredients on the health of Atlantic salmon (Salmo salar) are poorly understood. During a 14-week trial, Atlantic salmon fed a fish meal-fish oil based diet (MAR) showed similar growth performance to others fed a plant protein/vegetable oil based diet (VEG), whereas poorer performance was observed in those fed an animal by-product meal/vegetable oil based diet (ABP). At the end of the trial, salmon were injected with either phosphate-buffered saline (PBS) or the viral mimic polyriboinosinic polyribocytidylic acid (pIC) and sampled for head kidney RNA after 24 h. The levels of 27 immune-related transcripts, and of 5 others involved in eicosanoid synthesis (including paralogues in both cases) were measured in the head kidney of the salmon using qPCR. All of the assayed immune-related genes and cox2 were pIC-induced, while the other eicosanoid synthesis-related genes were pIC-repressed. Linear regression was used to establish correlations between different immune transcripts, elucidating the cascade of responses to pIC and specialization among paralogues. Regarding the effect of diet on the antiviral immune response, pIC-treated fish fed diets ABP and VEG showed higher transcript levels of tlr3, irf1b, stat1a, isg15b, and gig1 compared to those fed diet MAR. We infer that the observed dietary immunomodulation could be due to the lower proportion of arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) in diets ABP and VEG. Furthermore, our results suggest a major role of dietary ARA in Atlantic salmon immunity, as low ARA proportion in diet VEG coincided with the highest pIC-induction of some immune transcripts (tlr7, stat1c, mxb, and gig1) and the lowest levels of transcripts encoding eicosanoid-synthesizing enzymes (5loxa, 5loxb, and pgds). In contrast, the high ARA/EPA ratio of diet ABP appeared to favor increased expression of transcripts involved in the synthesis of pro-inflammatory eicosanoids (5loxa and 5loxb) and chemotaxis (ccl19b). In conclusion, our findings show that nutritionally balanced plant-based diets may enhance the immune response of Atlantic salmon. Future studies should explore the possible advantages of plant-based diets in Atlantic salmon exposed to a viral infection.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | | | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
33
|
The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis. Int J Inflam 2016; 2016:1532832. [PMID: 27795867 PMCID: PMC5067326 DOI: 10.1155/2016/1532832] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/05/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) are key players in the pathogenesis of inflammatory conditions including coronary arterial disease (CAD). They are expressed by a variety of immune cells where they recognize pathogen-associated molecular patterns (PAMPs). TLRs recruit adaptor molecules, including myeloid differentiation primary response protein (MYD88) and TIRF-related adaptor protein (TRAM), to mediate activation of MAPKs and NF-kappa B pathways. They are associated with the development of CAD through various mechanisms. TLR4 is expressed in lipid-rich and atherosclerotic plaques. In TLR2−/− and TLR4−/− mice, atherosclerosis-associated inflammation was diminished. Moreover, TLR2 and TLR4 may induce expression of Wnt5a in advanced staged atheromatous plaque leading to activation of the inflammatory processes. TLR9 is activated by CpG motifs in nucleic acids and have been implicated in macrophage activation and the uptake of oxLDL from the circulation. Furthermore, TLR9 also stimulates interferon-α (INF-α) secretion and increases cytotoxic activity of CD4+ T-cells towards coronary artery tunica media smooth muscle cells. This review outlines the pathophysiological role of TLR2, TLR4, and TLR9 in atherosclerosis, focusing on evidence from animal models of the disease.
Collapse
|
34
|
Parroche P, Roblot G, Le Calvez-Kelm F, Tout I, Marotel M, Malfroy M, Durand G, McKay J, Ainouze M, Carreira C, Allatif O, Traverse-Glehen A, Mendiola M, Pozo-Kreilinger JJ, Caux C, Tommasino M, Goutagny N, Hasan UA. TLR9 re-expression in cancer cells extends the S-phase and stabilizes p16(INK4a) protein expression. Oncogenesis 2016; 5:e244. [PMID: 27454079 PMCID: PMC4972902 DOI: 10.1038/oncsis.2016.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/12/2016] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes bacterial, viral or cell damage-associated DNA, which initiates innate immune responses. We have previously shown that TLR9 expression is downregulated in several viral induced cancers including HPV16-induced cervical neoplasia. Findings supported that downregulation of TLR9 expression is involved in loss of anti-viral innate immunity allowing an efficient viral replication. Here we investigated the role of TLR9 in altering the growth of transformed epithelial cells. Re-introducing TLR9 under the control of an exogenous promoter in cervical or head and neck cancer patient-derived cells reduced cell proliferation, colony formation and prevented independent growth of cells under soft agar. Neither TLR3, 7, nor the TLR adapter protein MyD88 expression had any effect on cell proliferation, indicating that TLR9 has a unique role in controlling cell growth. The reduction of cell growth was not due to apoptosis or necrosis, yet we observed that cells expressing TLR9 were slower in entering the S-phase of the cell cycle. Microarray-based gene expression profiling analysis highlighted a strong interferon (IFN) signature in TLR9-expressing head and neck cancer cells, with an increase in IFN-type I and IL-29 expression (IFN-type III), yet neither IFN-type I nor IL-29 production was responsible for the block in cell growth. We observed that the protein half-life of p16(INK4a) was increased in TLR9-expressing cells. Taken together, these data show for the first time that TLR9 affects the cell cycle by regulating p16(INK4a) post-translational modifications and highlights the role of TLR9 in the events that lead to carcinogenesis.
Collapse
Affiliation(s)
- P Parroche
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - G Roblot
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - F Le Calvez-Kelm
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - I Tout
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - M Marotel
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - M Malfroy
- CRCL, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon France
| | - G Durand
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - J McKay
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - M Ainouze
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - C Carreira
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - O Allatif
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | | | - M Mendiola
- Molecular Pathology and Therapeutic Targets Group, Research Insitute (IdiPAZ), La Paz University Hospital, Madrid, Spain and Molecular Pathology Diagnostics Unit, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | | | - C Caux
- CRCL, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon France
| | - M Tommasino
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - N Goutagny
- CRCL, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon France
| | - U A Hasan
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| |
Collapse
|
35
|
Xu J, Lee MH, Chakhtoura M, Green BL, Kotredes KP, Chain RW, Sriram U, Gamero AM, Gallucci S. STAT2 Is Required for TLR-Induced Murine Dendritic Cell Activation and Cross-Presentation. THE JOURNAL OF IMMUNOLOGY 2016; 197:326-36. [PMID: 27233962 DOI: 10.4049/jimmunol.1500152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/04/2016] [Indexed: 12/31/2022]
Abstract
TLR-stimulated cross-presentation by conventional dendritic cells (cDCs) is important in host defense and antitumor immunity. We recently reported that cDCs lacking the type I IFN signaling molecule STAT2 are impaired in cross-presenting tumor Ags to CD8(+) T cells. To investigate how STAT2 affects cross-presentation, we determined its requirements for dendritic cell activation. In this study, we report that STAT2 is essential for the activation of murine female cDCs upon TLR3, -4, -7, and -9 stimulation. In response to various TLR ligands, Stat2(-/-) cDCs displayed reduced expression of costimulatory molecules and type I IFN-stimulated genes. The cDC responses to exogenous IFN-α that we evaluated required STAT2 activation, indicating that the canonical STAT1-STAT2 heterodimers are the primary signaling transducers of type I IFNs in cDCs. Interestingly, LPS-induced production of IL-12 was STAT2 and type I IFN receptor (IFNAR) dependent, whereas LPS-induced production of TNF-α and IL-6 was STAT2 and IFNAR independent, suggesting a specific role of the IFNAR-STAT2 axis in the stimulation of proinflammatory cytokines by LPS in cDCs. In contrast, R848- and CpG-induced cytokine production was less influenced by the IFNAR-STAT2 axis. Short kinetics and IFNAR blockade studies showed that STAT2 main function is to transduce signals triggered by autocrine type I IFNs. Importantly, Stat2(-/-) cDCs were deficient in cross-presenting to CD8(+) T cells in vitro upon IFN-α, CpG, and LPS stimulation, and also in cross-priming and licensing cytotoxic T cell killers in vivo. We conclude that STAT2 plays a critical role in TLR-induced dendritic cell activation and cross-presentation, and thus is vital in host defense.
Collapse
Affiliation(s)
- Jun Xu
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Michael H Lee
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Marita Chakhtoura
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Benjamin L Green
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Kevin P Kotredes
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140; and
| | - Robert W Chain
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140; and
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140;
| |
Collapse
|
36
|
Andzinski L, Spanier J, Kasnitz N, Kröger A, Jin L, Brinkmann MM, Kalinke U, Weiss S, Jablonska J, Lienenklaus S. Growing tumors induce a local STING dependent Type I IFN response in dendritic cells. Int J Cancer 2016; 139:1350-7. [DOI: 10.1002/ijc.30159] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Lisa Andzinski
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School; Germany Hannover
| | - Nadine Kasnitz
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute of Medical Microbiology, Otto-von-Guericke-University; Magdeburg Germany
| | - Lei Jin
- Center for Immunology and Microbial Disease, Albany Medical College; Albany NY
| | - Melanie M. Brinkmann
- Viral Immune Modulation, Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute of Virology, Hannover Medical School; Hannover Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School; Germany Hannover
| | - Siegfried Weiss
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute of Immunology, Hannover Medical School; Hannover Germany
| | - Jadwiga Jablonska
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Translational Oncology, Department of Otorhinolaryngology, University Hospital, University of Duisburg-Essen; Essen Germany
| | - Stefan Lienenklaus
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School; Germany Hannover
- Institute for Laboratory Animal Science, Hannover Medical School; Hannover Germany
| |
Collapse
|
37
|
Abstract
Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Joshua G Travers
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Fadia A Kamal
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jeffrey Robbins
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Burns C Blaxall
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
38
|
Fawzy El-Sayed KM, Klingebiel P, Dörfer CE. Toll-like Receptor Expression Profile of Human Dental Pulp Stem/Progenitor Cells. J Endod 2016; 42:413-7. [PMID: 26769027 DOI: 10.1016/j.joen.2015.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Human dental pulp stem/progenitor cells (DPSCs) show remarkable regenerative potential in vivo. During regeneration, DPSCs may interact with their inflammatory environment via toll-like receptors (TLRs). The present study aimed to depict for the first time the TLR expression profile of DPSCs. METHODS Cells were isolated from human dental pulp, STRO-1-immunomagnetically sorted, and seeded out to obtain single colony-forming units. DPSCs were characterized for CD14, CD34, CD45, CD73, CD90, CD105, and CD146 expression and for their multilineage differentiation potential. After incubation of DPSCs in basic or inflammatory medium (interleukin-1β, interferon-γ, interferon-α, tumor necrosis factor-α), TLR expression profiles were generated (DPSCs and DPSCs-i). RESULTS DPSCs showed all characteristics of stem/progenitor cells. In basic medium DPSCs expressed TLRs 1-10 in different quantities. The inflammatory medium upregulated the expression of TLRs 2, 3, 4, 5, and 8, downregulated TLRs 1, 7, 9, and 10, and abolished TLR6. CONCLUSIONS The current study describes for the first time the distinctive TLR expression profile of DPSCs in uninflamed and inflamed conditions.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany; Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt.
| | - Pauline Klingebiel
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
39
|
Boshuizen MCS, Hoeksema MA, Neele AE, van der Velden S, Hamers AAJ, Van den Bossche J, Lutgens E, de Winther MPJ. Interferon-β promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine 2015; 77:220-6. [PMID: 26427927 DOI: 10.1016/j.cyto.2015.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 01/25/2023]
Abstract
Foam cell formation is a crucial event in atherogenesis. While interferon-β (IFNβ) is known to promote atherosclerosis in mice, studies on the role of IFNβ on foam cell formation are minimal and conflicting. We therefore extended these studies using both in vitro and in vivo approaches and examined IFNβ's function in macrophage foam cell formation. To do so, murine bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages were loaded with acLDL overnight, followed by 6h IFNβ co-treatment. This increased lipid content as measured by Oil red O staining. We next analyzed the lipid uptake pathways of IFNβ-stimulated BMDMs and observed increased endocytosis of DiI-acLDL as compared to controls. These effects were mediated via SR-A, as its gene expression was increased and inhibition of SR-A with Poly(I) blocked the IFNβ-induced increase in Oil red O staining and DiI-acLDL endocytosis. The IFNβ-induced increase in lipid content was also associated with decreased ApoA1-mediated cholesterol efflux, in response to decreased ABCA1 protein and gene expression. To validate our findings in vivo, LDLR(-/-) mice were put on chow or a high cholesterol diet for 10weeks. 24 and 8h before sacrifice mice were injected with IFNβ or PBS, after which thioglycollate-elicited peritoneal macrophages were collected and analyzed. In accordance with the in vitro data, IFNβ increased lipid accumulation. In conclusion, our experimental data support the pro-atherogenic role of IFNβ, as we show that IFNβ promotes macrophage foam cell formation by increasing SR-A-mediated cholesterol influx and decreasing ABCA1-mediated efflux mechanisms.
Collapse
Affiliation(s)
- Marieke C S Boshuizen
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marten A Hoeksema
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annette E Neele
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia van der Velden
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk A J Hamers
- Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Song J, Guan M, Zhao Z, Zhang J. Type I Interferons Function as Autocrine and Paracrine Factors to Induce Autotaxin in Response to TLR Activation. PLoS One 2015; 10:e0136629. [PMID: 26313906 PMCID: PMC4552386 DOI: 10.1371/journal.pone.0136629] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation.
Collapse
Affiliation(s)
- Jianwen Song
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ming Guan
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Zhenwen Zhao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
41
|
Díaz-Araya G, Vivar R, Humeres C, Boza P, Bolivar S, Muñoz C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacol Res 2015; 101:30-40. [PMID: 26151416 DOI: 10.1016/j.phrs.2015.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts (CF) not only modulate extracellular matrix (ECM) proteins homeostasis, but also respond to chemical and mechanical signals. CF express a variety of receptors through which they modulate the proliferation/cell death, autophagy, adhesion, migration, turnover of ECM, expression of cytokines, chemokines, growth factors and differentiation into cardiac myofibroblasts (CMF). Differentiation of CF to CMF involves changes in the expression levels of various receptors, as well as, changes in cell phenotype and their associated functions. CF and CMF express the β2-adrenergic receptor, and its stimulation activates PKA and EPAC proteins, which differentially modulate the CF and CMF functions mentioned above. CF and CMF also express different levels of Angiotensin II receptors, in particular, AT1R activation increases collagen synthesis and cell proliferation, but its overexpression activates apoptosis. CF and CMF express different levels of B1 and B2 kinin receptors, whose stimulation by their respective agonists activates common signaling transduction pathways that decrease the synthesis and secretion of collagen through nitric oxide and prostacyclin I2 secretion. Besides these classical functions, CF can also participate in the inflammatory response of cardiac repair, through the expression of receptors commonly associated to immune cells such as Toll like receptor 4, NLRP3 and interferon receptor. The activation by their respective agonists modulates the cellular functions already described and the release of cytokines and chemokines. Thus, CF and CMF act as sentinel cells responding to a plethora of stimulus, modifying their own behavior, and that of neighboring cells.
Collapse
Affiliation(s)
- G Díaz-Araya
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile.
| | - R Vivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Humeres
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - P Boza
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - S Bolivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Muñoz
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| |
Collapse
|
42
|
Xiao Y, Jin J, Zou Q, Hu H, Cheng X, Sun SC. Peli1 negatively regulates type I interferon induction and antiviral immunity in the CNS. Cell Biosci 2015; 5:34. [PMID: 26131354 PMCID: PMC4486122 DOI: 10.1186/s13578-015-0024-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/12/2015] [Indexed: 12/31/2022] Open
Abstract
Background Type I interferons (IFN-Is) serve as mediators of antiviral innate immunity and also regulate adaptive immune responses. The molecular mechanism that regulates virus-induced IFN-I production, particularly in tissue-resident immune cells, is incompletely understood. Results Here we identified the E3 ubiquitin ligase Peli1 as a negative regulator of IFN-I induction in microglia, innate immune cells of the central nervous system (CNS). Peli1 deficiency profoundly promoted IFN-β expression in microglia in response to in vitro stimulation by toll-like receptor (TLR) ligands or a CNS-tropic virus, the vascular stomatitis virus (VSV). Upon intranasal infection with VSV, the Peli1-deficient mice displayed heightened in vivo IFN-I responses in the CNS, coupled with reduced brain viral titer and increased survival rate. Conclusions These results establish Peli1 as an innate immune regulator in the CNS that modulates the threshold of IFN-I responses against viral infections.
Collapse
Affiliation(s)
- Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030 USA ; Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Science/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031 China
| | - Jin Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030 USA
| | - Qiang Zou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030 USA
| | - Hongbo Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030 USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030 USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030 USA ; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030 USA
| |
Collapse
|
43
|
Saupe F, Huijbers EJM, Hein T, Femel J, Cedervall J, Olsson AK, Hellman L. Vaccines targeting self-antigens: mechanisms and efficacy-determining parameters. FASEB J 2015; 29:3253-62. [PMID: 25868727 DOI: 10.1096/fj.15-271502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/31/2015] [Indexed: 01/13/2023]
Abstract
We recently showed that it is possible to compromise tumor vessel function and, as a consequence, suppress growth of aggressive preclinical tumors by immunizing against the tumor vascular markers extra domain-A (ED-A) or -B (ED-B) of fibronectin, using a fusion protein consisting of the ED-A or ED-B peptide fused to bacterial thioredoxin. To address the mechanism behind fusion protein-induced immunization and the specific contribution of the different vaccine constituents to elicit an anti-self-antibody response, we immunized mice with modified or unmodified self-antigens, combined with different adjuvant components, and analyzed antibody responses by ELISA in sera. Several essential requirements to circumvent tolerance were identified: (1) a potent pattern recognition receptor agonist like an oligonucleotide containing unmethylated cytosine and guanine dinucleotides (CpG); (2) a depot adjuvant to keep the CpG at the site of injection; and (3) the presence of foreign sequences in the vaccine protein. Lack of either of these factors abolished the anti-self-response (P = 0.008). In mice genetically deficient for type I IFN signaling, there was a 60% reduction in the anti-self-response compared with wild-type (P = 0.011), demonstrating a key role of this pathway in CpG-induced circumvention of self-tolerance. Identification of these mechanistic requirements to generate a potent anti-self-immune response should significantly aid the design of efficient, specific, and safe therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Falk Saupe
- *Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Elisabeth J M Huijbers
- *Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tobias Hein
- *Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Julia Femel
- *Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jessica Cedervall
- *Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Olsson
- *Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Lars Hellman
- *Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Ballarín-González B, Thomsen TB, Howard KA. Clinical translation of RNAi-based treatments for respiratory diseases. Drug Deliv Transl Res 2015; 3:84-99. [PMID: 25787868 PMCID: PMC7097609 DOI: 10.1007/s13346-012-0098-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability to harness the RNA interference (RNAi) mechanism as a potential potent therapeutic has attracted great interest from academia and industry. Numerous preclinical and recent clinical trials have demonstrated the effectiveness of RNAi triggers such as synthetic small interfering RNA (siRNA). Chemical modification and delivery technologies can be utilized to avoid immune stimulation and improve the bioactivity and pharmacokinetics. Local application to the respiratory epithelia allows direct access to the site of respiratory pathogens that include influenza and respiratory syncytial virus (RSV). This review outlines the essential steps required for the clinical translation of RNAi-based respiratory therapies including disease and RNA target selection, siRNA design, respiratory barriers, and delivery solutions. Attention is given to antiviral therapies and preclinical evaluation with focus on the current status of anti-RSV clinical trials.
Collapse
Affiliation(s)
- Borja Ballarín-González
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Troels Bo Thomsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kenneth Alan Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
45
|
Zandieh Z, Ashrafi M, Jameie B, Amanpour S, Mosaffa N, Salman Yazdi R, Pacey A, Aflatoonian R. Evaluation of immunological interaction between spermatozoa and fallopian tube epithelial cells. Andrologia 2015; 47:1120-30. [DOI: 10.1111/and.12391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Z. Zandieh
- Anatomy Department; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - M. Ashrafi
- Obstetrics and Gynecology Department; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - B. Jameie
- Anatomy Department; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - S. Amanpour
- Valie-Asr Reproductive Health Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - N. Mosaffa
- Department of Immunology; Faculty of Medicine; Shaheed Beheshti University of Medical Sciences; Tehran Iran
| | - R. Salman Yazdi
- Department of Andrology at Reproductive Biomedicine Research Center; Royan Institute for Reproductive Biomedicine; ACECR; Tehran Iran
| | - A. Pacey
- Academic Unit of Reproductive and Developmental Medicine; University of Sheffield; Sheffield UK
| | - R. Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center; Royan Institute for Reproductive Biomedicine; ACECR; Tehran Iran
| |
Collapse
|
46
|
Günther C, Buchen B, Neurath MF, Becker C. Regulation and pathophysiological role of epithelial turnover in the gut. Semin Cell Dev Biol 2014; 35:40-50. [DOI: 10.1016/j.semcdb.2014.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 12/25/2022]
|
47
|
Abstract
The transcription factor interferon regulatory factor 5 (IRF5) is essential for the induction of inflammatory cytokines, but the mechanism by which IRF5 is activated is not well understood. Here we present evidence that the kinase IKKβ phosphorylates and activates IRF5 in response to stimulation in several inflammatory pathways, including those emanated from Toll-like receptors and retinoic acid-inducible gene I-like receptors. IKKβ phosphorylates mouse IRF5 at specific residues, including serine 445 (S446 in human IRF5 isoform 1), as evidenced by mass spectrometry analysis and detection with a phosphospecific antibody. Recombinant IKKβ phosphorylated IRF5 at Ser-445 in vitro, and a point mutation of this serine abolished IRF5 activation and cytokine production. Depletion or pharmacologic inhibition of IKKβ prevented IRF5 phosphorylation. These results indicate that IKKβ is an IRF5 kinase that instigates inflammation.
Collapse
|
48
|
Sheikh F, Dickensheets H, Gamero AM, Vogel SN, Donnelly RP. An essential role for IFN-β in the induction of IFN-stimulated gene expression by LPS in macrophages. J Leukoc Biol 2014; 96:591-600. [PMID: 25024400 PMCID: PMC4163629 DOI: 10.1189/jlb.2a0414-191r] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TLR agonists such as LPS and poly(I:C) induce expression of type I IFNs, such as IFN-α and -β, by macrophages. To examine the role of IFN-β in the induction of ISGs by LPS, we compared the ability of LPS to induce ISGF3 activity and ISG expression in bone marrow-derived macrophages from WT and Ifnb1(-/-) mice. We found that LPS treatment activated ISGF3 and induced expression of ISGs such as Oas1, Mx1, Ddx58 (RIG-I), and Ifih1 (MDA5) in WT macrophages, but not in macrophages derived from Ifnb1(-/-) mice or Ifnar1(-/-) mice. The inability of LPS to induce activation of ISGF3 and ISG expression in Ifnb1(-/-) macrophages correlated with the failure of LPS to induce activation of STAT1 and -2 in these cells. Consistent with these findings, LPS treatment also failed to induce ISG expression in bone marrow-derived macrophages from Stat2 KO mice. Although activation of ISGF3 and induction of ISG expression by LPS was abrogated in Ifnb1(-/-) and Ifnar1(-/-) macrophages, activation of NF-κB and induction of NF-κB-responsive genes, such as Tnf (TNF-α) and Il1b (IL-1β), were not affected by deletion of either the IFN-β or IFN-αR1 genes. These findings demonstrate that induction of ISGF3 activity and ISG expression by LPS is critically dependent on intermediate production of IFN-β and autocrine signaling through type I IFN receptors.
Collapse
Affiliation(s)
- Faruk Sheikh
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, USA
| | - Harold Dickensheets
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, USA
| | - Ana M Gamero
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA; and
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond P Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, USA;
| |
Collapse
|
49
|
Lombardi VC, Khaiboullina SF. Plasmacytoid dendritic cells of the gut: relevance to immunity and pathology. Clin Immunol 2014; 153:165-77. [PMID: 24769378 DOI: 10.1016/j.clim.2014.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are bone marrow-derived immune cells with the ability to express copious amounts of type I and III interferon (IFN) and can differentiate into antigen-presenting dendritic cells as a result of stimulation by pathogen-derived nucleic acid. These powerful combined functionalities allow pDCs to bridge the innate and adaptive immune systems resulting in a concerted pathogen response. The contribution of pDCs to gastrointestinal immunity is only now being elucidated and is proving to be a critical component in systemic immunity. This review will explore the immunology of pDCs and will discuss their involvement in human disease and tolerance with an emphasis on those in the gastrointestinal lymphoid tissue.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, WPI, University of Nevada, Reno, 1664 N Virginia St. MS 0552, Reno, NV 89557, USA.
| | - Svetlana F Khaiboullina
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, WPI, University of Nevada, Reno, 1664 N Virginia St. MS 0552, Reno, NV 89557, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
50
|
Guo Q, Lan P, Yu X, Han Q, Zhang J, Tian Z, Zhang C. Immunotherapy for hepatoma using a dual-function vector with both immunostimulatory and pim-3-silencing effects. Mol Cancer Ther 2014; 13:1503-13. [PMID: 24723452 DOI: 10.1158/1535-7163.mct-13-0722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumorigenesis is an immortalization process in which the growth of normal cells is uncontrolled and programmed cell death is suppressed. Molecular biologic and immunologic studies have revealed that the aberrant expression of some proto-oncogenes boosts proliferation and inhibits apoptosis, which is vital for tumor development. The hypofunction of the host immune system also drives the development and metastasis of malignant tumors. Pim-3, a member of the Pim family, is aberrantly expressed in several cancers. Data suggest that Pim-3 inhibits apoptosis by phosphorylating the proapoptotic BH3-only protein Bad. Here, we constructed a dual-function small hairpin RNA (shRNA) vector containing an shRNA targeting Pim-3 and a TLR7-stimulating ssRNA. Stimulation with this bi-functional vector in vitro promoted significant apoptosis of Hepa1-6 cells by regulating the expression of apoptosis-related proteins and induced secretion of type I IFNs. Most importantly, this bi-functional vector more effectively inhibited subcutaneous Hepa1-6 cell growth than did single shRNA and ssRNA treatment in vivo. Natural killer (NK), CD4(+) T, and CD8(+) T cells and macrophages were required for effective tumor suppression, and CD4(+) T cells were shown to play a helper role in the activation of NK cells, possibly by regulating the secretion of Th1 or Th2 cytokines. This ssRNA-shRNA bi-functional vector may represent a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Qie Guo
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, ChinaAuthors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Peixiang Lan
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xin Yu
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuju Han
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Zhang
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, ChinaAuthors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cai Zhang
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|