1
|
Natsubori A, Kwon S, Honda Y, Kojima T, Karashima A, Masamoto K, Honda M. Serotonergic regulation of cortical neurovascular coupling and hemodynamics upon awakening from sleep in mice. J Cereb Blood Flow Metab 2024; 44:1591-1607. [PMID: 38477254 PMCID: PMC11418750 DOI: 10.1177/0271678x241238843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Neurovascular coupling (NVC) is the functional hyperemia of the brain responding to local neuronal activity. It is mediated by astrocytes and affected by subcortical ascending pathways in the cortex that convey information, such as sensory stimuli and the animal condition. Here, we investigate the influence of the raphe serotonergic system, a subcortical ascending arousal system in animals, on the modulation of cortical NVC and cerebral blood flow (CBF). Raphe serotonergic neurons were optogenically activated for 30 s, which immediately awakened the mice from non-rapid eye movement sleep. This caused a biphasic cortical hemodynamic change: a transient increase for a few seconds immediately after photostimulation onset, followed by a large progressive decrease during the stimulation period. Serotonergic neuron activation increased intracellular Ca2+ levels in cortical pyramidal neurons and astrocytes, demonstrating its effect on the NVC components. Pharmacological inhibition of cortical neuronal firing activity and astrocyte metabolic activity had small hypovolemic effects on serotonin-induced biphasic CBF changes, while blocking 5-HT1B receptors expressed primarily in cerebral vasculature attenuated the decreasing CBF phase. This suggests that serotonergic neuron activation leading to animal awakening could allow the NVC to exert a hyperemic function during a biphasic CBF response, with a predominant decrease in the cortex.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soojin Kwon
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiko Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Kojima
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akihiro Karashima
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Kazuto Masamoto
- Dept. Mechanical and Intelligent Systems Engineering, Univ. of Electro-Communications, Tokyo, Japan
| | - Makoto Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
2
|
Zhao Q, Liu J, Chen L, Gao Z, Lin M, Wang Y, Xiao Z, Chen Y, Huang X. Phytomedicine Fructus Aurantii-derived two absorbed compounds unlock antidepressant and prokinetic multi-functions via modulating 5-HT 3/GHSR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117703. [PMID: 38185260 DOI: 10.1016/j.jep.2024.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Aurantii (FA), a well-known phytomedicine, has been employed to evoke antidepressant and prokinetic multi-functions. Therein, systematically identifying bioactive components and the referred mechanism is essential for FA. AIM OF THE STUDY This study was planned to answer "2 W" (What and Why), such as which components and pathways contribute to FA's multi-functions. We aimed to identify bioactive compounds as the key for opening the lock of FA's multi-functions, and the molecule mechanisms are their naturally matched lock cylinder. MATERIALS AND METHODS The phytochemical content of FA extract was determined, and the compounds were identified in rats pretreated with FA using liquid chromatography with mass spectrometry (LC-MS). The contribution strategy was used to assess bioactive compounds' efficacy (doses = their content in FA) in model rats with the mechanism. The changes in functional brain regions were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD). RESULT Eight phytochemicals' content was detected, and merely six components were identified in rats in vivo. Meranzin hydrate + hesperidin (MH), as the primary contributor of FA, exerted antidepressant and prokinetic effects (improvement of indexes for immobility time, gastric emptying, intestinal transit, CRH, ghrelin, ACTH, DA, NA, 5-HT, CORT, and 5-HT3) by regulating 5-HT3/Growth hormone secretagogue receptor (GHSR) pathway. These results were validated by 5-HT2A, 5-HT3, and GHSR receptor antagonists combined with molecule docking. MH restored the excessive BOLD activation of the left accumbens nucleus, left corpus callosum and hypothalamus preoptic region. CONCLUSION Absorbed MH accounts for FA's anti-depressant and prokinetic efficacy in acutely-stressed rats, primarily via 5-HT3/GHSR shared regulation.
Collapse
Affiliation(s)
- Qiulong Zhao
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin Liu
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Li Chen
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhao Gao
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Muhai Lin
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Yun Wang
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Zhe Xiao
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Yi Chen
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China.
| |
Collapse
|
3
|
Cerri DH, Albaugh DL, Walton LR, Katz B, Wang TW, Chao THH, Zhang W, Nonneman RJ, Jiang J, Lee SH, Etkin A, Hall CN, Stuber GD, Shih YYI. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat Commun 2024; 15:1916. [PMID: 38429266 PMCID: PMC10907631 DOI: 10.1038/s41467-024-46088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
The striatum, known as the input nucleus of the basal ganglia, is extensively studied for its diverse behavioral roles. However, the relationship between its neuronal and vascular activity, vital for interpreting functional magnetic resonance imaging (fMRI) signals, has not received comprehensive examination within the striatum. Here, we demonstrate that optogenetic stimulation of dorsal striatal neurons or their afferents from various cortical and subcortical regions induces negative striatal fMRI responses in rats, manifesting as vasoconstriction. These responses occur even with heightened striatal neuronal activity, confirmed by electrophysiology and fiber-photometry. In parallel, midbrain dopaminergic neuron optogenetic modulation, coupled with electrochemical measurements, establishes a link between striatal vasodilation and dopamine release. Intriguingly, in vivo intra-striatal pharmacological manipulations during optogenetic stimulation highlight a critical role of opioidergic signaling in generating striatal vasoconstriction. This observation is substantiated by detecting striatal vasoconstriction in brain slices after synthetic opioid application. In humans, manipulations aimed at increasing striatal neuronal activity likewise elicit negative striatal fMRI responses. Our results emphasize the necessity of considering vasoactive neurotransmission alongside neuronal activity when interpreting fMRI signal.
Collapse
Affiliation(s)
- Domenic H Cerri
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Albaugh
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lindsay R Walton
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany Katz
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weiting Zhang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randal J Nonneman
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sung-Ho Lee
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | - Catherine N Hall
- Sussex Neuroscience, University of Sussex, Falmer, United Kingdom
- School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Garret D Stuber
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Smith CA, Carpenter KLH, Hutchinson PJ, Smielewski P, Helmy A. Candidate neuroinflammatory markers of cerebral autoregulation dysfunction in human acute brain injury. J Cereb Blood Flow Metab 2023; 43:1237-1253. [PMID: 37132274 PMCID: PMC10369156 DOI: 10.1177/0271678x231171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
The loss of cerebral autoregulation (CA) is a common and detrimental secondary injury mechanism following acute brain injury and has been associated with worse morbidity and mortality. However patient outcomes have not as yet been conclusively proven to have improved as a result of CA-directed therapy. While CA monitoring has been used to modify CPP targets, this approach cannot work if the impairment of CA is not simply related to CPP but involves other underlying mechanisms and triggers, which at present are largely unknown. Neuroinflammation, particularly inflammation affecting the cerebral vasculature, is an important cascade that occurs following acute injury. We hypothesise that disturbances to the cerebral vasculature can affect the regulation of CBF, and hence the vascular inflammatory pathways could be a putative mechanism that causes CA dysfunction. This review provides a brief overview of CA, and its impairment following brain injury. We discuss candidate vascular and endothelial markers and what is known about their link to disturbance of the CBF and autoregulation. We focus on human traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH), with supporting evidence from animal work and applicability to wider neurologic diseases.
Collapse
Affiliation(s)
- Claudia A Smith
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Inocencio IM, Kaur N, Tran NT, Wong FY. Cerebral haemodynamic response to somatosensory stimulation in preterm lambs is enhanced following sildenafil and inhaled nitric oxide administration. Front Physiol 2023; 14:1101647. [PMID: 36760535 PMCID: PMC9905131 DOI: 10.3389/fphys.2023.1101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Neurovascular coupling (NVC) leads to an increase in local cerebral blood flow and oxygenation in response to increased neural activity and metabolic demand. Impaired or immature NVC reported in the preterm brain, potentially reduces cerebral oxygenation following increased neural activity, predisposing to cerebral tissue hypoxia. Endogenous nitric oxide (NO) is a potent vasodilator and a major mediator of NVC and the cerebral haemodynamic response. NO modulators, such as inhaled nitric oxide (iNO) and sildenafil, induce vasodilation and are used clinically to treat pulmonary hypertension in preterm neonates. However, their impact on NVC in the preterm brain are unknown. We aimed to characterise the cerebral functional haemodynamic response in the preterm brain exposed to NO modulators. We hypothesized that iNO and sildenafil in clinical dosages would increase the baseline cerebral perfusion and the cerebral haemodynamic response to neural activation. Methods: Preterm lambs (126-7 days' gestation) were delivered and mechanically ventilated. The cerebral functional haemodynamic response was measured using near infrared spectroscopy as changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb), following left median nerve stimulations of 1.8, 4.8, and 7.8 s durations in control preterm lambs (n = 11), and following 4.8 and 7.8 s stimulations in preterm lambs receiving either sildenafil citrate (n = 6, 1.33 mcg/kg/hr) or iNO (n = 8, 20 ppm). Results: Following 1.8, 4.8, and 7.8 s stimulations, ∆oxyHb in the contralateral cortex increased (positive functional response) in 7/11 (64%), 7/11 (64%), and 4/11 (36%) control lambs respectively (p < 0.05). Remaining lambs showed decreased ΔoxyHb (negative functional response). Following 4.8 s stimulations, more lambs receiving sildenafil or iNO (83% and 100% respectively) showed positive functional response compared to the controls (p < 0.05). No significant difference between the three groups was observed at 7.8 s stimulations. Conclusion: In the preterm brain, prolonged somatosensory stimulations increased the incidence of negative functional responses with decreased cerebral oxygenation, suggesting that cerebral oxygen delivery may not match the oxygen demand. Sildenafil and iNO increased the incidence of positive functional responses, potentially enhancing NVC, and cerebral oxygenation.
Collapse
Affiliation(s)
- Ishmael Miguel Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Navneet Kaur
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Nhi T. Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Flora Y. Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia,Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia,*Correspondence: Flora Y. Wong,
| |
Collapse
|
6
|
Barandov A, Ghosh S, Jasanoff A. Probing nitric oxide signaling using molecular MRI. Free Radic Biol Med 2022; 191:241-248. [PMID: 36084790 PMCID: PMC10204116 DOI: 10.1016/j.freeradbiomed.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
Collapse
Affiliation(s)
- Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Signori D, Magliocca A, Hayashida K, Graw JA, Malhotra R, Bellani G, Berra L, Rezoagli E. Inhaled nitric oxide: role in the pathophysiology of cardio-cerebrovascular and respiratory diseases. Intensive Care Med Exp 2022; 10:28. [PMID: 35754072 PMCID: PMC9234017 DOI: 10.1186/s40635-022-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in the biology of human life. NO is involved in the physiology of organ viability and in the pathophysiology of organ dysfunction, respectively. In this narrative review, we aimed at elucidating the mechanisms behind the role of NO in the respiratory and cardio-cerebrovascular systems, in the presence of a healthy or dysfunctional endothelium. NO is a key player in maintaining multiorgan viability with adequate organ blood perfusion. We report on its physiological endogenous production and effects in the circulation and within the lungs, as well as the pathophysiological implication of its disturbances related to NO depletion and excess. The review covers from preclinical information about endogenous NO produced by nitric oxide synthase (NOS) to the potential therapeutic role of exogenous NO (inhaled nitric oxide, iNO). Moreover, the importance of NO in several clinical conditions in critically ill patients such as hypoxemia, pulmonary hypertension, hemolysis, cerebrovascular events and ischemia-reperfusion syndrome is evaluated in preclinical and clinical settings. Accordingly, the mechanism behind the beneficial iNO treatment in hypoxemia and pulmonary hypertension is investigated. Furthermore, investigating the pathophysiology of brain injury, cardiopulmonary bypass, and red blood cell and artificial hemoglobin transfusion provides a focus on the potential role of NO as a protective molecule in multiorgan dysfunction. Finally, the preclinical toxicology of iNO and the antimicrobial role of NO-including its recent investigation on its role against the Sars-CoV2 infection during the COVID-19 pandemic-are described.
Collapse
Affiliation(s)
- Davide Signori
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jan A Graw
- Department of Anesthesiology and Operative Intensive Care Medicine, CCM/CVK Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Respiratory Care Department, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
8
|
Ghosh S, Li N, Schwalm M, Bartelle BB, Xie T, Daher JI, Singh UD, Xie K, DiNapoli N, Evans NB, Chung K, Jasanoff A. Functional dissection of neural circuitry using a genetic reporter for fMRI. Nat Neurosci 2022; 25:390-398. [PMID: 35241803 PMCID: PMC9203076 DOI: 10.1038/s41593-022-01014-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
The complex connectivity of the mammalian brain underlies its function, but understanding how interconnected brain regions interact in neural processing remains a formidable challenge. Here we address this problem by introducing a genetic probe that permits selective functional imaging of distributed neural populations defined by viral labeling techniques. The probe is an engineered enzyme that transduces cytosolic calcium dynamics of probe-expressing cells into localized hemodynamic responses that can be specifically visualized by functional magnetic resonance imaging. Using a viral vector that undergoes retrograde transport, we apply the probe to characterize a brain-wide network of presynaptic inputs to the striatum activated in a deep brain stimulation paradigm in rats. The results reveal engagement of surprisingly diverse projection sources and inform an integrated model of striatal function relevant to reward behavior and therapeutic neurostimulation approaches. Our work thus establishes a strategy for mechanistic analysis of multiregional neural systems in the mammalian brain.
Collapse
Affiliation(s)
- Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Benjamin B. Bartelle
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Tianshu Xie
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Jade I. Daher
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Urvashi D. Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Katherine Xie
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Nicholas DiNapoli
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Nicholas B. Evans
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Kwanghun Chung
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Correspondence to AJ, phone: 617-452-2538,
| |
Collapse
|
9
|
O'Gallagher K, Puledda F, O'Daly O, Ryan M, Dancy L, Chowienczyk PJ, Zelaya F, Goadsby PJ, Shah AM. Neuronal nitric oxide synthase regulates regional brain perfusion in healthy humans. Cardiovasc Res 2021; 118:1321-1329. [PMID: 34120160 PMCID: PMC8953449 DOI: 10.1093/cvr/cvab155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/28/2021] [Indexed: 11/22/2022] Open
Abstract
Aims Neuronal nitric oxide synthase (nNOS) is highly expressed within the cardiovascular and nervous systems. Studies in genetically modified mice suggest roles in brain blood flow regulation while dysfunctional nNOS signalling is implicated in cerebrovascular ischaemia and migraine. Previous human studies have investigated the effects of non-selective NOS inhibition but there has been no direct investigation of the role of nNOS in human cerebrovascular regulation. We hypothesized that inhibition of the tonic effects of nNOS would result in global or localized changes in cerebral blood flow (CBF), as well as changes in functional brain connectivity. Methods and results We investigated the acute effects of a selective nNOS inhibitor, S-methyl-L-thiocitrulline (SMTC), on CBF and brain functional connectivity in healthy human volunteers (n = 19). We performed a randomized, placebo-controlled, crossover study with either intravenous SMTC or placebo, using magnetic resonance imaging protocols with arterial spin labelling and functional resting state neuroimaging. SMTC infusion induced an ∼4% decrease in resting global CBF [−2.3 (−0.3, −4.2) mL/100g/min, mean (95% confidence interval, CI), P = 0.02]. In a whole-brain voxel-wise factorial-design comparison of CBF maps, we identified a localized decrease in regional blood flow in the right hippocampus and parahippocampal gyrus following SMTC vs. placebo (2921 voxels; T = 7.0; x = 36; y = −32; z = −12; P < 0.001). This was accompanied by a decrease in functional connectivity to the left superior parietal lobule vs. placebo (484 voxels; T = 5.02; x = −14; y = −56; z = 74; P = 0.009). These analyses adjusted for the modest changes in mean arterial blood pressure induced by SMTC as compared to placebo [+8.7 mmHg (+1.8, +15.6), mean (95% CI), P = 0.009]. Conclusions These data suggest a fundamental physiological role of nNOS in regulating regional CBF and functional connectivity in the human hippocampus. Our findings have relevance to the role of nNOS in the regulation of cerebral perfusion in health and disease.
Collapse
Affiliation(s)
- Kevin O'Gallagher
- Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.,Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Matthew Ryan
- Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Luke Dancy
- Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Philip J Chowienczyk
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, UK
| | - Ajay M Shah
- Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
10
|
mTOR Attenuation with Rapamycin Reverses Neurovascular Uncoupling and Memory Deficits in Mice Modeling Alzheimer's Disease. J Neurosci 2021; 41:4305-4320. [PMID: 33888602 DOI: 10.1523/jneurosci.2144-20.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is a universal feature of aging and decreased cerebral blood flow has been identified as an early event in the pathogenesis of Alzheimer's disease (AD). Cerebrovascular dysfunction in AD includes deficits in neurovascular coupling (NVC), a mechanism that ensures rapid delivery of energy substrates to active neurons through the blood supply. The mechanisms underlying NVC impairment in AD, however, are not well understood. We have previously shown that mechanistic/mammalian target of rapamycin (mTOR) drives cerebrovascular dysfunction in models of AD by reducing the activity of endothelial nitric oxide synthase (eNOS), and that attenuation of mTOR activity with rapamycin is sufficient to restore eNOS-dependent cerebrovascular function. Here we show mTOR drives NVC impairments in an AD model through the inhibition of neuronal NOS (nNOS)- and non-NOS-dependent components of NVC, and that mTOR attenuation with rapamycin is sufficient to restore NVC and even enhance it above WT responses. Restoration of NVC and concomitant reduction of cortical amyloid-β levels effectively treated memory deficits in 12-month-old hAPP(J20) mice. These data indicate that mTOR is a critical driver of NVC dysfunction and underlies cognitive impairment in an AD model. Together with our previous findings, the present studies suggest that mTOR promotes cerebrovascular dysfunction in AD, which is associated with early disruption of nNOS activation, through its broad negative impact on nNOS as well as on non-NOS components of NVC. Our studies highlight the potential of mTOR attenuation as an efficacious treatment for AD and potentially other neurologic diseases of aging.SIGNIFICANCE STATEMENT Failure of the blood flow response to neuronal activation [neurovascular coupling (NVC)] in a model of AD precedes the onset of AD-like cognitive symptoms and is driven, to a large extent, by mammalian/mechanistic target of rapamycin (mTOR)-dependent inhibition of nitric oxide synthase activity. Our studies show that mTOR also drives AD-like failure of non-nitric oxide (NO)-mediated components of NVC. Thus, mTOR attenuation may serve to treat AD, where we find that neuronal NO synthase is profoundly reduced early in disease progression, and potentially other neurologic diseases of aging with cerebrovascular dysfunction as part of their etiology.
Collapse
|
11
|
Marchetta P, Rüttiger L, Hobbs AJ, Singer W, Knipper M. The role of cGMP signalling in auditory processing in health and disease. Br J Pharmacol 2021; 179:2378-2393. [PMID: 33768519 DOI: 10.1111/bph.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
cGMP is generated by the cGMP-forming guanylyl cyclases (GCs), the intracellular nitric oxide (NO)-sensitive (soluble) guanylyl cyclase (sGC) and transmembrane GC (e.g. GC-A and GC-B). In summarizing the particular role of cGMP signalling for hearing, we show that GC generally do not interfere significantly with basic hearing function but rather sustain a healthy state for proper temporal coding, fast discrimination and adjustments during injury. sGC is critical for the integrity of the first synapse in the ascending auditory pathway, the inner hair cell synapse. GC-A promotes hair cell stability under stressful conditions such as acoustic trauma or ageing. GC-B plays a role in the development of efferent feed-back and gain control. Regarding the crucial role hearing has for language development, speech discrimination and cognitive brain functions, differential pharmaceutical targeting of GCs offers therapeutic promise for the restoration of hearing.
Collapse
Affiliation(s)
- Philine Marchetta
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Wibke Singer
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Chen JJ, Gauthier CJ. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI. Front Physiol 2021; 12:657362. [PMID: 33841190 PMCID: PMC8027080 DOI: 10.3389/fphys.2021.657362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Task and resting-state functional MRI (fMRI) is primarily based on the same blood-oxygenation level-dependent (BOLD) phenomenon that MRI-based cerebrovascular reactivity (CVR) mapping has most commonly relied upon. This technique is finding an ever-increasing role in neuroscience and clinical research as well as treatment planning. The estimation of CVR has unique applications in and associations with fMRI. In particular, CVR estimation is part of a family of techniques called calibrated BOLD fMRI, the purpose of which is to allow the mapping of cerebral oxidative metabolism (CMRO2) using a combination of BOLD and cerebral-blood flow (CBF) measurements. Moreover, CVR has recently been shown to be a major source of vascular bias in computing resting-state functional connectivity, in much the same way that it is used to neutralize the vascular contribution in calibrated fMRI. Furthermore, due to the obvious challenges in estimating CVR using gas challenges, a rapidly growing field of study is the estimation of CVR without any form of challenge, including the use of resting-state fMRI for that purpose. This review addresses all of these aspects in which CVR interacts with fMRI and the role of CVR in calibrated fMRI, provides an overview of the physiological biases and assumptions underlying hypercapnia-based CVR and calibrated fMRI, and provides a view into the future of non-invasive CVR measurement.
Collapse
Affiliation(s)
- J Jean Chen
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
13
|
Poplawsky AJ, Iordanova B, Vazquez AL, Kim SG, Fukuda M. Postsynaptic activity of inhibitory neurons evokes hemodynamic fMRI responses. Neuroimage 2021; 225:117457. [PMID: 33069862 PMCID: PMC7818351 DOI: 10.1016/j.neuroimage.2020.117457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Functional MRI responses are localized to the synaptic sites of evoked inhibitory neurons, but it is unknown whether, or by what mechanisms, these neurons initiate functional hyperemia. Here, the neuronal origins of these hemodynamic responses were investigated by fMRI or local field potential and blood flow measurements during topical application of pharmacological agents when GABAergic granule cells in the rat olfactory bulb were synaptically targeted. First, to examine if postsynaptic activation of these inhibitory neurons was required for neurovascular coupling, we applied an NMDA receptor antagonist during cerebral blood volume-weighted fMRI acquisition and found that responses below the drug application site (up to ~1.5 mm) significantly decreased within ~30 min. Similarly, large decreases in granule cell postsynaptic activities and blood flow responses were observed when AMPA or NMDA receptor antagonists were applied. Second, inhibition of nitric oxide synthase preferentially decreased the initial, fast component of the blood flow response, while inhibitors of astrocyte-specific glutamate transporters and vasoactive intestinal peptide receptors did not decrease blood flow responses. Third, inhibition of GABA release with a presynaptic GABAB receptor agonist caused less reduction of neuronal and blood flow responses compared to the postsynaptic glutamate receptor antagonists. In conclusion, local hyperemia by synaptically-evoked inhibitory neurons was primarily driven by their postsynaptic activities, possibly through NMDA receptor-dependent calcium signaling that was not wholly dependent on nitric oxide.
Collapse
Affiliation(s)
| | - Bistra Iordanova
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15203, United States
| | - Alberto L Vazquez
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15203, United States
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 440-330, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-330, Korea
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, United States.
| |
Collapse
|
14
|
Ledo A, Lourenço CF, Cadenas E, Barbosa RM, Laranjinha J. The bioactivity of neuronal-derived nitric oxide in aging and neurodegeneration: Switching signaling to degeneration. Free Radic Biol Med 2021; 162:500-513. [PMID: 33186742 DOI: 10.1016/j.freeradbiomed.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
The small and diffusible free radical nitric oxide (•NO) has fascinated biological and medical scientists since it was promoted from atmospheric air pollutant to biological ubiquitous signaling molecule. Its unique physical chemical properties expand beyond its radical nature to include fast diffusion in aqueous and lipid environments and selective reactivity in a biological setting determined by bioavailability and reaction rate constants with biomolecules. In the brain, •NO is recognized as a key player in numerous physiological processes ranging from neurotransmission/neuromodulation to neurovascular coupling and immune response. Furthermore, changes in its bioactivity are central to the molecular pathways associated with brain aging and neurodegeneration. The understanding of •NO bioactivity in the brain, however, requires the knowledge of its concentration dynamics with high spatial and temporal resolution upon stimulation of its synthesis. Here we revise our current understanding of the role of neuronal-derived •NO in brain physiology, aging and degeneration, focused on changes in the extracellular concentration dynamics of this free radical and the regulation of bioenergetic metabolism and neurovascular coupling.
Collapse
Affiliation(s)
- A Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - C F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - E Cadenas
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, CA, USA
| | - R M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - J Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
15
|
Echagarruga CT, Gheres KW, Norwood JN, Drew PJ. nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. eLife 2020; 9:e60533. [PMID: 33016877 PMCID: PMC7556878 DOI: 10.7554/elife.60533] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cortical neural activity is coupled to local arterial diameter and blood flow. However, which neurons control the dynamics of cerebral arteries is not well understood. We dissected the cellular mechanisms controlling the basal diameter and evoked dilation in cortical arteries in awake, head-fixed mice. Locomotion drove robust arterial dilation, increases in gamma band power in the local field potential (LFP), and increases calcium signals in pyramidal and neuronal nitric oxide synthase (nNOS)-expressing neurons. Chemogenetic or pharmocological modulation of overall neural activity up or down caused corresponding increases or decreases in basal arterial diameter. Modulation of pyramidal neuron activity alone had little effect on basal or evoked arterial dilation, despite pronounced changes in the LFP. Modulation of the activity of nNOS-expressing neurons drove changes in the basal and evoked arterial diameter without corresponding changes in population neural activity.
Collapse
Affiliation(s)
| | - Kyle W Gheres
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Jordan N Norwood
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Patrick J Drew
- Bioengineering Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Departments of Engineering Science and Mechanics, Biomedical Engineering, and Neurosurgery, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
16
|
Haselden WD, Kedarasetti RT, Drew PJ. Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics. PLoS Comput Biol 2020; 16:e1008069. [PMID: 32716940 PMCID: PMC7410342 DOI: 10.1371/journal.pcbi.1008069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/06/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in neurovascular coupling. NO produced by neurons diffuses into the smooth muscle surrounding cerebral arterioles, driving vasodilation. However, the rate of NO degradation in hemoglobin is orders of magnitude higher than in brain tissue, though how this might impact NO signaling dynamics is not completely understood. We used simulations to investigate how the spatial and temporal patterns of NO generation and degradation impacted dilation of a penetrating arteriole in cortex. We found that the spatial location of NO production and the size of the vessel both played an important role in determining its responsiveness to NO. The much higher rate of NO degradation and scavenging of NO in the blood relative to the tissue drove emergent vascular dynamics. Large vasodilation events could be followed by post-stimulus constrictions driven by the increased degradation of NO by the blood, and vasomotion-like 0.1-0.3 Hz oscillations could also be generated. We found that these dynamics could be enhanced by elevation of free hemoglobin in the plasma, which occurs in diseases such as malaria and sickle cell anemia, or following blood transfusions. Finally, we show that changes in blood flow during hypoxia or hyperoxia could be explained by altered NO degradation in the parenchyma. Our simulations suggest that many common vascular dynamics may be emergent phenomena generated by NO degradation by the blood or parenchyma.
Collapse
Affiliation(s)
- William Davis Haselden
- Neuroscience Graduate Program, MD/PhD Medical Scientist Training Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ravi Teja Kedarasetti
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Patrick J. Drew
- Neuroscience Graduate Program, MD/PhD Medical Scientist Training Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Departments of Biomedical Engineering and Neurosurgery, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
17
|
Neurovascular Coupling under Chronic Stress Is Modified by Altered GABAergic Interneuron Activity. J Neurosci 2019; 39:10081-10095. [PMID: 31672788 PMCID: PMC6978951 DOI: 10.1523/jneurosci.1357-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Neurovascular coupling (NVC), the interaction between neural activity and vascular response, ensures normal brain function by maintaining brain homeostasis. We previously reported altered cerebrovascular responses during functional hyperemia in chronically stressed animals. However, the underlying neuronal-level changes associated with those hemodynamic changes remained unclear. Here, using in vivo and ex vivo experiments, we investigate the neuronal origins of altered NVC dynamics under chronic stress conditions in adult male mice. Stimulus-evoked hemodynamic and neural responses, especially beta and gamma-band local field potential activity, were significantly lower in chronically stressed animals, and the NVC relationship, itself, had changed. Further, using acute brain slices, we discovered that the underlying cause of this change was dysfunction of neuronal nitric oxide synthase (nNOS)-mediated vascular responses. Using FISH to check the mRNA expression of several GABAergic subtypes, we confirmed that only nNOS mRNA was significantly decreased in chronically stressed mice. Ultimately, chronic stress impairs NVC by diminishing nNOS-mediated vasodilation responses to local neural activity. Overall, these findings provide useful information in understanding NVC dynamics in the healthy brain. More importantly, this study reveals that impaired nNOS-mediated NVC function may be a contributory factor in the progression of stress-related diseases. SIGNIFICANCE STATEMENT The correlation between neuronal activity and cerebral vascular dynamics is defined as neurovascular coupling (NVC), which plays an important role for meeting the metabolic demands of the brain. However, the impact of chronic stress, which is a contributory factor of many cerebrovascular diseases, on NVC is poorly understood. We therefore investigated the effects of chronic stress on impaired neurovascular response to sensory stimulation and their underlying mechanisms. Multimodal approaches, from in vivo hemodynamic imaging and electrophysiology to ex vivo vascular imaging with pharmacological treatment, patch-clamp recording, FISH, and immunohistochemistry revealed that chronic stress-induced dysfunction of nNOS-expressing interneurons contributes to NVC impairment. These findings will provide useful information to understand the role of nNOS interneurons in NVC in normal and pathological conditions.
Collapse
|
18
|
Physiological Considerations of Functional Magnetic Resonance Imaging in Animal Models. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:522-532. [DOI: 10.1016/j.bpsc.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
19
|
Hosford PS, Gourine AV. What is the key mediator of the neurovascular coupling response? Neurosci Biobehav Rev 2018; 96:174-181. [PMID: 30481531 PMCID: PMC6331662 DOI: 10.1016/j.neubiorev.2018.11.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
Cellular and molecular mechanisms underlying increases in regional blood flow in response to neuronal activity are not fully understood. We have compared the effects of 79 in vivo and 36 in vitro experimental attempts to inhibit the neurovascular response. Blockade of neuronal NO synthase (nNOS) has the largest effect of any individual target, reducing the neurovascular response by 64%. This points to the existence of an unknown key signalling mechanism which accounts for approximately one third of the neurovascular response.
The mechanisms of neurovascular coupling contribute to ensuring brain energy supply is sufficient to meet demand. Despite significant research interest, the mechanisms underlying increases in regional blood flow that follow heightened neuronal activity are not completely understood. This article presents a systematic review and analysis of published data reporting the effects of pharmacological or genetic blockade of all hypothesised signalling pathways of neurovascular coupling. Our primary outcome measure was the percent reduction of the neurovascular response assessed using in vivo animal models. Selection criteria were met by 50 primary sources reporting the effects of 79 treatments. Experimental conditions were grouped into categories targeting mechanisms mediated by nitric oxide (NO), prostanoids, purines, potassium, amongst others. Blockade of neuronal NO synthase was found to have the largest effect of inhibiting any individual target, reducing the neurovascular response by 64% (average of 11 studies). Inhibition of multiple targets in combination with nNOS blockade had no further effect. This analysis points to the existence of an unknown signalling mechanism accounting for approximately one third of the neurovascular response.
Collapse
Affiliation(s)
- Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, London, UK; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK.
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, London, UK.
| |
Collapse
|
20
|
Evaluation of drug effects on cerebral blood flow and glucose uptake in un-anesthetized and un-stimulated rats: application of free-moving apparatus enabling to keep rats free during PET/SPECT tracer injection and uptake. Nucl Med Commun 2018; 39:753-760. [PMID: 29771718 PMCID: PMC6075887 DOI: 10.1097/mnm.0000000000000863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objectives The purpose of this study is the development of novel fluorine-18-fluorodeoxyglucose (18F-FDG)-PET and 99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT methods with free-moving apparatus on conscious rats to investigate brain activity without the effects of anesthesia and tactual stimulation. We also assessed the sensitivity of the experimental system by an intervention study using fluoxetine as a reference drug. Materials and methods A catheter was inserted into the femoral vein and connected to a free-moving cannula system. After fluoxetine administration, the rats were given an injection of 18F-FDG or 99mTc-HMPAO via the intravenous cannula and released into a free-moving cage. After the tracer was trapped in the brain, the rats were anesthetized and scanned with PET or SPECT scanners. Then a volume of interest analysis and statistical parametric mapping were performed. Results We could inject the tracer without touching the rats, while keeping them conscious until the tracers were distributed and trapped in the brain using the developed system. The effects of fluoxetine on glucose uptake and cerebral blood flow were perceptively detected by volume of interest and statistical parametric mapping analysis. Conclusion We successfully developed free-moving 18F-FDG-PET and 99mTc-HMPAO-SPECT imaging systems and detected detailed glucose uptake and cerebral blood flow changes in the conscious rat brain with fluoxetine administration. This system is expected to be useful to assess brain activity without the effects of anesthesia and tactual stimulation to evaluate drug effect or animal brain function.
Collapse
|
21
|
Association Between NOS1 Gene Polymorphisms and Schizophrenia in Asian and Caucasian Populations: A Meta-Analysis. Neuromolecular Med 2017; 19:452-461. [PMID: 28795310 DOI: 10.1007/s12017-017-8460-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/01/2017] [Indexed: 01/11/2023]
Abstract
Schizophrenia is a complex psychiatric disorder characterized by memory impairments with delusions and hallucinations. Several investigations have focused on determining the association between NOS1 (nitric oxide synthase-1) polymorphisms and risk of schizophrenia (SZ). However, the association of rs2682826, rs3782206, rs499776, rs3782219, rs41279104, rs3782221, rs1879417, rs4767540, rs561712, and rs6490121 polymorphisms with schizophrenia remains inconclusive. We performed a systematic meta-analysis for each polymorphism to determine its association with SZ by calculating their pooled odds ratio and 95% confidence intervals. The heterogeneity between studies was evaluated using Cochran's Q test to adopt random effects or fixed effects model. Based on our analysis, the rs3782206 polymorphism showed a strongest association with schizophrenia in allelic OR 1.15 (95% CI [1.05-1.25]), homozygote OR 1.35 (95% CI [1.09-1.66]), dominant OR 1.16 (95% CI [1.04-1.29]), and recessive OR 1.29 (95% CI [1.05-1.58]) models in Asian population. Similarly, in Caucasian population, the rs499776 polymorphism attributes risk association in homozygote OR 0.70 (95% CI [0.50-0.98]), dominant OR 3.57 (95% CI [2.34-5.27]), and recessive models OR 0.68 (95% CI [0.50-0.93]) with schizophrenia. Further, the sensitivity analysis was carried out based on leave-one-out method to confirm the reliability of the analysis. Overall, our meta-analysis demonstrates the significance of NOS1 genetic variants that are functionally associated with cognitive and neuropsychiatric symptoms of schizophrenia.
Collapse
|
22
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med 2017; 108:668-682. [PMID: 28435052 DOI: 10.1016/j.freeradbiomed.2017.04.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
23
|
Desai M, Slusarczyk AL, Chapin A, Barch M, Jasanoff A. Molecular imaging with engineered physiology. Nat Commun 2016; 7:13607. [PMID: 27910951 PMCID: PMC5146284 DOI: 10.1038/ncomms13607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/19/2016] [Indexed: 12/30/2022] Open
Abstract
In vivo imaging techniques are powerful tools for evaluating biological systems. Relating image signals to precise molecular phenomena can be challenging, however, due to limitations of the existing optical, magnetic and radioactive imaging probe mechanisms. Here we demonstrate a concept for molecular imaging which bypasses the need for conventional imaging agents by perturbing the endogenous multimodal contrast provided by the vasculature. Variants of the calcitonin gene-related peptide artificially activate vasodilation pathways in rat brain and induce contrast changes that are readily measured by optical and magnetic resonance imaging. CGRP-based agents induce effects at nanomolar concentrations in deep tissue and can be engineered into switchable analyte-dependent forms and genetically encoded reporters suitable for molecular imaging or cell tracking. Such artificially engineered physiological changes, therefore, provide a highly versatile means for sensitive analysis of molecular events in living organisms.
Collapse
Affiliation(s)
- Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Adrian L. Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Ashley Chapin
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Mariya Barch
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Sanganahalli BG, Herman P, Rothman DL, Blumenfeld H, Hyder F. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain. J Cereb Blood Flow Metab 2016; 36:1695-1707. [PMID: 27562867 PMCID: PMC5076793 DOI: 10.1177/0271678x16664531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022]
Abstract
Interpretation of regional blood oxygenation level-dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is contingent on whether local field potential (LFP) and multi-unit activity (MUA) is either dissociated or associated. To examine whether neural-hemodynamic associated and dissociated areas have different metabolic demands, we recorded sensory-evoked responses of BOLD signal, blood flow (CBF), and blood volume (CBV), which with calibrated fMRI provided oxidative metabolism (CMRO2) from rat's ventral posterolateral thalamic nucleus (VPL) and somatosensory forelimb cortex (S1FL) and compared these neuroimaging signals to neurophysiological recordings. MUA faithfully recorded evoked latency differences between VPL and S1FL because evoked MUA in these regions were similar in magnitude. Since evoked LFP was significantly attenuated in VPL, we extracted the time courses of the weaker thalamic LFP to compare with the stronger cortical LFP using wavelet transform. BOLD and CBV responses were greater in S1FL than in VPL, similar to LFP regional differences. CBF and CMRO2 responses were both comparably larger in S1FL and VPL. Despite different levels of CBF-CMRO2 and LFP-MUA couplings in VPL and S1FL, the CMRO2 was well matched with MUA in both regions. These results suggest that neural-hemodynamic associated and dissociated areas in VPL and S1FL can have similar metabolic demands.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Hal Blumenfeld
- Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Neurology, Yale University, New Haven, USA Department of Neurobiology, Yale University, New Haven, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA Department of Biomedical Engineering, Yale University, New Haven, USA
| |
Collapse
|
25
|
Abstract
UNLABELLED Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this "molecular fMRI" approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques.
Collapse
|
26
|
Sumiyoshi A, Kawashima R. Development of functional brain imaging modality by using animal 7T-MRI. Nihon Yakurigaku Zasshi 2015; 146:40-6. [PMID: 26165341 DOI: 10.1254/fpj.146.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS. The role of the nitric oxide pathway in brain injury and its treatment--from bench to bedside. Exp Neurol 2014; 263:235-43. [PMID: 25447937 DOI: 10.1016/j.expneurol.2014.10.017] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Nitric oxide (NO) is a key signalling molecule in the regulation of cerebral blood flow. This review summarises current evidence regarding the role of NO in the regulation of cerebral blood flow at rest, under physiological conditions, and after brain injury, focusing on subarachnoid haemorrhage, traumatic brain injury, and ischaemic stroke and following cardiac arrest. We also review the role of NO in the response to hypoxic insult in the developing brain. NO depletion in ischaemic brain tissue plays a pivotal role in the development of subsequent morbidity and mortality through microcirculatory disturbance and disordered blood flow regulation. NO derived from endothelial nitric oxide synthase (eNOS) appears to have neuroprotective properties. However NO derived from inducible nitric oxide synthase (iNOS) may have neurotoxic effects. Cerebral NO donor agents, for example sodium nitrite, appear to replicate the effects of eNOS derived NO, and therefore have neuroprotective properties. This is true in both the adult and immature brain. We conclude that these agents should be further investigated as targeted pharmacotherapy to protect against secondary brain injury.
Collapse
Affiliation(s)
- P S Garry
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - M Ezra
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - M J Rowland
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - J Westbrook
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - K T S Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
28
|
Toda N, Okamura T. Recent advances in research on nitrergic nerve-mediated vasodilatation. Pflugers Arch 2014; 467:1165-78. [PMID: 25339222 DOI: 10.1007/s00424-014-1621-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 12/29/2022]
Abstract
Cerebral vascular resistance and blood flow were widely considered to be regulated solely by tonic innervation of vasoconstrictor adrenergic nerves. However, pieces of evidence suggesting that parasympathetic nitrergic nerve activation elicits vasodilatation in dog and monkey cerebral arteries were found in 1990. Nitric oxide (NO) as a neurotransmitter liberated from parasympathetic postganglionic neurons decreases cerebral vascular tone and resistance and increases cerebral blood flow, which overcome vasoconstrictor responses to norepinephrine liberated from adrenergic nerves. Functional roles of nitrergic vasodilator nerves are found also in peripheral vasculature, including pulmonary, renal, mesenteric, hepatic, ocular, uterine, nasal, skeletal muscle, and cutaneous arteries and veins; however, adrenergic nerve-induced vasoconstriction is evidently greater than nitrergic vasodilatation in these vasculatures. In coronary arteries, neurogenic NO-mediated vasodilatation is not clearly noted; however, vasodilatation is induced by norepinephrine released from adrenergic nerves that activates β1-adrenoceptors. Impaired actions of NO liberated from the endothelium and nitrergic neurons are suggested to participate in cerebral hypoperfusion, leading to brain dysfunction, like that in Alzheimer's disease. Nitrergic neural dysfunction participates in impaired circulation in peripheral organs and tissues and also in systemic blood pressure increase. NO and vasodilator peptides, as sensory neuromediators, are involved in neurogenic vasodilatation in the skin. Functioning of nitrergic vasodilator nerves is evidenced not only in a variety of mammals, including humans and monkeys, but also in non-mammals. The present review article includes recent advances in research on the functional importance of nitrergic nerves concerning the control of cerebral blood flow, as well as other regions, and vascular resistance. Although information is still insufficient, the nitrergic nerve histology and function in vasculatures of non-mammals are also summarized.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Cho-me, Azuchi-machi, Chuo-ku, Osaka, 541-0052, Japan,
| | | |
Collapse
|
29
|
BROŽÍČKOVÁ C, MIKULECKÁ A, OTÁHAL J. Effect of 7-Nitroindazole, a Neuronal Nitric Oxide Synthase Inhibitor, on Behavioral and Physiological Parameters. Physiol Res 2014; 63:637-48. [DOI: 10.33549/physiolres.932781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of brain derived nitric oxide in the physiology and behavior remains disputable. One of the reasons of the controversies might be systemic side effects of nitric oxide synthase inhibitors. Therefore, under nNOS inhibition by 7-nitroindazole (7-NI) we carried out recordings of blood gasses, blood pressure and spontaneous EEG in conscious adult rats. Locomotion and spontaneous behavior were assessed in an open field. In addition skilled walking and limb coordination were evaluated using a ladder rung walking test. The blood gas analysis revealed a significant increase in pCO2 180 min and 240 min after the application of 7-NI. The power and entropy decreased simultaneously with a shift of the mean frequency of the spontaneous EEG toward slow oscillations after 7-NI treatment. The thresholds of evoked potentials underwent a significant drop and a trend towards a slight increase in the I-O curve slope was observed. 7-NI significantly suppressed open field behavior expressed as distance moved, exploratory rearing and grooming. As for the ladder rung walking test the 7-NI treated animals had more errors in foot placement indicating impairment in limb coordination. Therefore our findings suggest that 7-NI increased cortical excitability and altered some physiological and behavioral parameters.
Collapse
Affiliation(s)
| | | | - J. OTÁHAL
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
30
|
Brožíčková C, Otáhal J. Effect of an inhibitor of neuronal nitric oxide synthase 7-nitroindazole on cerebral hemodynamic response and brain excitability in urethane-anesthetized rats. Physiol Res 2014; 62:S57-66. [PMID: 24329704 DOI: 10.33549/physiolres.932564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The role of neuronal nitric oxide synthase (nNOS) in the pathophysiology of epilepsy and seizures remains disputable. One of the reasons why results from the acute in vivo studies display controversies might be the effect on the regulation of cerebral blood flow (CBF) during pharmacologically induced alterations of NO system. We examined neurovascular coupling in the rat sensorimotor cortex in response to transcallosal stimulation under nNOS inhibition by 7-nitroindazole (7-NI). Adult Wistar rats were anesthetized with urethane and epidural silver EEG electrodes were implanted over sensorimotor cortices. Regional CBF was measured by Laser Doppler Flowmetry (LDF). We catheterized a common carotid artery to measure arterial blood pressure (BP). 7-NI did not significantly affect blood pressure and heart rate. Electrophysiological recordings of evoked potentials (EPs) revealed no effect on their amplitude, rhythmic potentiation or depression of EPs. Transcallosal stimulation of the contralateral cortex induced a frequency dependent rise in CBF. Although 7-NI did not significantly affect basal CBF and cortical excitability, hemodynamic responses to the transcallosal stimulation were diminished implicating a role of nNOS in neurovascular coupling. Urethane anesthesia is suitable for future epileptological experiments. Our findings demonstrate that NO contributes to the hemodynamic response during brain activation.
Collapse
Affiliation(s)
- C Brožíčková
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
31
|
Abstract
The cerebrovascular regulation involves highly complex mechanisms to assure that the brain is perfused at all times. These mechanisms depend on all components of the neurovascular units: neurons, glia, and vascular cells. All these cell types can produce nitric oxide (NO), a powerful vasodilator through different NO synthases. Many studies underlined the key role of NO in the maintenance of resting cerebral blood flow (CBF) as well as in the mechanisms that control cerebrovascular tone: autoregulation and neurovascular coupling. However, although the role of NO in the control of CBF has been largely investigated, the complexity of the NO system and the lack of specific NO synthase inhibitors led to still unresolved questions such as the origin of NO and the pathways by which it controls the vascular tone. In this chapter, the role of NO in the regulation of CBF is critically reviewed and discussed in the context of the neurovascular unit and the general principles of cerebrovascular regulation.
Collapse
|
32
|
Mueen A, Keogh E, Zhu Q, Cash S, Westover B. Exact Discovery of Time Series Motifs. PROCEEDINGS OF THE ... SIAM INTERNATIONAL CONFERENCE ON DATA MINING. SIAM INTERNATIONAL CONFERENCE ON DATA MINING 2013; 2009:473-484. [PMID: 31656693 DOI: 10.1137/1.9781611972795.41] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Time series motifs are pairs of individual time series, or subsequences of a longer time series, which are very similar to each other. As with their discrete analogues in computational biology, this similarity hints at structure which has been conserved for some reason and may therefore be of interest. Since the formalism of time series motifs in 2002, dozens of researchers have used them for diverse applications in many different domains. Because the obvious algorithm for computing motifs is quadratic in the number of items, more than a dozen approximate algorithms to discover motifs have been proposed in the literature. In this work, for the first time, we show a tractable exact algorithm to find time series motifs. As we shall show through extensive experiments, our algorithm is up to three orders of magnitude faster than brute-force search in large datasets. We further show that our algorithm is fast enough to be used as a subroutine in higher level data mining algorithms for anytime classification, near-duplicate detection and summarization, and we consider detailed case studies in domains as diverse as electroencephalograph interpretation and entomological telemetry data mining.
Collapse
Affiliation(s)
| | | | - Qiang Zhu
- University of California - Riverside
| | | | | |
Collapse
|
33
|
Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol 2013; 306:H1-14. [PMID: 24163077 DOI: 10.1152/ajpheart.00364.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The execution and maintenance of all brain functions are dependent on a continuous flow of blood to meet the metabolic needs of the tissue. To ensure the delivery of resources required for neural processing and the maintenance of neural homeostasis, the cerebral vasculature is elaborately and extensively regulated by signaling from neurons, glia, interneurons, and perivascular nerves. Hypertension is associated with impaired neurovascular regulation of the cerebral circulation and culminates in neurodegeneration and cognitive dysfunction. Here, we review the physiological processes of neurovascular signaling in the brain and discuss mechanisms of hypertensive neurovascular dysfunction.
Collapse
Affiliation(s)
- Kathryn M Dunn
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont; and
| | | |
Collapse
|
34
|
Varvatsoulias G. The Physiological Processes Underpinning PET and fMRI Techniques With an Emphasis on the Temporal and Spatial Resolution of These Methods. PSYCHOLOGICAL THOUGHT 2013. [DOI: 10.5964/psyct.v6i2.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
35
|
Savelov AA, Petrovskii ED, Karamamed-Ogly ES, Shtark MB. Functions of the hemodynamic response during hypercapnia. Functional MRI study. Bull Exp Biol Med 2013; 155:1-5. [PMID: 23667858 DOI: 10.1007/s10517-013-2065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Functional MRI was applied for studying the dynamics of brain hemodynamic response evoked by involuntary (visual) and voluntary (motor) excitations under condition of interdependent sensorimotor and visual paradigm (hand clenching in response to a light flash). Activation of the corresponding areas of the visual and sensorimotor cortex (Brodmann areas 18-4, respectively) was observed and quantitative data characterizing the response signal maximum delay were obtained. It was found that breath holding-induced hypercapnia disorders neuronal networks created during visual-motor stimulation.
Collapse
Affiliation(s)
- A A Savelov
- International Tomography Center, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
36
|
Duchemin S, Boily M, Sadekova N, Girouard H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits 2012; 6:51. [PMID: 22907993 PMCID: PMC3414732 DOI: 10.3389/fncir.2012.00051] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/19/2012] [Indexed: 12/23/2022] Open
Abstract
Following the discovery of the vasorelaxant properties of nitric oxide (NO) by Furchgott and Ignarro, the finding by Bredt and coll. of a constitutively expressed NO synthase in neurons (nNOS) led to the presumption that neuronal NO may control cerebrovascular functions. Consequently, numerous studies have sought to determine whether neuraly-derived NO is involved in the regulation of cerebral blood flow (CBF). Anatomically, axons, dendrites, or somata of NO neurons have been found to contact the basement membrane of blood vessels or perivascular astrocytes in all segments of the cortical microcirculation. Functionally, various experimental approaches support a role of neuronal NO in the maintenance of resting CBF as well as in the vascular response to neuronal activity. Since decades, it has been assumed that neuronal NO simply diffuses to the local blood vessels and produce vasodilation through a cGMP-PKG dependent mechanism. However, NO is not the sole mediator of vasodilation in the cerebral microcirculation and is known to interact with a myriad of signaling pathways also involved in vascular control. In addition, cerebrovascular regulation is the result of a complex orchestration between all components of the neurovascular unit (i.e., neuronal, glial, and vascular cells) also known to produce NO. In this review article, the role of NO interneuron in the regulation of cortical microcirculation will be discussed in the context of the neurovascular unit.
Collapse
Affiliation(s)
- Sonia Duchemin
- Department of Pharmacology, Université de Montréal Montreal, QC, Canada
| | | | | | | |
Collapse
|
37
|
Schulz K, Sydekum E, Krueppel R, Engelbrecht CJ, Schlegel F, Schröter A, Rudin M, Helmchen F. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat Methods 2012; 9:597-602. [PMID: 22561989 DOI: 10.1038/nmeth.2013] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 03/28/2012] [Indexed: 01/10/2023]
Abstract
Functional magnetic resonance imaging (fMRI) based on blood oxygen level-dependent (BOLD) contrast is widely used for probing brain activity, but its relationship to underlying neural activity remains elusive. Here, we combined fMRI with fiber-optic recordings of fluorescent calcium indicator signals to investigate this relationship in rat somatosensory cortex. Electrical forepaw stimulation (1-10 Hz) evoked fast calcium signals of neuronal origin that showed frequency-dependent adaptation. Additionally, slower calcium signals occurred in astrocyte networks, as verified by astrocyte-specific staining and two-photon microscopy. Without apparent glia activation, we could predict BOLD responses well from simultaneously recorded fiber-optic signals, assuming an impulse response function and taking into account neuronal adaptation. In cases with glia activation, we uncovered additional prolonged BOLD signal components. Our findings highlight the complexity of fMRI BOLD signals, involving both neuronal and glial activity. Combined fMRI and fiber-optic recordings should help to clarify cellular mechanisms underlying BOLD signals.
Collapse
Affiliation(s)
- Kristina Schulz
- Department of Neurophysiology, Brain Research Institute, University of Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tiede R, Krautwald K, Fincke A, Angenstein F. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing. J Cereb Blood Flow Metab 2012; 32:570-84. [PMID: 22167232 PMCID: PMC3293123 DOI: 10.1038/jcbfm.2011.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of N-methyl-D-aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation.
Collapse
Affiliation(s)
- Regina Tiede
- Special Lab for Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | |
Collapse
|
39
|
Erythropoietin in brain development and beyond. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:953264. [PMID: 22567318 PMCID: PMC3335485 DOI: 10.1155/2012/953264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/27/2011] [Accepted: 11/11/2011] [Indexed: 01/17/2023]
Abstract
Erythropoietin is known as the requisite cytokine for red blood cell production. Its receptor, expressed at a high level on erythroid progenitor/precursor cells, is also found on endothelial, neural, and other cell types. Erythropoietin and erythropoietin receptor expression in the developing and adult brain suggest their possible involvement in neurodevelopment and neuroprotection. During ischemic stress, erythropoietin, which is hypoxia inducible, can contribute to brain homeostasis by increasing red blood cell production to increase the blood oxygen carrying capacity, stimulate nitric oxide production to modulate blood flow and contribute to the neurovascular response, or act directly on neural cells to provide neuroprotection as demonstrated in culture and animal models. Clinical studies of erythropoietin treatment in stroke and other diseases provide insight on safety and potential adverse effects and underscore the potential pleiotropic activity of erythropoietin. Herein, we summarize the roles of EPO and its receptor in the developing and adult brain during health and disease, providing first a brief overview of the well-established EPO biology and signaling, its hypoxic regulation, and role in erythropoiesis.
Collapse
|
40
|
Finkel J, Guptill V, Khaibullina A, Spornick N, Vasconcelos O, Liewehr DJ, Steinberg SM, Quezado ZM. The three isoforms of nitric oxide synthase distinctively affect mouse nocifensive behavior. Nitric Oxide 2012; 26:81-8. [PMID: 22202903 PMCID: PMC3413204 DOI: 10.1016/j.niox.2011.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/27/2011] [Accepted: 12/12/2011] [Indexed: 11/23/2022]
Abstract
Nitric oxide synthases (NOSs) have been shown to modulate thermal hyperalgesia and mechanical hypersensitivity in inflammatory and neuropathic pain. However, little is known about the effect of NOSs on baseline function of sensory nerve fibers. Using genetic deficiency and pharmacologic inhibition of NOSs, we examined the impact of the three isoforms NOS1, NOS2, and NOS3 on baseline nocifensive behavior by measuring current vocalization threshold in response to electrical stimulation at 5, 250, 2000 Hz that preferentially stimulate C, Aδ, and Aβ fibers. In response to 5, 250 and 2000 Hz, NOS1-deficient animals had significantly higher current vocalization thresholds compared with wild-type. Genetic deficiency of NOS2 was associated with higher current vocalization thresholds in response to 5 Hz (C-fiber) stimulation. In contrast, NOS3-deficient animals had an overall weak trend toward lower current vocalization thresholds at 5 Hz and significantly lower current vocalization threshold compared with wild-type animals at 250 and 2000 Hz. Therefore, NOSs distinctively affect baseline mouse current vocalization threshold and appear to play a role on nocifensive response to electrical stimulation of sensory nerve fibers.
Collapse
Affiliation(s)
- Julia Finkel
- Division of Anesthesiology and Pain Medicine, The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010, United States
| | - Virginia Guptill
- Department of Perioperative Medicine, NIH Clinical Center, Bethesda, MD 20892, United States
| | - Alfia Khaibullina
- Division of Anesthesiology and Pain Medicine, The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010, United States
| | - Nicholas Spornick
- Division of Anesthesiology and Pain Medicine, The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010, United States
| | - Olavo Vasconcelos
- Electromyography Laboratory, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, United States
| | - David J. Liewehr
- Biostatistics & Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Seth M. Steinberg
- Biostatistics & Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Zenaide M.N. Quezado
- Division of Anesthesiology and Pain Medicine, The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010, United States
- Department of Perioperative Medicine, NIH Clinical Center, Bethesda, MD 20892, United States
| |
Collapse
|
41
|
Abstract
Neurovascular coupling, or functional hyperaemia, refers to complex mechanisms of communication between neurons, astrocytes and cerebral vessels which form the neurovascular unit that spatially and temporally adjusts blood supply to the needs in energy and oxygen of activated neurons. Neurovascular coupling is so precise that it underlies neuroimaging techniques to map changes in neuronal activity. Therefore, understanding its basis is indispensable for the proper interpretation of imaging signals from functional magnetic resonance imaging and positron emission tomography, routinely used in humans. Although neurovascular coupling mechanisms are not yet fully understood, considerable progress has been made over the last decade. In this review, we present recent knowledge from in vivo studies on the cortical cellular network involved in neurovascular coupling responses and the mediators implicated in these haemodynamic changes. Recent findings have emphasized the intricate interplay between both excitatory and inhibitory neurons in neurovascular coupling, together with an intermediary role of astrocytes, which are ideally positioned between neurons and microvessels. Finally, we describe latest findings on the alterations of neurovascular function encountered in neurodegenerative conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- C Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
42
|
Piknova B, Kocharyan A, Schechter AN, Silva AC. The role of nitrite in neurovascular coupling. Brain Res 2011; 1407:62-8. [PMID: 21764040 DOI: 10.1016/j.brainres.2011.06.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO), a potent vasodilator and nontraditional neurotransmitter, is an important mediator of the changes in cerebral blood flow (CBF) associated with increased neuronal activity (neurovascular coupling). In the present work, we investigated the role of NO and of its newly recognized precursor, nitrite, in neurovascular coupling using a well-established rat model of somatosensory stimulation. Biological synthesis of NO of neuronal origin was inhibited pharmacologically. Following the initial uncoupling of neuronal and hemodynamic responses to somatosensory stimulation, the NO donor sodium nitroprusside, added within the range of physiological concentrations, significantly increased, but did not fully restore the functional CBF response. In contrast, nitrite at its physiological concentration fully recovered neurovascular coupling to its original magnitude. The magnitude of the effect is, however, dose-dependent. Sub-physiological concentrations of nitrite were not enough to entirely restore neurovascular coupling and supra-physiological concentrations acted more as a local vasodilator that changed resting CBF and interfered with the functional CBF response. These results suggest that nitrite can be efficiently converted into NO and utilized to support normal cerebrovascular physiology.
Collapse
Affiliation(s)
- Barbora Piknova
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
43
|
Goloshevsky AG, Wu CWH, Dodd SJ, Koretsky AP. Mapping cortical representations of the rodent forepaw and hindpaw with BOLD fMRI reveals two spatial boundaries. Neuroimage 2011; 57:526-38. [PMID: 21504796 DOI: 10.1016/j.neuroimage.2011.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022] Open
Abstract
Electrical stimulation of the rat forepaw and hindpaw was employed to study the spatial distribution of BOLD fMRI. Averaging of multiple fMRI sessions significantly improved the spatial stability of the BOLD signal and enabled quantitative determination of the boundaries of the BOLD fMRI maps. The averaged BOLD fMRI signal was distributed unevenly over the extent of the map and the data at the boundaries could be modeled with major and minor spatial components. Comparison of three-dimensional echo-planar imaging (EPI) fMRI at isotropic 300 μm resolution demonstrated that the border locations of the major spatial component of BOLD signal did not overlap between the forepaw and hindpaw maps. Interestingly, the border positions of the minor BOLD fMRI spatial components extended significantly into neighboring representations. Similar results were found for cerebral blood volume (CBV) weighted fMRI obtained using iron oxide particles, suggesting that the minor spatial components may not be due to vascular mislocalization typically associated with BOLD fMRI. Comparison of the BOLD fMRI maps of the forepaw and hindpaw to histological determination of these representations using cytochrome oxidase (CO) staining demonstrated that the major spatial component of the BOLD fMRI activation maps accurately localizes the borders. Finally, 2-3 weeks following peripheral nerve denervation, cortical reorganization/plasticity at the boundaries of somatosensory limb representations in adult rat brain was studied. Denervation of the hindpaw caused a growth in the major component of forepaw representation into the adjacent border of hindpaw representation, such that fitting to two components no longer led to a better fit as compared to using one major component. The border of the representation after plasticity was the same as the border of its minor component in the absence of any plasticity. It is possible that the minor components represent either vascular effects that extend from the real neuronal representations or the neuronal communication between neighboring regions. Either way the results will be useful for studying mechanisms of plasticity that cause alterations in the boundaries of neuronal representations.
Collapse
Affiliation(s)
- Artem G Goloshevsky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
44
|
Sumiyoshi A, Riera JJ, Ogawa T, Kawashima R. A mini-cap for simultaneous EEG and fMRI recording in rodents. Neuroimage 2011; 54:1951-65. [DOI: 10.1016/j.neuroimage.2010.09.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/17/2010] [Accepted: 09/21/2010] [Indexed: 11/29/2022] Open
|
45
|
Silva AC, Liu JV, Hirano Y, Leoni RF, Merkle H, Mackel JB, Zhang XF, Nascimento GC, Stefanovic B. Longitudinal functional magnetic resonance imaging in animal models. Methods Mol Biol 2011; 711:281-302. [PMID: 21279608 PMCID: PMC4748954 DOI: 10.1007/978-1-61737-992-5_14] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has had an essential role in furthering our understanding of brain physiology and function. fMRI techniques are nowadays widely applied in neuroscience research, as well as in translational and clinical studies. The use of animal models in fMRI studies has been fundamental in helping elucidate the mechanisms of cerebral blood-flow regulation, and in the exploration of basic neuroscience questions, such as the mechanisms of perception, behavior, and cognition. Because animals are inherently non-compliant, most fMRI performed to date have required the use of anesthesia, which interferes with brain function and compromises interpretability and applicability of results to our understanding of human brain function. An alternative approach that eliminates the need for anesthesia involves training the animal to tolerate physical restraint during the data acquisition. In the present chapter, we review these two different approaches to obtaining fMRI data from animal models, with a specific focus on the acquisition of longitudinal data from the same subjects.
Collapse
Affiliation(s)
- Afonso C Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Delli Pizzi S, Mantini D, Ferretti A, Caulo M, Salerio I, Romani GL, Del Gratta C, Tartaro A. Pharmacological functional MRI assessment of the effect of ibuprofen-arginine in painful conditions. Int J Immunopathol Pharmacol 2010; 23:927-35. [PMID: 20943065 DOI: 10.1177/039463201002300329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pharmacological functional magnetic resonance imaging (phMRI) is a valuable tool for the investigation of pharmacological effects of a drug on pain processing. We hypothesized that the ibuprofen-arginine combination, in line with its characteristic analgesic properties, may influence the phMRI response at the central level, as compared to placebo. Ten healthy subjects underwent a double-blind, placebo-controlled, randomized, cross-over phFMRI study with somatosensory painful stimulation of the right median nerve. We measured the blood oxygen level dependent (BOLD) signal variations induced in conditions of pain after oral administration of either ibuprofen-arginine or placebo formulations. Independent component analysis (ICA) was used for the analysis of the fMRI data, without assuming a specific hemodynamic response function (HRF), which may be altered by drug administration. Median nerve electrical painful stimulation mainly activated the primary contralateral and the secondary somatosensory cortices, the insula, the supplementary motor area, and the middle frontal gyrus. Placebo and ibuprofen-arginine administration induced activation bilaterally in the premotor cortex, and an overall reduction in the other pain-related areas, which was more prominent in the left hemisphere. A task-related increase of BOLD signal between drug and placebo was observed bilaterally in the primary somatosensory area and the middle frontal gyrus without any changes in subjective pain scores. Overall, our findings show that ibuprofen-arginine, in line with the characteristic analgesic properties of ibuprofen, influences the BOLD response in specific pain-related brain areas with respect to placebo, with a vasoactive effect possibly due to arginine.
Collapse
Affiliation(s)
- S Delli Pizzi
- Department of Neuroscience and Imaging, G. d'Annunzio University, Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Abstract
Time series motifs are sets of very similar subsequences of a long time series. They are of interest in their own right, and are also used as inputs in several higher-level data mining algorithms including classification, clustering, rule-discovery and summarization. In spite of extensive research in recent years, finding time series motifs exactly in massive databases is an open problem. Previous efforts either found approximate motifs or considered relatively small datasets residing in main memory. In this work, we leverage off previous work on pivot-based indexing to introduce a disk-aware algorithm to find time series motifs exactly in multi-gigabyte databases which contain on the order of tens of millions of time series. We have evaluated our algorithm on datasets from diverse areas including medicine, anthropology, computer networking and image processing and show that we can find interesting and meaningful motifs in datasets that are many orders of magnitude larger than anything considered before.
Collapse
|
49
|
Abstract
Recently, a universal, simple, and fail-safe mechanism has been proposed by which cerebral blood flow (CBF) might be coupled to oxygen metabolism during neuronal activation without the need for any tissue-based mechanism. According to this concept, vasodilation occurs by local erythrocytic release of nitric oxide or ATP wherever and whenever hemoglobin is deoxygenated, directly matching oxygen demand and supply in every tissue. For neurovascular coupling in the brain, we present experimental evidence challenging this view by applying an experimental regime operating without deoxy-hemoglobin. Hyperbaric hyperoxygenation (HBO) allowed us to prevent hemoglobin deoxygenation, as the oxygen that was physically dissolved in the tissue was sufficient to support oxidative metabolism. Regional CBF and regional cerebral blood oxygenation were measured using a cranial window preparation in anesthetized rats. Hemodynamic and neuronal responses to electrical forepaw stimulation or cortical spreading depression (CSD) were analyzed under normobaric normoxia and during HBO up to 4 ATA (standard atmospheres absolute). Inconsistent with the proposed mechanism, during HBO, CBF responses to functional activation or CSD were unchanged. Our results show that activation-induced CBF regulation in the brain does not operate through the release of vasoactive mediators on hemoglobin deoxygenation or through a tissue-based oxygen-sensing mechanism.
Collapse
|
50
|
Kennerley AJ, Mayhew JE, Redgrave P, Berwick J. Vascular Origins of BOLD and CBV fMRI Signals: Statistical Mapping and Histological Sections Compared. Open Neuroimag J 2010; 4:1-8. [PMID: 20563253 PMCID: PMC2887650 DOI: 10.2174/1874440001004010001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/22/2009] [Accepted: 06/12/2009] [Indexed: 11/22/2022] Open
Abstract
Comparison of 3T blood oxygenation level dependent (BOLD) and cerebral blood volume (CBV) activation maps to histological sections enables the spatial discrimination of functional magnetic resonance imaging (fMRI) signal changes into different vascular compartments. We use a standard gradient echo-echo planar imaging technique to measure BOLD signal changes in the somatosensory cortex in response to whisker stimulation. Corresponding changes in CBV were estimated following the infusion of a super-paramagnetic contrast agent. We imaged in a tangential imaging plane that covered the cortical surface. Images were associated with post mortem histological sections showing both the surface vasculature and cytochrome oxidase stained whisker barrel cortex. We found a significant BOLD signal change in the large draining veins which occurred in the absence of a corresponding CBV change. Results suggest that in the venous drainage system, ~3mm distant from the area of activity, there is a robust change in blood oxygen saturation with little or no volume change. CBV changes are localised over the somatosensory barrel cortex and overlying arterial supply, supporting the theory that CBV changes are greater in the arterial than in the venous vasculature. This work investigating BOLD signal and underlying hemodynamics provides more information on the vascular origins of these important neuroimaging signals.
Collapse
Affiliation(s)
- Aneurin J Kennerley
- Centre for Signal Processing in Neuroimaging and Systems Neuroscience (SPiNSN), Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|