1
|
Zhang G, Wang Y, Lu S, Ding F, Wang X, Zhu C, Wang Y, Wang K. Molecular understanding and clinical outcomes of CAR T cell therapy in the treatment of urological tumors. Cell Death Dis 2024; 15:359. [PMID: 38789450 PMCID: PMC11126652 DOI: 10.1038/s41419-024-06734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Chimeric antigen receptor engineered T (CAR T) cell therapy has developed rapidly in recent years, leading to profound developments in oncology, especially for hematologic malignancies. However, given the pressure of immunosuppressive tumor microenvironments, antigen escape, and diverse other factors, its application in solid tumors is less developed. Urinary system tumors are relatively common, accounting for approximately 24% of all new cancers in the United States. CAR T cells have great potential for urinary system tumors. This review summarizes the latest developments of CAR T cell therapy in urinary system tumors, including kidney cancer, bladder cancer, and prostate cancer, and also outlines the various CAR T cell generations and their pathways and targets that have been developed thus far. Finally, the current advantages, problems, and side effects of CAR T cell therapy are discussed in depth, and potential future developments are proposed in view of current shortcomings.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shiyang Lu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fengzhu Ding
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yibing Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2
|
Dey S, Devender M, Rani S, Pandey RK. Recent advances in CAR T-cell engineering using synthetic biology: Paving the way for next-generation cancer treatment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:91-156. [PMID: 38762281 DOI: 10.1016/bs.apcsb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
This book chapter highlights a comprehensive exploration of the transformative innovations in the field of cancer immunotherapy. CAR (Chimeric Antigen Receptor) T-cell therapy represents a groundbreaking approach to treat cancer by reprogramming a patient immune cells to recognize and destroy cancer cells. This chapter underscores the critical role of synthetic biology in enhancing the safety and effectiveness of CAR T-cell therapies. It begins by emphasizing the growing importance of personalized medicine in cancer treatment, emphasizing the shift from one-size-fits-all approaches to patient-specific solutions. Synthetic biology, a multidisciplinary field, has been instrumental in customizing CAR T-cell therapies, allowing for fine-tuned precision and minimizing unwanted side effects. The chapter highlights recent advances in gene editing, synthetic gene circuits, and molecular engineering, showcasing how these technologies are optimizing CAR T-cell function. In summary, this book chapter sheds light on the remarkable progress made in the development of CAR T-cell therapies using synthetic biology, providing hope for cancer patients and hinting at a future where highly personalized and effective cancer treatments are the norm.
Collapse
Affiliation(s)
- Sangita Dey
- CSO Department, Cellworks Research India Pvt Ltd, Bengaluru, Karnataka, India
| | - Moodu Devender
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Swati Rani
- ICAR, National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
3
|
Aggeletopoulou I, Kalafateli M, Triantos C. Chimeric Antigen Receptor T Cell Therapy for Hepatocellular Carcinoma: Where Do We Stand? Int J Mol Sci 2024; 25:2631. [PMID: 38473878 DOI: 10.3390/ijms25052631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge that urgently calls for innovative therapeutic strategies. Chimeric antigen receptor T cell (CAR T) therapy has emerged as a promising avenue for HCC treatment. However, the therapeutic efficacy of CAR T immunotherapy in HCC patients is significantly compromised by some major issues including the immunosuppressive environment within the tumor, antigen heterogeneity, CAR T cell exhaustion, and the advanced risk for on-target/off-tumor toxicity. To overcome these challenges, many ongoing preclinical and clinical trials are underway focusing on the identification of optimal target antigens and the decryption of the immunosuppressive milieu of HCC. Moreover, limited tumor infiltration constitutes a significant obstacle of CAR T cell therapy that should be addressed. The continuous effort to design molecular targets for CAR cells highlights the importance for a more practical approach for CAR-modified cell manufacturing. This review critically examines the current landscape of CAR T cell therapy for HCC, shedding light on the changes in innate and adaptive immune responses in the context of HCC, identifying potential CAR T cell targets, and exploring approaches to overcome inherent challenges. Ongoing advancements in scientific research and convergence of diverse treatment modalities offer the potential to greatly enhance HCC patients' care in the future.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Santiago-Vicente Y, de Jesús Castillejos-López M, Carmona-Aparicio L, Coballase-Urrutia E, Velasco-Hidalgo L, Niembro-Zúñiga AM, Zapata-Tarrés M, Torres-Espíndola LM. Immunotherapy for Pediatric Gliomas: CAR-T Cells Against B7H3: A Review of the Literature. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:420-430. [PMID: 37038673 DOI: 10.2174/1871527322666230406094257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND B7H3 is a co-stimulatory molecule for immune reactions found on the surface of tumor cells in a wide variety of tumors. Preclinical and clinical studies have reported it as a tumor target towards which various immunotherapy modalities could be directed. So far, good results have been obtained in hematological neoplasms; however, a contrasting situation is evident in solid tumors, including those of the CNS, which show high refractoriness to current treatments. The appearance of cellular immunotherapies has transformed oncology due to the reinforcement of the immune response that is compromised in people with cancer. OBJECTIVE This article aims to review the literature to describe the advancement in knowledge on B7H3 as a target of CAR-T cells in pediatric gliomas to consider them as an alternative in the treatment of these patients. RESULTS Although B7H3 is considered a suitable candidate as a target agent for various immunotherapy techniques, there are still limitations in using CAR-T cells to achieve the desired success. CONCLUSION Results obtained with CAR-T cells can be further improved by the suggested proposals; therefore, more clinical trials are needed to study this new therapy in children with gliomas.
Collapse
Affiliation(s)
- Yolanda Santiago-Vicente
- Iztacala Faculty of Higher Studies, Tlalnepantla, México
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, México
| | | | | | | | | | | | - Marta Zapata-Tarrés
- Head of Research Coordination at Mexican Social Security Institute Foundation, Mexico City, México
| | | |
Collapse
|
5
|
Filioglou D, Husnain M, Khurana S, Simpson RJ, Katsanis E. Has the shortage of fludarabine altered the current paradigm of lymphodepletion in favor of bendamustine? Front Immunol 2023; 14:1329850. [PMID: 38077398 PMCID: PMC10702755 DOI: 10.3389/fimmu.2023.1329850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The most common lymphodepletion regimen used prior to infusion of chimeric antigen receptor-T cells (CAR-T) is cyclophosphamide (CY) in combination with fludarabine (Flu) (CY-FLU). While cyclophosphamide (CY) possesses lymphotoxic effects, it concurrently preserves regulatory T cell activity, potentially affecting the efficacy of CAR-T cells. Moreover, the use of fludarabine (FLU) has been linked to neurotoxicity, which could complicate the early detection of immune effector cell-associated neurotoxicity syndrome (ICANS) observed in CAR-T cell therapy. Given the ongoing shortage of FLU, alternative lymphodepleting agents have become necessary. To date, only a limited number of studies have directly compared different lymphodepleting regimens, and most of these comparisons have been retrospective in nature. Herein, we review the current literature on lymphodepletion preceding CAR-T cell therapies for lymphoid hematologic malignancies, with a specific focus on the use of bendamustine (BEN). Recent evidence suggests that administering BEN before CAR-T cell infusion yields comparable efficacy, possibly with a more favorable toxicity profile when compared to CY-FLU. This warrants further investigation through randomized prospective studies.
Collapse
Affiliation(s)
| | - Muhammad Husnain
- Department of Medicine, University of Arizona, Tucson, AZ, United States
- The University of Arizona Cancer Center, Tucson, AZ, United States
| | - Sharad Khurana
- Department of Medicine, University of Arizona, Tucson, AZ, United States
- The University of Arizona Cancer Center, Tucson, AZ, United States
| | - Richard J. Simpson
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Medicine, University of Arizona, Tucson, AZ, United States
- The University of Arizona Cancer Center, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Department of Pathology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
6
|
Chikileva IO, Bruter AV, Persiyantseva NA, Zamkova MA, Vlasenko RY, Dolzhikova YI, Shubina IZ, Donenko FV, Lebedinskaya OV, Sokolova DV, Pokrovsky VS, Fedorova PO, Ustyuzhanina NE, Anisimova NY, Nifantiev NE, Kiselevskiy MV. Anti-Cancer Potential of Transiently Transfected HER2-Specific Human Mixed CAR-T and NK Cell Populations in Experimental Models: Initial Studies on Fucosylated Chondroitin Sulfate Usage for Safer Treatment. Biomedicines 2023; 11:2563. [PMID: 37761005 PMCID: PMC10526813 DOI: 10.3390/biomedicines11092563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in numerous cancer cell types. Therapeutic antibodies and chimeric antigen receptors (CARs) against HER2 were developed to treat human tumors. The major limitation of anti-HER2 CAR-T lymphocyte therapy is attributable to the low HER2 expression in a wide range of normal tissues. Thus, side effects are caused by CAR lymphocyte "on-target off-tumor" reactions. We aimed to develop safer HER2-targeting CAR-based therapy. CAR constructs against HER2 tumor-associated antigen (TAA) for transient expression were delivered into target T and natural killer (NK) cells by an effective and safe non-viral transfection method via nucleofection, excluding the risk of mutations associated with viral transduction. Different in vitro end-point and real-time assays of the CAR lymphocyte antitumor cytotoxicity and in vivo human HER2-positive tumor xenograft mice model proved potent cytotoxic activity of the generated CAR-T-NK cells. Our data suggest transient expression of anti-HER2 CARs in plasmid vectors by human lymphocytes as a safer treatment for HER2-positive human cancers. We also conducted preliminary investigations to elucidate if fucosylated chondroitin sulfate may be used as a possible agent to decrease excessive cytokine production without negative impact on the CAR lymphocyte antitumor effect.
Collapse
Affiliation(s)
- Irina O. Chikileva
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Nadezhda A. Persiyantseva
- Research Institute of Carcinogenesis, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (N.A.P.); (M.A.Z.)
| | - Maria A. Zamkova
- Research Institute of Carcinogenesis, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (N.A.P.); (M.A.Z.)
| | - Raimonda Ya. Vlasenko
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
| | - Yuliya I. Dolzhikova
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
| | - Irina Zh. Shubina
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
| | - Fedor V. Donenko
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
| | - Olga V. Lebedinskaya
- Department of Histology, Embryology and Cytology, EA Vagner Perm State Medical University, 614000 Perm, Russia;
| | - Darina V. Sokolova
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
- Patrice Lumumba Peoples’ Friendship University, 117198 Moscow, Russia
| | - Vadim S. Pokrovsky
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
- Patrice Lumumba Peoples’ Friendship University, 117198 Moscow, Russia
| | - Polina O. Fedorova
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
- Microbiology, Virology and Immunology Department, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- II Mechnikov Research Institute of Vaccines and Serums, 105064 Moscow, Russia
| | | | - Natalia Yu. Anisimova
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
| | - Nikolay E. Nifantiev
- ND Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Mikhail V. Kiselevskiy
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (R.Y.V.); (Y.I.D.); (I.Z.S.); (F.V.D.); (D.V.S.); (V.S.P.); (P.O.F.); (N.Y.A.); (M.V.K.)
| |
Collapse
|
7
|
Gao D, Hong F, He A. The role of bone marrow microenvironment on CAR-T efficacy in haematologic malignancies. Scand J Immunol 2023; 98:e13273. [PMID: 39007933 DOI: 10.1111/sji.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/16/2024]
Abstract
In recent years, chimeric antigen receptor-T (CAR-T) cell therapy has emerged as a novel immunotherapy method. It has shown significant therapeutic efficacy in the treatment of haematological B cell malignancies. In particular, the CAR-T therapy targeting CD19 has yielded unprecedented efficacy for acute B-lymphocytic leukaemia (B-ALL) and non-Hodgkin's lymphoma (NHL). In haematologic malignancies, tumour stem cells are more prone to stay in the regulatory bone marrow (BM) microenvironment (called niches), which provides a protective environment against immune attack. However, how the BM microenvironment affects the anti-tumour efficacy of CAR-T cells and its underlying mechanism is worthy of attention. In this review, we discuss the role of the BM microenvironment on the efficacy of CAR-T in haematological malignancies and propose corresponding strategies to enhance the anti-tumour activity of CAR-T therapy.
Collapse
Affiliation(s)
- Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Schubert ML, Schmitt A, Hückelhoven-Krauss A, Neuber B, Kunz A, Waldhoff P, Vonficht D, Yousefian S, Jopp-Saile L, Wang L, Korell F, Keib A, Michels B, Haas D, Sauer T, Derigs P, Kulozik A, Kunz J, Pavel P, Laier S, Wuchter P, Schmier J, Bug G, Lang F, Gökbuget N, Casper J, Görner M, Finke J, Neubauer A, Ringhoffer M, Wolleschak D, Brüggemann M, Haas S, Ho AD, Müller-Tidow C, Dreger P, Schmitt M. Treatment of adult ALL patients with third-generation CD19-directed CAR T cells: results of a pivotal trial. J Hematol Oncol 2023; 16:79. [PMID: 37481608 PMCID: PMC10363324 DOI: 10.1186/s13045-023-01470-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Third-generation chimeric antigen receptor (CAR)-engineered T cells (CARTs) might improve clinical outcome of patients with B cell malignancies. This is the first report on a third-generation CART dose-escalating, phase-1/2 investigator-initiated trial treating adult patients with refractory and/or relapsed (r/r) acute lymphoblastic leukemia (ALL). METHODS Thirteen patients were treated with escalating doses of CD19-directed CARTs between 1 × 106 and 50 × 106 CARTs/m2. Leukapheresis, manufacturing and administration of CARTs were performed in-house. RESULTS For all patients, CART manufacturing was feasible. None of the patients developed any grade of Immune effector cell-associated neurotoxicity syndrome (ICANS) or a higher-grade (≥ grade III) catokine release syndrome (CRS). CART expansion and long-term CART persistence were evident in the peripheral blood (PB) of evaluable patients. At end of study on day 90 after CARTs, ten patients were evaluable for response: Eight patients (80%) achieved a complete remission (CR), including five patients (50%) with minimal residual disease (MRD)-negative CR. Response and outcome were associated with the administered CART dose. At 1-year follow-up, median overall survival was not reached and progression-free survival (PFS) was 38%. Median PFS was reached on day 120. Lack of CD39-expression on memory-like T cells was more frequent in CART products of responders when compared to CART products of non-responders. After CART administration, higher CD8 + and γδ-T cell frequencies, a physiological pattern of immune cells and lower monocyte counts in the PB were associated with response. CONCLUSION In conclusion, third-generation CARTs were associated with promising clinical efficacy and remarkably low procedure-specific toxicity, thereby opening new therapeutic perspectives for patients with r/r ALL. Trial registration This trial was registered at www. CLINICALTRIALS gov as NCT03676504.
Collapse
Affiliation(s)
- Maria-Luisa Schubert
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Alexander Kunz
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Philip Waldhoff
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dominik Vonficht
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Schayan Yousefian
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Lea Jopp-Saile
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lei Wang
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Felix Korell
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Anna Keib
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Birgit Michels
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dominik Haas
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tim Sauer
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Patrick Derigs
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Andreas Kulozik
- Department of Pediatric Hematology, Oncology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joachim Kunz
- Department of Pediatric Hematology, Oncology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Petra Pavel
- Institute for Clinical Transfusion Medicine and Cell Therapy (IKTZ), German Red Cross Blood Service Baden-Württemberg-Hessen, Heidelberg, Germany
| | - Sascha Laier
- Institute for Clinical Transfusion Medicine and Cell Therapy (IKTZ), German Red Cross Blood Service Baden-Württemberg-Hessen, Heidelberg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, of the Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | | | - Gesine Bug
- Department of Internal Medicine II, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Lang
- Department of Internal Medicine II, University Hospital Frankfurt, Frankfurt, Germany
| | - Nicola Gökbuget
- Department of Internal Medicine II, University Hospital Frankfurt, Frankfurt, Germany
| | - Jochen Casper
- Department of Hematology and Oncology, University Hospital Oldenburg, Oldenburg, Germany
| | - Martin Görner
- Department of Hematology and Oncology, Hospital Bielefeld, Bielefeld, Germany
| | - Jürgen Finke
- Department of Internal Medicine I, University Hospital Freiburg, Freiburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, University Hospital Giessen und Marburg, Marburg, Germany
| | | | - Denise Wolleschak
- Department of Hematology and Oncology, Center of Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - Monika Brüggemann
- Department of Internal Medicine II, University Hospital Kiel, Kiel, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anthony D Ho
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| |
Collapse
|
9
|
Zhai X, Mao L, Wu M, Liu J, Yu S. Challenges of Anti-Mesothelin CAR-T-Cell Therapy. Cancers (Basel) 2023; 15:cancers15051357. [PMID: 36900151 PMCID: PMC10000068 DOI: 10.3390/cancers15051357] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is a kind of adoptive T-cell therapy (ACT) that has developed rapidly in recent years. Mesothelin (MSLN) is a tumor-associated antigen (TAA) that is highly expressed in various solid tumors and is an important target antigen for the development of new immunotherapies for solid tumors. This article reviews the clinical research status, obstacles, advancements and challenges of anti-MSLN CAR-T-cell therapy. Clinical trials on anti-MSLN CAR-T cells show that they have a high safety profile but limited efficacy. At present, local administration and introduction of new modifications are being used to enhance proliferation and persistence and to improve the efficacy and safety of anti-MSLN CAR-T cells. A number of clinical and basic studies have shown that the curative effect of combining this therapy with standard therapy is significantly better than that of monotherapy.
Collapse
Affiliation(s)
- Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
10
|
Zhang K, Chen H, Li F, Huang S, Chen F, Li Y. Bright future or blind alley? CAR-T cell therapy for solid tumors. Front Immunol 2023; 14:1045024. [PMID: 36761757 PMCID: PMC9902507 DOI: 10.3389/fimmu.2023.1045024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells therapy has emerged as a significant breakthrough in adoptive immunotherapy for hematological malignancies with FDA approval. However, the application of CAR-T cell therapy in solid tumors remains challenging, mostly due to lack of suitable CAR-T target antigens, insufficient trafficking and extravasation to tumor sites, and limited CAR-T survival in the hostile tumor microenvironment (TME). Herein, we reviewed the development of CARs and the clinical trials in solid tumors. Meanwhile, a "key-and-lock" relationship was used to describe the recognition of tumor antigen via CAR T cells. Some strategies, including dual-targets and receptor system switches or filter, have been explored to help CAR T cells matching targets specifically and to minimize on-target/off-tumor toxicities in normal tissues. Furthermore, the complex TME restricts CAT T cells activity through dense extracellular matrix, suppressive immune cells and cytokines. Recent innovations in engineered CARs to shield the inhibitory signaling molecules were also discussed, which efficiently promote CAR T functions in terms of expansion and survival to overcome the hurdles in the TME of solid tumors.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China,Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Fuqiang Li
- Department of Traditional Chinese Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Sheng Huang
- Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Fei Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China,Graduate School, Kunming Medical University, Kunming, Yunnan, China,*Correspondence: Yi Li,
| |
Collapse
|
11
|
Del Baldo G, Del Bufalo F, Pinacchio C, Carai A, Quintarelli C, De Angelis B, Merli P, Cacchione A, Locatelli F, Mastronuzzi A. The peculiar challenge of bringing CAR-T cells into the brain: Perspectives in the clinical application to the treatment of pediatric central nervous system tumors. Front Immunol 2023; 14:1142597. [PMID: 37025994 PMCID: PMC10072260 DOI: 10.3389/fimmu.2023.1142597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Childhood malignant brain tumors remain a significant cause of death in the pediatric population, despite the use of aggressive multimodal treatments. New therapeutic approaches are urgently needed for these patients in order to improve prognosis, while reducing side effects and long-term sequelae of the treatment. Immunotherapy is an attractive option and, in particular, the use of gene-modified T cells expressing a chimeric antigen receptor (CAR-T cells) represents a promising approach. Major hurdles in the clinical application of this approach in neuro-oncology, however, exist. The peculiar location of brain tumors leads to both a difficulty of access to the tumor mass, shielded by the blood-brain barrier (BBB), and to an increased risk of potentially life-threatening neurotoxicity, due to the primary location of the disease in the CNS and the low intracranial volume reserve. There are no unequivocal data on the best way of CAR-T cell administration. Multiple trials exploring the use of CD19 CAR-T cells for hematologic malignancies proved that genetically engineered T cells can cross the BBB, suggesting that systemically administered CAR-T cell can be used in the neuro-oncology setting. Intrathecal and intra-tumoral delivery can be easily managed with local implantable devices, suitable also for a more precise neuro-monitoring. The identification of specific approaches of neuro-monitoring is of utmost importance in these patients. In the present review, we highlight the most relevant potential challenges associated with the application of CAR-T cell therapy in pediatric brain cancers, focusing on the evaluation of the best route of delivery, the peculiar risk of neurotoxicity and the related neuro-monitoring.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Claudia Pinacchio
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Pietro Merli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
12
|
Menter T, Tzankov A. Tumor Microenvironment in Acute Myeloid Leukemia: Adjusting Niches. Front Immunol 2022; 13:811144. [PMID: 35273598 PMCID: PMC8901718 DOI: 10.3389/fimmu.2022.811144] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemias (AML) comprise a wide array of different entities, which have in common a rapid expansion of myeloid blast cells leading to displacement of normal hematopoietic cells and also disruption of the microenvironment in the bone marrow niches. Based on an insight into the complex cellular interactions in the bone marrow niches in non-neoplastic conditions in general, this review delineates the complex relationship between leukemic cells and reactive cells of the tumor microenvironment (TME) in AML. A special focus is directed on niche cells and various T-cell subsets as these also provide a potential therapeutic rationale considering e.g. immunomodulation. The TME of AML on the one hand plays a vital role for sustaining and promoting leukemogenesis but - on the other hand - it also has adverse effects on abnormal blasts developing into overt leukemia hindering their proliferation and potentially removing such cells. Thus, leukemic cells need to and develop strategies in order to manipulate the TME. Interference with those strategies might be of particular therapeutic potential since mechanisms of resistance related to tumor cell plasticity do not apply to it.
Collapse
Affiliation(s)
- Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Chikileva I, Shubina I, Burtseva AM, Kirgizov K, Stepanyan N, Varfolomeeva S, Kiselevskiy M. Antiviral Cell Products against COVID-19: Learning Lessons from Previous Research in Anti-Infective Cell-Based Agents. Biomedicines 2022; 10:biomedicines10040868. [PMID: 35453618 PMCID: PMC9027720 DOI: 10.3390/biomedicines10040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
COVID-19 is a real challenge for the protective immunity. Some people do not respond to vaccination by acquiring an appropriate immunological memory. The risk groups for this particular infection such as the elderly and people with compromised immunity (cancer patients, pregnant women, etc.) have the most serious problems in developing an adequate immune response. Therefore, dendritic cell (DC) vaccines that are loaded ex vivo with SARS-CoV-2 antigens in the optimal conditions are promising for immunization. Lymphocyte effector cells with chimeric antigen receptor (CAR lymphocytes) are currently used mainly as anti-tumor treatment. Before 2020, few studies on the antiviral CAR lymphocytes were reported, but since the outbreak of SARS-CoV-2 the number of such studies has increased. The basis for CARs against SARS-CoV-2 were several virus-specific neutralizing monoclonal antibodies. We propose a similar, but basically novel and more universal approach. The extracellular domain of the immunoglobulin G receptors will be used as the CAR receptor domain. The specificity of the CAR will be determined by the antibodies, which it has bound. Therefore, such CAR lymphocytes are highly universal and have functional activity against any infectious agents that have protective antibodies binding to a foreign surface antigen on the infected cells.
Collapse
Affiliation(s)
- Irina Chikileva
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
- Correspondence:
| | - Irina Shubina
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| | - Anzhelika-Mariia Burtseva
- College of New Materials and Nanotechnologies, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
| | - Kirill Kirgizov
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Nara Stepanyan
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Svetlana Varfolomeeva
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Mikhail Kiselevskiy
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| |
Collapse
|
14
|
Marofi F, Achmad H, Bokov D, Abdelbasset WK, Alsadoon Z, Chupradit S, Suksatan W, Shariatzadeh S, Hasanpoor Z, Yazdanifar M, Shomali N, Khiavi FM. Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Res Ther 2022; 13:140. [PMID: 35365241 PMCID: PMC8974159 DOI: 10.1186/s13287-022-02819-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zeid Alsadoon
- Dentistry Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hasanpoor
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
15
|
Schubert ML, Berger C, Kunz A, Schmitt A, Badbaran A, Neuber B, Zeschke S, Wang L, Riecken K, Hückelhoven‑Krauss A, Müller I, Müller‑Tidow C, Dreger P, Kröger N, Ayuk F, Schmitt M, Fehse B. Comparison of single copy gene‑based duplex quantitative PCR and digital droplet PCR for monitoring of expansion of CD19‑directed CAR T cells in treated patients. Int J Oncol 2022; 60:48. [PMID: 35294040 PMCID: PMC8973917 DOI: 10.3892/ijo.2022.5338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria-Luisa Schubert
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, D‑69120 Heidelberg, Germany
| | - Carolina Berger
- Department of Stem Cell Transplantation, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Alexander Kunz
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, D‑69120 Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, D‑69120 Heidelberg, Germany
| | - Anita Badbaran
- Department of Stem Cell Transplantation, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, D‑69120 Heidelberg, Germany
| | - Silke Zeschke
- Department of Stem Cell Transplantation, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Lei Wang
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, D‑69120 Heidelberg, Germany
| | - Kristoffer Riecken
- Department of Stem Cell Transplantation, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Angela Hückelhoven‑Krauss
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, D‑69120 Heidelberg, Germany
| | - Ingo Müller
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Carsten Müller‑Tidow
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, D‑69120 Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, D‑69120 Heidelberg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, D‑69120 Heidelberg, Germany
| | - Boris Fehse
- Department of Stem Cell Transplantation, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| |
Collapse
|
16
|
Engineering T cells to survive and thrive in the hostile tumor microenvironment. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2021.100360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Zhao S, Wang C, Lu P, Lou Y, Liu H, Wang T, Yang S, Bao Z, Han L, Liang X, Ma C, Gao L. Switch receptor T3/28 improves long-term persistence and antitumor efficacy of CAR-T cells. J Immunother Cancer 2021; 9:jitc-2021-003176. [PMID: 34853180 PMCID: PMC8638458 DOI: 10.1136/jitc-2021-003176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 01/14/2023] Open
Abstract
Background Chimeric antigen receptor (CAR) T cells have been successfully used in tumor immunotherapy due to their strong antitumor responses, especially in hematological malignancies such as B cell acute lymphoid leukemia. However, on-target off-tumor toxicity and poor persistence severely limit the clinical application of CAR-T cell therapy. Methods T-cell immunoglobulin mucin domain molecule 3 (TIM-3) was used to develop a second-generation 41BB CD19 CAR linked with a T3/28 chimera, in which truncated extracellular TIM-3 was fused with the CD28 transmembrane and cytoplasmic domains. The efficacy of T3/28 CAR-T cells was evaluated in vitro and in vivo. Results We demonstrated that the switch receptor T3/28 preserved the TCM phenotype, improved proliferative capacity, and reduced exhaustion of CAR-T cells, resulting in superior in vitro and in vivo antitumor activity in B lymphoma. Importantly, the switch receptor T3/28 substantially prolonged the persistence of CAR-T cells, and the interleukin-21/Stat3 axis probably contributed to the enhanced cytotoxicity of T3/28 CAR-T cells. Conclusion Overall, the T3/28 chimera significantly prolonged the persistence of CAR-T cells, and T3/28 CAR-T cells possessed potent antitumor activity in mice, shedding new light on potential improvements in adoptive T cell therapies.
Collapse
Affiliation(s)
- Songbo Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunhua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Ping Lu
- Department of Hematology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yalin Lou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huimin Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ting Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shanshan Yang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ziyou Bao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Liu C, Qi T, Milner JJ, Lu Y, Cao Y. Speed and Location Both Matter: Antigen Stimulus Dynamics Controls CAR-T Cell Response. Front Immunol 2021; 12:748768. [PMID: 34691062 PMCID: PMC8531752 DOI: 10.3389/fimmu.2021.748768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the success in B-cell malignancies, chimeric antigen receptor (CAR)-T cell therapies have not yet demonstrated consistent efficacy across all patients and tumor types, particularly against solid tumors. Higher rates of T cell exhaustion are associated with inferior clinical outcomes following CAR-T cell therapy, which is prevalent in solid tumors. T cell exhaustion may originate from persistent and chronic antigen stimulation by tumor cells that resist and/or evade T cell-mediated killing. We exploited CAR-T exhaustion with a classic negative feedback model (incoherent feedforward loop, IFFL) to investigate the balance between CAR-T cell activation and exhaustion under different antigen presentation dynamics. Built upon the experimental and clinical data, we hypothesize that the speed and anatomical location of antigenic stimulation are both crucial to CAR-T cell response. Chronic antigenic stimulation as well as the harsh tumor microenvironment present multiple barriers to CAR-T cell efficacy in solid tumors. Many therapeutic strategies are individually insufficient to improve of CAR-T responses against solid tumors, as they clear but one of the many barriers CAR-T cells face in solid tumors. A combination strategy targeting multiple barriers holds promise to improve CAR-T therapy in solid tumors.
Collapse
Affiliation(s)
- Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. Justin Milner
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yong Lu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Yoo HJ, Harapan BN. Chimeric antigen receptor (CAR) immunotherapy: basic principles, current advances, and future prospects in neuro-oncology. Immunol Res 2021; 69:471-486. [PMID: 34554405 PMCID: PMC8580929 DOI: 10.1007/s12026-021-09236-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
With recent advances, chimeric antigen receptor (CAR) immunotherapy has become a promising modality for patients with refractory cancer diseases. The successful results of CAR T cell therapy in relapsed and refractory B-cell malignancies shifted the paradigm of cancer immunotherapy by awakening the scientific, clinical, and commercial interest in translating this technology for the treatment of solid cancers. This review elaborates on fundamental principles of CAR T cell therapy (development of CAR construct, challenges of CAR T cell therapy) and its application on solid tumors as well as CAR T cell therapy potential in the field of neuro-oncology. Glioblastoma (GBM) is identified as one of the most challenging solid tumors with a permissive immunological milieu and dismal prognosis. Standard multimodal treatment using maximal safe resection, radiochemotherapy, and maintenance chemotherapy extends the overall survival beyond a year. Recurrence is, however, inevitable. GBM holds several unique features including its vast intratumoral heterogeneity, immunosuppressive environment, and a partially permissive anatomic blood–brain barrier, which offers a unique opportunity to investigate new treatment approaches. Tremendous efforts have been made in recent years to investigate novel CAR targets and target combinations with standard modalities for solid tumors and GBM to improve treatment efficacy. In this review, we outline the history of CAR immunotherapy development, relevant CAR target antigens validated with CAR T cells as well as preclinical approaches in combination with adjunct approaches via checkpoint inhibition, bispecific antibodies, and second-line systemic therapies that enhance anticancer efficacy of the CAR-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hyeon Joo Yoo
- Department of Internal Medicine V, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Biyan Nathanael Harapan
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University of Munich, 81377, Munich, Germany.
| |
Collapse
|
20
|
Lindo L, Wilkinson LH, Hay KA. Befriending the Hostile Tumor Microenvironment in CAR T-Cell Therapy. Front Immunol 2021; 11:618387. [PMID: 33643299 PMCID: PMC7902760 DOI: 10.3389/fimmu.2020.618387] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
T-cells genetically engineered to express a chimeric antigen receptor (CAR) have shown remarkable results in patients with B-cell malignancies, including B-cell acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and mantle cell lymphoma, with some promising efficacy in patients with multiple myeloma. However, the efficacy of CAR T-cell therapy is still hampered by local immunosuppression and significant toxicities, notably cytokine release syndrome (CRS) and neurotoxicity. The tumor microenvironment (TME) has been identified to play a major role in preventing durable responses to immunotherapy in both solid and hematologic malignancies, with this role exaggerated in solid tumors. The TME comprises a diverse set of components, including a heterogeneous population of various cells and acellular elements that collectively contribute towards the interplay of pro-immune and immunosuppressive signaling. In particular, macrophages, myeloid-derived suppressor cells, regulatory T-cells, and cell-free factors such as cytokines are major contributors to local immunosuppression in the TME of patients treated with CAR T-cells. In order to create a more favorable niche for CAR T-cell function, armored CAR T-cells and other combinatorial approaches are being explored for potential improved outcomes compared to conventional CAR T-cell products. While these strategies may potentiate CAR T-cell function and efficacy, they may paradoxically increase the risk of adverse events due to increased pro-inflammatory signaling. Herein, we discuss the mechanisms by which the TME antagonizes CAR T-cells and how innovative immunotherapy strategies are being developed to address this roadblock. Furthermore, we offer perspective on how these novel approaches may affect the risk of adverse events, in order to identify ways to overcome these barriers and expand the clinical benefits of this treatment modality in patients with diverse cancers. Precise immunomodulation to allow for improved tumor control while simultaneously mitigating the toxicities seen with current generation CAR T-cells is integral for the future application of more effective CAR T-cells against other malignancies.
Collapse
Affiliation(s)
- Lorenzo Lindo
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Kevin Anthony Hay
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Cancer Immunotherapy Strategies: Basic Principles. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Chimeric Antigen Receptor (CAR) T Cell Therapy for B-Acute Lymphoblastic Leukemia (B-ALL). Cancer Treat Res 2021; 181:179-196. [PMID: 34626362 DOI: 10.1007/978-3-030-78311-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the exploitation of adoptive immunotherapies, the outcomes of patients with relapsed and refractory B cell hematologic malignancies have seen drastic improvements. To this end, a paradigm shift away from toxic and ineffective chemotherapies has been visible with the FDA approval of genetically modified autologous T cell products designed to express chimeric antigen receptors able to specifically recognize the CD19 cell surface marker. To date, CAR-T cells have two FDA-approved indications including relapsed or refractory acute lymphoblastic leukemia in children and young adults as well as large B cell lymphoma that is relapsed and/or refractory to two prior therapies. This chapter will discuss the utility of this therapy in B-ALL, common toxicities and their management, relationship to other therapies such as stem cell transplantation, and future directions.
Collapse
|
23
|
|
24
|
Zhang H, Zhao P, Huang H. Engineering better chimeric antigen receptor T cells. Exp Hematol Oncol 2020; 9:34. [PMID: 33292660 PMCID: PMC7709221 DOI: 10.1186/s40164-020-00190-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
CD19-targeted CAR T cells therapy has shown remarkable efficacy in treatment of B cell malignancies. However, relapse of primary disease remains a major obstacle after CAR T cells therapy, and the majority of relapses present a tumor phenotype with retention of target antigen (antigen-positive relapse), which highly correlate with poor CAR T cells persistence. Therefore, study on factors and mechanisms that limit the in vivo persistence of CAR T cells is crucial for developing strategies to overcome these limitations. In this review, we summarize the rapidly developing knowledge regarding the factors that influence CAR T cells in vivo persistence and the underlying mechanisms. The factors involve the CAR constructs (extracellular structures, transmembrane and intracellular signaling domains, as well as the accessory structures), activation signaling (CAR signaling and TCR engagement), methods for in vitro culture (T cells collection, purification, activation, gene transduction and cells expansion), epigenetic regulations, tumor environment, CD4/CD8 subsets, CAR T cells differentiation and exhaustion. Of note, among these influence factors, CAR T cells differentiation and exhaustion are identified as the central part due to the fact that almost all factors eventually alter the state of cells differentiation and exhaustion. Moreover, we review the potential coping strategies aiming at these limitations throughout this study.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pu Zhao
- Department of Hematology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.
| |
Collapse
|
25
|
Tseng HC, Xiong W, Badeti S, Yang Y, Ma M, Liu T, Ramos CA, Dotti G, Fritzky L, Jiang JG, Yi Q, Guarrera J, Zong WX, Liu C, Liu D. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. Nat Commun 2020; 11:4810. [PMID: 32968061 PMCID: PMC7511348 DOI: 10.1038/s41467-020-18444-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR) therapy is a promising immunotherapeutic strategy for treating multiple refractory blood cancers, but further advances are required for solid tumor CAR therapy. One challenge is identifying a safe and effective tumor antigen. Here, we devise a strategy for targeting hepatocellular carcinoma (HCC, one of the deadliest malignancies). We report that T and NK cells transduced with a CAR that recognizes the surface marker, CD147, also known as Basigin, can effectively kill various malignant HCC cell lines in vitro, and HCC tumors in xenograft and patient-derived xenograft mouse models. To minimize any on-target/off-tumor toxicity, we use logic-gated (log) GPC3–synNotch-inducible CD147-CAR to target HCC. LogCD147-CAR selectively kills dual antigen (GPC3+CD147+), but not single antigen (GPC3-CD147+) positive HCC cells and does not cause severe on-target/off-tumor toxicity in a human CD147 transgenic mouse model. In conclusion, these findings support the therapeutic potential of CD147-CAR-modified immune cells for HCC patients. Chimeric antigen receptor (CAR)-based therapy for the treatment of liver cancer represents a promising therapeutic strategy. Here the authors show that CD147-targeting CAR-NK or CAR-T can induce anti-tumor activity against hepatocellular carcinoma in vitro and in vivo.
Collapse
Affiliation(s)
- Hsiang-Chi Tseng
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Wei Xiong
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA.,Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, 6550 Fannin Street, SM8026, Houston, TX, 77030, USA
| | - Saiaditya Badeti
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Yan Yang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Minh Ma
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Ting Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Carlos A Ramos
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Luke Fritzky
- Imaging core facility, Rutgers University-New Jersey Medical School, 205 South Orange Avenue, Newark, NJ, 07103, USA
| | - Jie-Gen Jiang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, 6550 Fannin Street, SM8026, Houston, TX, 77030, USA
| | - James Guarrera
- Department of Surgery, New Jersey Medical School, Rutgers-The State University of New Jersey, 185 South Orange Avenue, Newark, NJ, 07101, USA
| | - Wei-Xing Zong
- School of Pharmacy, Rutgers-The State University of New Jersey, Newark, 164 Frelinghuysen Road Piscataway, NJ, 08854, USA
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA. .,Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, 185 South Orange Avenue, Newark, NJ, 07101, USA.
| |
Collapse
|
26
|
Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, Chen YY, Zhao W. CAR-T design: Elements and their synergistic function. EBioMedicine 2020; 58:102931. [PMID: 32739874 PMCID: PMC7393540 DOI: 10.1016/j.ebiom.2020.102931] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells use re-engineered cell surface receptors to specifically bind to and lyse oncogenic cells. Two clinically approved CAR-T–cell therapies have significant clinical efficacy in treating CD19-positive B cell cancers. With widespread interest to deploy this immunotherapy to other cancers, there has been great research activity to design new CAR structures to increase the range of targeted cancers and anti-tumor efficacy. However, several obstacles must be addressed before CAR-T–cell therapies can be more widely deployed. These include limiting the frequency of lethal cytokine storms, enhancing T-cell persistence and signaling, and improving target antigen specificity. We provide a comprehensive review of recent research on CAR design and systematically evaluate design aspects of the four major modules of CAR structure: the ligand-binding, spacer, transmembrane, and cytoplasmic domains, elucidating design strategies and principles to guide future immunotherapeutic discovery.
Collapse
Affiliation(s)
- Jayapriya Jayaraman
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States
| | - Michael P Mellody
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States
| | - Andrew J Hou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Ruchi P Desai
- School of Medicine, University of California, Irvine, Irvine, CA, 92697
| | - Audrey W Fung
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - An Huynh Thuy Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, 90095; Parker Institute for Cancer Immunotherapy Center, University of California, Los Angeles, Los Angeles, Los Angeles, 90095
| | - Weian Zhao
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, United States; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, United States; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, United States; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
27
|
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ, Guedan S. CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Front Immunol 2020; 11:1109. [PMID: 32625204 PMCID: PMC7311654 DOI: 10.3389/fimmu.2020.01109] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have demonstrated remarkable efficacy for the treatment of hematological malignancies. However, in patients with solid tumors, objective responses to CAR-T cell therapy remain sporadic and transient. A major obstacle for CAR-T cells is the intrinsic ability of tumors to evade immune responses. Advanced solid tumors are largely composed of desmoplastic stroma and immunosuppressive modulators, and characterized by aberrant cell proliferation and vascularization, resulting in hypoxia and altered nutrient availability. To mount a curative response after infusion, CAR-T cells must infiltrate the tumor, recognize their cognate antigen and perform their effector function in this hostile tumor microenvironment, to then differentiate and persist as memory T cells that confer long-term protection. Fortunately, recent advances in synthetic biology provide a wide set of tools to genetically modify CAR-T cells to overcome some of these obstacles. In this review, we provide a comprehensive overview of the key tumor intrinsic mechanisms that prevent an effective CAR-T cell antitumor response and we discuss the most promising strategies to prevent tumor escape to CAR-T cell therapy.
Collapse
Affiliation(s)
- Alba Rodriguez-Garcia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Laboratory, Ikerbasque Basque Foundation for Science, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Estela Noguera-Ortega
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sonia Guedan
- Department of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| |
Collapse
|
28
|
Nie Y, Lu W, Chen D, Tu H, Guo Z, Zhou X, Li M, Tu S, Li Y. Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies. Biomark Res 2020; 8:18. [PMID: 32514351 PMCID: PMC7254656 DOI: 10.1186/s40364-020-00197-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, especially anti-CD19 CAR T cell therapy, has shown remarkable anticancer activity in patients with relapsed/refractory acute lymphoblastic leukemia, demonstrating an inspiring complete remission rate. However, with extension of the follow-up period, the limitations of this therapy have gradually emerged. Patients are at a high risk of early relapse after achieving complete remission. Although there are many studies with a primary focus on the mechanisms underlying CD19- relapse related to immune escape, early CD19+ relapse owing to poor in vivo persistence and impaired efficacy accounts for a larger proportion of the high relapse rate. However, the mechanisms underlying CD19+ relapse are still poorly understood. Herein, we discuss factors that could become obstacles to improved persistence and efficacy of CAR T cells during production, preinfusion processing, and in vivo interactions in detail. Furthermore, we propose potential strategies to overcome these barriers to achieve a reduced CD19+ relapse rate and produce prolonged survival in patients after CAR T cell therapy.
Collapse
Affiliation(s)
- Yuru Nie
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Weiqing Lu
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Daiyu Chen
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Huilin Tu
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Zhenling Guo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| |
Collapse
|
29
|
Sievers NM, Dörrie J, Schaft N. CARs: Beyond T Cells and T Cell-Derived Signaling Domains. Int J Mol Sci 2020; 21:E3525. [PMID: 32429316 PMCID: PMC7279007 DOI: 10.3390/ijms21103525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
When optimizing chimeric antigen receptor (CAR) therapy in terms of efficacy, safety, and broadening its application to new malignancies, there are two main clusters of topics to be addressed: the CAR design and the choice of transfected cells. The former focuses on the CAR construct itself. The utilized transmembrane and intracellular domains determine the signaling pathways induced by antigen binding and thereby the cell-specific effector functions triggered. The main part of this review summarizes our understanding of common signaling domains employed in CARs, their interactions among another, and their effects on different cell types. It will, moreover, highlight several less common extracellular and intracellular domains that might permit unique new opportunities. Different antibody-based extracellular antigen-binding domains have been pursued and optimized to strike a balance between specificity, affinity, and toxicity, but these have been reviewed elsewhere. The second cluster of topics is about the cellular vessels expressing the CAR. It is essential to understand the specific attributes of each cell type influencing anti-tumor efficacy, persistence, and safety, and how CAR cells crosstalk with each other and bystander cells. The first part of this review focuses on the progress achieved in adopting different leukocytes for CAR therapy.
Collapse
Affiliation(s)
- Nico M. Sievers
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
30
|
Nakazawa T, Natsume A, Nishimura F, Morimoto T, Matsuda R, Nakamura M, Yamada S, Nakagawa I, Motoyama Y, Park YS, Tsujimura T, Wakabayashi T, Nakase H. Effect of CRISPR/Cas9-Mediated PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth. Cells 2020; 9:cells9040998. [PMID: 32316275 PMCID: PMC7227242 DOI: 10.3390/cells9040998] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM), which is the most common malignant brain tumor, is resistant to standard treatments. Immunotherapy might be a promising alternative for the treatment of this cancer. Chimeric antigen receptor (CAR) is an artificially modified fusion protein that can be engineered to direct the specificity and function of T cells against tumor antigens. However, the antitumor effects of EGFRvIII-targeting CAR-T (EvCAR-T) cells in GBM are limited. The inhibitory effect is induced by the interaction between programmed cell death protein 1 (PD-1) on activated EvCAR-T cells and its ligands on GBM cells. In the present study, PD-1-disrupted EvCAR-T cells were established using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The sgRNA/Cas9 expression vectors designed precisely disrupted the target region of PD-1 and inhibited the expression of PD-1 in EvCAR-T cells. The PD-1-disrupted EvCAR-T cells had an in vitro growth inhibitory effect on EGFRvIII-expressing GBM cells without altering the T-cell phenotype and the expression of other checkpoint receptors. In the future, the in vivo antitumor effect of this vector should be evaluated in order to determine if it could be applied clinically for improving the efficacy of EvCAR-T cell-based adoptive immunotherapy for GBM.
Collapse
Affiliation(s)
- Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Correspondence: ; Tel.: +81-744-22-3051
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan; (A.N.); (T.W.)
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
- Clinic Grandsoul Nara, Uda 633-2221, Japan;
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Yasushi Motoyama
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | | | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan; (A.N.); (T.W.)
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| |
Collapse
|
31
|
Roselli E, Frieling JS, Thorner K, Ramello MC, Lynch CC, Abate-Daga D. CAR-T Engineering: Optimizing Signal Transduction and Effector Mechanisms. BioDrugs 2020; 33:647-659. [PMID: 31552606 DOI: 10.1007/s40259-019-00384-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adoptive transfer of genetically engineered T cells expressing a chimeric antigen receptor (CAR) has shown remarkable results against B cell malignancies. This immunotherapeutic approach has advanced and expanded rapidly from preclinical models to the recent approval of CAR-T cells to treat lymphomas and leukemia by the Food and Drug Administration (FDA). Ongoing research efforts are focused on employing CAR-T cells as a therapy for other cancers, and enhancing their efficacy and safety by optimizing their design. Here we summarize modifications in the intracellular domain of the CAR that gave rise to first-, second-, third- and next-generation CAR-T cells, together with the impact that these different designs have on CAR-T cell biology and function. Further, we describe how the structure of the antigen-sensing ectodomain can be enhanced, leading to superior CAR-T cell signaling and/or function. Finally we discuss how tissue-specific factors may impact the clinical efficacy of CAR-T cells for bone and the central nervous system, as examples of specific indications that may require further CAR signaling optimization to perform in such inhospitable microenvironments.
Collapse
Affiliation(s)
- Emiliano Roselli
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jeremy S Frieling
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Konrad Thorner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - María C Ramello
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Conor C Lynch
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Oncologic Sciences, Morsani School of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
32
|
Epperly R, Gottschalk S, Velasquez MP. A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Front Oncol 2020; 10:262. [PMID: 32185132 PMCID: PMC7058784 DOI: 10.3389/fonc.2020.00262] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 have been successful treating patients with relapsed/refractory B cell acute lymphoblastic leukemia (ALL) and B cell lymphomas. However, relapse after CAR T cell therapy is still a challenge. In addition, preclinical and early clinical studies targeting acute myeloid leukemia (AML) have not been as successful. This can be attributed in part to the presence of an AML microenvironment that has a dampening effect on the antitumor activity of CAR T cells. The AML microenvironment includes cellular interactions, soluble environmental factors, and structural components. Suppressive immune cells including myeloid derived suppressor cells and regulatory T cells are known to inhibit T cell function. Environmental factors contributing to T cell exhaustion, including immune checkpoints, anti-inflammatory cytokines, chemokines, and metabolic alterations, impact T cell activity, persistence, and localization. Lastly, structural factors of the bone marrow niche, secondary lymphoid organs, and extramedullary sites provide opportunities for CAR T cell evasion by AML blasts, contributing to treatment resistance and relapse. In this review we discuss the effect of the AML microenvironment on CAR T cell function. We highlight opportunities to enhance CAR T cell efficacy for AML through manipulating, targeting, and evading the anti-inflammatory leukemic microenvironment.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
33
|
Stock S, Schmitt M, Sellner L. Optimizing Manufacturing Protocols of Chimeric Antigen Receptor T Cells for Improved Anticancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20246223. [PMID: 31835562 PMCID: PMC6940894 DOI: 10.3390/ijms20246223] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 01/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy can achieve outstanding response rates in heavily pretreated patients with hematological malignancies. However, relapses occur and they limit the efficacy of this promising treatment approach. The cellular composition and immunophenotype of the administered CART cells play a crucial role for therapeutic success. Less differentiated CART cells are associated with improved expansion, long-term in vivo persistence, and prolonged anti-tumor control. Furthermore, the ratio between CD4+ and CD8+ T cells has an effect on the anti-tumor activity of CART cells. The composition of the final cell product is not only influenced by the CART cell construct, but also by the culturing conditions during ex vivo T cell expansion. This includes different T cell activation strategies, cytokine supplementation, and specific pathway inhibition for the differentiation blockade. The optimal production process is not yet defined. In this review, we will discuss the use of different CART cell production strategies and the molecular background for the generation of improved CART cells in detail.
Collapse
Affiliation(s)
- Sophia Stock
- Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.S.); (M.S.)
| | - Michael Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.S.); (M.S.)
- National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Leopold Sellner
- Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.S.); (M.S.)
- National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Oncology Business Unit—Medical Affairs, Takeda Pharma Vertrieb GmbH & Co. KG, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
34
|
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov 2019; 18:749-769. [PMID: 31541224 PMCID: PMC7773144 DOI: 10.1038/s41573-019-0041-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Regulatory T cells (Treg cells) are a small subset of immune cells that are dedicated to curbing excessive immune activation and maintaining immune homeostasis. Accordingly, deficiencies in Treg cell development or function result in uncontrolled immune responses and tissue destruction and can lead to inflammatory disorders such as graft-versus-host disease, transplant rejection and autoimmune diseases. As Treg cells deploy more than a dozen molecular mechanisms to suppress immune responses, they have potential as multifaceted adaptable smart therapeutics for treating inflammatory disorders. Indeed, early-phase clinical trials of Treg cell therapy have shown feasibility, tolerability and potential efficacy in these disease settings. In the meantime, progress in the development of chimeric antigen receptors and in genome editing (including the application of CRISPR-Cas9) over the past two decades has facilitated the genetic optimization of primary T cell therapy for cancer. These technologies are now being used to enhance the specificity and functionality of Treg cells. In this Review, we describe the key advances and prospects in designing and implementing Treg cell-based therapy in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA
| | - Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA.
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
Lapteva N, Gilbert M, Diaconu I, Rollins LA, Al-Sabbagh M, Naik S, Krance RA, Tripic T, Hiregange M, Raghavan D, Dakhova O, Rouce RH, Liu H, Omer B, Savoldo B, Dotti G, Cruz CR, Sharpe K, Gates M, Orozco A, Durett A, Pacheco E, Gee AP, Ramos CA, Heslop HE, Brenner MK, Rooney CM. T-Cell Receptor Stimulation Enhances the Expansion and Function of CD19 Chimeric Antigen Receptor-Expressing T Cells. Clin Cancer Res 2019; 25:7340-7350. [PMID: 31558475 DOI: 10.1158/1078-0432.ccr-18-3199] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/29/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Current protocols for CD19 chimeric antigen receptor-expressing T cells (CD19.CAR-T cells) require recipients to tolerate preinfusion cytoreductive chemotherapy, and the presence of sufficient target antigen on normal or malignant B cells. PATIENTS AND METHODS We investigated whether additional stimulation of CD19.CAR-T cells through their native receptors can substitute for cytoreductive chemotherapy, inducing expansion and functional persistence of CD19.CAR-T even in patients in remission of B-cell acute lymphocytic leukemia. We infused a low dose of CD19.CAR-modified virus-specific T cells (CD19.CAR-VST) without prior cytoreductive chemotherapy into 8 patients after allogeneic stem cell transplant. RESULTS Absent virus reactivation, we saw no CD19.CAR-VST expansion. In contrast, in patients with viral reactivation, up to 30,000-fold expansion of CD19.CAR-VSTs was observed, with depletion of CD19+ B cells. Five patients remain in remission at 42-60+ months. CONCLUSIONS Dual T-cell receptor and CAR stimulation can thus potentiate effector cell expansion and CAR-target cell killing, even when infusing low numbers of effector cells without cytoreduction.
Collapse
Affiliation(s)
- Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Immunology, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Margaret Gilbert
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Iulia Diaconu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Lisa A Rollins
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Mina Al-Sabbagh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Swati Naik
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Robert A Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Tamara Tripic
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Manasa Hiregange
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Darshana Raghavan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Hao Liu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Bilal Omer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Barbara Savoldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Immunology, Department of Pathology, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Conrad Russel Cruz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Keli Sharpe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Melissa Gates
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Aaron Orozco
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - April Durett
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Elizabeth Pacheco
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Houston Methodist Hospital, Houston, Texas
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Houston Methodist Hospital, Houston, Texas
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Houston Methodist Hospital, Houston, Texas
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas. .,Division of Immunology, Department of Pathology, Baylor College of Medicine, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular Virology and Microbiology of Baylor College of Medicine, Houston, Texas
| |
Collapse
|
36
|
Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, Yang X, Sun J, Li Z, Han WD, Wang W. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther 2019; 4:35. [PMID: 31637014 PMCID: PMC6799837 DOI: 10.1038/s41392-019-0070-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Wei-Lin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Jie Sun
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Zhejiang, China
- Institute of Hematology, Zhejiang University & Laboratory of Stem cell and Immunotherapy Engineering, 310058 Zhejing, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
- CARsgen Therapeutics, 200032 Shanghai, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Biotherapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| |
Collapse
|
37
|
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z, Qian Q. Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci 2019; 15:2548-2560. [PMID: 31754328 PMCID: PMC6854376 DOI: 10.7150/ijbs.34213] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy by chimeric antigen receptor-modified T (CAR-T) cells has shown exhilarative clinical efficacy for hematological malignancies. Recently two CAR-T cell based therapeutics, Kymriah (Tisagenlecleucel) and Yescarta (Axicabtagene ciloleucel) approved by US FDA (US Food and Drug Administration) are now used for treatment of B cell acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) respectively in the US. Despite the progresses made in treating hematological malignancies, challenges still remain for use of CAR-T cell therapy to treat solid tumors. In this landscape, most studies have primarily focused on improving CAR-T cells and overcoming the unfavorable effects of tumor microenvironment on solid tumors. To further understand the current status and trend for developing CAR-T cell based therapies for various solid tumors, this review emphasizes on CAR-T techniques, current obstacles, and strategies for application, as well as necessary companion diagnostics for treatment of solid tumors with CAR-T cells.
Collapse
Affiliation(s)
- Shuo Ma
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Xinchun Li
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Xinyue Wang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Liang Cheng
- Shanghai Baize Medical Laboratory, Shanghai, China.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhong Li
- Shanghai Baize Medical Laboratory, Shanghai, China
| | | | - Zhenlong Ye
- Shanghai Baize Medical Laboratory, Shanghai, China.,Shanghai Cell Therapy Research Institute, Shanghai, China.,Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| | - Qijun Qian
- Shanghai Baize Medical Laboratory, Shanghai, China.,Shanghai Cell Therapy Research Institute, Shanghai, China.,Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| |
Collapse
|
38
|
Kegler A, Koristka S, Bergmann R, Berndt N, Arndt C, Feldmann A, Hoffmann A, Bornhäuser M, Schmitz M, Bachmann MP. T cells engrafted with a UniCAR 28/z outperform UniCAR BB/z-transduced T cells in the face of regulatory T cell-mediated immunosuppression. Oncoimmunology 2019; 8:e1621676. [PMID: 31428518 PMCID: PMC6685520 DOI: 10.1080/2162402x.2019.1621676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR)-equipped T cells have demonstrated astonishing clinical efficacy in hematological malignancies recently culminating in the approval of two CAR T cell products. Despite this tremendous success, CAR T cell approaches have still achieved only moderate efficacy against solid tumors. As a major obstacle, engineered conventional T cells (Tconvs) face an anti-inflammatory, hostile tumor microenvironment often infiltrated by highly suppressive regulatory T cells (Tregs). Thus, potent CAR T cell treatment of solid tumors requires efficient activation of Tconvs via their engrafted CAR to overcome Treg-mediated immunosuppression. In that regard, selecting an optimal intracellular signaling domain might represent a crucial step to achieve best clinical efficiency. To shed light on this issue and to investigate responsiveness to Treg inhibition, we engrafted Tconvs with switchable universal CARs (UniCARs) harboring intracellularly the CD3ζ domain alone or in combination with costimulatory CD28 or 4-1BB. Our studies reveal that UniCAR ζ-, and UniCAR BB/ζ-engineered Tconvs are strongly impaired by activated Tregs, whereas UniCARs providing CD28 costimulation overcome Treg-mediated suppression both in vitro and in vivo. Compared to UniCAR ζ- and UniCAR BB/ζ-modified cells, UniCAR 28/ζ-armed Tconvs secrete significantly higher amounts of Th1-related cytokines and, furthermore, levels of these cytokines are elevated even upon exposure to Tregs. Thus, in contrast to 4-1BB costimulation, CD28 signaling in UniCAR-transduced Tconvs seems to foster a pro-inflammatory milieu, which contributes to enhanced resistance to Treg suppression. Overall, our results may have significant implications for CAR T cell-based immunotherapies of solid tumors strongly invaded by Tregs.
Collapse
Affiliation(s)
- Alexandra Kegler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Stefanie Koristka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicole Berndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Hoffmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Martin Bornhäuser
- Medical Clinic and Policlinic I, University Hospital `Carl Gustav Carus’ Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), National Center for Tumor Diseases, Partner site Dresden (NCT), Heidelberg, Germany
| | - Marc Schmitz
- National Center for Tumor Diseases (NCT), partner site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), National Center for Tumor Diseases, Partner site Dresden (NCT), Heidelberg, Germany
- Institute of Immunology, Medical Faculty `Carl Gustav Carus’ Technische Universität Dresden, Dresden, Germany
| | - Michael P. Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), National Center for Tumor Diseases, Partner site Dresden (NCT), Heidelberg, Germany
- Tumor Immunology, UniversityCancerCenter (UCC) `Carl Gustav Carus’ Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
39
|
Schubert ML, Schmitt A, Sellner L, Neuber B, Kunz J, Wuchter P, Kunz A, Gern U, Michels B, Hofmann S, Hückelhoven-Krauss A, Kulozik A, Ho AD, Müller-Tidow C, Dreger P, Schmitt M. Treatment of patients with relapsed or refractory CD19+ lymphoid disease with T lymphocytes transduced by RV-SFG.CD19.CD28.4-1BBzeta retroviral vector: a unicentre phase I/II clinical trial protocol. BMJ Open 2019; 9:e026644. [PMID: 31110096 PMCID: PMC6530404 DOI: 10.1136/bmjopen-2018-026644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T cells spark hope for patients with CD19+ B cell neoplasia, including relapsed or refractory (r/r) acute lymphoblastic leukaemia (ALL) or r/r non-Hodgkin's lymphoma (NHL). Published studies have mostly used second-generation CARs with 4-1BB or CD28 as costimulatory domains. Preclinical results of third-generation CARs incorporating both elements have shown superiority concerning longevity and proliferation. The University Hospital of Heidelberg is the first institution to run an investigator-initiated trial (IIT) CAR T cell trial (Heidelberg Chimeric Antigen Receptor T cell Trial number 1 [HD-CAR-1]) in Germany with third-generation CD19-directed CAR T cells. METHODS AND ANALYSIS Adult patients with r/r ALL (stratum I), r/r NHL including chronic lymphocytic leukaemia, diffuse large B-cell lymphoma, follicular lymphoma or mantle cell lymphoma (stratum II) as well as paediatric patients with r/r ALL (stratum III) will be treated with autologous T-lymphocytes transduced by third-generation RV-SFG.CD19.CD28.4-1BB zeta retroviral vector (CD19.CAR T cells). The main purpose of this study is to evaluate safety and feasibility of escalating CD19.CAR T cell doses (1-20×106 transduced cells/m2) after lymphodepletion with fludarabine (flu) and cyclophosphamide (cyc). Patients will be monitored for cytokine release syndrome (CRS), neurotoxicity, i.e. CAR-T-cell-related encephalopathy syndrome (CRES) and/or other toxicities (primary objectives). Secondary objectives include evaluation of in vivo function and survival of CD19.CAR T cells and assessment of CD19.CAR T cell antitumour efficacy.HD-CAR-1 as a prospective, monocentric trial aims to make CAR T cell therapy accessible to patients in Europe. Currently, HD-CAR-1 is the first and only CAR T cell IIT in Germany. A third-generation Good Manufacturing Practice (GMP) grade retroviral vector, a broad spectrum of NHL, treatment of paediatric and adult ALL patients and inclusion of patients even after allogeneic stem cell transplantation (alloSCT) make this trial unique. ETHICS AND DISSEMINATION Ethical approval and approvals from the local and federal competent authorities were granted. Trial results will be reported via peer-reviewed journals and presented at conferences and scientific meetings. TRIAL REGISTRATION NUMBER Eudra CT 2016-004808-60; NCT03676504; Pre-results.
Collapse
Affiliation(s)
- Maria-Luisa Schubert
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Leopold Sellner
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Centre for Tumour Diseases (NCT), Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Kunz
- Department of Pediatric Hematology, Oncology and Immunology, Children’s Hospital, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Kunz
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrike Gern
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Birgit Michels
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne Hofmann
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Andreas Kulozik
- Department of Pediatric Hematology, Oncology and Immunology, Children’s Hospital, Heidelberg University Hospital, Heidelberg, Germany
| | - Anthony D. Ho
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Centre for Tumour Diseases (NCT), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Centre for Tumour Diseases (NCT), Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Centre for Tumour Diseases (NCT), Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Centre for Tumour Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
40
|
Stock S, Übelhart R, Schubert ML, Fan F, He B, Hoffmann JM, Wang L, Wang S, Gong W, Neuber B, Hückelhoven-Krauss A, Gern U, Christ C, Hexel M, Schmitt A, Schmidt P, Krauss J, Jäger D, Müller-Tidow C, Dreger P, Schmitt M, Sellner L. Idelalisib for optimized CD19-specific chimeric antigen receptor T cells in chronic lymphocytic leukemia patients. Int J Cancer 2019; 145:1312-1324. [PMID: 30737788 DOI: 10.1002/ijc.32201] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
Despite encouraging results with chimeric antigen receptor T (CART) cells, outcome can still be improved by optimization of the CART cell generation process. The proportion of less-differentiated T cells within the transfused product is linked to enhanced in vivo CART cell expansion and long-term persistence. The clinically approved PI3Kδ inhibitor idelalisib is well established in the treatment of B cell malignancies. Besides B cell receptor pathway inhibition, idelalisib can modulate T cell differentiation and function. Here, detailed longitudinal analysis of idelalisib-induced effects on T cell phenotype and function was performed during CART cell production. A third generation CD19.CAR.CD28.CD137zeta CAR vector system was used. CART cells were generated from peripheral blood mononuclear cells of healthy donors (HDs) and chronic lymphocytic leukemia (CLL) patients. Idelalisib-based CART cell generation resulted in an enrichment of less-differentiated naïve-like T cells (CD45RA+CCR7+), decreased expression of the exhaustion markers PD-1 and Tim-3, as well as upregulation of the lymph node homing marker CD62L. Idelalisib increased transduction efficiency, but did not impair viability and cell expansion. Strikingly, CD4:CD8 ratios that were altered in CART cells from CLL patients were approximated to ratios in HDs by idelalisib. Furthermore, in vivo efficacy of idelalisib-treated CART cells was validated in a xenograft mouse model. Intracellular TNF-α and IFN-γ production decreased in presence of idelalisib. This effect was reversible after resting CART cells without idelalisib. In summary, PI3Kδ inhibition with idelalisib can improve CART cell products, particularly when derived from CLL patients. Further studies with idelalisib-based CART cell generation protocols are warranted.
Collapse
Affiliation(s)
- Sophia Stock
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Rudolf Übelhart
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit "Applied Tumor-Immunity", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria-Luisa Schubert
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Fuli Fan
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Bailin He
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Jean-Marc Hoffmann
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Lei Wang
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Sanmei Wang
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Wenjie Gong
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ulrike Gern
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Christiane Christ
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Monika Hexel
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schmidt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jürgen Krauss
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Leopold Sellner
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
41
|
The challenges of solid tumor for designer CAR-T therapies: a 25-year perspective. Cancer Gene Ther 2019; 24:89-99. [PMID: 28392558 DOI: 10.1038/cgt.2016.82] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Fan J, Shang D, Han B, Song J, Chen H, Yang JM. Adoptive Cell Transfer: Is it a Promising Immunotherapy for Colorectal Cancer? Am J Cancer Res 2018; 8:5784-5800. [PMID: 30555581 PMCID: PMC6276301 DOI: 10.7150/thno.29035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
The last decade has witnessed significant advances in the adoptive cell transfer (ACT) technique, which has been appreciated as one of the most promising treatments for patients with cancer. Utilization of ACT can enhance the function of the immune system or improve the specificity and persistence of transferred cells. Various immune cells including T lymphocytes, natural killer cells, dendritic cells, and even stem cells can be used in the ACT despite their different functional mechanisms. Colorectal cancer (CRC) is among the most common malignancies and causes millions of deaths worldwide every year. In this review, we discuss the status and perspective of the ACT in the treatment of CRC.
Collapse
|
43
|
Stock S, Hoffmann JM, Schubert ML, Wang L, Wang S, Gong W, Neuber B, Gern U, Schmitt A, Müller-Tidow C, Dreger P, Schmitt M, Sellner L. Influence of Retronectin-Mediated T-Cell Activation on Expansion and Phenotype of CD19-Specific Chimeric Antigen Receptor T Cells. Hum Gene Ther 2018; 29:1167-1182. [PMID: 30024314 DOI: 10.1089/hum.2017.237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enhanced in vivo expansion, long-term persistence of chimeric antigen receptor T (CART) cells, and efficient tumor eradication through these cells are linked to the proportion of less-differentiated cells in the CART cell product. Retronectin is well established as an adjuvant for improved retroviral transduction, while its property to enrich less-differentiated T cells is less known. In order to increase these subsets, this study investigated the effects of retronectin-mediated T-cell activation for CD19-specific CART cell production. Peripheral blood mononuclear cells of healthy donors and untreated chronic lymphocytic leukemia (CLL) patients without or with positive selection for CD3+ T cells were transduced with a CD19.CAR.CD28.CD137zeta third-generation retroviral vector. Activation of peripheral blood mononuclear cells was performed by CD3/CD28, CD3/CD28/retronectin, or CD3/retronectin. Interleukin-7 and -15 were supplemented to all cultures. Retronectin was used in all three activation protocols for retroviral transduction. Expansion was assessed by trypan blue staining. Viability, transduction efficiency, immune phenotype, and cytokine production were longitudinally analyzed by flow cytometry. Cytotoxic capacity of generated CART cells was evaluated using a classical chromium-51 release assay. Retronectin-mediated activation resulted in an enrichment of CD8+ cytotoxic CART cells and less-differentiated naïve-like T cells (CD45RA+CCR7+). Retronectin-activated CART cells showed increased cytotoxic activity. However, activation with retronectin decreased viability, expansion, transduction efficiency, and cytokine production, particularly of CLL patient-derived CART cells. Both retronectin-mediated activation protocols promoted a less-differentiated CART cell phenotype without comprising cytotoxic properties of healthy donor-derived CART cells. However, up-front retronectin resulted in reduced viability and expansion in CLL patients. This effect is probably attributed to the retronectin-mediated activation of B cells with prolonged CLL persistence. Consequently, CART cell expansion and generation failed. In summary, activation with retronectin should be performed with caution and may be limited to patients without a higher percentage of tumor cells in the peripheral blood.
Collapse
Affiliation(s)
- Sophia Stock
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany
| | - Jean-Marc Hoffmann
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany
| | - Maria-Luisa Schubert
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany
| | - Lei Wang
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany
| | - Sanmei Wang
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany
| | - Wenjie Gong
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany
| | - Brigitte Neuber
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany
| | - Ulrike Gern
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany
| | - Anita Schmitt
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany
| | - Carsten Müller-Tidow
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany .,2 National Center for Tumor Diseases , German Cancer Consortium, Heidelberg, Germany
| | - Peter Dreger
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany .,2 National Center for Tumor Diseases , German Cancer Consortium, Heidelberg, Germany
| | - Michael Schmitt
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany .,2 National Center for Tumor Diseases , German Cancer Consortium, Heidelberg, Germany
| | - Leopold Sellner
- 1 Department of Medicine V, Heidelberg University Hospital , Heidelberg, Germany; and German Cancer Consortium, Heidelberg, Germany .,2 National Center for Tumor Diseases , German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
44
|
Gene-modified NK-92MI cells expressing a chimeric CD16-BB-ζ or CD64-BB-ζ receptor exhibit enhanced cancer-killing ability in combination with therapeutic antibody. Oncotarget 2018; 8:37128-37139. [PMID: 28415754 PMCID: PMC5514896 DOI: 10.18632/oncotarget.16201] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/04/2017] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in monoclonal antibody-mediated immunotherapy through the antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism. NK-92MI is an interleukin-2 (IL-2)-independent cell line, which was derived from NK-92 cells with superior cytotoxicity toward a wide range of tumor cells in vitro and in vivo. Nonetheless, the Fc-receptor (CD16) that usually mediates ADCC is absent in NK-92 and NK-92MI cells. To apply NK-92MI cell-based immunotherapy to cancer treatment, we designed and generated two chimeric receptors in NK-92MI cells that can bind the Fc portion of human immunoglobulins. The construct includes the low-affinity Fc receptor CD16 (158F) or the high-affinity Fc receptor CD64, with the addition of the CD8a extracellular domain, CD28 transmembrane domains, two costimulatory domains (CD28 and 4-1BB), and the signaling domain from CD3ζ. The resulting chimeric receptors, termed CD16-BB-ζ and CD64-BB-ζ, were used to generate modified NK-92MI cells expressing the chimeric receptor, which were named NK-92MIhCD16 and NK-92MIhCD64 cells, respectively. We found that NK-92MIhCD16 and NK-92MIhCD64 cells significantly improved cytotoxicity against CD20-positive non-Hodgkin's lymphoma cells in the presence of rituximab. These results suggest that the chimeric receptor-expressing NK-92MI cells may enhance the clinical responses to currently available anticancer monoclonal antibodies.
Collapse
|
45
|
Xiong W, Chen Y, Kang X, Chen Z, Zheng P, Hsu YH, Jang JH, Qin L, Liu H, Dotti G, Liu D. Immunological Synapse Predicts Effectiveness of Chimeric Antigen Receptor Cells. Mol Ther 2018; 26:963-975. [PMID: 29503199 PMCID: PMC6080133 DOI: 10.1016/j.ymthe.2018.01.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has the potential to improve the overall survival of patients with malignancies by enhancing the effectiveness of CAR T cells. Precisely predicting the effectiveness of various CAR T cells represents one of today’s key unsolved problems in immunotherapy. Here, we predict the effectiveness of CAR-modified cells by evaluating the quality of the CAR-mediated immunological synapse (IS) by quantitation of F-actin, clustering of tumor antigen, polarization of lytic granules (LGs), and distribution of key signaling molecules within the IS. Long-term killing capability, but not secretion of conventional cytokines or standard 4-hr cytotoxicity, correlates positively with the quality of the IS in two different CAR T cells that share identical antigen specificity. Xenograft model data confirm that the quality of the IS in vitro correlates positively with performance of CAR-modified immune cells in vivo. Therefore, we propose that the quality of the IS predicts the effectiveness of CAR-modified immune cells, which provides a novel strategy to guide CAR therapy.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Biomarkers
- Cell Line
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Gene Expression
- Gene Order
- Genes, Reporter
- Genetic Vectors/genetics
- Humans
- Immunological Synapses/immunology
- Immunological Synapses/metabolism
- Immunotherapy, Adoptive/methods
- Mice
- Microscopy, Confocal
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Retroviridae/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transduction, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yuhui Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Xi Kang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Peilin Zheng
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yi-Hsin Hsu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Hao Liu
- Biostatistics Core of the Dan L. Duncan Cancer Center, Houston, TX 77030, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
46
|
Abstract
Chimeric antigen receptor (CAR) T-cells are redirected T-cells that can recognize cancer antigens in a major histocompatibility complex (MHC)-independent fashion. A typical CAR is comprised of two main functional domains: an extracellular antigen recognition domain, called a single-chain variable fragment (scFv), and an intracellular signaling domain. Based on the number of intracellular signaling molecules, CARs are categorized into four generations. CAR T-cell therapy has become a promising treatment for hematologic malignancies. However, results of its clinical trials on solid tumors have not been encouraging. Here, we described the structure of CARs and summarized the clinical trials of CD19-targeted CAR T-cells. The side effects, safety management, challenges, and future prospects of CAR T-cells for the treatment of cancer, particularly for solid tumors, were also discussed.
Collapse
Affiliation(s)
- Niaz Muhammad
- a Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences , Shaanxi Normal University , Xi'an , P.R. China
| | - Qinwen Mao
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Haibin Xia
- a Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences , Shaanxi Normal University , Xi'an , P.R. China
| |
Collapse
|
47
|
Nowak A, Lock D, Bacher P, Hohnstein T, Vogt K, Gottfreund J, Giehr P, Polansky JK, Sawitzki B, Kaiser A, Walter J, Scheffold A. CD137+CD154- Expression As a Regulatory T Cell (Treg)-Specific Activation Signature for Identification and Sorting of Stable Human Tregs from In Vitro Expansion Cultures. Front Immunol 2018; 9:199. [PMID: 29467769 PMCID: PMC5808295 DOI: 10.3389/fimmu.2018.00199] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/23/2018] [Indexed: 01/30/2023] Open
Abstract
Regulatory T cells (Tregs) are an attractive therapeutic tool for several different immune pathologies. Therapeutic Treg application often requires prolonged in vitro culture to generate sufficient Treg numbers or to optimize their functionality, e.g., via genetic engineering of their antigen receptors. However, purity of clinical Treg expansion cultures is highly variable, and currently, it is impossible to identify and separate stable Tregs from contaminating effector T cells, either ex vivo or after prior expansion. This represents a major obstacle for quality assurance of expanded Tregs and raises significant safety concerns. Here, we describe a Treg activation signature that allows identification and sorting of epigenetically imprinted Tregs even after prolonged in vitro culture. We show that short-term reactivation resulted in expression of CD137 but not CD154 on stable FoxP3+ Tregs that displayed a demethylated Treg-specific demethylated region, high suppressive potential, and lack of inflammatory cytokine expression. We also applied this Treg activation signature for rapid testing of chimeric antigen receptor functionality in human Tregs and identified major differences in the signaling requirements regarding CD137 versus CD28 costimulation. Taken together, CD137+CD154- expression emerges as a universal Treg activation signature ex vivo and upon in vitro expansion allowing the identification and isolation of epigenetically stable antigen-activated Tregs and providing a means for their rapid functional testing in vitro.
Collapse
Affiliation(s)
- Anna Nowak
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Dominik Lock
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| | - Thordis Hohnstein
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| | - Katrin Vogt
- Institute for Medical Immunology, Charité - University Medicine, Berlin, Germany
| | - Judith Gottfreund
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Pascal Giehr
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Julia K Polansky
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine, Berlin, Germany
| | - Birgit Sawitzki
- Institute for Medical Immunology, Charité - University Medicine, Berlin, Germany
| | | | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Alexander Scheffold
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.,Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| |
Collapse
|
48
|
Chen KH, Wada M, Firor AE, Pinz KG, Jares A, Liu H, Salman H, Golightly M, Lan F, Jiang X, Ma Y. Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies. Oncotarget 2018; 7:56219-56232. [PMID: 27494836 PMCID: PMC5302909 DOI: 10.18632/oncotarget.11019] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/22/2016] [Indexed: 01/24/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLS) comprise a diverse group of difficult to treat, very aggressive non-Hodgkin's lymphomas (NHLS) with poor prognoses and dismal patient outlook. Despite the fact that PTCLs comprise the majority of T-cell malignancies, the standard of care is poorly established. Chimeric antigen receptor (CAR) immunotherapy has shown in B-cell malignancies to be an effective curative option and this extends promise into treating T-cell malignancies. Because PTCLS frequently develop from mature T-cells, CD3 is similarly strongly and uniformly expressed in many PTCL malignancies, with expression specific to the hematological compartment thus making it an attractive target for CAR design. We engineered a robust 3rd generation anti-CD3 CAR construct (CD3CAR) into an NK cell line (NK-92). We found that CD3CAR NK-92 cells specifically and potently lysed diverse CD3+ human PTCL primary samples as well as T-cell leukemia cells lines ex vivo. Furthermore, CD3CAR NK-92 cells effectively controlled and suppressed Jurkat tumor cell growth in vivo and significantly prolonged survival. In this study, we present the CAR directed targeting of a novel target - CD3 using CAR modified NK-92 cells with an emphasis on efficacy, specificity, and potential for new therapeutic approaches that could improve the current standard of care for PTCLs.
Collapse
Affiliation(s)
- Kevin H Chen
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, USA
| | - Masayuki Wada
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, USA
| | - Amelia E Firor
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, USA
| | - Kevin G Pinz
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, USA
| | - Alexander Jares
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Hua Liu
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Huda Salman
- Department of Internal Medicine, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Marc Golightly
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Fengshuo Lan
- Department of Internal Medicine, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Xun Jiang
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, USA
| | - Yupo Ma
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, USA.,Department of Pathology, Stony Brook Medicine, Stony Brook, NY, USA.,Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|
49
|
Byrd TT, Fousek K, Pignata A, Szot C, Samaha H, Seaman S, Dobrolecki L, Salsman VS, Oo HZ, Bielamowicz K, Landi D, Rainusso N, Hicks J, Powell S, Baker ML, Wels WS, Koch J, Sorensen PH, Deneen B, Ellis MJ, Lewis MT, Hegde M, Fletcher BS, St Croix B, Ahmed N. TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res 2018; 78:489-500. [PMID: 29183891 PMCID: PMC5771806 DOI: 10.1158/0008-5472.can-16-1911] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/22/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease lacking targeted therapy. In this study, we developed a CAR T cell-based immunotherapeutic strategy to target TEM8, a marker initially defined on endothelial cells in colon tumors that was discovered recently to be upregulated in TNBC. CAR T cells were developed that upon specific recognition of TEM8 secreted immunostimulatory cytokines and killed tumor endothelial cells as well as TEM8-positive TNBC cells. Notably, the TEM8 CAR T cells targeted breast cancer stem-like cells, offsetting the formation of mammospheres relative to nontransduced T cells. Adoptive transfer of TEM8 CAR T cells induced regression of established, localized patient-derived xenograft tumors, as well as lung metastatic TNBC cell line-derived xenograft tumors, by both killing TEM8+ TNBC tumor cells and targeting the tumor endothelium to block tumor neovascularization. Our findings offer a preclinical proof of concept for immunotherapeutic targeting of TEM8 as a strategy to treat TNBC.Significance: These findings offer a preclinical proof of concept for immunotherapeutic targeting of an endothelial antigen that is overexpressed in triple-negative breast cancer and the associated tumor vasculature. Cancer Res; 78(2); 489-500. ©2017 AACR.
Collapse
Affiliation(s)
- Tiara T Byrd
- Department of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Kristen Fousek
- Department of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Antonella Pignata
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Christopher Szot
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Heba Samaha
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
- Children's Cancer Hospital Egypt (CCHE 57357), El-Saida Zenab, Cairo Governorate, Egypt
| | - Steven Seaman
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Lacey Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Vita S Salsman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Kevin Bielamowicz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Daniel Landi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Nino Rainusso
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - John Hicks
- Department of Pediatric Pathology, Texas Children's Hospital, Houston, Texas
| | - Suzanne Powell
- Department of Pathology - Anatomic, Houston Methodist Hospital, Houston, Texas
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße, Frankfurt am Main, Germany
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße, Frankfurt am Main, Germany
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center Mainz, Germany
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Deneen
- Department of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | | | - Brad St Croix
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Nabil Ahmed
- Department of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
50
|
Hoffmann JM, Schubert ML, Wang L, Hückelhoven A, Sellner L, Stock S, Schmitt A, Kleist C, Gern U, Loskog A, Wuchter P, Hofmann S, Ho AD, Müller-Tidow C, Dreger P, Schmitt M. Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients. Front Immunol 2018; 8:1956. [PMID: 29375575 PMCID: PMC5767585 DOI: 10.3389/fimmu.2017.01956] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction Therapy with chimeric antigen receptor T (CART) cells for hematological malignancies has shown promising results. Effectiveness of CART cells may depend on the ratio of naive (TN) vs. effector (TE) T cells, TN cells being responsible for an enduring antitumor activity through maturation. Therefore, we investigated factors influencing the TN/TE ratio of CART cells. Materials and methods CART cells were generated upon transduction of peripheral blood mononuclear cells with a CD19.CAR-CD28-CD137zeta third generation retroviral vector under two different stimulating culture conditions: anti-CD3/anti-CD28 antibodies adding either interleukin (IL)-7/IL-15 or IL-2. CART cells were maintained in culture for 20 days. We evaluated 24 healthy donors (HDs) and 11 patients with chronic lymphocytic leukemia (CLL) for the composition of cell subsets and produced CART cells. Phenotype and functionality were tested using flow cytometry and chromium release assays. Results IL-7/IL-15 preferentially induced differentiation into TN, stem cell memory (TSCM: naive CD27+ CD95+), CD4+ and CXCR3+ CART cells, while IL-2 increased effector memory (TEM), CD56+ and CD4+ T regulatory (TReg) CART cells. The net amplification of different CART subpopulations derived from HDs and untreated CLL patients was compared. Particularly the expansion of CD4+ CARTN cells differed significantly between the two groups. For HDs, this subtype expanded >60-fold, whereas CD4+ CARTN cells of untreated CLL patients expanded less than 10-fold. Expression of exhaustion marker programmed cell death 1 on CARTN cells on day 10 of culture was significantly higher in patient samples compared to HD samples. As the percentage of malignant B cells was expectedly higher within patient samples, an excessive amount of B cells during culture could account for the reduced expansion potential of CARTN cells in untreated CLL patients. Final TN/TE ratio stayed <0.3 despite stimulation condition for patients, whereas this ratio was >2 in samples from HDs stimulated with IL-7/IL-15, thus demonstrating efficient CARTN expansion. Conclusion Untreated CLL patients might constitute a challenge for long-lasting CART effects in vivo since only a low number of TN among the CART product could be generated. Depletion of malignant B cells before starting CART production might be considered to increase the TN/TE ratio within the CART product.
Collapse
Affiliation(s)
- Jean-Marc Hoffmann
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria-Luisa Schubert
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Lei Wang
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Hückelhoven
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Leopold Sellner
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sophia Stock
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrike Gern
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrick Wuchter
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Susanne Hofmann
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Anthony D Ho
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Peter Dreger
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Schmitt
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|