1
|
Bettini LR, Fazio G, Saitta C, Piazza R, Palamini S, Buracchi C, Rebellato S, Santoro N, Simone C, Biondi A, Cazzaniga G. Diverse mechanisms of leukemogenesis associated with PAX5 germline mutation. Leukemia 2024; 38:2479-2482. [PMID: 39256601 PMCID: PMC11518994 DOI: 10.1038/s41375-024-02399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Laura Rachele Bettini
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Grazia Fazio
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Claudia Saitta
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Rocco Piazza
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Hematology Division and Bone Marrow Unit, IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Sonia Palamini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Chiara Buracchi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Stefano Rebellato
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Nicola Santoro
- Departments of Pediatrics, Policlinico di Bari, Bari, Italy
| | - Cristiano Simone
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| |
Collapse
|
2
|
Tebbi CK, Yan J, Sahakian E, Mediavilla-Varela M, Pinilla-Ibarz J, Patel S, Rottinghaus GE, Liu RY, Dennison C. Mycovirus-Containing Aspergillus flavus Alters Transcription Factors in Normal and Acute Lymphoblastic Leukemia Cells. Int J Mol Sci 2024; 25:10361. [PMID: 39408690 PMCID: PMC11476453 DOI: 10.3390/ijms251910361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Transcription factors control genes to maintain normal hemopoiesis, and dysregulation of some factors can lead to acute lymphoblastic leukemia (ALL). Mycoviruses are known to alter the genetics of their fungal host. The present study evaluates the effects of the products of a mycovirus-containing Aspergillus flavus (MCAF), isolated from the home of a patient with ALL, on certain transcription factors of normal and ALL cell lines. Our published studies have shown that ALL patients have antibodies to MCAF, and that exposure of the mononuclear leukocytes of patients in complete remission to its products, unlike controls, results in the re-development of genetic and cell surface phenotypes characteristic of ALL. For the present study, normal, pre-B, and B-cell leukemia cell lines were exposed to the culture of MCAF. Pre- and post-exposure levels of PAX5, Ikaros, and NF-κB were assessed. Exposure to MCAF resulted in apoptosis, cell cycle changes, and complete downregulation of all transcription factors in normal cell lines. In acute leukemia cell lines, cellular apoptosis and alterations in the cell cycle were also noted; however, while there was downregulation of all tested transcription factors, residual levels were retained. The noted alterations in the transcription factors caused by MCAF are novel findings. The possible role of MCAF in leukemogenesis needs to be further investigated. Mycovirus-containing Aspergillus flavus was initially isolated from a leukemia patient's home. Our prior published studies have illuminated intriguing associations of this organism with leukemia. Unlike controls, patients diagnosed with acute lymphoblastic leukemia (ALL) harbor antibodies to this organism. Furthermore, the exposure of mononuclear cells from patients with ALL in complete remission to the products of this organism reproduced genetic and cell phenotypes characteristic of ALL. These findings underscore the potential role of environmental factors in leukemogenesis and hint at novel avenues for therapeutic intervention and preventive strategies.
Collapse
Affiliation(s)
- Cameron K. Tebbi
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA; (J.Y.); (R.Y.L.)
| | - Jiyu Yan
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA; (J.Y.); (R.Y.L.)
| | - Eva Sahakian
- Moffitt Cancer Center, Tampa, FL 33612, USA; (E.S.); (M.M.-V.); (J.P.-I.)
| | | | | | | | | | - Rachel Y. Liu
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA; (J.Y.); (R.Y.L.)
| | - Clare Dennison
- Diagnostic Laboratories, College of Veterinary Medicine, University of South Florida, Tampa, FL 33620, USA;
| |
Collapse
|
3
|
de Albuquerque A, Lopes BA, Fernandes RA, Gimba ERP, Emerenciano M. IKZF1 and BTG1 silencing reduces glucocorticoid response in B-cell precursor acute leukemia cell line. Hematol Transfus Cell Ther 2024:S2531-1379(24)00275-X. [PMID: 39095315 DOI: 10.1016/j.htct.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/26/2023] [Accepted: 05/07/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Secondary genetic alterations, which contribute to the dysregulation of cell cycle progression and lymphoid specialization, are frequently observed in B-cell precursor acute lymphoblastic leukemia (B-ALL). As IKZF1 and BTG1 deletions are associated with a worse outcome in B-ALL, this study aimed to address whether they synergistically promote glucocorticoid resistance. METHODS Small interfering RNA was used to downregulate either IKZF1, or BTG1, or both genes in the 207 B-ALL cell line. Cell viability was investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and trypan blue exclusion assays. The expression levels of IKZF1, BTG1 and glucocorticoid-responsive genes (DUSP1, SGK1, FBXW7 and NR3C1) were evaluated by real time quantitative real time polymerase chain reaction (PCR). RESULTS Isolated silencing of BTG1, IKZF1, or both genes in combination under dexamethasone treatment increased cell viability by 24%, 40% and 84%, respectively. Although BTG1 silencing did not alter the expression of glucocorticoid-responsive genes, IKZF1 knockdown decreased the transcript levels of DUSP1 (2.6-fold), SGK1 (1.8-fold), FBXW7 (2.2-fold) and NR3C1 (1.7-fold). The expression of glucocorticoid-responsive genes reached even lower levels (reducing 2.4-4 fold) when IKZF1 and BTG1 silencing occurred in combination. CONCLUSIONS IKZF1 silencing impairs the transcription of glucocorticoid-responsive genes; this effect is enhanced by concomitant loss of BTG1. These results demonstrate the molecular mechanism by which the combination of both genetic deletions might contribute to higher relapse rates in B-ALL.
Collapse
Affiliation(s)
- Amanda de Albuquerque
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Bruno A Lopes
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Genetics of Acute Leukemia Laboratory, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Renan Amphilophio Fernandes
- Pharmacology and Medicinal Chemistry Program, Institute of Biological Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Etel Rodrigues Pereira Gimba
- Department of Natural Sciences (RCN), Institute of Humanities and Health (IHS), Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil; Hematology-Molecular Oncology Program, Research Coordination, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Mariana Emerenciano
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Genetics of Acute Leukemia Laboratory, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Feng L, Zhang H, Liu T. Multifaceted roles of IKZF1 gene, perspectives from bench to bedside. Front Oncol 2024; 14:1383419. [PMID: 38978740 PMCID: PMC11228169 DOI: 10.3389/fonc.2024.1383419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
The IKZF1 gene encodes a transcription factor that belongs to the family of zinc-finger DNA-binding proteins associated with chromatin remodeling. The protein product, IKAROS, had been proved to regulate lymphopoiesis. Subsequent mouse model studies have further confirmed its regulating role in lymphopoiesis as well as in hematopoiesis; besides, it associates with immune function, certain immune disorders like common variable immunodeficiency and dysgammaglobulinemia have been proved to be associated with germline IKZF1 mutations. Dysfunction of IKAROS also bears paramount significance in leukemic transformation and alterations of IKZF1 gene predicts a poor prognosis in hematological malignancies. As an independent prognostic marker, IKZF1 has been incorporated in the risk stratification of BCP-ALL and stratification-guided therapy has also been generated. In this review, we provide a concise and comprehensive overview on the multifaceted roles of IKZF1 gene.
Collapse
Affiliation(s)
| | | | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Chen C, Wang J, Kang M, Wu P, Zhu L, Fang Y, Xue Y. Identification of a novel MEF2C::SS18L1 fusion in childhood acute B-lymphoblastic leukemia. J Cancer Res Clin Oncol 2024; 150:314. [PMID: 38907739 PMCID: PMC11193691 DOI: 10.1007/s00432-024-05846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE Leukemia-associated fusion genes are closely related to the occurrence, development, diagnosis, and treatment of leukemia. DNA microarrays and second-generation sequencing have discovered multiple B-ALL fusion genes. We identified a novel MEF2C::SS18L1 fusion gene in a child diagnosed with B-ALL. This study investigates the oncogenicity and prognosis of this fusion gene in B-ALL. METHODS A child with B-ALL who has a MEF2C::SS18L1 fusion is reported as a newly discovered case. Compared the breakpoints, structural domains, clinical phenotypes, and differential expression genes of MEF2C::SS18L1 and MEF2D::SS18.Using "ONCOFUSE" software, the carcinogenicity of MEF2C::SS18L1 is predicted. Using whole transcriptome sequencing, we analyze the breakpoints and the secondary structure of the fusion protein. Further, we compared the structures, differentially expressed genes, and clinical phenotypes of MEF2D and MEF2C fusion genes by DESeq, GO functional enrichment, and flow cytometry immunophenotyping analysis. RESULTS Whole transcriptome sequencing identified a MEF2C::SS18L1 fusion transcript in a 3-year-old child with B-ALL. The MADS box, MEF structural domain, HJURP_C structural domain, and TAD I structural domain of MEF2C, and the QPGY structural domain of SS18L1, make up the fusion protein. "Oncofuse" found a 0.99 Bayesian probability that the fusion gene drives cancer. The breakpoint positions, fusion protein secondary structures, differentially expressed genes, and clinical characteristics of this patient were identical to those with MEF2D::SS18 fusion gene. CONCLUSION We identified a novel MEF2C::SS18L1 fusion gene in childhood ALL, which shares similar structural and clinical characteristics with MEF2D::SS18. Further studies with more samples should be conducted in future.
Collapse
Affiliation(s)
- Chuqin Chen
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Jiali Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Peng Wu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Liwen Zhu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Garcia-Solorio J, Núñez-Enriquez JC, Jiménez-Olivares M, Flores-Lujano J, Flores-Espino F, Molina-Garay C, Cervera A, Casique-Aguirre D, Peñaloza-Gonzalez JG, Baños-Lara MDR, García-Soto Á, Galván-Díaz CA, Olaya-Vargas A, Aguilar HF, Mata-Rocha M, Garrido-Hernández MÁ, Solís-Poblano JC, Luna-Silva NC, Cano-Cuapio LS, Aristil-Chery PM, Herrera-Quezada F, Carrillo-Sanchez K, Muñoz-Rivas A, Flores-Lagunes LL, Mendoza-Caamal EC, Villegas-Torres BE, González-Osnaya V, Jiménez-Hernández E, Torres-Nava JR, Martín-Trejo JA, Gutiérrez-Rivera MDL, Espinosa-Elizondo RM, Merino-Pasaye LE, Pérez-Saldívar ML, Jiménez-Morales S, Curiel-Quesada E, Rosas-Vargas H, Mejía-Arangure JM, Alaez-Verson C. IKZF1plus is a frequent biomarker of adverse prognosis in Mexican pediatric patients with B-acute lymphoblastic leukemia. Front Oncol 2024; 14:1337954. [PMID: 38634053 PMCID: PMC11022689 DOI: 10.3389/fonc.2024.1337954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Background Recurrent genetic alterations contributing to leukemogenesis have been identified in pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL), and some are useful for refining classification, prognosis, and treatment selection. IKZF1plus is a complex biomarker associated with a poor prognosis. It is characterized by IKZF1 deletion coexisting with PAX5, CDKN2A/2B, or PAR1 region deletions. The mutational spectrum and clinical impact of these alterations have scarcely been explored in Mexican pediatric patients with B-ALL. Here, we report the frequency of the IKZF1plus profile and the mutational spectrum of IKZF1, PAX5, CDKN2A/2B, and ERG genes and evaluate their impact on overall survival (OS) in a group of patients with B-ALL. Methods A total of 206 pediatric patients with de novo B-ALL were included. DNA was obtained from bone marrow samples at diagnosis before treatment initiation. A custom-designed next-generation sequencing panel was used for mutational analysis. Kaplan-Meier analysis was used for OS estimation. Results We identified the IKZF1plus profile in 21.8% of patients, which was higher than that previously reported in other studies. A significantly older age (p=0.04), a trend toward high-risk stratification (p=0.06), and a decrease in 5-year Overall Survival (OS) (p=0.009) were observed, although heterogeneous treatment protocols in our cohort would have impacted OS. A mutation frequency higher than that reported was found for IKZF1 (35.9%) and CDKN2A/2B (35.9%) but lower for PAX5 (26.6%). IKZF1MUT group was older at diagnosis (p=0.0002), and most of them were classified as high-risk (73.8%, p=0.02), while patients with CDKN2A/2BMUT had a higher leukocyte count (p=0.01) and a tendency toward a higher percentage of blasts (98.6%, >50% blasts, p=0.05) than the non-mutated patients. A decrease in OS was found in IKZF1MUT and CDKN2A/2BMUT patients, but the significance was lost after IKZF1plus was removed. Discussion Our findings demonstrated that Mexican patients with B-ALL have a higher prevalence of genetic markers associated with poor outcomes. Incorporating genomic methodologies into the diagnostic process, a significant unmet need in low- and mid-income countries, will allow a comprehensive identification of relevant alterations, improving disease classification, treatment selection, and the general outcome.
Collapse
Affiliation(s)
- Joaquin Garcia-Solorio
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Juan Carlos Núñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Marco Jiménez-Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Fernanda Flores-Espino
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carolina Molina-Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Alejandra Cervera
- Subdirección de Genómica Poblacional, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City, Mexico
| | - Diana Casique-Aguirre
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| | | | - Ma. Del Rocío Baños-Lara
- Centro de Investigación Oncológica Una Nueva Esperanza, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Ángel García-Soto
- Hospital General Centro Médico La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Alberto Olaya-Vargas
- Departamento de Oncologia, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Hilario Flores Aguilar
- Departamento de Inmunogenetica, Instituto de Diagnostico y Referencia Epidemiologicos (InDRE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Juan Carlos Solís-Poblano
- Servicio de Oncohematología Pediátrica, Instituto Mexicano del Seguro (IMSS) Unidad Médica de Alta Especialidad (UMAE) Centro Médico Nacional (CMN) Hospital de Especialidades Dr. Manuel Ávila Camacho, Puebla, Mexico
| | - Nuria Citlalli Luna-Silva
- Servicio de Hemato-Oncología Pediátrica, Hospital de la Niñez Oaxaqueña "Dr. Guillermo Zárate Mijangos", Secretaria de Salud y Servicios de Salud Oaxaca (SSO), Oaxaca, Mexico
| | | | - Pierre Mitchel Aristil-Chery
- Instituto de Seguridad y Servicios Sociales de los Trabajadores al Servicio de los Poderes del Estado (ISSSTE) de Puebla, Departamento de Enseñanza e Investigació, Puebla, Mexico
| | - Fernando Herrera-Quezada
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Karol Carrillo-Sanchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Anallely Muñoz-Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | | | | | - Vincent González-Osnaya
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Mexico City, Mexico
| | - María de Lourdes Gutiérrez-Rivera
- Servicio de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Mexico City, Mexico
| | | | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Medicina de Precisión, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional (IPN), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Juan Manuel Mejía-Arangure
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carmen Alaez-Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
7
|
Sigvardsson M. Early B-Cell Factor 1: An Archetype for a Lineage-Restricted Transcription Factor Linking Development to Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:143-156. [PMID: 39017843 DOI: 10.1007/978-3-031-62731-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of highly specialized blood cells from hematopoietic stem cells (HSCs) in the bone marrow (BM) is dependent upon a stringently orchestrated network of stage- and lineage-restricted transcription factors (TFs). Thus, the same stem cell can give rise to various types of differentiated blood cells. One of the key regulators of B-lymphocyte development is early B-cell factor 1 (EBF1). This TF belongs to a small, but evolutionary conserved, family of proteins that harbor a Zn-coordinating motif and an IPT/TIG (immunoglobulin-like, plexins, transcription factors/transcription factor immunoglobulin) domain, creating a unique DNA-binding domain (DBD). EBF proteins play critical roles in diverse developmental processes, including body segmentation in the Drosophila melanogaster embryo, and retina formation in mice. While several EBF family members are expressed in neuronal cells, adipocytes, and BM stroma cells, only B-lymphoid cells express EBF1. In the absence of EBF1, hematopoietic progenitor cells (HPCs) fail to activate the B-lineage program. This has been attributed to the ability of EBF1 to act as a pioneering factor with the ability to remodel chromatin, thereby creating a B-lymphoid-specific epigenetic landscape. Conditional inactivation of the Ebf1 gene in B-lineage cells has revealed additional functions of this protein in relation to the control of proliferation and apoptosis. This may explain why EBF1 is frequently targeted by mutations in human leukemia cases. This chapter provides an overview of the biochemical and functional properties of the EBF family proteins, with a focus on the roles of EBF1 in normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
Hu Y, Salgado Figueroa D, Zhang Z, Veselits M, Bhattacharyya S, Kashiwagi M, Clark MR, Morgan BA, Ay F, Georgopoulos K. Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS. Cell 2023; 186:5269-5289.e22. [PMID: 37995656 PMCID: PMC10895928 DOI: 10.1016/j.cell.2023.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
A generic level of chromatin organization generated by the interplay between cohesin and CTCF suffices to limit promiscuous interactions between regulatory elements, but a lineage-specific chromatin assembly that supersedes these constraints is required to configure the genome to guide gene expression changes that drive faithful lineage progression. Loss-of-function approaches in B cell precursors show that IKAROS assembles interactions across megabase distances in preparation for lymphoid development. Interactions emanating from IKAROS-bound enhancers override CTCF-imposed boundaries to assemble lineage-specific regulatory units built on a backbone of smaller invariant topological domains. Gain of function in epithelial cells confirms IKAROS' ability to reconfigure chromatin architecture at multiple scales. Although the compaction of the Igκ locus required for genome editing represents a function of IKAROS unique to lymphocytes, the more general function to preconfigure the genome to support lineage-specific gene expression and suppress activation of extra-lineage genes provides a paradigm for lineage restriction.
Collapse
Affiliation(s)
- Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniela Salgado Figueroa
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA
| | - Zhihong Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Margaret Veselits
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sourya Bhattacharyya
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mariko Kashiwagi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marcus R Clark
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Bruce A Morgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ferhat Ay
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
9
|
Tueur G, Quessada J, De Bie J, Cuccuini W, Toujani S, Lefebvre C, Luquet I, Michaux L, Lafage-Pochitaloff M. Cytogenetics in the management of B-cell acute lymphoblastic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103434. [PMID: 38064905 DOI: 10.1016/j.retram.2023.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cytogenetic analysis is mandatory at initial assessment of B-cell acute lymphoblastic leukemia (B-ALL) due to its diagnostic and prognostic value. Results from chromosome banding analysis and complementary FISH are taken into account in therapeutic protocols and further completed by other techniques (RT-PCR, SNP-array, MLPA, NGS, OGM). Indeed, new genomic entities have been identified by NGS, mostly RNA sequencing, such as Ph-like ALL that can benefit from targeted therapy. Here, we have attempted to establish cytogenetic guidelines by reviewing the most recent published data including the novel 5th World Health Organization and International Consensus Classifications. We also focused on newly described cytogenomic entities and indicate alternative diagnostic tools such as NGS technology, as its importance is vastly increasing in the diagnostic setting.
Collapse
Affiliation(s)
- Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Saloua Toujani
- Service de cytogénétique et biologie cellulaire, CHU de Rennes, Rennes 35033, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France.
| |
Collapse
|
10
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
Montes-Rodríguez IM, Soto-Salgado M, Torres-Cintrón CR, Tomassini-Fernandini JC, Suárez E, Clavell LA, Cadilla CL. Incidence and Mortality Rates for Childhood Acute Lymphoblastic Leukemia in Puerto Rican Hispanics, 2012-2016. Cancer Epidemiol Biomarkers Prev 2023; 32:1030-1037. [PMID: 37222662 PMCID: PMC10524932 DOI: 10.1158/1055-9965.epi-22-1227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/24/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) accounts for 80% of all leukemias diagnosed in children. Although ALL age patterns are consistent across racial/ethnic groups, their incidence and mortality rates are highly variable. We assessed the age-standardized ALL incidence and mortality rates of Puerto Rican Hispanic (PRH) children and compared them with those of US mainland Hispanics (USH), non-Hispanic Whites (NHW), non-Hispanic Blacks (NHB), and Non-Hispanic Asian or Pacific Islanders (NHAPI). METHODS Differences between racial/ethnic groups were assessed by estimating the standardized rate ratio (SRR) for 2010 to 2014. Secondary data analyses of the Puerto Rico Central Cancer Registry and the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) databases were performed for the 2001 to 2016 period. RESULTS PRH children had 31% lower incidence rates than USH, but 86% higher incidence rates than NHB. In addition, the incidence trends of ALL increased significantly from 2001 to 2016 among PRH and USH, with 5% and 0.9% per year, respectively. Moreover, PRH have a lower 5-year overall survival (81.7%) when compared with other racial/ethnic groups. CONCLUSIONS PRH children were found to have disparities in ALL incidence and mortality rates compared with other racial/ethnic groups in the US. Additional research is warranted to identify the genetic and environmental risk factors that may be associated with the disparities observed. IMPACT This is the first study reporting the incidence and mortality rates of childhood ALL for PRH and making comparisons with other racial/ethnic groups in the US. See related commentary by Mejía-Aranguré and Núñez-Enríquez, p. 999.
Collapse
Affiliation(s)
| | - Marievelisse Soto-Salgado
- Division of Cancer Control and Population Sciences, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR
| | - Carlos R. Torres-Cintrón
- Puerto Rico Central Cancer Registry, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR
| | | | - Erick Suárez
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| | - Luis A. Clavell
- Division of Pediatric Oncology, San Jorge Children’s Hospital, San Juan, PR
| | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| |
Collapse
|
12
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
13
|
Srinivasan S, Ramanathan S, Kumar S, Peyam S, Radhakrishnan V. Prevalence and prognostic significance of IKZF1 deletion in paediatric acute lymphoblastic leukemia: A systematic review and meta-analysis. Ann Hematol 2023:10.1007/s00277-023-05250-1. [PMID: 37154889 DOI: 10.1007/s00277-023-05250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
IKZF1 (IKAROS family Zinc Finger 1) alteration is an essential regulator of both T- and B-cell lineage specification with leukemogenic potential. IKZF1 deletion have been described in childhood acute lymphoblastic leukemia (ALL) with varying prevalence often influenced by underlying cytogenetics and also shown to have diverse prognostic significance. We aimed to evaluate the prevalence and prognostic significance of IKZF1 deletion among childhood ALL. Electronic databases of MEDLINE, EMBASE and SCOPUS were searched and 32 studies found eligible. Estimated prevalence of IKZF1 deletion among BCR::ABL1 negative and BCR::ABL1 positive ALL patients was 14% (95%CI:13-16%, I2 = 79%; 26 studies) and 63% (95%CI:59-68% I2 = 42%; 10 studies) respectively. Most common site of IKZF1 deletion was whole chromosome (exon1-8) deletion in 32.3% (95%CI: 23.8-40.7%) followed by exon 4-7 deletion in 28.6% (95%CI: 19.7-37.5%). A positive minimal residual disease at the end of induction was more common among patients with IKZF1 deletion, odds ratio: 3.09 (95%CI:2.3-4.16, I2 = 54%; 15 studies). Event-free survival and overall survival were significantly worse for IKZF1 deletion, hazard ratio (HR): 2.10 (95%CI:1.90-2.32, I2 = 28%; 31 studies) and HR: 2.38 (95%CI:1.93-2.93, I2 = 40; 15 studies) respectively. In summary, the current meta-analysis highlights the frequency of IKZF1 deletion and its negative impact on survival in childhood ALL. Further studies exploring the influence of IKZF1 deletion in the presence of classical cytogenetic and other copy number alterations would further help in characterising its prognostic role.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Department of Pediatric Oncology, ACTREC/Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Parel, Mumbai, 400 012, Maharashtra, India.
| | - Subramaniam Ramanathan
- Department of Pediatric Oncology and BMT, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Shathish Kumar
- Department of Anaesthesiology, Manipal Hospital Whitefield, Bangalore, India
| | - Srinivasan Peyam
- Department of Pediatrics, Pediatric Hematology-oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
14
|
Ampatzidou M, Papadhimitriou SI, Paisiou A, Paterakis G, Tzanoudaki M, Papadakis V, Florentin L, Polychronopoulou S. The Prognostic Effect of CDKN2A/2B Gene Deletions in Pediatric Acute Lymphoblastic Leukemia (ALL): Independent Prognostic Significance in BFM-Based Protocols. Diagnostics (Basel) 2023; 13:diagnostics13091589. [PMID: 37174980 PMCID: PMC10178600 DOI: 10.3390/diagnostics13091589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most frequent genes affected in pediatric ALL is the CDKN2A/2B gene, acting as a secondary cooperating event and playing an important role in cell-cycle regulation and chemosensitivity. Despite its inclusion in combined CNA (copy-number alterations) classifiers, like the IKZF1plus entity and the UKALL CNA profile, the prognostic impact of the individual gene deletions outside the context of a combined CNA evaluation remains controversial. Addressing the CDKN2A/2B deletions' additive prognostic effect in current risk-stratification algorithms, we present a retrospective study of a Greek pediatric ALL cohort comprising 247 patients studied over a 24-year period (2000-2023). Herein, we provide insight regarding the correlation with disease features, MRD clearance, and independent prognostic significance for this ALL cohort treated with contemporary BFM-based treatment protocols. Within an extended follow-up time of 135 months, the presence of the CDKN2A/2B deletions (biallelic or monoallelic) was associated with inferior EFS rates (65.1% compared to 91.8% for the gene non-deleted subgroup, p < 0.001), with the relapse rate accounting for 22.2% and 5.9%, respectively (p < 0.001). The presence of the biallelic deletion was associated with the worst outcomes (EFS 57.2% vs. 89.6% in the case of any other status, monoallelic or non-deleted, p < 0.001). Survival differences were demonstrated for B-ALL cases (EFS 65.3% vs. 93.6% for the non-deleted B-ALL subgroup, p < 0.001), but the prognostic effect was not statistically significant within the T-ALL cohort (EFS 64.3 vs. 69.2, p = 0.947). The presence of the CDKN2A/2B deletions clearly correlated with inferior outcomes within all protocol-defined risk groups (standard risk (SR): EFS 66.7% vs. 100%, p < 0.001, intermediate risk (IR): EFS 77.1% vs. 97.9%, p < 0.001, high risk (HR): EFS 42.1% vs. 70.5% p < 0.001 for deleted vs non-deleted cases in each patient risk group); additionally, in this study, the presence of the deletion differentiated prognosis within both MRD-positive and -negative subgroups on days 15 and 33 of induction. In multivariate analysis, the presence of the CDKN2A/2B deletions was the most important prognostic factor for relapse and overall survival, yielding a hazard ratio of 5.2 (95% confidence interval: 2.59-10.41, p < 0.001) and 5.96 (95% confidence interval: 2.97-11.95, p < 0.001), respectively, designating the alteration's independent prognostic significance in the context of modern risk stratification. The results of our study demonstrate that the presence of the CDKN2A/2B deletions can further stratify all existing risk groups, identifying patient subgroups with different outcomes. The above biallelic deletions could be incorporated into future risk-stratification algorithms, refining MRD-based stratification. In the era of targeted therapies, future prospective controlled clinical trials will further explore the possible use of cyclin-dependent kinase inhibitors (CDKIs) in CDKN2A/2B-affected ALL pediatric subgroups.
Collapse
Affiliation(s)
- Mirella Ampatzidou
- Department of Pediatric Hematology-Oncology (TAO), "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Stefanos I Papadhimitriou
- Laboratory of Hematology, Unit of Molecular Cytogenetics, "G. Gennimatas" General Hospital, 11527 Athens, Greece
| | - Anna Paisiou
- Bone Marrow Transplantation Unit, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Georgios Paterakis
- Laboratory of Flow Cytometry, Department of Immunology, "G. Gennimatas" General Hospital, 11527 Athens, Greece
| | - Marianna Tzanoudaki
- Department of Immunology, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology (TAO), "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Lina Florentin
- Alfa Laboratory Diagnostic Center, YGEIA Hospital, 11524 Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology (TAO), "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| |
Collapse
|
15
|
Jia Z, Gu Z. PAX5 alterations in B-cell acute lymphoblastic leukemia. Front Oncol 2022; 12:1023606. [PMID: 36387144 PMCID: PMC9640836 DOI: 10.3389/fonc.2022.1023606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
PAX5, a master regulator of B cell development and maintenance, is one of the most common targets of genetic alterations in B-cell acute lymphoblastic leukemia (B-ALL). PAX5 alterations consist of copy number variations (whole gene, partial, or intragenic), translocations, and point mutations, with distinct distribution across B-ALL subtypes. The multifaceted functional impacts such as haploinsufficiency and gain-of-function of PAX5 depending on specific variants have been described, thereby the connection between the blockage of B cell development and the malignant transformation of normal B cells has been established. In this review, we provide the recent advances in understanding the function of PAX5 in orchestrating the development of both normal and malignant B cells over the past decade, with a focus on the PAX5 alterations shown as the initiating or driver events in B-ALL. Recent large-scale genomic analyses of B-ALL have identified multiple novel subtypes driven by PAX5 genetic lesions, such as the one defined by a distinct gene expression profile and PAX5 P80R mutation, which is an exemplar leukemia entity driven by a missense mutation. Although altered PAX5 is shared as a driver in B-ALL, disparate disease phenotypes and clinical outcomes among the patients indicate further heterogeneity of the underlying mechanisms and disturbed gene regulation networks along the disease development. In-depth mechanistic studies in human B-ALL and animal models have demonstrated high penetrance of PAX5 variants alone or concomitant with other genetic lesions in driving B-cell malignancy, indicating the altered PAX5 and deregulated genes may serve as potential therapeutic targets in certain B-ALL cases.
Collapse
Affiliation(s)
- Zhilian Jia
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
16
|
Childhood B-Cell Preleukemia Mouse Modeling. Int J Mol Sci 2022; 23:ijms23147562. [PMID: 35886910 PMCID: PMC9317949 DOI: 10.3390/ijms23147562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Leukemia is the most usual childhood cancer, and B-cell acute lymphoblastic leukemia (B-ALL) is its most common presentation. It has been proposed that pediatric leukemogenesis occurs through a “multi-step” or “multi-hit” mechanism that includes both in utero and postnatal steps. Many childhood leukemia-initiating events, such as chromosomal translocations, originate in utero, and studies so far suggest that these “first-hits” occur at a far higher frequency than the incidence of childhood leukemia itself. The reason why only a small percentage of the children born with such preleukemic “hits” will develop full-blown leukemia is still a mystery. In order to better understand childhood leukemia, mouse modeling is essential, but only if the multistage process of leukemia can be recapitulated in the model. Therefore, mouse models naturally reproducing the “multi-step” process of childhood B-ALL will be essential to identify environmental or other factors that are directly linked to increased risk of disease.
Collapse
|
17
|
Adetutu A, Owoade AO, Adegbola PI. Inhibitory effects of ethyl acetate and butanol fractions from Morinda lucida benth on benzene-induced leukemia in mice. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
18
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
19
|
Jurado S, Fedl AS, Jaritz M, Kostanova‐Poliakova D, Malin SG, Mullighan CG, Strehl S, Fischer M, Busslinger M. The PAX5‐JAK2 translocation acts as dual‐hit mutation that promotes aggressive B‐cell leukemia via nuclear STAT5 activation. EMBO J 2022; 41:e108397. [PMID: 35156727 PMCID: PMC8982625 DOI: 10.15252/embj.2021108397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
While PAX5 is an important tumor suppressor gene in B‐cell acute lymphoblastic leukemia (B‐ALL), it is also involved in oncogenic translocations coding for diverse PAX5 fusion proteins. PAX5‐JAK2 encodes a protein consisting of the PAX5 DNA‐binding region fused to the constitutively active JAK2 kinase domain. Here, we studied the oncogenic function of the PAX5‐JAK2 fusion protein in a mouse model expressing it from the endogenous Pax5 locus, resulting in inactivation of one of the two Pax5 alleles. Pax5Jak2/+ mice rapidly developed an aggressive B‐ALL in the absence of another cooperating exogenous gene mutation. The DNA‐binding function and kinase activity of Pax5‐Jak2 as well as IL‐7 signaling contributed to leukemia development. Interestingly, all Pax5Jak2/+ tumors lost the remaining wild‐type Pax5 allele, allowing efficient DNA‐binding of Pax5‐Jak2. While we could not find evidence for a nuclear role of Pax5‐Jak2 as an epigenetic regulator, high levels of active phosphorylated STAT5 and increased expression of STAT5 target genes were seen in Pax5Jak2/+ B‐ALL tumors, implying that nuclear Pax5‐Jak2 phosphorylates STAT5. Together, these data reveal Pax5‐Jak2 as an important nuclear driver of leukemogenesis by maintaining phosphorylated STAT5 levels in the nucleus.
Collapse
Affiliation(s)
- Sabine Jurado
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC) Vienna Austria
| | - Anna S Fedl
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC) Vienna Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC) Vienna Austria
| | | | - Stephen G Malin
- Laboratory of Immunobiology Department of Medicine Solna Karolinska Institute Stockholm Sweden
| | | | - Sabine Strehl
- St. Anna Children’s Cancer Research Institute (CCRI) Vienna Austria
| | - Maria Fischer
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC) Vienna Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC) Vienna Austria
| |
Collapse
|
20
|
Chatterjee A, Pal A, Paul S. A Novel Compound Plumercine from Plumeria alba Exhibits Promising Anti-Leukemic Efficacies against B Cell Acute Lymphoblastic Leukemia. Nutr Cancer 2022; 74:2565-2580. [PMID: 35102802 DOI: 10.1080/01635581.2021.2010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The current study was focused to evaluate the antioxidant and the anti-cancerous properties of Plumeria alba. Plumeria alba was chosen due to its existing medicinal values. Antioxidant assays like Superoxide radical scavenging assay, Nitrous Oxide radical scavenging assay, were performed, on the methanolic and ethyl acetate extracts of the plant, that depicts the pro-oxidant nature of the extract. Further, they were tested to check cell viability on B cell Acute Lymphoblastic Leukemia (ALL) Cell line (NALM 6), human lung cancer cell line (A549), T cell Acute Lymphoblastic Leukemia cell line (MOLT4), and PBMC isolated from normal donors utilizing MTT assay. Robust anti-proliferative activity was observed in the case of NALM 6 followed by A549, MOLT4, whereas negligible activity was observed in the case of PBMC. Intrigued by this finding, in silico docking was performed using three bioactive compounds namely Plumericine, Isoplumericine, and 13-O-p-Coumaroylplumieride, unique to Plumeria sp. They were docked against five different cyclins and Cdk proteins responsible for ALL. The compounds have shown satisfactory results and their druggability and ADMET properties were checked further. Plumercine turned out to be the most competent compound and hence can be considered as a potential leukemic drug candidate in the future.
Collapse
Affiliation(s)
| | - Amrita Pal
- Department of Botany, University of Calcutta, Kolkata, India
| | - Santanu Paul
- Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
21
|
Molecular Genetics of Pre-B Acute Lymphoblastic Leukemia Sister Cell Lines during Disease Progression. Curr Issues Mol Biol 2021; 43:2147-2156. [PMID: 34940123 PMCID: PMC8929001 DOI: 10.3390/cimb43030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
For many years, immortalized tumor cell lines have been used as reliable tools to understand the function of oncogenes and tumor suppressor genes. Today, we know that tumors can comprise subclones with common and with subclone-specific genetic alterations. We sequenced DNA and RNA of sequential sister cell lines obtained from patients with pre-B acute lymphoblastic leukemia at different phases of the disease. All five pairs of cell lines carry alterations that are typical for this disease: loss of tumor suppressors (CDKN2A, CDKN2B), expression of fusion genes (ETV6-RUNX1, BCR-ABL1, MEF2D-BCL9) or of genes targeted by point mutations (KRAS A146T, NRAS G12C, PAX5 R38H). MEF2D-BCL9 and PAX R38H mutations in cell lines have hitherto been undescribed, suggesting that YCUB-4 (MEF2D-BCL9), PC-53 (PAX R38H) and their sister cell lines will be useful models to elucidate the function of these genes. All aberrations mentioned above occur in both sister cell lines, demonstrating that the sisters derive from a common ancestor. However, we also found mutations that are specific for one sister cell line only, pointing to individual subclones of the primary tumor as originating cells. Our data show that sequential sister cell lines can be used to study the clonal development of tumors and to elucidate the function of common and clone-specific mutations.
Collapse
|
22
|
Maciel ALT, Barbosa TDC, Blunck CB, Wolch K, Machado ADAL, da Costa ES, Bergier LL, Schramm MT, Ikoma-Coltutato MRV, Lins MM, Aguiar TF, Mansur MB, Emerenciano M. IKZF1 deletions associate with CRLF2 overexpression leading to a poor prognosis in B-cell precursor acute lymphoblastic leukaemia. Transl Oncol 2021; 15:101291. [PMID: 34826720 PMCID: PMC8633010 DOI: 10.1016/j.tranon.2021.101291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
CRLF2 overexpression associates with IKZF1 deletions that lead to a dominant-negative effect and with IKZF1 plus. Paediatric patients with a high load expression of IK4 isoform presented higher CRLF2 transcript levels. CRLF2 overexpression and IKZF1 deletions conferred poorer prognosis both to paediatric patients treated with RELLA05 protocol as well as to adult patients.
Cytokine Receptor-Like Factor 2 (CRLF2) overexpression occurs in 5-15% of B-cell precursor acute lymphoblastic leukaemia (B-ALL). In ∼50% of these cases, the mechanisms underlying this dysregulation are unknown. IKAROS Family Zinc Finger 1 (IKZF1) is a possible candidate to play a role in this dysregulation since it binds to the CRLF2 promoter region and suppresses its expression. We hypothesised that IKZF1 loss of function, caused by deletions or its short isoforms expression, could be associated with CRLF2 overexpression in B-ALL. A total of 131 paediatric and adult patients and 7 B-ALL cell lines were analysed to investigate the presence of IKZF1 deletions and its splicing isoforms expression levels, the presence of CRLF2 rearrangements or mutations, CRLF2 expression and JAK2 mutations. Overall survival analyses were performed according to the CRLF2 and IKZF1 subgroups. Our analyses showed that 25.2% of patients exhibited CRLF2 overexpression (CRLF2-high). CRLF2-high was associated with the presence of IKZF1 deletions (IKZF1del, p = 0.001), particularly with those resulting in dominant-negative isoforms (p = 0.006). Moreover, CRLF2 expression was higher in paediatric samples with high loads of the short isoform IK4 (p = 0.011). It was also associated with the occurrence of the IKZF1 plus subgroup (p = 0.004). Furthermore, patients with CRLF2-high/IKZF1del had a poorer prognosis in the RELLA05 protocol (p = 0.067, 36.1 months, 95%CI 0.0-85.9) and adult cohort (p = 0.094, 29.7 months, 95%CI 11.8–47.5). In this study, we show that IKZF1 status is associated with CRLF2-high and dismal outcomes in B-ALL patients regardless of age.
Collapse
Affiliation(s)
- Ana Luiza Tardem Maciel
- Acute Leukemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37, Rio de Janeiro, RJ, 20231050, Brazil
| | - Thayana da Conceição Barbosa
- Acute Leukemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37, Rio de Janeiro, RJ, 20231050, Brazil
| | - Caroline Barbieri Blunck
- Acute Leukemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37, Rio de Janeiro, RJ, 20231050, Brazil
| | - Karolyne Wolch
- Acute Leukemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37, Rio de Janeiro, RJ, 20231050, Brazil
| | - Amanda de Albuquerque Lopes Machado
- Acute Leukemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37, Rio de Janeiro, RJ, 20231050, Brazil
| | - Elaine Sobral da Costa
- Department of Paediatrics, Instituto de Puericultura e Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Márcia Trindade Schramm
- Onco-Haematology Section, Prontobaby Hospital da Criança Ltda, Rio de Janeiro, Brazil; Haematology Unit, Hospital do Câncer I, Instituto Nacional de Câncer - INCA, Rio de Janeiro, Brazil
| | | | - Mecneide Mendes Lins
- Paediatric Oncology Unit, Instituto de Medicina Integral Prof Fernando Figueira, Recife, PE, Brazil
| | - Thais Ferraz Aguiar
- Acute Leukemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37, Rio de Janeiro, RJ, 20231050, Brazil; Onco-Haematology Section, Instituto Estadual de Hematologia Arthur Siqueira Cavalcanti, Rio de Janeiro, Brazil
| | - Marcela Braga Mansur
- Acute Leukemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37, Rio de Janeiro, RJ, 20231050, Brazil; Department of Paediatrics, Children's Hospital, John Radcliffe Hospital and MRC Weatherall Institute of Molecular Medicine - WIMM, University of Oxford, Oxford, UK.
| | - Mariana Emerenciano
- Acute Leukemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37, Rio de Janeiro, RJ, 20231050, Brazil.
| |
Collapse
|
23
|
Dawes JC, Uren AG. Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Front Immunol 2021; 12:670280. [PMID: 34484175 PMCID: PMC8414522 DOI: 10.3389/fimmu.2021.670280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has identified dozens of mutations with a putative role in lymphomagenesis and leukemogenesis. Validation of driver mutations responsible for B cell neoplasms is complicated by the volume of mutations worthy of investigation and by the complex ways that multiple mutations arising from different stages of B cell development can cooperate. Forward and reverse genetic strategies in mice can provide complementary validation of human driver genes and in some cases comparative genomics of these models with human tumors has directed the identification of new drivers in human malignancies. We review a collection of forward genetic screens performed using insertional mutagenesis, chemical mutagenesis and exome sequencing and discuss how the high coverage of subclonal mutations in insertional mutagenesis screens can identify cooperating mutations at rates not possible using human tumor genomes. We also compare a set of independently conducted screens from Pax5 mutant mice that converge upon a common set of mutations observed in human acute lymphoblastic leukemia (ALL). We also discuss reverse genetic models and screens that use CRISPR-Cas, ORFs and shRNAs to provide high throughput in vivo proof of oncogenic function, with an emphasis on models using adoptive transfer of ex vivo cultured cells. Finally, we summarize mouse models that offer temporal regulation of candidate genes in an in vivo setting to demonstrate the potential of their encoded proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joanna C Dawes
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anthony G Uren
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
25
|
EBF1 and PAX5 control pro-B cell expansion via opposing regulation of the Myc gene. Blood 2021; 137:3037-3049. [PMID: 33619557 DOI: 10.1182/blood.2020009564] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Genes encoding B lineage-restricted transcription factors are frequently mutated in B-lymphoid leukemias, suggesting a close link between normal and malignant B-cell development. One of these transcription factors is early B-cell factor 1 (EBF1), a protein of critical importance for lineage specification and survival of B-lymphoid progenitors. Here, we report that impaired EBF1 function in mouse B-cell progenitors results in reduced expression of Myc. Ectopic expression of MYC partially rescued B-cell expansion in the absence of EBF1 both in vivo and in vitro. Using chromosome conformation analysis in combination with ATAC-sequencing, chromatin immunoprecipitation-sequencing, and reporter gene assays, six EBF1-responsive enhancer elements were identified within the Myc locus. CRISPR-Cas9-mediated targeting of EBF1-binding sites identified one element of key importance for Myc expression and pro-B cell expansion. These data provide evidence that Myc is a direct target of EBF1. Furthermore, chromatin immunoprecipitation-sequencing analysis revealed that several regulatory elements in the Myc locus are targets of PAX5. However, ectopic expression of PAX5 in EBF1-deficient cells inhibits the cell cycle and reduces Myc expression, suggesting that EBF1 and PAX5 act in an opposing manner to regulate Myc levels. This hypothesis is further substantiated by the finding that Pax5 inactivation reduces requirements for EBF1 in pro-B-cell expansion. The binding of EBF1 and PAX5 to regulatory elements in the human MYC gene in a B-cell acute lymphoblastic leukemia cell line indicates that the EBF1:PAX5:MYC regulatory loop is conserved and may control both normal and malignant B-cell development.
Collapse
|
26
|
Genome-wide interference of ZNF423 with B-lineage transcriptional circuitries in acute lymphoblastic leukemia. Blood Adv 2021; 5:1209-1223. [PMID: 33646306 DOI: 10.1182/bloodadvances.2020001844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Aberrant expression of the transcriptional modulator and early B-cell factor 1 (EBF1) antagonist ZNF423 has been implicated in B-cell leukemogenesis, but its impact on transcriptional circuitries in lymphopoiesis has not been elucidated in a comprehensive manner. Herein, in silico analyses of multiple expression data sets on 1354 acute leukemia samples revealed a widespread presence of ZNF423 in various subtypes of acute lymphoblastic leukemia (ALL). Average expression of ZNF423 was highest in ETV6-RUNX1, B-other, and TCF3-PBX1 ALL followed by BCR-ABL, hyperdiploid ALL, and KMT2A-rearranged ALL. In a KMT2A-AFF1 pro-B ALL model, a CRISPR-Cas9-mediated genetic ablation of ZNF423 decreased cell viability and significantly prolonged survival of mice upon xenotransplantation. For the first time, we characterized the genome-wide binding pattern of ZNF423, its impact on the chromatin landscape, and differential gene activities in a B-lineage context. In general, chromatin-bound ZNF423 was associated with a depletion of activating histone marks. At the transcriptional level, EBF1-dependent transactivation was disrupted by ZNF423, whereas repressive and pioneering activities of EBF1 were not discernibly impeded. Unexpectedly, we identified an enrichment of ZNF423 at canonical EBF1-binding sites also in the absence of EBF1, which was indicative of intrinsic EBF1-independent ZNF423 activities. A genome-wide motif search at EBF1 target gene loci revealed that EBF1 and ZNF423 co-regulated genes often contain SMAD1/SMAD4-binding motifs as exemplified by the TGFB1 promoter, which was repressed by ZNF423 outcompeting EBF1 by depending on its ability to bind EBF1 consensus sites and to interact with EBF1 or SMADs. Overall, these findings underscore the wide scope of ZNF423 activities that interfere with B-cell lymphopoiesis and contribute to leukemogenesis.
Collapse
|
27
|
Harris R, Randle S, Laman H. Analysis of the FBXO7 promoter reveals overlapping Pax5 and c-Myb binding sites functioning in B cells. Biochem Biophys Res Commun 2021; 554:41-48. [PMID: 33774278 PMCID: PMC8082276 DOI: 10.1016/j.bbrc.2021.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 02/03/2023]
Abstract
Fbxo7 is a key player in the differentiation and function of numerous blood cell types, and in neurons, oligodendrocytes and spermatocytes. In an effort to gain insight into the physiological and pathological settings where Fbxo7 is likely to play a key role, we sought to define the transcription factors which direct FBXO7 expression. Using sequence alignments across 28 species, we defined the human FBXO7 promoter and found that it contains two conserved regions enriched for multiple transcription factor binding sites. Many of these have roles in either neuronal or haematopoietic development. Using various FBXO7 promoter reporters, we found ELF4, Pax5 and c-Myb have functional binding sites that activate transcription. We find endogenous Pax5 is bound to the FBXO7 promoter in pre-B cells, and that the exogenous expression of Pax5 represses Fbxo7 transcription in early pro-B cells.
Collapse
Affiliation(s)
- Rebecca Harris
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Suzanne Randle
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Heike Laman
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| |
Collapse
|
28
|
Strid T, Okuyama K, Tingvall-Gustafsson J, Kuruvilla J, Jensen CT, Lang S, Prasad M, Somasundaram R, Åhsberg J, Cristobal S, Soneji S, Ungerbäck J, Sigvardsson M. B Lymphocyte Specification Is Preceded by Extensive Epigenetic Priming in Multipotent Progenitors. THE JOURNAL OF IMMUNOLOGY 2021; 206:2700-2713. [PMID: 34021049 DOI: 10.4049/jimmunol.2100048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/27/2021] [Indexed: 11/19/2022]
Abstract
B lymphocyte development is dependent on the interplay between the chromatin landscape and lineage-specific transcription factors. It has been suggested that B lineage commitment is associated with major changes in the nuclear chromatin environment, proposing a critical role for lineage-specific transcription factors in the formation of the epigenetic landscape. In this report, we have used chromosome conformation capture in combination with assay for transposase-accessible chromatin sequencing analysis to enable highly efficient annotation of both proximal and distal transcriptional control elements to genes activated in B lineage specification in mice. A large majority of these genes were annotated to at least one regulatory element with an accessible chromatin configuration in multipotent progenitors. Furthermore, the majority of binding sites for the key regulators of B lineage specification, EBF1 and PAX5, occurred in already accessible regions. EBF1 did, however, cause a dynamic change in assay for transposase-accessible chromatin accessibility and was critical for an increase in distal promoter-enhancer interactions. Our data unravel an extensive epigenetic priming at regulatory elements annotated to lineage-restricted genes and provide insight into the interplay between the epigenetic landscape and transcription factors in cell specification.
Collapse
Affiliation(s)
- Tobias Strid
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden.,Division of Molecular Hematology, Lund University, Lund, Sweden; and.,Department of Clinical Pathology, Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kazuki Okuyama
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Jacob Kuruvilla
- Division of Molecular Hematology, Lund University, Lund, Sweden; and
| | | | - Stefan Lang
- Division of Molecular Hematology, Lund University, Lund, Sweden; and
| | - Mahadesh Prasad
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rajesh Somasundaram
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Josefine Åhsberg
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Susana Cristobal
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund University, Lund, Sweden; and
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund University, Lund, Sweden; and
| | - Mikael Sigvardsson
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden; .,Division of Molecular Hematology, Lund University, Lund, Sweden; and
| |
Collapse
|
29
|
IKAROS and CK2 regulate expression of BCL-XL and chemosensitivity in high-risk B-cell acute lymphoblastic leukemia. Blood 2021; 136:1520-1534. [PMID: 32396934 DOI: 10.1182/blood.2019002655] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
High-risk B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive disease, often characterized by resistance to chemotherapy. A frequent feature of high-risk B-ALL is loss of function of the IKAROS (encoded by the IKZF1 gene) tumor suppressor. Here, we report that IKAROS regulates expression of the BCL2L1 gene (encodes the BCL-XL protein) in human B-ALL. Gain-of-function and loss-of-function experiments demonstrate that IKAROS binds to the BCL2L1 promoter, recruits histone deacetylase HDAC1, and represses BCL2L1 expression via chromatin remodeling. In leukemia, IKAROS' function is impaired by oncogenic casein kinase II (CK2), which is overexpressed in B-ALL. Phosphorylation by CK2 reduces IKAROS binding and recruitment of HDAC1 to the BCL2L1 promoter. This results in a loss of IKAROS-mediated repression of BCL2L1 and increased expression of BCL-XL. Increased expression of BCL-XL and/or CK2, as well as reduced IKAROS expression, are associated with resistance to doxorubicin treatment. Molecular and pharmacological inhibition of CK2 with a specific inhibitor CX-4945, increases binding of IKAROS to the BCL2L1 promoter and enhances IKAROS-mediated repression of BCL2L1 in B-ALL. Treatment with CX-4945 increases sensitivity to doxorubicin in B-ALL, and reverses resistance to doxorubicin in multidrug-resistant B-ALL. Combination treatment with CX-4945 and doxorubicin show synergistic therapeutic effects in vitro and in preclinical models of high-risk B-ALL. Results reveal a novel signaling network that regulates chemoresistance in leukemia. These data lay the groundwork for clinical testing of a rationally designed, targeted therapy that combines the CK2 inhibitor, CX-4945, with doxorubicin for the treatment of hematopoietic malignancies.
Collapse
|
30
|
Jackson TR, Ling RE, Roy A. The Origin of B-cells: Human Fetal B Cell Development and Implications for the Pathogenesis of Childhood Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:637975. [PMID: 33679795 PMCID: PMC7928347 DOI: 10.3389/fimmu.2021.637975] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Human B-lymphopoiesis is a dynamic life-long process that starts in utero by around six post-conception weeks. A detailed understanding of human fetal B-lymphopoiesis and how it changes in postnatal life is vital for building a complete picture of normal B-lymphoid development through ontogeny, and its relevance in disease. B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common cancers in children, with many of the leukemia-initiating events originating in utero. It is likely that the biology of B-ALL, including leukemia initiation, maintenance and progression depends on the developmental stage and type of B-lymphoid cell in which it originates. This is particularly important for early life leukemias, where specific characteristics of fetal B-cells might be key to determining how the disease behaves, including response to treatment. These cellular, molecular and/or epigenetic features are likely to change with age in a cell intrinsic and/or microenvironment directed manner. Most of our understanding of fetal B-lymphopoiesis has been based on murine data, but many recent studies have focussed on characterizing human fetal B-cell development, including functional and molecular assays at a single cell level. In this mini-review we will give a short overview of the recent advances in the understanding of human fetal B-lymphopoiesis, including its relevance to infant/childhood leukemia, and highlight future questions in the field.
Collapse
Affiliation(s)
- Thomas R Jackson
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca E Ling
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
31
|
Rosales-Rodríguez B, Núñez-Enríquez JC, Velázquez-Wong AC, González-Torres C, Gaytán-Cervantes J, Jiménez-Hernández E, Martín-Trejo JA, Campo-Martínez MDLÁD, Medina-Sanson A, Flores-Lujano J, Flores-Villegas LV, Peñaloza-González JG, Torres-Nava JR, Espinosa-Elizondo RM, Amador-Sánchez R, Miranda-Madrazo MR, Santillán-Juárez JD, Pérez-Saldívar ML, Gurrola-Silva A, Orozco-Ruiz D, Solís-Labastida KA, Velázquez-Aviña MM, Duarte-Rodríguez DA, Mata-Rocha M, Sepúlveda-Robles OA, Ortiz-Maganda M, Bekker-Méndez VC, Jiménez-Morales S, Mejía-Aranguré JM, Rosas-Vargas H. Copy Number Alterations are Associated with the Risk of Very Early Relapse in Pediatric B-lineage Acute Lymphoblastic Leukemia: A Nested Case-control MIGICCL Study. Arch Med Res 2021; 52:414-422. [PMID: 33541741 DOI: 10.1016/j.arcmed.2020.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Refining risk stratification to avoid very early relapses (VER) in Mexican patients with B-lineage acute lymphoblastic leukemia (B-ALL) could lead to better survival rates in our population. AIM OF THE STUDY The purpose of this study was to investigate the association between the United Kingdom ALL (UKALL)-CNA classifier and VER risk in Mexican patients with childhood B-ALL. METHODS A nested case-control study of 25 cases with VER and 38 frequency-matched controls without relapse was conducted within the MIGICCL study cohort. They were grouped into the categories of the UKALL-CNA risk classifier (good [reference], intermediate and poor), according to the results obtained by multiplex ligation dependent probe amplification. Overall and disease-free survival (DFS) were estimated using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards analyses were conducted. RESULTS The CDKN2A/B genes were most frequently deleted in the group with relapse. According to UKALL-CNA classifier, 33 (52.4%) patients were classified as good, 21 (33.3%) intermediate and 9 (14.3%) poor-risk B-ALL. The intermediate and poor risk groups were associated with an increased risk of VER (HR = 4.94, 95% CI = 1.87-13.07 and HR = 7.42, 95% CI = 2.37-23.26, respectively) in comparison to the good-risk patients. After adjusting by NCI risk classification and chemotherapy scheme in a multivariate model, the risks remained significant. CONCLUSIONS Our data support the clinical utility of profiling CNAs to potentially refine current risk stratification strategies of patients with B-ALL.
Collapse
Affiliation(s)
- Beatriz Rosales-Rodríguez
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México; Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ana Claudia Velázquez-Wong
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Elva Jiménez-Hernández
- Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Servicio de Hematología Pediátrica, Hospital General Gaudencio González Garza, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología, Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - María de Los Ángeles Del Campo-Martínez
- Servicio de Hematología Pediátrica, Hospital General Gaudencio González Garza, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Aurora Medina-Sanson
- Servicio de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaria de Salud, Ciudad de México, México
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Ciudad de México, México
| | | | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México, Ciudad de México, México
| | | | - Raquel Amador-Sánchez
- Servicio de Hematología Pediátrica, Hospital General Regional No. 1 Dr. Carlos MacGregor Sánchez Navarro, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - María Raquel Miranda-Madrazo
- Servicio de Hematología Pediátrica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Ciudad de México, México
| | - Jessica Denise Santillán-Juárez
- Servicio de Hemato-Oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Ciudad de México, México
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Alma Gurrola-Silva
- Servicio de Pediatría, Hospital Regional Tipo B de Alta Especialidad Bicentenario de la Independencia, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Ciudad de México, México
| | - Darío Orozco-Ruiz
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México, Ciudad de México, México
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología, Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Mónica Ortiz-Maganda
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología Dr. Daniel Méndez Hernández, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología Dr. Daniel Méndez Hernández, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Juan Manuel Mejía-Aranguré
- Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
32
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
33
|
Huang H, Yu X, Han X, Hao J, Zhao J, Bebek G, Bao S, Prayson RA, Khalil AM, Jankowsky E, Yu JS. Piwil1 Regulates Glioma Stem Cell Maintenance and Glioblastoma Progression. Cell Rep 2021; 34:108522. [PMID: 33406417 PMCID: PMC7837390 DOI: 10.1016/j.celrep.2020.108522] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/12/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Piwi proteins are a subfamily of Argonaute proteins that maintain germ cells in eukaryotes. However, the role of their human homologs in cancer stem cells, and more broadly in cancer, is poorly understood. Here, we report that Piwi-like family members are overexpressed in glioblastoma (GBM), with Piwil1 (Hiwi) most frequently overexpressed (88%). Piwil1 is enriched in glioma stem-like cells (GSCs) to maintain self-renewal. Silencing Piwil1 in GSCs leads to global changes in gene expression resulting in cell-cycle arrest, senescence, or apoptosis. Piwil1 knockdown increases expression of the transcriptional co-regulator BTG2 and the E3-ubiquitin ligase FBXW7, leading to reduced c-Myc expression, as well as loss of expression of stem cell factors Olig2 and Nestin. Piwil1 regulates mRNA stability of BTG2, FBXW7, and CDKN1B. In animal models of GBM, Piwil1 knockdown suppresses tumor growth and promotes mouse survival. These findings support a role of Piwil1 in GSC maintenance and glioblastoma progression. Huang et al. find that Piwil1 protein is overexpressed in glioblastoma and glioma stem cells (GSCs). Piwil1 maintains GSC self-renewal and survival by regulating gene expression. Targeting Piwil1 extends survival in mouse models of glioblastoma. Piwil1 represents a therapeutic vulnerability.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Xingjiang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Xiangzi Han
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Jing Hao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Gurkan Bebek
- Department of Nutrition, Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, BRB 921, Cleveland, OH 44106, USA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Richard A Prayson
- Department of Anatomic Pathology, The Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Wood Bldg. 137, Cleveland, OH 44106, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA; Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, CA50, Cleveland, OH 44195, USA.
| |
Collapse
|
34
|
Hosein Pour Feizi A, Zeinali S, Toporski J, Sheervalilou R, Mehranfar S. Frequency and Correlation of Common Genes Copy Number Alterations in Childhood Acute Lymphoblastic Leukemia with Prognosis. Asian Pac J Cancer Prev 2020; 21:3493-3500. [PMID: 33369444 PMCID: PMC8046302 DOI: 10.31557/apjcp.2020.21.12.3493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: It was shown by genomic profiling that despite no detectable chromosomal abnormalities a proportion of children with pre-B acute lymphoblastic leukemia harbors copy number alterations (CNA) of genes playing role in B-cell development and function. The aim of the study was to determine the frequency of CNA in pediatric acute lymphoblastic leukemia and correlate these findings with clinical outcome. Methods: DNA extracted from peripheral blood or bone marrow at diagnosis/relapse of fifty newly diagnosed children with precursor B-cell acute lymphoblastic leukemia was analyzed for CNA with multiplex ligation-dependent probe amplification. Results: The analysis revealed 76 CNA in 24 patients most frequently found in PAR1 (17%), CDKN2A/B (15.7%) and PAX5 (14.4%) genes. There were significant CNA co-occurrences between PAX5, CDKN2A/B, BTG1, ETV6, PAR1 or XP22 genes, (p<0.020) and the high-risk group. There was a significant correlation between EBF1, RB1, and IKZF1 alterations and bone marrow relapse. Patients with CNA in screened genes are more likely to succumb to their disease except for those with PAR1 or XP22 genes (p<0.050). Conclusion: The multiplex ligation-dependent probe amplification could be considered as an independent diagnostic tool allowing prompt identification of patients at high risk of treatment failure and, subsequently, a more adequate treatment approach.
Collapse
Affiliation(s)
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Kawsar Human Genetics Research Center, Kawsar Genomics Center, Tehran, Iran
| | - Jacek Toporski
- Department of Clinical Sciences, Pediatric Oncology and Hematology, University of Lund, Lund, Sweden
| | | | - Sahar Mehranfar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Social Determinate of Health Research Center, Clinical Research Institute Urmia University of Medical Science, Urmia, Iran
| |
Collapse
|
35
|
HDAC7 is a major contributor in the pathogenesis of infant t(4;11) proB acute lymphoblastic leukemia. Leukemia 2020; 35:2086-2091. [PMID: 33262526 DOI: 10.1038/s41375-020-01097-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022]
|
36
|
TYK2 Variants in B-Acute Lymphoblastic Leukaemia. Genes (Basel) 2020; 11:genes11121434. [PMID: 33260630 PMCID: PMC7761059 DOI: 10.3390/genes11121434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
B-cell precursor acute lymphoblastic leukaemia (B-ALL) is a malignancy of lymphoid progenitor cells with altered genes including the Janus kinase (JAK) gene family. Among them, tyrosine kinase 2 (TYK2) is involved in signal transduction of cytokines such as interferon (IFN) α/β through IFN−α/β receptor alpha chain (IFNAR1). To search for disease-associated TYK2 variants, bone marrow samples from 62 B-ALL patients at diagnosis were analysed by next-generation sequencing. TYK2 variants were found in 16 patients (25.8%): one patient had a novel mutation at the four-point-one, ezrin, radixin, moesin (FERM) domain (S431G) and two patients had the rare variants rs150601734 or rs55882956 (R425H or R832W). To functionally characterise them, they were generated by direct mutagenesis, cloned in expression vectors, and transfected in TYK2-deficient cells. Under high-IFNα doses, the three variants were competent to phosphorylate STAT1/2. While R425H and R832W induced STAT1/2-target genes measured by qPCR, S431G behaved as the kinase-dead form of the protein. None of these variants phosphorylated STAT3 in in vitro kinase assays. Molecular dynamics simulation showed that TYK2/IFNAR1 interaction is not affected by these variants. Finally, qPCR analysis revealed diminished expression of TYK2 in B-ALL patients at diagnosis compared to that in healthy donors, further stressing the tumour immune surveillance role of TYK2.
Collapse
|
37
|
Allogeneic HCT for adults with B-cell precursor acute lymphoblastic leukemia harboring IKZF1 gene mutations. A study by the Acute Leukemia Working Party of the EBMT. Bone Marrow Transplant 2020; 56:1047-1055. [PMID: 33235351 DOI: 10.1038/s41409-020-01139-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/03/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022]
Abstract
The presence of IKZF1 gene mutations is associated with poor prognosis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The goal of this retrospective study was to evaluate outcome of allogeneic hematopoietic cell transplantation (allo-HCT) in this population. Ninety-five patients transplanted in first (n = 75) or second (n = 20) complete remission (CR) from either HLA-matched sibling (n = 32), unrelated (n = 47) or haploidentical (n = 16) donor were included in the analysis. The probabilities of the overall survival (OS) and leukemia-free survival (LFS) at 2 years were 55% and 47%, respectively. Relapse incidence (RI) was 32% while non-relapse mortality (NRM), 21%. The incidence of grade II-IV acute graft-versus-host disease (GVHD) and chronic GVHD was 34% and 30%, respectively. The probability of GVHD and relapse-free survival (GRFS) was 35%. In a multivariate analysis positive minimal residual disease (MRD) status was associated with decreased chance of LFS (HR = 3.15, p = 0.004) and OS (HR = 2.37, p = 0.049) as well as increased risk of relapse (HR = 5.87, p = 0.003). Disease stage (CR2 vs. CR1) affected all, LFS, OS, GRFS, RI, and NRM. Results of allo-HCT for patients with BCP-ALL and IKZF1 mutations are generally improving, however, individuals with detectable MRD have poor prognosis and require additional intervention prior to transplantation.
Collapse
|
38
|
Rosales-Rodríguez B, Núñez-Enríquez JC, Mejía-Aranguré JM, Rosas-Vargas H. Prognostic Impact of Somatic Copy Number Alterations in Childhood B-Lineage Acute Lymphoblastic Leukemia. Curr Oncol Rep 2020; 23:2. [PMID: 33190177 DOI: 10.1007/s11912-020-00998-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The high prevalence of relapse in pediatric B-lineage acute lymphoblastic leukemia (B-ALL) despite the improvements achieved using current risk stratification schemes, demands more accurate methods for outcome prediction. Here, we provide a concise overview about the key advances that have expanded our knowledge regarding the somatic defects across B-ALL genomes, particularly focusing on copy number alterations (CNAs) and their prognostic impact. RECENT FINDINGS The identification of commonly altered genes in B-ALL has inspired the development of risk classifiers based on copy number states such as the IKZF1plus and the United Kingdom (UK) ALL-CNA classifiers to improve outcome prediction in B-ALL. CNA-risk classifiers have emerged as effective tools to predict disease relapse; though, their clinical applications are yet to be transferred to routine practice.
Collapse
Affiliation(s)
- Beatriz Rosales-Rodríguez
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico.,Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico. .,Coordinación de Investigación en Salud, IMSS, Torre Academia Nacional de Medicina, 06720, Ciudad de México, Mexico.
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico.
| |
Collapse
|
39
|
Wang C, Li L, Li M, Shen X, Liu Y, Wang S. Inactivated STAT5 pathway underlies a novel inhibitory role of EBF1 in chronic lymphocytic leukemia. Exp Cell Res 2020; 398:112371. [PMID: 33188849 DOI: 10.1016/j.yexcr.2020.112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
B-cell chronic lymphocytic leukemia (CLL) is a disease caused by gradual accumulation of functionally incompetent lymphocytes. The majority of CLL cases are accompanied by chemoresistance. Early B cell factor 1 (EBF1) is a crucial contributor to B-cell lymphopoiesis. This study is to explore the effect of EBF1 on CLL cell progression and its involvement in regulating the signal transducers and activators of transcription 5 (STAT5) pathway. We conducted a correlation analysis between EBF1 and the clinical characteristics of CLL patients. Subsequently, EBF1 was overexpressed by transfection with EBF1 overexpression plasmid and the STAT5 pathway was also blocked by treatment with SH-4-54 in isolated CD20+ B lymphocytes to investigate their roles in the regulation of cellular functions. STAT5, Janus kinase 2 (JAK2) expression and their phosphorylation levels were determined by quantitative PCR and Western blot analyses. The in vivo effects of EBF1 on tumor growth were evaluated using a xenotransplant model. Downregulation of EBF1 was observed in CD20+ B lymphocytes of CLL patients. EBF1 overexpression disrupted the activation of STAT5 pathway, as evidenced by decreased expression and phosphorylation levels of STAT5 and JAK2. Furthermore, overexpression of EBF1 repressed viability and cell cycle entry, and increased apoptosis of CD20+ B lymphocytes by inhibiting the STAT5 pathway. Finally, EBF1 exerted antitumor effects in nude mice. Overall, our study elucidates the inhibitory role of EBF1 in CLL through inactivation of the STAT5 pathway, which may provide new targets for CLL treatment.
Collapse
Affiliation(s)
- Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Lingling Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Mengya Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xiaohui Shen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
40
|
Src Family Protein Kinase Controls the Fate of B Cells in Autoimmune Diseases. Inflammation 2020; 44:423-433. [PMID: 33037966 DOI: 10.1007/s10753-020-01355-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
There are more than 80 kinds of autoimmune diseases known at present, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), inflammatory bowel disease (IBD), as well as other disorders. Autoimmune diseases have a characteristic of immune responses directly attacking own tissues, leading to systematic inflammation and subsequent tissue damage. B cells play a vital role in the development of autoimmune diseases and differentiate into plasma cells or memory B cells to secrete high-affinity antibody or provide long-lasting function. Drugs targeting B cells show good therapeutic effects for the treatment of autoimmune diseases, such as rituximab (anti-CD20 antibody). Src family protein kinases (SFKs) are believed to play important roles in a variety of cellular functions such as growth, proliferation, and differentiation of B cell via B cell antigen receptor (BCR). Lck/Yes-related novel protein tyrosine kinase (LYN), BLK (B lymphocyte kinase), and Fyn are three different kinds of SFKs mainly expressed in B cells. LYN has a dual role in the BCR signal. On the one hand, positive signals are beneficial to the development and maturation of B cells. On the other hand, LYN can also inhibit excessively activated B cells. BLK is involved in the proliferation, differentiation, and immune tolerance of B lymphocytes, and further affects the function of B cells, which may lead to autoreactive or regulatory cellular responses, increasing the risk of autoimmune diseases. Fyn may affect the development of autoimmune disorders via the differentiation of B cells in the early stage of B cell development. This article reviews the recent advances of SFKs in B lymphocytes in autoimmune diseases.
Collapse
|
41
|
Wang Z, Zhang Y, Zhu S, Peng H, Chen Y, Cheng Z, Liu S, Luo Y, Li R, Deng M, Xu Y, Hu G, Chen L, Zhang G. A small molecular compound CC1007 induces cross-lineage differentiation by inhibiting HDAC7 expression and HDAC7/MEF2C interaction in BCR-ABL1 - pre-B-ALL. Cell Death Dis 2020; 11:738. [PMID: 32913188 PMCID: PMC7483467 DOI: 10.1038/s41419-020-02949-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 7 (HDAC7), a member of class IIa HDACs, has been described to be an important regulator for B cell development and has a potential role in B cell acute lymphoblastic leukemia (B-ALL). CC1007, a BML-210 analog, is designed to indirectly inhibit class IIa HDACs by binding to myocyte enhancer factor-2 (MEF2) and blocking the recruitment of class IIa HDACs to MEF2-targeted genes to enhance the expression of these targets. In this study, we investigated the anticancer effects of CC1007 in breakpoint cluster region-Abelson 1 fusion gene-negative (BCR-ABL1−) pre-B-ALL cell lines and primary patient-derived BCR-ABL1− pre-B-ALL cells. CC1007 had obvious antileukemic activity toward pre-B-ALL cells in vitro and in vivo; it also significantly prolonged median survival time of pre-B-ALL-bearing mice. Interestingly, low dose of CC1007 could inhibit proliferation of BCR-ABL1− pre-B-ALL cells in a time-dependent manner not accompanied by significant cell apoptosis, but along with cross-lineage differentiation toward monocytic lineage. From a mechanistic angle, we showed that HDAC7 was overexpressed in BCR-ABL1− pre-B-ALL cells compared to normal bone marrow samples, and CC1007 could reduce the binding of HDAC7 at the promoters of monocyte–macrophage-specific genes via inhibition of HDAC7 expression and HDAC7:MEF2C interaction. These data indicated that CC1007 may be a promising agent for the treatment of BCR-ABL1− pre-B-ALL.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yang Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yongheng Chen
- Laboratory of Structural Biology, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital & State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunya Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunxiao Xu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Guoyu Hu
- Department of Hematology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
42
|
Abstract
Genomic analyses have revolutionized our understanding of the biology of B-progenitor acute lymphoblastic leukemia (ALL). Studies of thousands of cases across the age spectrum have revised the taxonomy of B-ALL by identifying multiple new subgroups with diverse sequence and structural initiating events that vary substantially by age at diagnosis and prognostic significance. There is a growing appreciation of the role of inherited genetic variation in predisposition to ALL and drug responsiveness and of the nature of genetic variegation and clonal evolution that may be targeted for improved diagnostic, risk stratification, disease monitoring, and therapeutic intervention. This review provides an overview of the current state of knowledge of the genetic basis of B-ALL, with an emphasis on recent discoveries that have changed our approach to diagnosis and monitoring.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
43
|
Shen Z, Chen Y, Li L, Liu L, Peng M, Chen X, Wu X, Sferra TJ, Wu M, Lin X, Cheng Y, Chu J, Shen A, Peng J. Transcription Factor EBF1 Over-Expression Suppresses Tumor Growth in vivo and in vitro via Modulation of the PNO1/p53 Pathway in Colorectal Cancer. Front Oncol 2020; 10:1035. [PMID: 32676457 PMCID: PMC7333669 DOI: 10.3389/fonc.2020.01035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023] Open
Abstract
Early B cell factor 1 (EBF1) has been identified as an upstream transcription factor of the potential oncogene PNO1 and is involved in the growth of colorectal cancer (CRC) cells. However, its expression, biological function, and underlying mechanism of action in most solid tumors remain largely unknown. We postulated that EBF1 has a role in the pathophysiology of CRC. Analysis of EBF1 mRNA expression in CRC tumor samples from several public databases and directly from banked tissues revealed that EBF1 mRNA expression is lower in CRC tissue compared to non-cancerous colorectal tissue. Survival analysis of multiple datasets revealed that low EBF1 expression was correlated with shorter overall survival, relapse-free survival, and event-free survival in CRC patients. Transduction of lentivirus encoding full length EBF1 followed by in vitro and in vivo assays demonstrated that EBF1 over-expression in CRC cell lines suppresses cell growth by inhibiting cell viability, cell survival, and induces cell cycle arrest and apoptosis. Mechanistic investigation indicated that EBF1 over-expression down-regulates PNO1 mRNA and protein expression, as well as transcriptional activity while up-regulating the expression of p53 and p21 proteins. These findings suggest that EBF1 is a novel potential tumor suppressor in CRC with prognostic value for the identification of patients at high-risk of relapse.
Collapse
Affiliation(s)
- Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, United States
| | - Li Li
- Department of Health Management, Fujian Provincial Hospital, Fuzhou, China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Meizhong Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, United States
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
44
|
Kimura S, Mullighan CG. Molecular markers in ALL: Clinical implications. Best Pract Res Clin Haematol 2020; 33:101193. [PMID: 33038982 DOI: 10.1016/j.beha.2020.101193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and remains a main cause of death in children despite recent improvements in cure rates. In the past decade, development of massively parallel sequencing has enabled large scale genome profiling studies of ALL, which not only led to identification of new subtypes in both B-cell precursor ALL (BCP-ALL) and T-cell ALL (T-ALL), but has also identified potential new therapeutic approaches to target vulnerabilities of many subtypes. Several of these approaches have been validated in preclinical models and are now being formally evaluated in prospective clinical trials. In this review, we provide an overview of the recent advances in our knowledge of genomic bases of BCP-ALL, T-ALL, and relapsed ALL, and discuss their clinical implications.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, 38105, TN, USA
| | - Charles G Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, 38105, TN, USA.
| |
Collapse
|
45
|
Comprehensive profiling of disease-relevant copy number aberrations for advanced clinical diagnostics of pediatric acute lymphoblastic leukemia. Mod Pathol 2020; 33:812-824. [PMID: 31857684 DOI: 10.1038/s41379-019-0423-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022]
Abstract
Acute lymphoblastic leukemia is the most common pediatric cancer characterized by a heterogeneous genomic landscape with copy number aberrations occurring at various stages of pathogenesis, disease progression, and treatment resistance. In this study, disease-relevant copy number aberrations were profiled in bone marrow samples of 91 children with B- or T-cell precursor acute lymphoblastic leukemia using digital multiplex ligation-dependent probe amplification (digitalMLPATM). Whole chromosome gains and losses, subchromosomal copy number aberrations, as well as unbalanced alterations conferring intrachromosomal gene fusions were simultaneously identified with results available within 36 hours. Aberrations were observed in 96% of diagnostic patient samples, and increased numbers of copy number aberrations were detected at the time of relapse as compared with diagnosis. Comparative scrutiny of 24 matching diagnostic and relapse samples from 11 patients revealed three different patterns of clonal relationships with (i) one patient displaying identical copy number aberration profiles at diagnosis and relapse, (ii) six patients showing clonal evolution with all lesions detected at diagnosis being present at relapse, and (iii) four patients displaying conserved as well as lost or gained copy number aberrations at the time of relapse, suggestive of the presence of a common ancestral cell compartment giving rise to clinically manifest leukemia at different time points during the disease course. A newly introduced risk classifier combining cytogenetic data with digitalMLPATM-based copy number aberration profiles allowed for the determination of four genetic subgroups of B-cell precursor acute lymphoblastic leukemia with distinct event-free survival rates. DigitalMLPATM provides fast, robust, and highly optimized copy number aberration profiling for the genomic characterization of acute lymphoblastic leukemia samples, facilitates the decipherment of the clonal origin of relapse and provides highly relevant information for clinical prognosis assessment.
Collapse
|
46
|
Hwang SS, Lim J, Yu Z, Kong P, Sefik E, Xu H, Harman CCD, Kim LK, Lee GR, Li HB, Flavell RA. mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science 2020; 367:1255-1260. [DOI: 10.1126/science.aax0194] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/22/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
T cells maintain a quiescent state prior to activation. As inappropriate T cell activation can cause disease, T cell quiescence must be preserved. Despite its importance, the mechanisms underlying the “quiescent state” remain elusive. Here, we identify BTG1 and BTG2 (BTG1/2) as factors responsible for T cell quiescence. BTG1/2-deficient T cells show an increased proliferation and spontaneous activation due to a global increase in messenger RNA (mRNA) abundance, which reduces the threshold to activation. BTG1/2 deficiency leads to an increase in polyadenylate tail length, resulting in a greater mRNA half-life. Thus, BTG1/2 promote the deadenylation and degradation of mRNA to secure T cell quiescence. Our study reveals a key mechanism underlying T cell quiescence and suggests that low mRNA abundance is a crucial feature for maintaining quiescence.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jaechul Lim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhibin Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
- Yale Center for ImmunoMetabolism, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Philip Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hao Xu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Christian C. D. Harman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Republic of Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Hua-Bing Li
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
- Yale Center for ImmunoMetabolism, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
47
|
Regulation of Small GTPase Rab20 by Ikaros in B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21051718. [PMID: 32138279 PMCID: PMC7084408 DOI: 10.3390/ijms21051718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Ikaros is a DNA-binding protein that regulates gene expression and functions as a tumor suppressor in B-cell acute lymphoblastic leukemia (B-ALL). The full cohort of Ikaros target genes have yet to be identified. Here, we demonstrate that Ikaros directly regulates expression of the small GTPase, Rab20. Using ChIP-seq and qChIP we assessed Ikaros binding and the epigenetic signature at the RAB20 promoter. Expression of Ikaros, CK2, and RAB20 was determined by qRT-PCR. Overexpression of Ikaros was achieved by retroviral transduction, whereas shRNA was used to knockdown Ikaros and CK2. Regulation of transcription from the RAB20 promoter was analyzed by luciferase reporter assay. The results showed that Ikaros binds the RAB20 promoter in B-ALL. Gain-of-function and loss-of-function experiments demonstrated that Ikaros represses RAB20 transcription via chromatin remodeling. Phosphorylation by CK2 kinase reduces Ikaros’ affinity toward the RAB20 promoter and abolishes its ability to repress RAB20 transcription. Dephosphorylation by PP1 phosphatase enhances both Ikaros’ DNA-binding affinity toward the RAB20 promoter and RAB20 repression. In conclusion, the results demonstrated opposing effects of CK2 and PP1 on expression of Rab20 via control of Ikaros’ activity as a transcriptional regulator. A novel regulatory signaling network in B-cell leukemia that involves CK2, PP1, Ikaros, and Rab20 is identified.
Collapse
|
48
|
Upfront Treatment Influences the Composition of Genetic Alterations in Relapsed Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Hemasphere 2020; 4:e318. [PMID: 32072138 PMCID: PMC7000475 DOI: 10.1097/hs9.0000000000000318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is available in the text Genomic alterations in relapsed B-cell precursor acute lymphoblastic leukemia (BCP-ALL) may provide insight into the role of specific genomic events in relapse development. Along this line, comparisons between the spectrum of alterations in relapses that arise in different upfront treatment protocols may provide valuable information on the association between the tumor genome, protocol components and outcome. Here, we performed a comprehensive characterization of relapsed BCP-ALL cases that developed in the context of 3 completed Dutch upfront studies, ALL8, ALL9, and ALL10. In total, 123 pediatric BCP-ALL relapses and 77 paired samples from primary diagnosis were analyzed for alterations in 22 recurrently affected genes. We found pronounced differences in relapse alterations between the 3 studies. Specifically, CREBBP mutations were observed predominantly in relapses after treatment with ALL8 and ALL10 which, in the latter group, were all detected in medium risk-treated patients. IKZF1 alterations were enriched 2.2-fold (p = 0.01) and 2.9-fold (p < 0.001) in ALL8 and ALL9 relapses compared to diagnosis, respectively, whereas no significant enrichment was found for relapses that were observed after treatment with ALL10. Furthermore, IKZF1 deletions were more frequently preserved from a major clone at diagnosis in relapses after ALL9 compared to relapses after ALL8 and ALL10 (p = 0.03). These data are in line with previous studies showing that the prognostic value of IKZF1 deletions differs between upfront protocols and is particularly strong in the ALL9 regimen. In conclusion, our data reveal a correlation between upfront treatment and the genetic composition of relapsed BCP-ALL.
Collapse
|
49
|
Bloom M, Maciaszek JL, Clark ME, Pui CH, Nichols KE. Recent advances in genetic predisposition to pediatric acute lymphoblastic leukemia. Expert Rev Hematol 2020; 13:55-70. [PMID: 31657974 PMCID: PMC10576863 DOI: 10.1080/17474086.2020.1685866] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Historically, the majority of childhood cancers, including acute lymphoblastic leukemia (ALL), were not thought to have a hereditary basis. However, recent germline genomic studies have revealed that at least 5 - 10% of children with cancer (and approximately 3 - 4% of children with ALL) develop the disease due to an underlying genetic predisposition.Areas covered: This review discusses several recently identified ALL predisposing conditions and provides updates on other more well-established syndromes. It also covers topics related to the evaluation and management of children and family members at increased ALL risk.Expert opinion: Germline predisposition is gaining recognition as an important risk factor underlying the development of pediatric ALL. The challenge now lies in how best to capitalize on germline genetic information to improve ALL diagnosis, treatment, and perhaps even prevention.
Collapse
Affiliation(s)
- Mackenzie Bloom
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jamie L. Maciaszek
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary Egan Clark
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
50
|
Ghelli Luserna di Rorà A, Martinelli G, Simonetti G. The balance between mitotic death and mitotic slippage in acute leukemia: a new therapeutic window? J Hematol Oncol 2019; 12:123. [PMID: 31771633 PMCID: PMC6880427 DOI: 10.1186/s13045-019-0808-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Mitosis is the process whereby an eukaryotic cell divides into two identical copies. Different multiprotein complexes are involved in the fine regulation of cell division, including the mitotic promoting factor and the anaphase promoting complex. Prolonged mitosis can result in cellular division, cell death, or mitotic slippage, the latter leading to a new interphase without cellular division. Mitotic slippage is one of the causes of genomic instability and has an important therapeutic and clinical impact. It has been widely studied in solid tumors but not in hematological malignancies, in particular, in acute leukemia. We review the literature data available on mitotic regulation, alterations in mitotic proteins occurring in acute leukemia, induction of prolonged mitosis and its consequences, focusing in particular on the balance between cell death and mitotic slippage and on its therapeutic potentials. We also present the most recent preclinical and clinical data on the efficacy of second-generation mitotic drugs (CDK1-Cyclin B1, APC/CCDC20, PLK, Aurora kinase inhibitors). Despite the poor clinical activity showed by these drugs as single agents, they offer a potential therapeutic window for synthetic lethal combinations aimed to selectively target leukemic cells at the right time, thus decreasing the risk of mitotic slippage events.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|