1
|
Kalecký K, Buitrago L, Alarcon JM, Singh A, Bottiglieri T, Kaddurah-Daouk R, Hernández AI. Rescue of hippocampal synaptic plasticity and memory performance by Fingolimod (FTY720) in APP/PS1 model of Alzheimer's disease is accompanied by correction in metabolism of sphingolipids, polyamines, and phospholipid saturation composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633452. [PMID: 39868189 PMCID: PMC11761635 DOI: 10.1101/2025.01.17.633452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Previously, our metabolomic, transcriptomic, and genomic studies characterized the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease, and we demonstrated that FTY720, a sphingosine-1-phospahate receptor modulator approved for treatment of multiple sclerosis, recovers synaptic plasticity and memory in APP/PS1 mice. To further investigate how FTY720 rescues the pathology, we performed metabolomic analysis in brain, plasma, and liver of trained APP/PS1 and wild-type mice. APP/PS1 mice showed area-specific brain disturbances in polyamines, phospholipids, and sphingolipids. Most changes were completely or partially normalized in FTY720-treated subjects, indicating rebalancing the "sphingolipid rheostat", reactivating phosphatidylethanolamine synthesis via mitochondrial phosphatidylserine decarboxylase pathway, and normalizing polyamine levels that support mitochondrial activity. Synaptic plasticity and memory were rescued, with spermidine synthesis in temporal cortex best corresponding to hippocampal CA3-CA1 plasticity normalization. FTY720 effects, also reflected in other pathways, are consistent with promotion of mitochondrial function, synaptic plasticity, and anti-inflammatory environment, while reducing pro-apoptotic and pro-inflammatory signals.
Collapse
Affiliation(s)
- Karel Kalecký
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Luna Buitrago
- Neural and Behavioral Sciences Program, School of Graduate Studies, Department of Neurology/Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Juan Marcos Alarcon
- Neural and Behavioral Sciences Program, School of Graduate Studies, The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abanish Singh
- Department of Psychiatry and Behavioral Sciences; and Department of Medicine, Duke University School of Medicine, Durham, Durham, NC, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Alejandro Iván Hernández
- Neural and Behavioral Sciences Program, School of Graduate Studies, The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | |
Collapse
|
2
|
Kim N, Filipovic D, Bhattacharya S, Cuddapah S. Epigenetic toxicity of heavy metals - implications for embryonic stem cells. ENVIRONMENT INTERNATIONAL 2024; 193:109084. [PMID: 39437622 DOI: 10.1016/j.envint.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Exposure to heavy metals, such as cadmium, nickel, mercury, arsenic, lead, and hexavalent chromium has been linked to dysregulated developmental processes, such as impaired stem cell differentiation. Heavy metals are well-known modifiers of the epigenome. Stem and progenitor cells are particularly vulnerable to exposure to potentially toxic metals since these cells rely on epigenetic reprogramming for their proper functioning. Therefore, exposure to metals can impair stem and progenitor cell proliferation, pluripotency, stemness, and differentiation. In this review, we provide a comprehensive summary of current evidence on the epigenetic effects of heavy metals on stem cells, focusing particularly on DNA methylation and histone modifications. Moreover, we explore the underlying mechanisms responsible for these epigenetic changes. By providing an overview of heavy metal exposure-induced alterations to the epigenome, the underlying mechanisms, and the consequences of those alterations on stem cell function, this review provides a foundation for further research in this critical area of overlap between toxicology and developmental biology.
Collapse
Affiliation(s)
- Nicholas Kim
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - David Filipovic
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sudin Bhattacharya
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Suresh Cuddapah
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA.
| |
Collapse
|
3
|
Qiu X, Zhang Y, Gao J, Cui Y, Dong K, Chen K, Shi Y. Exposure to thimerosal induces behavioral abnormality in the early life stages of zebrafish via altering amino acid homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135548. [PMID: 39154483 DOI: 10.1016/j.jhazmat.2024.135548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Thimerosal (THI) has become a significant source of organic mercury pollutants in aquatic ecosystems, but there is limited information regarding its adverse effects on fish. In this study, zebrafish embryos were exposed to THI at 0 (control), 5.0, and 50 ng/L from 0-5 days post fertilization (dpf), and variations in their survival, development, behavior, free amino acid contents, and the biochemical responses involved in monoaminergic systems were examined. Although THI exposure did not significantly affect the survival, heart rate, or hatching time of zebrafish embryos, it substantially increased swimming velocity (136-154 % of the control) and reduced exploratory behavior (141-142 % of the control) in zebrafish larvae at 5 dpf. Exposure also significantly altered the amino acid contents (51-209 % of the control) and monoamine levels (70-154 % of the control) in zebrafish larvae, some of which displayed significant correlations with behavioral traits. THI significantly elevated dopamine receptor gene expression and monoamine oxidase activity in zebrafish larvae. Adding extra phenylalanine or tryptophan to the E3 medium facilitates the recovery of zebrafish larvae from the abnormal behaviors induced by THI. These findings reveal for the first time that THI exposure at the level of ng/L is sufficient to induce neurobehavioral toxic effects in the early life stages of zebrafish, and disrupting amino acid homeostasis is a critical underlying mechanism. This study provides valuable insights into the toxicity of THI to fish and highlights the importance of assessing its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yibing Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiarui Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yiming Cui
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kejun Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
4
|
Cuomo D, Foster MJ, Threadgill D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead (Pb) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35583-35598. [PMID: 35244845 PMCID: PMC9893814 DOI: 10.1007/s11356-022-19333-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
Lead (Pb) poisoning is a major public health concern in environmental justice communities of the USA and in many developing countries. There is no identified safety threshold for lead in blood, as low-level Pb exposures can lead to severe toxicity in highly susceptible individuals and late onset of diseases from early-life exposure. However, identifying "susceptibility genes" or "early exposure biomarkers" remains challenging in human populations. There is a considerable variation in susceptibility to harmful effects from Pb exposure in the general population, likely due to the complex interplay of genetic and/or epigenetic factors. This systematic review summarizes current state of knowledge on the role of genetic and epigenetic factors in determining individual susceptibility in response to environmental Pb exposure in humans and rodents. Although a number of common genetic and epigenetic factors have been identified, the reviewed studies, which link these factors to various adverse health outcomes following Pb exposure, have provided somewhat inconsistent evidence of main health effects. Acknowledging the compelling need for new approaches could guide us to better characterize individual responses, predict potential adverse outcomes, and identify accurate and usable biomarkers for Pb exposure to improve mitigation therapies to reduce future adverse health outcomes of Pb exposure.
Collapse
Affiliation(s)
- Danila Cuomo
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, USA.
| | - Margaret J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX, USA
| | - David Threadgill
- Department of Molecular and Cellular Medicine and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Borrelia burgdorferi inhibits NADPH-mediated reactive oxygen species production through the mTOR pathway. Ticks Tick Borne Dis 2022; 13:101943. [DOI: 10.1016/j.ttbdis.2022.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022]
|
6
|
Kim D, Jo YS, Jo HS, Bae S, Kwon YW, Oh YS, Yoon JH. Comparative Phosphoproteomics of Neuro-2a Cells under Insulin Resistance Reveals New Molecular Signatures of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23021006. [PMID: 35055191 PMCID: PMC8781554 DOI: 10.3390/ijms23021006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Insulin in the brain is a well-known critical factor in neuro-development and regulation of adult neurogenesis in the hippocampus. The abnormality of brain insulin signaling is associated with the aging process and altered brain plasticity, and could promote neurodegeneration in the late stage of Alzheimer’s disease (AD). The precise molecular mechanism of the relationship between insulin resistance and AD remains unclear. The development of phosphoproteomics has advanced our knowledge of phosphorylation-mediated signaling networks and could elucidate the molecular mechanisms of certain pathological conditions. Here, we applied a reliable phosphoproteomic approach to Neuro2a (N2a) cells to identify their molecular features under two different insulin-resistant conditions with clinical relevance: inflammation and dyslipidemia. Despite significant difference in overall phosphoproteome profiles, we found molecular signatures and biological pathways in common between two insulin-resistant conditions. These include the integrin and adenosine monophosphate-activated protein kinase pathways, and we further verified these molecular targets by subsequent biochemical analysis. Among them, the phosphorylation levels of acetyl-CoA carboxylase and Src were reduced in the brain from rodent AD model 5xFAD mice. This study provides new molecular signatures for insulin resistance in N2a cells and possible links between the molecular features of insulin resistance and AD.
Collapse
Affiliation(s)
- Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Korea;
| | - Yeon Suk Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Han-Seul Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
| | - Sungwon Bae
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
| | - Yang Woo Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (Y.-S.O.); (J.H.Y.); Tel.: +82-53-785-6114 (Y.-S.O.); +82-53-980-8341 (J.H.Y.)
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
- Correspondence: (Y.-S.O.); (J.H.Y.); Tel.: +82-53-785-6114 (Y.-S.O.); +82-53-980-8341 (J.H.Y.)
| |
Collapse
|
7
|
Zhang Y, Shi L, Xiang S, Ge Y, Zheng Y, Xia Y, Han H, Su X, Fang S, Chen J, Zhu X. Effect of methylcobalamin-C-10-Br from stinky tofu on inhibition of Listeria monocytogenes and alteration of microbiota in an in vitro colonic simulation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Nayeri T, Sarvi S, Daryani A. Toxoplasmosis: Targeting neurotransmitter systems in psychiatric disorders. Metab Brain Dis 2022; 37:123-146. [PMID: 34476718 DOI: 10.1007/s11011-021-00824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022]
Abstract
The most common form of the disease caused by Toxoplasma gondii (T. gondii) is latent toxoplasmosis due to the formation of tissue cysts in various organs, such as the brain. Latent toxoplasmosis is probably a risk factor in the development of some neuropsychiatric disorders. Behavioral changes after infection are caused by the host immune response, manipulation by the parasite, central nervous system (CNS) inflammation, as well as changes in hormonal and neuromodulator relationships. The present review focused on the exact mechanisms of T. gondii effect on the alteration of behavior and neurotransmitter levels, their catabolites and metabolites, as well as the interaction between immune responses and this parasite in the etiopathogenesis of psychiatric disorders. The dysfunction of neurotransmitters in the neural transmission is associated with several neuropsychiatric disorders. However, further intensive studies are required to determine the effect of this parasite on altering the level of neurotransmitters and the role of neurotransmitters in the etiology of host behavioral changes.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Ijomone OM, Ijomone OK, Iroegbu JD, Ifenatuoha CW, Olung NF, Aschner M. Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology 2020; 81:51-65. [PMID: 32882300 PMCID: PMC7708394 DOI: 10.1016/j.neuro.2020.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Continuous globalization and industrialization have ensured metals are an increasing aspect of daily life. Their usefulness in manufacturing has made them vital to national commerce, security and global economy. However, excess exposure to metals, particularly as a result of environmental contamination or occupational exposures, has been detrimental to overall health. Excess exposure to several metals is considered environmental risk in the aetiology of several neurological and neurodegenerative diseases. Metal-induced neurotoxicity has been a major health concern globally with intensive research to unravel the mechanisms associated with it. Recently, greater focus has been directed at epigenetics to better characterize the underlying mechanisms of metal-induced neurotoxicity. Epigenetic changes are those modifications on the DNA that can turn genes on or off without altering the DNA sequence. This review discusses how epigenetic changes such as DNA methylation, post translational histone modification and noncoding RNA-mediated gene silencing mediate the neurotoxic effects of several metals, focusing on manganese, arsenic, nickel, cadmium, lead, and mercury.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
| | - Olayemi K Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Joy D Iroegbu
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Nzube F Olung
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
10
|
Dórea JG. Neurotoxic effects of combined exposures to aluminum and mercury in early life (infancy). ENVIRONMENTAL RESEARCH 2020; 188:109734. [PMID: 32544722 DOI: 10.1016/j.envres.2020.109734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Aluminum and mercury are environmentally ubiquitous. Individually they are both neurotoxic elements with shared neuro-pathogenic pathways: oxidative stress, altered neurotransmission, and disruption of the neuroendocrine and immune systems. In the infant, Al and Hg differ in type of exposure, absorption, distribution (brain access), and metabolism. In environmentally associated exposure (breast milk and infant formulas) their co-occurrences fluctuate randomly, but in Thimerosal-containing vaccines (TCVs) they occur combined in a proprietary ratio; in these cases, low-doses of Thimerosal-ethylmercury (EtHg) and adjuvant-Al present the most widespread binary mixture in less developed countries. Although experimental studies at low doses of the binary Hg and Al mixture are rare, when studied individually they have been shown to affect neurological outcomes negatively. In invitro systems, comparative neurotoxicity between Al and Hg varies in relation to the measured parameters but seems less for Al than for Hg. While neurotoxicity of environmental Hg (mainly fish methyl-Hg, MeHg) is associated with neurobehavioral outcomes in children, environmental Al is not associated, except in certain clinical conditions. Therefore, the issues of their neurotoxic effects (singly or combined) are discussed. In the infant (up to six months) the organic-Hg and Al body burdens from a full TCV schedule are estimated to reach levels higher than that originating from breastfeeding or from high aluminum soy-based formulas. Despite worldwide exposure to both Al and Hg (inorganic Hg, MeHg, and Thimerosal/EtHg), our knowledge on this combined exposure is insufficient to predict their combined neurotoxic effects (and with other co-occurring neurotoxicants).
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
11
|
Abulseoud OA, Şenormancı G, Şenormancı Ö, Güçlü O, Schleyer B, Camsari U. Sex difference in the progression of manic symptoms during acute hospitalization: A prospective pilot study. Brain Behav 2020; 10:e01568. [PMID: 32053271 PMCID: PMC7066352 DOI: 10.1002/brb3.1568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Acute mania is a serious medical condition that impacts men and women equally. Longtime presentation of manic symptoms is sex-dependent; however, little is known about acute symptoms of mania. The objective of this study is to track and compare acute manic symptoms for sex differences during inpatient hospitalization. METHODS All patients with bipolar mania admitted to a large university hospital between January and October 2017 were invited to participate in this longitudinal naturalistic follow-up study. Manic (YMRS), depressive (MADRS), and psychotic (PAS) symptoms were tracked daily from admission to discharge. RESULTS The total YMRS scores decreased significantly overtime (p < .0001) in both male (n = 34) and female (n = 23) patients (p = .7). However, male patients scored significantly higher in sexual interest (p = .01), disruptive and aggressive behavior (p = .01), and appearance (p < .001) while females had better insight into their illness (p = .01). Males and females received similar doses of lithium (p = .1), but males received significantly higher doses of valproic acid (VPA) in comparison with females (p = .003). However, plasma lithium and VPA concentrations at discharge were not significantly different between sexes. CONCLUSION Our results show sex differences in the progression of certain domains of manic symptoms in a cohort of 23 female and 34 male patients admitted to a large academic center in Turkey. Males, in this sample, exhibited more sexual interest, disruptive and aggressive behaviors, better grooming, and less insight compared to females. While these results are concordant with our preclinical findings and with anecdotal clinical observations, replication in larger samples is needed.
Collapse
Affiliation(s)
- Osama A Abulseoud
- Neuroimaging Research Branch, IRP, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Güliz Şenormancı
- University of Health Sciences Bursa Yüksek İhtisas Training and Research Hospital Psychiatry Department, Bursa, Turkey
| | - Ömer Şenormancı
- University of Health Sciences Bursa Yüksek İhtisas Training and Research Hospital Psychiatry Department, Bursa, Turkey
| | - Oya Güçlü
- Bakirkoy Research & Training Hospital for Psychiatry, Neurology, Neurosurgery and Psychiatry Department, İstanbul, Turkey
| | - Brooke Schleyer
- Neuroimaging Research Branch, IRP, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Ulas Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Methylation-related metabolic effects of D4 dopamine receptor expression and activation. Transl Psychiatry 2019; 9:295. [PMID: 31719518 PMCID: PMC6851363 DOI: 10.1038/s41398-019-0630-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/13/2019] [Accepted: 10/20/2019] [Indexed: 11/16/2022] Open
Abstract
D4 dopamine receptor (D4R) activation uniquely promotes methylation of plasma membrane phospholipids, utilizing folate-derived methyl groups provided by methionine synthase (MS). We evaluated the impact of D4R expression on folate-dependent phospholipid methylation (PLM) and MS activity, as well as cellular redox and methylation status, in transfected CHO cells expressing human D4R variants containing 2, 4, or 7 exon III repeats (D4.2R, D4.4R, D4.7R). Dopamine had no effect in non-transfected CHO cells, but increased PLM to a similar extent for both D4.2R- and D4.4R-expressing cells, while the maximal increase was for D4.7R was significantly lower. D4R expression in CHO cells decreased basal MS activity for all receptor subtypes and conferred dopamine-sensitive MS activity, which was greater with a higher number of repeats. Consistent with decreased MS activity, D4R expression decreased basal levels of methylation cycle intermediates methionine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH), as well as cysteine and glutathione (GSH). Conversely, dopamine stimulation increased GSH, SAM, and the SAM/SAH ratio, which was associated with a more than 2-fold increase in global DNA methylation. Our findings illustrate a profound influence of D4R expression and activation on MS activity, coupled with the ability of dopamine to modulate cellular redox and methylation status. These previously unrecognized signaling activities of the D4R provide a unique link between neurotransmission and metabolism.
Collapse
|
13
|
Asante I, Chui D, Pei H, Zhou E, De Giovanni C, Conti D, Louie S. Alterations in folate-dependent one-carbon metabolism as colon cell transition from normal to cancerous. J Nutr Biochem 2019; 69:1-9. [PMID: 31035100 PMCID: PMC6570572 DOI: 10.1016/j.jnutbio.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 11/19/2022]
Abstract
Folate-dependent one-carbon cycle metabolism (FOCM) plays a critical role in maintaining genomic stability through regulating DNA biosynthesis, repair and methylation. Folate metabolites as well as other metabolites in the FOCM are hypothesized to be altered when cells transition from normal to cancerous state. Using cells at different stages in their development into colorectal cancer, the FOCM metabolites were profiled as an effort to phenotype the cells, and the metabolite levels were compared to the expressions of related genes. Here, we investigate whether there is a correlation between the metabolite levels, DNA methylation levels and the expression of the related genes that drive the levels of these metabolites. Using CRL1459, APC10.1, HCT116 and Caco-2, we show for the first time that FOCM metabolites correlate with the gene expression patterns. These differences follow a trend that may facilitate distinguishing colon cells at the different stages as they transition into cancerous state. The folate distribution and methionine levels were found to be key in determining the staging of the colon cells in CRC development. Also, expression of CBS, MTRR and MAT genes may facilitate distinguishing between untransformed and transformed colon cells.
Collapse
Affiliation(s)
- I Asante
- Department of Clinical Pharmacy, USC School of Pharmacy, Los Angeles, CA 90033, USA.
| | - D Chui
- Department of Clinical Pharmacy, USC School of Pharmacy, Los Angeles, CA 90033, USA
| | - H Pei
- Department of Clinical Pharmacy, USC School of Pharmacy, Los Angeles, CA 90033, USA
| | - E Zhou
- Department of Clinical Pharmacy, USC School of Pharmacy, Los Angeles, CA 90033, USA
| | - C De Giovanni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - D Conti
- Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, CA 90033, USA
| | - S Louie
- Department of Clinical Pharmacy, USC School of Pharmacy, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Raciti M, Ceccatelli S. Epigenetic mechanisms in developmental neurotoxicity. Neurotoxicol Teratol 2018; 66:94-101. [DOI: 10.1016/j.ntt.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
|
15
|
Liang R. Cross Talk Between Aluminum and Genetic Susceptibility and Epigenetic Modification in Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1091:173-191. [DOI: 10.1007/978-981-13-1370-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Schrier MS, Trivedi MS, Deth RC. Redox-Related Epigenetic Mechanisms in Glioblastoma: Nuclear Factor (Erythroid-Derived 2)-Like 2, Cobalamin, and Dopamine Receptor Subtype 4. Front Oncol 2017; 7:46. [PMID: 28424758 PMCID: PMC5371596 DOI: 10.3389/fonc.2017.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is an exceptionally difficult cancer to treat. Cancer is universally marked by epigenetic changes, which play key roles in sustaining a malignant phenotype, in addition to disease progression and patient survival. Studies have shown strong links between the cellular redox state and epigenetics. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a redox-sensitive transcription factor that upregulates endogenous antioxidant production, and is aberrantly expressed in many cancers, including glioblastoma. Methylation of DNA and histones provides a mode of epigenetic regulation, and cobalamin-dependent reactions link the redox state to methylation. Antagonists of dopamine receptor subtype 4 (D4 receptor) were recently shown to restrict glioblastoma stem cell growth by downregulating trophic signaling, resulting in inhibition of functional autophagy. In addition to stimulating glioblastoma stem cell growth, D4 receptors have the unique ability to catalyze cobalamin-dependent phospholipid methylation. Therefore, D4 receptors represent an important node in a molecular reflex pathway involving Nrf2 and cobalamin, operating in conjunction with redox status and methyl group donor availability. In this article, we describe the redox-related effects of Nrf2, cobalamin metabolism, and the D4 receptor on the regulation of the epigenetic state in glioblastoma.
Collapse
Affiliation(s)
- Matthew Scott Schrier
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Malav Suchin Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
17
|
Components of the folate metabolic pathway and ADHD core traits: an exploration in eastern Indian probands. J Hum Genet 2017; 62:687-695. [PMID: 28250422 DOI: 10.1038/jhg.2017.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/11/2023]
Abstract
We investigated role of the folate-homocysteine metabolic pathway in the etiology of attention-deficit hyperactivity disorder (ADHD) due to its importance in maintaining DNA integrity as well as neurotransmission. Functional gene variants in MTR (rs1805087), CBS (rs5742905), MTHFR (rs1801133 &rs1801131), MTHFD (rs2236225), RFC1 (rs1051266), plasma vitamin B12, folate and homocysteine were analyzed. rs1805087 'A' showed strong association with ADHD. Vitamin B12 deficiency of ADHD probands (P=0.01) correlated with rs1801133 'T' and rs1805087'GG'. Mild hyperhomocysteinemia (P=0.05) in the probands was associated with rs1805087 'AA'. Probands having rs1805087 'GG' and rs1051266 'G' was more inattentive. Hyperactivity-impulsivity score revealed association with rs5742905 'TT' and rs2236225 'CC', while rs1801133 'CC' showed association with inattentiveness and hyperactivity-impulsivity. rs1801131 exhibited strong synergistic interaction with rs1051266 and rs2236225. This indicated that the folate-homocysteine pathway gene variants may affect ADHD etiology through mild hyperhomocysteinemia and vitamin B12 deficiency, factors known to be associated with cognitive deficit.
Collapse
|
18
|
Mathew R, Pal Bhadra M, Bhadra U. Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology 2017; 18:35-53. [DOI: 10.1007/s10522-016-9670-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
|
19
|
Geier D, Geier MR. Neurodevelopmental Disorders Following Thimerosal-Containing Childhood Immunizations: A Follow-Up Analysis. Int J Toxicol 2016; 23:369-76. [PMID: 15764492 DOI: 10.1080/10915810490902038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The authors previously published the first epidemiological study from the United States associating thimerosal from childhood vaccines with neurodevelopmental disorders (NDs) based upon assessment of the Vaccine Adverse Event Reporting System (VAERS). A number of years have gone by since their previous analysis of the VAERS. The present study was undertaken to determine whether the previously observed effect between thimerosal-containing childhood vaccines and NDs are still apparent in the VAERS as children have had a chance to further mature and potentially be diagnosed with additional NDs. In the present study, a cohort of children receiving thimerosal-containing diphtheria-tetanus-acellular pertussis (DTaP) vaccines in comparison to a cohort of children receiving thimerosal-free DTaP vaccines administered from 1997 through 2000 based upon an assessment of adverse events reported to the VAERS were evaluated. It was determined that there were significantly increased odds ratios (ORs) for autism (OR = 1.8, p < .05), mental retardation (OR = 2.6, p < .002), speech disorder (OR = 2.1, p <.02), personality disorders (OR=2.6, p <.01), and thinking abnormality (OR=8.2, p <.01) adverse events reported to the VAERS following thimerosal-containing DTaP vaccines in comparison to thimerosal-free DTaP vaccines. Potential confounders and reporting biases were found to be minimal in this assessment of the VAERS. It was observed, even though the media has reported a potential association between autism and thimerosal exposure, that the other NDs analyzed in this assessment of the VAERS had significantly higher ORs than autism following thimerosal-containing DTaP vaccines in comparison to thimerosal-free DTaP vaccines. The present study provides additional epidemiological evidence supporting previous epidemiological, clinical and experimental evidence that administration of thimerosal-containing vaccines in the United States resulted in a significant number of children developing NDs.
Collapse
|
20
|
Mean serum-level of common organic pollutants is predictive of behavioral severity in children with autism spectrum disorders. Sci Rep 2016; 6:26185. [PMID: 27174041 PMCID: PMC4865867 DOI: 10.1038/srep26185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/27/2016] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorders (ASD), and their pathogenesis, are growing public health concerns. This study evaluated common organic pollutant serum-concentrations in children, as it related to behavioral severity determined by rating scales and the Autism Diagnostic Observation Schedule (ADOS). Thirty children, ages 2-9, with ASD and thirty controls matched by age, sex, and socioeconomic status were evaluated using direct blood serum sampling and ADOS. Pooling concentrations of all studied pollutants into a single variable yielded cohort-specific neurobehavioral relationships. Pooled serum-concentration correlated significantly with increasing behavioral severity on the ADOS in the ASD cohort (p = 0.011, r = 0.54), but not controls (p = 0.60, r = 0.11). Logistic regression significantly correlated mean pollutant serum-concentration with the probability of diagnosis of behaviorally severe autism, defined as ADOS >14, across all participants (odds ratio = 3.43 [95% confidence: 1.14-10.4], p = 0.0287). No specific analyte correlated with ADOS in either cohort. The ASD cohort displayed greater quantitative variance of analyte concentrations than controls (p = 0.006), suggesting a wide range of detoxification functioning in the ASD cohort. This study supports the hypothesis that environmental exposure to organic pollutants may play a significant role in the behavioral presentation of autism.
Collapse
|
21
|
Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6143753. [PMID: 26989453 PMCID: PMC4775819 DOI: 10.1155/2016/6143753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/28/2015] [Accepted: 01/10/2016] [Indexed: 12/05/2022]
Abstract
The folate and cobalamin (Cbl-) dependent enzyme methionine synthase (MS) is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein species, thus providing a useful model to examine cofactor dependence of these variant enzymes. MS activity was dependent upon methylcobalamin (MeCbl) or the combination of hydroxocobalamin (OHCbl) and S-adenosylmethionine (SAM). OHCbl-based activity was eliminated by depletion of the antioxidant glutathione (GSH) but could be rescued by provision of either glutathionylcobalamin (GSCbl) or MeCbl. Pretreatment of cells with lead, arsenic, aluminum, mercury, or the ethylmercury-containing preservative thimerosal lowered GSH levels and inhibited MS activity in association with decreased uptake of cysteine, which is rate-limiting for GSH synthesis. Thimerosal treatment decreased cellular levels of GSCbl and MeCbl. These findings indicate that the alternatively spliced form of MS expressed in SH-SY5Y human neuronal cells is sensitive to inhibition by thimerosal and neurotoxic metals, and lower GSH levels contribute to their inhibitory action.
Collapse
|
22
|
Zhang Y, Hodgson NW, Trivedi MS, Abdolmaleky HM, Fournier M, Cuenod M, Do KQ, Deth RC. Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia. PLoS One 2016; 11:e0146797. [PMID: 26799654 PMCID: PMC4723262 DOI: 10.1371/journal.pone.0146797] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methionine synthase (MS) in brain development and function, but vitamin B12 status in the brain across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl) exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively. We measured levels of five Cbl species in postmortem human frontal cortex of 43 control subjects, from 19 weeks of fetal development through 80 years of age, and 12 autistic and 9 schizophrenic subjects. Total Cbl was significantly lower in older control subjects (> 60 yrs of age), primarily reflecting a >10-fold age-dependent decline in the level of MeCbl. Levels of inactive cyanocobalamin (CNCbl) were remarkably higher in fetal brain samples. In both autistic and schizophrenic subjects MeCbl and AdoCbl levels were more than 3-fold lower than age-matched controls. In autistic subjects lower MeCbl was associated with decreased MS activity and elevated levels of its substrate homocysteine (HCY). Low levels of the antioxidant glutathione (GSH) have been linked to both autism and schizophrenia, and both total Cbl and MeCbl levels were decreased in glutamate-cysteine ligase modulatory subunit knockout (GCLM-KO) mice, which exhibit low GSH levels. Thus our findings reveal a previously unrecognized decrease in brain vitamin B12 status across the lifespan that may reflect an adaptation to increasing antioxidant demand, while accelerated deficits due to GSH deficiency may contribute to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
| | - Nathaniel W. Hodgson
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
- Department of Surgery, Laboratory of Nutrition and Metabolism at BIDMC, Harvard Medical School, Boston, MA, 02215, United States of America
| | - Malav S. Trivedi
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, 33328, United States of America
| | - Hamid M. Abdolmaleky
- Department of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA, 02118, United States of America
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kim Quang Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, 33328, United States of America
- * E-mail:
| |
Collapse
|
23
|
Cabezas-Sanchez P, Garcia-Calvo E, Camara C, Luque-Garcia JL. A quantitative proteomic approach for unveiling novel mechanisms associated with MeHg-induced toxicity: effects on the methylation cycle. Toxicol Res (Camb) 2016; 5:291-302. [PMID: 30090345 PMCID: PMC6062361 DOI: 10.1039/c5tx00354g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023] Open
Abstract
Methylmercury (MeHg) is still a major threat for human health and the environment due to its extremely high toxicity that mainly affects the nervous system. Despite the great efforts made during the last few decades, the specific molecular mechanisms involved in MeHg-induced toxicity are still not completely unveiled. In this work we explored such mechanisms using neuroblastoma cells (Neuro-2a) and SILAC as a quantitative proteomic approach. We found that exposure of Neuro-2a cells to 2 mg L-1 MeHg for 8 h decreased the cell viability to 70% and caused significant changes in the morphology of the cells, specially regarding neurite development. Our proteomic results showed different proteins altered upon MeHg exposure that helped to identify pathways related to the toxicity exerted by MeHg. Specifically, we have found that MeHg affects the methylation cycle by inhibiting the expression of key enzymes including MTHFD1 and MTR. Moreover, we demonstrate that inhibition of MTHFD1 is not observed when exposing the cells to inorganic Hg and other heavy metals such as Pb or Cu. Thus, this work sets the stage for dissecting a specific molecular mechanism for MeHg-induced toxicity.
Collapse
Affiliation(s)
- Pablo Cabezas-Sanchez
- Department of Analytical Chemistry , Faculty of Chemistry , Complutense University of Madrid , 28040 , Madrid , Spain . ; Tel: +34913944318
| | - Estefania Garcia-Calvo
- Department of Analytical Chemistry , Faculty of Chemistry , Complutense University of Madrid , 28040 , Madrid , Spain . ; Tel: +34913944318
| | - Carmen Camara
- Department of Analytical Chemistry , Faculty of Chemistry , Complutense University of Madrid , 28040 , Madrid , Spain . ; Tel: +34913944318
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry , Faculty of Chemistry , Complutense University of Madrid , 28040 , Madrid , Spain . ; Tel: +34913944318
| |
Collapse
|
24
|
Neuregulin 1 Promotes Glutathione-Dependent Neuronal Cobalamin Metabolism by Stimulating Cysteine Uptake. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3849087. [PMID: 27057274 PMCID: PMC4709767 DOI: 10.1155/2016/3849087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 01/12/2023]
Abstract
Neuregulin 1 (NRG-1) is a key neurotrophic factor involved in energy homeostasis and CNS development, and impaired NRG-1 signaling is associated with neurological disorders. Cobalamin (Cbl), also known as vitamin B12, is an essential micronutrient which mammals must acquire through diet, and neurologic dysfunction is a primary clinical manifestation of Cbl deficiency. Here we show that NRG-1 stimulates synthesis of the two bioactive Cbl species adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl) in human neuroblastoma cells by both promoting conversion of inactive to active Cbl species and increasing neuronal Cbl uptake. Formation of active Cbls is glutathione- (GSH-) dependent and the NRG-1-initiated increase is dependent upon its stimulation of cysteine uptake by excitatory amino acid transporter 3 (EAAT3), leading to increased GSH. The stimulatory effect of NRG-1 on cellular Cbl uptake is associated with increased expression of megalin, which is known to facilitate Cbl transport in ileum and kidney. MeCbl is a required cofactor for methionine synthase (MS) and we demonstrate the ability of NRG-1 to increase MS activity, and affect levels of methionine methylation cycle metabolites. Our results identify novel neuroprotective roles of NRG-1 including stimulating antioxidant synthesis and promoting active Cbl formation.
Collapse
|
25
|
Cardenas A, Koestler DC, Houseman EA, Jackson BP, Kile ML, Karagas MR, Marsit CJ. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 2015; 10:508-15. [PMID: 25923418 DOI: 10.1080/15592294.2015.1046026] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mercury and arsenic are known developmental toxicants. Prenatal exposures are associated with adverse childhood health outcomes that could be in part mediated by epigenetic alterations that may also contribute to altered immune profiles. In this study, we examined the association between prenatal mercury exposure on both DNA methylation and white blood cell composition of cord blood, and evaluated the interaction with prenatal arsenic exposure. A total of 138 mother-infant pairs with postpartum maternal toenail mercury, prenatal urinary arsenic concentrations, and newborn cord blood were assessed using the Illumina Infinium Methylation450 array. White blood cell composition was inferred from DNA methylation measurements. A doubling in toenail mercury concentration was associated with a 2.5% decrease (95% CI: 5.0%, 1.0%) in the estimated monocyte proportion. An increase of 3.5% (95% CI: 1.0, 7.0) in B-cell proportion was observed for females only. Among the top 100 CpGs associated with toenail mercury levels (ranked on P-value), there was a significant enrichment of loci located in North shore regions of CpG islands (P = 0.049), and the majority of these loci were hypermethylated (85%). Among the top 100 CpGs for the interaction between arsenic and mercury, there was a greater than expected proportion of loci located in CpG islands (P = 0.045) and in South shore regions (P = 0.009) and all of these loci were hypermethylated. This work supports the hypothesis that mercury may be contributing to epigenetic variability and immune cell proportion changes, and suggests that in utero exposure to mercury and arsenic, even at low levels, may interact to impact the epigenome.
Collapse
Affiliation(s)
- Andres Cardenas
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR , USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Geier DA, King PG, Hooker BS, Dórea JG, Kern JK, Sykes LK, Geier MR. Thimerosal: Clinical, epidemiologic and biochemical studies. Clin Chim Acta 2015; 444:212-20. [DOI: 10.1016/j.cca.2015.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/06/2015] [Accepted: 02/14/2015] [Indexed: 10/24/2022]
|
27
|
El-Megharbel SM, Hamza RZ, Refat MS. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:850-864. [PMID: 25150436 DOI: 10.1016/j.saa.2014.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
The vanadyl(IV) adenine complex; [VO(Adn)2]⋅SO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.
Collapse
Affiliation(s)
- Samy M El-Megharbel
- Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, 21974 Taif, Saudi Arabia; Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Reham Z Hamza
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Moamen S Refat
- Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, 21974 Taif, Saudi Arabia; Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt.
| |
Collapse
|
28
|
Trivedi MS, Deth R. Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention. Front Neurosci 2015; 8:444. [PMID: 25657617 PMCID: PMC4302946 DOI: 10.3389/fnins.2014.00444] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/16/2014] [Indexed: 12/26/2022] Open
Abstract
Alcohol and other drugs of abuse, including psychostimulants and opioids, can induce epigenetic changes: a contributing factor for drug addiction, tolerance, and associated withdrawal symptoms. DNA methylation is a major epigenetic mechanism and it is one of more than 200 methylation reactions supported by methyl donor S-adenosylmethionine (SAM). Levels of SAM are controlled by cellular redox status via the folate and vitamin B12-dependent enzyme methionine synthase (MS). For example, under oxidative conditions MS is inhibited, diverting its substrate homocysteine (HCY) to the trans sulfuration pathway. Alcohol, dopamine, and morphine, can alter intracellular levels of glutathione (GSH)-based cellular redox status, subsequently affecting SAM levels and DNA methylation status. Here, existing evidence is presented in a coherent manner to propose a novel hypothesis implicating the involvement of redox-based epigenetic changes in drug addiction. Further, we discuss how a “gene priming” phenomenon can contribute to the maintenance of redox and methylation status homeostasis under various stimuli including drugs of abuse. Additionally, a new mechanistic rationale for the use of metabolic interventions/redox-replenishers as symptomatic treatment of alcohol and other drug addiction and associated withdrawal symptoms is also provided. Hence, the current review article strengthens the hypothesis that neuronal metabolism has a critical bidirectional coupling with epigenetic changes in drug addiction exemplified by the link between redox-based metabolic changes and resultant epigenetic consequences under the effect of drugs of abuse.
Collapse
Affiliation(s)
- Malav S Trivedi
- Department of Pharmaceutical Sciences, Northeastern University Boston, MA, USA
| | - Richard Deth
- Department of Pharmaceutical Sciences, Northeastern University Boston, MA, USA
| |
Collapse
|
29
|
Abstract
ABSTRACT:Because of a temporal correlation between the first notable signs and symptoms of autism and the routine childhood vaccination schedule, many parents have become increasingly concerned regarding the possible etiologic role vaccines may play in the development of autism. In particular, some have suggested an association between the Measles-Mumps-Rubella vaccine and autism. Our literature review found very few studies supporting this theory, with the overwhelming majority showing no causal association between the Measles-Mumps-Rubella vaccine and autism. The vaccine preservative thimerosal has alternatively been hypothesized to have a possible causal role in autism. Again, no convincing evidence was found to support this claim, nor for the use of chelation therapy in autism. With decreasing uptake of immunizations in children and the inevitable occurrence of measles outbreaks, it is important that clinicians be aware of the literature concerning vaccinations and autism so that they may have informed discussions with parents and caregivers.
Collapse
Affiliation(s)
- Asif Doja
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | |
Collapse
|
30
|
Aluminum-induced entropy in biological systems: implications for neurological disease. J Toxicol 2014; 2014:491316. [PMID: 25349607 PMCID: PMC4202242 DOI: 10.1155/2014/491316] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022] Open
Abstract
Over the last 200 years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earth's crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins). It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed.
Collapse
|
31
|
Kałużna-Czaplińska J, Żurawicz E, Struck W, Markuszewski M. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:70-6. [DOI: 10.1016/j.jchromb.2014.01.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 11/15/2022]
|
32
|
Ray PD, Yosim A, Fry RC. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet 2014; 5:201. [PMID: 25076963 PMCID: PMC4100550 DOI: 10.3389/fgene.2014.00201] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 12/24/2022] Open
Abstract
Exposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome. Epigenetic modifications are alterations to an individual's genome without a change in the DNA sequence, and include, but are not limited to, three commonly studied alterations: DNA methylation, histone modification, and non-coding RNA expression. Given the role of epigenetic alterations in regulating gene and thus protein expression, there is the potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. In the present review, epigenetic alterations induced by five high priority toxic metals/metalloids are prioritized for analysis and their possible inclusion into the risk assessment process is discussed.
Collapse
Affiliation(s)
- Paul D. Ray
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North CarolinaChapel Hill, NC, USA
- Curriculum in Toxicology, School of Medicine, University of North CarolinaChapel Hill, NC, USA
| | - Andrew Yosim
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North CarolinaChapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North CarolinaChapel Hill, NC, USA
- Curriculum in Toxicology, School of Medicine, University of North CarolinaChapel Hill, NC, USA
| |
Collapse
|
33
|
Basu N, Goodrich JM, Head J. Ecogenetics of mercury: from genetic polymorphisms and epigenetics to risk assessment and decision-making. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1248-58. [PMID: 24038486 DOI: 10.1002/etc.2375] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/10/2013] [Accepted: 08/08/2013] [Indexed: 05/20/2023]
Abstract
The risk assessment of mercury (Hg), in both humans and wildlife, is made challenging by great variability in exposure and health effects. Although disease risk arises following complex interactions between genetic ("nature") and environmental ("nurture") factors, most Hg studies thus far have focused solely on environmental factors. In recent years, ecogenetic-based studies have emerged and have started to document genetic and epigenetic factors that may indeed influence the toxicokinetics or toxicodynamics of Hg. The present study reviews these studies and discusses their utility in terms of Hg risk assessment, management, and policy and offers perspectives on fruitful areas for future research. In brief, epidemiological studies on populations exposed to inorganic Hg (e.g., dentists and miners) or methylmercury (e.g., fish consumers) are showing that polymorphisms in a number of environmentally responsive genes can explain variations in Hg biomarker values and health outcomes. Studies on mammals (wildlife, humans, rodents) are showing Hg exposures to be related to epigenetic marks such as DNA methylation. Such findings are beginning to increase understanding of the mechanisms of action of Hg, and in doing so they may help identify candidate biomarkers and pinpoint susceptible groups or life stages. Furthermore, they may help refine uncertainty factors and thus lead to more accurate risk assessments and improved decision-making.
Collapse
Affiliation(s)
- Niladri Basu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
34
|
Trivedi M, Shah J, Hodgson N, Byun HM, Deth R. Morphine induces redox-based changes in global DNA methylation and retrotransposon transcription by inhibition of excitatory amino acid transporter type 3-mediated cysteine uptake. Mol Pharmacol 2014; 85:747-57. [PMID: 24569088 PMCID: PMC3990020 DOI: 10.1124/mol.114.091728] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/25/2014] [Indexed: 01/13/2023] Open
Abstract
Canonically, opioids influence cells by binding to a G protein-coupled opioid receptor, initiating intracellular signaling cascades, such as protein kinase, phosphatidylinositol 3-kinase, and extracellular receptor kinase pathways. This results in several downstream effects, including decreased levels of the reduced form of glutathione (GSH) and elevated oxidative stress, as well as epigenetic changes, especially in retrotransposons and heterochromatin, although the mechanism and consequences of these actions are unclear. We characterized the acute and long-term influence of morphine on redox and methylation status (including DNA methylation levels) in cultured neuronal SH-SY5Y cells. Acting via μ-opioid receptors, morphine inhibits excitatory amino acid transporter type 3-mediated cysteine uptake via multiple signaling pathways, involving different G proteins and protein kinases in a temporal manner. Decreased cysteine uptake was associated with decreases in both the redox and methylation status of neuronal cells, as defined by the ratios of GSH to oxidized forms of glutathione and S-adenosylmethionine to S-adenosylhomocysteine levels, respectively. Further, morphine induced global DNA methylation changes, including CpG sites in long interspersed nuclear elements (LINE-1) retrotransposons, resulting in increased LINE-1 mRNA. Together, these findings illuminate the mechanism by which morphine, and potentially other opioids, can influence neuronal-cell redox and methylation status including DNA methylation. Since epigenetic changes are implicated in drug addiction and tolerance phenomenon, this study could potentially extrapolate to elucidate a novel mechanism of action for other drugs of abuse.
Collapse
Affiliation(s)
- Malav Trivedi
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (M.T., J.S., N.H., R.D.); Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida (R.D.); and Department of Environmental Epidemiology, Harvard School of Public Health, Boston, Massachusetts (H.-M.B.)
| | | | | | | | | |
Collapse
|
35
|
Raymond LJ, Deth RC, Ralston NVC. Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology. AUTISM RESEARCH AND TREATMENT 2014; 2014:164938. [PMID: 24734177 PMCID: PMC3966422 DOI: 10.1155/2014/164938] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
Autism and autism spectrum disorders (ASDs) are behaviorally defined, but the biochemical pathogenesis of the underlying disease process remains uncharacterized. Studies indicate that antioxidant status is diminished in autistic subjects, suggesting its pathology is associated with augmented production of oxidative species and/or compromised antioxidant metabolism. This suggests ASD may result from defects in the metabolism of cellular antioxidants which maintain intracellular redox status by quenching reactive oxygen species (ROS). Selenium-dependent enzymes (selenoenzymes) are important in maintaining intercellular reducing conditions, particularly in the brain. Selenoenzymes are a family of ~25 genetically unique proteins, several of which have roles in preventing and reversing oxidative damage in brain and endocrine tissues. Since the brain's high rate of oxygen consumption is accompanied by high ROS production, selenoenzyme activities are particularly important in this tissue. Because selenoenzymes can be irreversibly inhibited by many electrophiles, exposure to these organic and inorganic agents can diminish selenoenzyme-dependent antioxidant functions. This can impair brain development, particularly via the adverse influence of oxidative stress on epigenetic regulation. Here we review the physiological roles of selenoproteins in relation to potential biochemical mechanisms of ASD etiology and pathology.
Collapse
Affiliation(s)
- Laura J. Raymond
- Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202, USA
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nicholas V. C. Ralston
- Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202, USA
| |
Collapse
|
36
|
Abstract
While autism is still a mysterious developmental disorder, expansion of research efforts over the past 10 to 15 years has yielded a number of important clues implicating both genetic and environmental factors. We can now assert with a measure of confidence that contemporary autism reflects the combined impact of multiple environmental factors on the processes that regulate development in genetically vulnerable individuals. Since epigenetic regulation of gene expression is acknowledged as the most critical factor in development and DNA methylation (the addition of a carbon atom at discrete locations) is the fundamental event for epigenetic regulation, dysfunctional methylation can be considered as a likely cause of autism. Since methylation activity is highly sensitive to oxidative stress (an abnormal redox state) and many environmental factors promote oxidative stress, we have proposed a redox/methylation hypothesis for autism causation. The narrative herein describes the evolution of this hypothesis, which is essentially a series of linked discoveries about how the brain uniquely relies on oxidation and methylation to guide its development and to carry out its cognitive functions.
Collapse
Affiliation(s)
- Richard C Deth
- Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
37
|
Carocci A, Rovito N, Sinicropi MS, Genchi G. Mercury toxicity and neurodegenerative effects. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 229:1-18. [PMID: 24515807 DOI: 10.1007/978-3-319-03777-6_1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most important mechanism by which mercury causes toxicity appears to bemitochondrial damage via depletion of GSH (Nicole et a!. 1998), coupled with binding to thiol groups ( -SH), which generates free radicals. Mercury has a high affinity for thiol groups ( -SH) and seleno groups ( -SeH) that are present in amino acids as cysteine and N-acetyl cysteine, lipoic acid, proteins, and enzymes. N-acetylcysteine and cysteine are precursors for the biosynthesis of GSH, which is among the most powerful intracellular antioxidants available to protect against oxidative stress and inflammation.Mercury and methylmercury induce mitochondrial dysfunction, which reduces ATP synthesis and increases lipid, protein and DNA peroxidation. The content of metallothioneines, GSH, selenium and fish high in omega-3 fatty acids appear to be strongly related with degree of inorganic and organic mercury toxicity, and with the protective detoxifying mechanisms in humans. In conclusion, depletion of GSH,breakage of mitochondria, increased lipid peroxidation, and oxidation of proteins and DNA in the brain, induced by mercury and his salts, appear to be important factors in conditions such as ALS and AD (Bains and Shaw 1997; Nicole eta!. 1998;Spencer eta!. 1998; Alberti et a!. 1999).
Collapse
Affiliation(s)
- Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro", Bari, 70125, Italia
| | | | | | | |
Collapse
|
38
|
Elshihawy H, Helal MA, Said M, Hammad MA. Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors. Bioorg Med Chem 2013; 22:550-8. [PMID: 24268539 DOI: 10.1016/j.bmc.2013.10.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022]
Abstract
Methionine synthase catalyzes the transfer of a methyl group from 5-methyltetrahydrofolate to homocysteine, producing methionine and tetrahydrofolate. Benzimidazole and deazatetrahydrofolates derivatives have been shown to inhibit methionine synthase by competing with the substrate 5-methyltetrahydrofolate. In this study, a novel series of substituted benzimidazoles and quinoxalines were designed and assessed for inhibitory activity against purified rat liver methionine synthase using a radiometric enzyme assay. Compounds 3g, 3j, and 5c showed the highest activity against methionine synthase (IC₅₀: 20 μM, 18 μM, 9 μM, respectively). Kinetic analysis of these compounds using Lineweaver-Burk plots revealed characteristics of mixed inhibition for 3g and 5c; and uncompetitive inhibition for 3j. Docking study into a homology model of the rat methionine synthase gave insights into the molecular determinants of the activity of this class of compounds. The identification of these drug-like inhibitors could lead the design of the next generation modulators of methionine synthase.
Collapse
Affiliation(s)
- Hosam Elshihawy
- Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed A Helal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Said
- Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed A Hammad
- Eli & Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, BCC 505, Los Angeles, CA 90033, USA.
| |
Collapse
|
39
|
Senut MC, Cingolani P, Sen A, Kruger A, Shaik A, Hirsch H, Suhr ST, Ruden D. Epigenetics of early-life lead exposure and effects on brain development. Epigenomics 2013; 4:665-74. [PMID: 23244311 DOI: 10.2217/epi.12.58] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epigenetic machinery plays a pivotal role in the control of many of the body's key cellular functions. It modulates an array of pliable mechanisms that are readily and durably modified by intracellular or extracellular factors. In the fast-moving field of neuroepigenetics, it is emerging that faulty epigenetic gene regulation can have dramatic consequences on the developing CNS that can last a lifetime and perhaps even affect future generations. Mounting evidence suggests that environmental factors can impact the developing brain through these epigenetic mechanisms and this report reviews and examines the epigenetic effects of one of the most common neurotoxic pollutants of our environment, which is believed to have no safe level of exposure during human development: lead.
Collapse
Affiliation(s)
- Marie-Claude Senut
- Institute of Environmental Health Sciences, CS Mott Center for Human Health & Development & Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ceccatelli S, Bose R, Edoff K, Onishchenko N, Spulber S. Long-lasting neurotoxic effects of exposure to methylmercury during development. J Intern Med 2013; 273:490-7. [PMID: 23600401 DOI: 10.1111/joim.12045] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amongst environmental chemical contaminants, methylmercury (MeHg) remains a major concern because of its detrimental effects on developing organisms, which appear to be particularly susceptible to its toxicity. Here, we investigated the effects of low MeHg levels on the development of the nervous system using both in vitro and in vivo experimental models. In neural stem cells (NSCs), MeHg decreased proliferation and neuronal differentiation and induced cellular senescence associated with impairment in mitochondrial function and a concomitant decrease in global DNA methylation. Interestingly, the effects were heritable and could be observed in daughter NSCs never directly exposed to MeHg. By chronically exposing pregnant/lactating mice to MeHg, we found persistent behavioural changes in the male offspring, which exhibited depression-like behaviour that could be reversed by chronic treatment with the antidepressant fluoxetine. The behavioural alterations were associated with a decreased number of proliferating cells and lower expression of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampal dentate gyrus. MeHg exposure also induced long-lasting DNA hypermethylation, increased histone H3-K27 tri-methylation and decreased H3 acetylation at the Bdnf promoter IV, indicating that epigenetic mechanisms play a critical role in mediating the long-lasting effects of perinatal exposure to MeHg. Fluoxetine treatment restored the Bdnf mRNA expression levels, as well as the number of proliferating cells in the granule cell layer of the dentate gyrus, which further supports the hypothesis that links depression to impaired neurogenesis. Altogether, our findings have shown that low concentrations of MeHg induce long-lasting effects in NSCs that can potentially predispose individuals to depression, which we have reported earlier to occur in experimental animals exposed to MeHg during prenatal and early postnatal development.
Collapse
Affiliation(s)
- S Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Goodrich JM, Basu N, Franzblau A, Dolinoy DC. Mercury biomarkers and DNA methylation among Michigan dental professionals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:195-203. [PMID: 23444121 PMCID: PMC3750961 DOI: 10.1002/em.21763] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 05/19/2023]
Abstract
Modification of the epigenome may be a mechanism underlying toxicity and disease following chemical exposure. Animal and human data suggest that mercury (Hg) impacts DNA methylation. We hypothesize that methylmercury and inorganic Hg exposures from fish consumption and dental amalgams, respectively, may be associated with altered DNA methylation at global repetitive elements (long interspersed elements, LINE-1) and candidate genes related to epigenetic processes (DNMT1) and protection against Hg toxicity (SEPW1, SEPP1). Dental professionals were recruited at Michigan Dental Association (MDA) meetings in 2009 and 2010. Subjects (n=131) provided survey data (e.g. exposure sources, demographics) and biological samples for Hg measurement and epigenetic analysis. Total Hg was quantified via atomic absorption spectrophotometry in hair and urine, indicative of methylmercury and inorganic Hg exposures, respectively. Global repetitive and candidate gene methylation was quantified via pyrosequencing of bisulfite converted DNA isolated from buccal mucosa. Hair Hg (geometric mean (95% CI): 0.37 (0.31-0.44) µg/g) and urine Hg (0.70 (0.60-0.83) µg/L) were associated with sources of exposure (fish consumption and dental amalgams, respectively). Multivariable linear regression revealed a trend of SEPP1 hypomethylation with increasing hair Hg levels, and this was significant (P<0.05) among males. The trend remained when excluding non-dentists. No significant relationships between urine Hg and DNA methylation were observed. Thus, in a limited cohort, we identified an association between methylmercury exposure and hypomethylation of a potentially labile region of the genome (SEPP1 promoter), and this relationship was gender specific.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
| | | | | | | |
Collapse
|
42
|
Kim H, Kim KN, Hwang JY, Ha EH, Park H, Ha M, Kim Y, Hong YC, Chang N. Relation between serum folate status and blood mercury concentrations in pregnant women. Nutrition 2013; 29:514-8. [DOI: 10.1016/j.nut.2012.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/26/2012] [Accepted: 08/26/2012] [Indexed: 11/29/2022]
|
43
|
Muratore CR, Hodgson NW, Trivedi MS, Abdolmaleky HM, Persico AM, Lintas C, De La Monte S, Deth RC. Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism. PLoS One 2013; 8:e56927. [PMID: 23437274 PMCID: PMC3577685 DOI: 10.1371/journal.pone.0056927] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
The folate and vitamin B12-dependent enzyme methionine synthase (MS) is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin) from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Christina R. Muratore
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Nathaniel W. Hodgson
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Malav S. Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Hamid M. Abdolmaleky
- Genetics Program, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Antonio M. Persico
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Carla Lintas
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Suzanne De La Monte
- Department of Medicine and Pathology, Rhode Island Hospital and Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
ALI BH, BEEGAM S, AL-LAWATI I, WALY MI, AL ZA'ABI M, NEMMAR A. Comparative Efficacy of Three Brands of Gum Acacia on Adenine-Induced Chronic Renal Failure in Rats. Physiol Res 2013; 62:47-56. [DOI: 10.33549/physiolres.932383] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gum acacia (GA) is used in pharmaceutical, cosmetic and food industries as an emulsifier and stabilizer, and in some countries in the traditional treatment of patients with chronic kidney disease (CKD). We have previously found that GA ameliorates adenine -induced chronic renal failure (CRF) in rats. Different brands of GA are commercially available, but their comparative efficacy against adenine-induced CKD is unknown. Here, we explored the effects of three different brands of GA (Sudanese GA, SupergumTM and GA from BDH) on some physiological, biochemical, and histological effects of adenine-induced CRF in rats. Adenine (0.75 %, w/w in feed, four weeks) reduced body weight, and increased urine output. It also induced significant increases in blood pressure, and in creatinine, urea, several inflammatory cytokines in plasma, and indices of oxidative stress, and caused histological damage in kidneys. Treatment of rats concomitantly with any of the three GA brands, significantly, and to a broadly similar extent, mitigated all the signs of CRF. The results suggested equivalent efficacy of these brands in antagonizing the CRF in this animal model. However, to enable standardization of different brands between laboratories, the use of the chemically well-characterized GA preparation (such as SupergumTM) is recommended.
Collapse
Affiliation(s)
- B. H. ALI
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Al Khod, Oman
| | | | | | | | | | | |
Collapse
|
45
|
Lee YM, Lee MK, Bae SG, Lee SH, Kim SY, Lee DH. Association of homocysteine levels with blood lead levels and micronutrients in the US general population. J Prev Med Public Health 2012; 45:387-93. [PMID: 23230469 PMCID: PMC3514469 DOI: 10.3961/jpmph.2012.45.6.387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/10/2012] [Indexed: 11/28/2022] Open
Abstract
Objectives Even though several epidemiological studies have observed positive associations between blood lead levels and homocysteine, no study has examined whether this association differs by the levels of micronutrients, such as folate, vitamin B6, and vitamin B12, which are involved in the metabolism of homocysteine. In this study, we examined the interactions between micronutrients and blood lead on homocysteine levels. Methods This study was performed with 4089 adults aged ≥20 years old in the US general population using the National Health and Nutrition Examination Survey 2003-2004. Results There were significant or marginally significant interactions between micronutrients and blood lead levels on mean homocysteine levels. Positive associations between blood lead and homocysteine were clearly observed among subjects with low levels of folate or low vitamin B6 (p-trend <0.01, respectively). However, in the case of vitamin B12, there was a stronger positive association between blood lead and homocysteine among subjects with high levels of vitamin B12, compared to those with low levels of vitamin B12. In fact, the levels of homocysteine were already high among subjects low in vitamin B12, irrespective of blood lead levels. When we used hyperhomocysteinemia (homocysteine>15 µmol/L) as the outcome, there were similar patterns of interaction, though p-values for each interaction failed to reach statistical significance. Conclusions In the current study, the association between blood lead and homocysteine differed based on the levels of folate, vitamin B6, or vitamin B12 present in the blood. It may be important to keep sufficient levels of these micronutrients to prevent the possible harmful effects of lead exposure on homocysteine levels.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Waly MI, Guizani N, Ali A, Rahman MS. Papaya epicarp extract protects against aluminum-induced neurotoxicity. Exp Biol Med (Maywood) 2012; 237:1018-22. [PMID: 22956622 DOI: 10.1258/ebm.2012.012168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In a previous study, we demonstrated the ability of papaya epicarp extract (PEE) to protect against oxidative stress-induced insult in human SH-SY5Y neuronal cells in a mechanism that appeared to be by means of PEE potent antioxidant properties. To further understand this relationship, we examined the effect of PEE intervention on aluminum (Al)-induced cytotoxicity in SH-SY5Y cells. The results indicated that PEE was effective in protecting against Al-induced cell death in a dose-dependent manner. PEE restored the Al-induced inhibition of folate-dependent methionine synthase activity and the antioxidant enzymes (catalase, glutathione peroxidases and superoxide dismutase). PEE ameliorated the Al-induced impairment of intracellular glutathione and total antioxidant capacity. Together, these findings indicate that PEE supplementation can play a neuroprotective role in ameliorating the changes in redox status of SH-SY5Y cells exposed to Al, a well-known environmental toxin that is involved in the pathogenesis of neurodegenerative diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mostafa I Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Koud-123, Muscat, Sultanate of Oman.
| | | | | | | |
Collapse
|
48
|
Modulatory effects of vitamin E, acetyl-l-carnitine and α-lipoic acid on new potential biomarkers for Alzheimer's disease in rat model. ACTA ACUST UNITED AC 2012; 64:549-56. [DOI: 10.1016/j.etp.2010.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/12/2010] [Indexed: 02/01/2023]
|
49
|
Bose R, Onishchenko N, Edoff K, Janson Lang AM, Ceccatelli S. Inherited effects of low-dose exposure to methylmercury in neural stem cells. Toxicol Sci 2012; 130:383-90. [PMID: 22918959 DOI: 10.1093/toxsci/kfs257] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Methylmercury (MeHg) is an environmental contaminant with recognized neurotoxic effects, particularly to the developing nervous system. In the present study, we show that nanomolar concentrations of MeHg can induce long-lasting effects in neural stem cells (NSCs). We investigated short-term direct and long-term inherited effects of exposure to MeHg (2.5 or 5.0 nM) using primary cultures of rat embryonic cortical NSCs. We found that MeHg had no adverse effect on cell viability but reduced NSC proliferation and altered the expression of cell cycle regulators (p16 and p21) and senescence-associated markers. In addition, we demonstrated a decrease in global DNA methylation in the exposed cells, indicating that epigenetic changes may be involved in the mechanisms underlying the MeHg-induced effects. These changes were observed in cells directly exposed to MeHg (parent cells) and in their daughter cells cultured under MeHg-free conditions. In agreement with our in vitro data, a trend was found for decreased cell proliferation in the subgranular zone in the hippocampi of adult mice exposed to low doses of MeHg during the perinatal period. Interestingly, this impaired proliferation had a measurable impact on the total number of neurons in the hippocampal dentate gyrus. Importantly, this effect could be reversed by chronic antidepressant treatment. Our study provides novel evidence for programming effects induced by MeHg in NSCs and supports the idea that developmental exposure to low levels of MeHg may result in long-term consequences predisposing to neurodevelopmental disorders and/or neurodegeneration.
Collapse
Affiliation(s)
- Raj Bose
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|