1
|
Mattei D, Guneykaya D, Ugursu B, Buonfiglioli A. From womb to world: The interplay between maternal immune activation, neuroglia, and neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:269-285. [PMID: 40148048 DOI: 10.1016/b978-0-443-19102-2.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
This chapter introduces and discusses maternal immune activation (MIA) as a contributing factor in increasing the risk of neurodevelopmental disorders, particularly in relation to its interactions with neuroglia. Here we first provide an overview of the neuroglia-astroglia, oligodendroglia, microglia, and radial glial cells-and their important role during early brain development and in adulthood. We then present and discuss MIA, followed by a critical overview of inflammatory molecules and temporal stages associated to maternal inflammation during pregnancy. We provide an overview of animal and human models used to mimic and study MIA. Furthermore, we review the possible interaction between MIA and neuroglia, focusing on the current advances in both modeling and therapeutics. Additionally, we discuss and provide preliminary and interesting insights into the most recent pandemic, COVID-19, and how the infection may be associated to MIA and increased risk for neurodevelopmental disorders. Finally, we provide a critical overview of challenges and future opportunities to study how MIA may contribute to higher risk of developing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniele Mattei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
| | - Dilansu Guneykaya
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bilge Ugursu
- Department of Psychoneuroimmunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
2
|
K M M, Ghosh P, Nagappan K, Palaniswamy DS, Begum R, Islam MR, Tagde P, Shaikh NK, Farahim F, Mondal TK. From Gut Microbiomes to Infectious Pathogens: Neurological Disease Game Changers. Mol Neurobiol 2025; 62:1184-1204. [PMID: 38967904 DOI: 10.1007/s12035-024-04323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Gut microbiota and infectious diseases affect neurological disorders, brain development, and function. Compounds generated in the gastrointestinal system by gut microbiota and infectious pathogens may mediate gut-brain interactions, which may circulate throughout the body and spread to numerous organs, including the brain. Studies shown that gut bacteria and disease-causing organisms may pass molecular signals to the brain, affecting neurological function, neurodevelopment, and neurodegenerative diseases. This article discusses microorganism-producing metabolites with neuromodulator activity, signaling routes from microbial flora to the brain, and the potential direct effects of gut bacteria and infectious pathogens on brain cells. The review also considered the neurological aspects of infectious diseases. The infectious diseases affecting neurological functions and the disease modifications have been discussed thoroughly. Recent discoveries and unique insights in this perspective need further validation. Research on the complex molecular interactions between gut bacteria, infectious pathogens, and the CNS provides valuable insights into the pathogenesis of neurodegenerative, behavioral, and psychiatric illnesses. This study may provide insights into advanced drug discovery processes for neurological disorders by considering the influence of microbial communities inside the human body.
Collapse
Affiliation(s)
- Muhasina K M
- Department of Pharmacognosy, JSS College of Pharmacy, Ooty, Tamil Nadu, 643001, India.
| | - Puja Ghosh
- Department of Pharmacognosy, JSS College of Pharmacy, Ooty, Tamil Nadu, 643001, India
| | - Krishnaveni Nagappan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, Ooty, Tamil Nadu, 643001, India
| | | | - Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Md Rabiul Islam
- Tennessee State University Chemistry department 3500 John A Merritt Blvd, Nashville, TN, 37209, USA
| | - Priti Tagde
- PRISAL(Pharmaceutical Royal International Society), Branch Office Bhopal, Bhopal, Madhya Pradesh, 462042, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M, Padalia Pharmacy College, Navapura, Ahmedabad, 382 210, Gujarat, India
| | - Farha Farahim
- Department of Nursing, King Khalid University, Abha, 61413, Kingdom of Saudi Arabia
| | | |
Collapse
|
3
|
Khosroshahi PA, Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111081. [PMID: 39002925 DOI: 10.1016/j.pnpbp.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a complex psychiatric disorder, and genetic and environmental factors have been implicated in its development. Dysregulated glutamatergic and dopaminergic transmission pathways are involved in schizophrenia development. Besides genetic mutations, epigenetic dysregulation has a considerable role in dysregulating molecular pathways involved in schizophrenia. MicroRNAs (miRNAs) are small, non-coding RNAs that target specific mRNAs and inhibit their translation into proteins. As epigenetic factors, miRNAs regulate many genes involved in glutamate and dopamine signaling pathways; thereby, their dysregulation can contribute to the development of schizophrenia. Secretion of specific miRNAs from damaged cells into body fluids can make them one of the ideal non-invasive biomarkers in the early diagnosis of schizophrenia. Also, understanding the molecular mechanisms of miRNAs in schizophrenia pathogenesis can pave the way for developing novel treatments for patients with schizophrenia. In this study, we reviewed the glutamatergic and dopaminergic pathophysiology and highlighted the role of miRNA dysregulation in schizophrenia development. Besides, we shed light on the significance of circulating miRNAs for schizophrenia diagnosis and the recent findings on the miRNA-based treatment for schizophrenia.
Collapse
Affiliation(s)
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Chamera K, Curzytek K, Kamińska K, Leśkiewicz M, Basta-Kaim A. Prenatal Immune Challenge Differentiates the Effect of Aripiprazole and Risperidone on CD200-CD200R and CX3CL1-CX3CR1 Dyads and Microglial Polarization: A Study in Organotypic Cortical Cultures. Life (Basel) 2024; 14:721. [PMID: 38929704 PMCID: PMC11205240 DOI: 10.3390/life14060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the expression of the Cd200-Cd200r and Cx3cl1-Cx3cr1 axes, which are crucial for the regulation of microglial activity and interactions of these cells with neurons. Additionally, we evaluated the impact of these drugs on microglial pro- and anti-inflammatory markers (Cd40, Il-1β, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-β) and cytokine release (IL-6, IL-10). The research was executed in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those exposed to maternal immune activation (MIA OCCs), which allows for the exploration of schizophrenia-like disturbances in animals. All experiments were performed under basal conditions and after additional stimulation with lipopolysaccharide (LPS), following the "two-hit" hypothesis of schizophrenia. We found that MIA diminished the mRNA level of Cd200r and affected the OCCs' response to additional LPS exposure in terms of this parameter. LPS downregulated the Cx3cr1 expression and profoundly changed the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Risperidone increased Cd200 expression in MIA OCCs, while aripiprazole treatment elevated the gene levels of the Cx3cl1-Cx3cr1 dyad in control OCCs. The antipsychotics limited the LPS-generated increase in the expression of proinflammatory factors (Il-1β and Il-6) and enhanced the mRNA levels of anti-inflammatory components (Cd206 and Tgf-β) of microglial polarization, mostly in the absence of the MIA procedure. Finally, we observed a more pronounced modulating impact of aripiprazole on the expression of pro- and anti-inflammatory cytokines when compared to risperidone in MIA OCCs. In conclusion, our data suggest that MIA might influence microglial activation and crosstalk of microglial cells with neurons, whereas aripiprazole and risperidone could beneficially affect these changes in OCCs.
Collapse
Affiliation(s)
| | | | | | | | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| |
Collapse
|
5
|
Papadakis S, Thompson JR, Feczko E, Miranda-Dominguez O, Dunn GA, Selby M, Mitchell AJ, Sullivan EL, Fair DA. Perinatal Western-style diet exposure associated with decreased microglial counts throughout the arcuate nucleus of the hypothalamus in Japanese macaques. J Neurophysiol 2024; 131:241-260. [PMID: 38197176 PMCID: PMC11286309 DOI: 10.1152/jn.00213.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Perinatal exposure to a high-fat, high-sugar Western-style diet (WSD) is associated with altered neural circuitry in the melanocortin system. This association may have an underlying inflammatory component, as consumption of a WSD during pregnancy can lead to an elevated inflammatory environment. Our group previously demonstrated that prenatal WSD exposure was associated with increased markers of inflammation in the placenta and fetal hypothalamus in Japanese macaques. In this follow-up study, we sought to determine whether this heightened inflammatory state persisted into the postnatal period, as prenatal exposure to inflammation has been shown to reprogram offspring immune function and long-term neuroinflammation would present a potential means for prolonged disruptions to microglia-mediated neuronal circuit formation. Neuroinflammation was approximated in 1-yr-old offspring by counting resident microglia and peripherally derived macrophages in the region of the hypothalamus examined in the fetal study, the arcuate nucleus (ARC). Microglia and macrophages were immunofluorescently stained with their shared marker, ionized calcium-binding adapter molecule 1 (Iba1), and quantified in 11 regions along the rostral-caudal axis of the ARC. A mixed-effects model revealed main effects of perinatal diet (P = 0.011) and spatial location (P = 0.003) on Iba1-stained cell count. Perinatal WSD exposure was associated with a slight decrease in the number of Iba1-stained cells, and cells were more densely located in the center of the ARC. These findings suggest that the heightened inflammatory state experienced in utero does not persist postnatally. This inflammatory response trajectory could have important implications for understanding how neurodevelopmental disorders progress.NEW & NOTEWORTHY Prenatal Western-style diet exposure is associated with increased microglial activity in utero. However, we found a potentially neuroprotective reduction in microglia count during early postnatal development. This trajectory could inform the timing of disruptions to microglia-mediated neuronal circuit formation. Additionally, this is the first study in juvenile macaques to characterize the distribution of microglia along the rostral-caudal axis of the arcuate nucleus of the hypothalamus. Nearby neuronal populations may be greater targets during inflammatory insults.
Collapse
Affiliation(s)
- Samantha Papadakis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States
| | - Jacqueline R Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Oscar Miranda-Dominguez
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Matthew Selby
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Elinor L Sullivan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
6
|
Bi M, Liu C, Wang Y, Liu SJ. Therapeutic Prospect of New Probiotics in Neurodegenerative Diseases. Microorganisms 2023; 11:1527. [PMID: 37375029 DOI: 10.3390/microorganisms11061527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing clinical and preclinical evidence implicates gut microbiome (GM) dysbiosis as a key susceptibility factor for neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). In recent years, neurodegenerative diseases have been viewed as being driven not solely by defects in the brain, and the role of GM in modulating central nervous system function via the gut-brain axis has attracted considerable interest. Encouraged by current GM research, the development of new probiotics may lead to tangible impacts on the treatment of neurodegenerative disorders. This review summarizes current understandings of GM composition and characteristics associated with neurodegenerative diseases and research demonstrations of key molecules from the GM that affect neurodegeneration. Furthermore, applications of new probiotics, such as Clostridium butyricum, Akkermansia muciniphila, Faecalibacterium prausnitzii, and Bacteroides fragilis, for the remediation of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Mingxia Bi
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Chang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulin Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Chamera K, Curzytek K, Kamińska K, Trojan E, Leśkiewicz M, Tylek K, Regulska M, Basta-Kaim A. Insights into the Potential Impact of Quetiapine on the Microglial Trajectory and Inflammatory Response in Organotypic Cortical Cultures Derived from Rat Offspring. Biomedicines 2023; 11:biomedicines11051405. [PMID: 37239076 DOI: 10.3390/biomedicines11051405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Atypical antipsychotics currently constitute the first-line medication for schizophrenia, with quetiapine being one of the most commonly prescribed representatives of the group. Along with its specific affinity for multiple receptors, this compound exerts other biological characteristics, among which anti-inflammatory effects are strongly suggested. Simultaneously, published data indicated that inflammation and microglial activation could be diminished by stimulation of the CD200 receptor (CD200R), which takes place by binding to its ligand (CD200) or soluble CD200 fusion protein (CD200Fc). Therefore, in the present study, we sought to evaluate whether quetiapine could affect certain aspects of microglial activity, including the CD200-CD200R and CX3CL1-CX3CR1 axes, which are involved in the regulation of neuron-microglia interactions, as well as the expression of selected markers of the pro- and anti-inflammatory profile of microglia (Cd40, Il-1β, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-β). Concurrently, we examined the impact of quetiapine and CD200Fc on the IL-6 and IL-10 protein levels. The abovementioned aspects were investigated in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those subjected to maternal immune activation (MIA OCCs), which is a widely implemented approach to explore schizophrenia-like disturbances in animals. The experiments were performed under basal conditions and after additional exposure to the bacterial endotoxin lipopolysaccharide (LPS), according to the "two-hit" hypothesis of schizophrenia. The results of our research revealed differences between control and MIA OCCs under basal conditions and in response to treatment with LPS in terms of lactate dehydrogenase and nitric oxide release as well as Cd200r, Il-1β, Il-6 and Cd206 expression. The additional stimulation with the bacterial endotoxin resulted in a notable change in the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Quetiapine diminished the influence of LPS on Il-1β, Il-6, Cebpb and Arg1 expression in control OCCs as well as on IL-6 and IL-10 levels in MIA OCCs. Moreover, CD200Fc reduced the impact of the bacterial endotoxin on IL-6 production in MIA OCCs. Thus, our results demonstrated that quetiapine, as well as the stimulation of CD200R by CD200Fc, beneficially affected LPS-induced neuroimmunological changes, including microglia-related activation.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Katarzyna Curzytek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Kinga Kamińska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Kinga Tylek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Magdalena Regulska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| |
Collapse
|
8
|
Miller BJ, Lemos H, Schooler NR, Goff DC, Kopelowicz A, Lauriello J, Manschreck T, Mendelowitz A, Miller DD, Severe JB, Wilson DR, Ames D, Bustillo J, Kane JM, Rapaport MH, Buckley PF. Longitudinal study of inflammation and relapse in schizophrenia. Schizophr Res 2023; 252:88-95. [PMID: 36634452 PMCID: PMC9974903 DOI: 10.1016/j.schres.2022.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/16/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The clinical course of schizophrenia is often characterized by recurrent relapses. Blood inflammatory markers are altered in acute psychosis, and may be state markers for illness relapse in schizophrenia. Few studies have investigated longitudinal, intra-individual changes in inflammatory markers as a predictor of relapse. In the present study, we explored this association in a relapse prevention trial in patients with schizophrenia. METHODS We analyzed blood inflammatory markers in 200 subjects, with a mean 11 samples per subject, during the 30 month Preventing Relapse in schizophrenia: Oral Antipsychotics Compared to Injectable: eValuating Efficacy (PROACTIVE) trial. Associations between longitudinal changes in inflammatory markers and relapse were analyzed using a within-subjects design. RESULTS 70 (35 %) of subjects relapsed during the study period. There were no significant differences in mean inflammatory marker levels based on relapse status (yes/no). Baseline levels of inflammatory markers did not predict incident relapse. Among subjects who relapsed, there was a significant decrease in mean blood IL-6 (n = 38, p = 0.019) and IFN-γ (n = 44, p = 0.012) levels from the visit before the relapse to the visit after relapse. CONCLUSION Although there was some evidence for inflammation as a potential state marker for acute psychosis, we did not find significant evidence for its utility as a relapse-predictive marker.
Collapse
Affiliation(s)
- Brian J Miller
- Department of Psychiatry, Augusta University, Augusta, GA, United States.
| | - Henrique Lemos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Donald C Goff
- Nathan Kline Institute, Orangeburg, NY, United States
| | - Alexander Kopelowicz
- David Geffen School of Medicine at University of California-Los Angeles, CA, United States
| | - John Lauriello
- University of Missouri, Columbia School of Medicine, Columbia, MO, United States
| | - Theo Manschreck
- Harvard Medical School, Corrigan MH Center, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Alan Mendelowitz
- Feinstein Institute for Medical Research, The Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Del D Miller
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | | | - Daniel R Wilson
- Western University of Health Sciences, Pomona, CA, United States
| | - Donna Ames
- David Geffen School of Medicine at University of California-Los Angeles, CA, United States
| | - Juan Bustillo
- University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - John M Kane
- Feinstein Institute for Medical Research, The Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Mark H Rapaport
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Peter F Buckley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Quetiapine Ameliorates MIA-Induced Impairment of Sensorimotor Gating: Focus on Neuron-Microglia Communication and the Inflammatory Response in the Frontal Cortex of Adult Offspring of Wistar Rats. Cells 2022; 11:cells11182788. [PMID: 36139363 PMCID: PMC9496681 DOI: 10.3390/cells11182788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The maternal immune activation produced by the systemic administration of lipopolysaccharide (LPS) in rats provides valuable insights into the basis of behavioural schizophrenia-like disturbances and biochemical changes in the brains of the offspring, such as microglial activation. Regarding therapy, antipsychotics continually constitute the cornerstone of schizophrenia treatment. To their various efficacy and side effects, as well as not fully recognised mechanisms of action, further characteristics have been suggested, including an anti-inflammatory action via the impact on neuron–microglia axes responsible for inhibition of microglial activation. Therefore, in the present study, we sought to determine whether chronic treatment with chlorpromazine, quetiapine or aripiprazole could influence schizophrenia-like behavioural disturbances at the level of sensorimotor gating in male offspring prenatally exposed to LPS. Simultaneously, we wanted to explore if the chosen antipsychotics display a positive impact on the neuroimmunological parameters in the brains of these adult animals with a special focus on the ligand-receptor axes controlling neuron–microglia communication as well as pro- and anti-inflammatory factors related to the microglial activity. The results of our research revealed the beneficial effect of quetiapine on deficits in sensorimotor gating observed in prenatally LPS-exposed offspring. In terms of axes controlling neuron–microglia communication and markers of microglial reactivity, we observed a subtle impact of quetiapine on hippocampal Cx3cl1 and Cx3cr1 levels, as well as cortical Cd68 expression. Hence, further research is required to fully define and explain the involvement of quetiapine and other antipsychotics in Cx3cl1-Cx3cr1 and/or Cd200-Cd200r axes modulation and inflammatory processes in the LPS-based model of schizophrenia-like disturbances.
Collapse
|
10
|
Oh-Nishi A, Nagai Y, Seki C, Suhara T, Minamimoto T, Higuchi M. Imaging extra-striatal dopamine D2 receptors in a maternal immune activation rat model. Brain Behav Immun Health 2022; 22:100446. [PMID: 35496774 PMCID: PMC9043973 DOI: 10.1016/j.bbih.2022.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
Maternal immune activation (MIA) is a risk factor for schizophrenia in the offspring. MIA in pregnant rodents can be induced by injection of synthetic polyriboinosinic-polyribocytidilic acid (Poly I:C), which causes decreased striatal dopamine D2 receptor (D2R) expression and behavioral dysfunction mediated by the dopaminergic system in the offspring. However, previous studies did not determine whether Poly I:C induced cortical dopamine D2R abnormality in an MIA rat model. In this study, we performed micro-positron emission tomography (micro-PET) in vivo imaging and ex vivo neurochemical analyses of cortical D2Rs in MIA. In the micro-PET analyses, the anterior cingulate cortex (ACC) region in the offspring showed significantly reduced binding potential for [11C]FLB457, a high affinity radio-ligand toward D2Rs. Neurochemical analysis showed reduction of D2Rs and augmentation of dopamine turnover in the ACC of the rat offspring. Thus, MIA induces dopaminergic dysfunction in the ACC of offspring, similar to the neuronal pathology reported in patients with schizophrenia. Maternal immune activation (MIA) is a risk factor for schizophrenia. Improving extra-striatal Dopamine D2 receptors(D2Rs) thought to be important for the treatment of schizophrenia. In vivo imaging showed that the anterior cingulate cortex region in MIA model rat had reduced D2Rs density. The findings were similar to those of several publications regarding patients with schizophrenia.
Collapse
Affiliation(s)
- Arata Oh-Nishi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
- Division of Immune-Neuropsychiatry, Faculty of Medicine, Shimane University, Shimane, 693-8501, Japan
- RESVO Inc., Kawasaki, 210-007, Japan
- Corresponding author. Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555 Japan.
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
11
|
Abstract
Innate and adaptive immunity are essential for neurodevelopment and central nervous system (CNS) homeostasis; however, the fragile equilibrium between immune and brain cells can be disturbed by any immune dysregulation and cause detrimental effects. Accumulating evidence indicates that, despite the blood-brain barrier (BBB), overactivation of the immune system leads to brain vulnerability that increases the risk of neuropsychiatric disorders, particularly upon subsequent exposure later in life. Disruption of microglial function in later life can be triggered by various environmental and psychological factors, including obesity-driven chronic low-grade inflammation and gut dysbiosis. Increased visceral adiposity has been recognized as an important risk factor for multiple neuropsychiatric conditions. The review aims to present our current understanding of the topic.
Collapse
|
12
|
Sun P, Su L, Zhu H, Li X, Guo Y, Du X, Zhang L, Qin C. Gut Microbiota Regulation and Their Implication in the Development of Neurodegenerative Disease. Microorganisms 2021; 9:microorganisms9112281. [PMID: 34835406 PMCID: PMC8621510 DOI: 10.3390/microorganisms9112281] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, human gut microbiota have become one of the most promising areas of microorganism research; meanwhile, the inter-relation between the gut microbiota and various human diseases is a primary focus. As is demonstrated by the accumulating evidence, the gastrointestinal tract and central nervous system interact through the gut–brain axis, which includes neuronal, immune-mediated and metabolite-mediated pathways. Additionally, recent progress from both preclinical and clinical studies indicated that gut microbiota play a pivotal role in gut–brain interactions, whereas the imbalance of the gut microbiota composition may be associated with the pathogenesis of neurological diseases (particularly neurodegenerative diseases), the underlying mechanism of which is insufficiently studied. This review aims to highlight the relationship between gut microbiota and neurodegenerative diseases, and to contribute to our understanding of the function of gut microbiota in neurodegeneration, as well as their relevant mechanisms. Furthermore, we also discuss the current application and future prospects of microbiota-associated therapy, including probiotics and fecal microbiota transplantation (FMT), potentially shedding new light on the research of neurodegeneration.
Collapse
Affiliation(s)
- Peilin Sun
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Hua Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Yaxi Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xiaopeng Du
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
- Correspondence: ; Tel.: +86-10-8777-8141
| |
Collapse
|
13
|
Notarangelo FM, Schwarcz R. A single prenatal lipopolysaccharide injection has acute, but not long-lasting, effects on cerebral kynurenine pathway metabolism in mice. Eur J Neurosci 2021; 54:5968-5981. [PMID: 34363411 DOI: 10.1111/ejn.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
In rodents, a single injection of lipopolysaccharide (LPS) during gestation causes chemical and functional abnormalities in the offspring. These effects may involve changes in the kynurenine pathway (KP) of tryptophan degradation and may provide insights into the pathophysiology of psychiatric diseases. Using CD1 mice, we examined acute and long-term effects of prenatal LPS treatment on the levels of kynurenine and its neuroactive downstream products kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and quinolinic acid. To this end, LPS (100 μg/kg, i.p.) was administered on gestational day 15, and KP metabolites were measured 4 and 24 h later or in adulthood. After 4 h, kynurenine, KYNA and 3-HK levels were elevated in the fetal brain, 3-HK and KYNA levels were increased in the maternal plasma, and kynurenine was increased in the maternal brain, whereas no changes were seen in the placenta. These effects were less prominent after 24 h, and prenatal LPS did not affect the basal levels of KP metabolites in the forebrain of adult animals. In addition, a second LPS injection (1 mg/kg) in adulthood in the offspring of prenatally saline- and LPS-treated mice caused a similar elevation in 3-HK levels in both groups after 24 h, but the effect was significantly more pronounced in male mice. Thus, acute immune activation during pregnancy has only short-lasting effects on KP metabolism and does not cause cerebral KP metabolites to be disproportionally affected by a second immune challenge in adulthood. However, prenatal KYNA elevations still contribute to functional abnormalities in the offspring.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci 2020; 21:717-731. [DOI: 10.1038/s41583-020-00381-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
|
15
|
Scarborough J, Mueller F, Arban R, Dorner-Ciossek C, Weber-Stadlbauer U, Rosenbrock H, Meyer U, Richetto J. Preclinical validation of the micropipette-guided drug administration (MDA) method in the maternal immune activation model of neurodevelopmental disorders. Brain Behav Immun 2020; 88:461-470. [PMID: 32278850 DOI: 10.1016/j.bbi.2020.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022] Open
Abstract
Pharmacological treatments in laboratory rodents remain a cornerstone of preclinical psychopharmacological research and drug development. There are numerous ways in which acute or chronic pharmacological treatments can be implemented, with each method having certain advantages and drawbacks. Here, we describe and validate a novel treatment method in mice, which we refer to as the micropipette-guided drug administration (MDA) procedure. This administration method is based on a sweetened condensed milk solution as a vehicle for pharmacological substances, which motivates the animals to consume vehicle and/or drug solutions voluntarily in the presence of the experimenter. In a proof-of-concept study, we show that the pharmacokinetic profiles of the atypical antipsychotic drug, risperidone, were similar whether administered via the MDA procedure or via the conventional oral gavage method. Unlike the latter, however, MDA did not induce the stress hormone, corticosterone. Furthermore, we assessed the suitability and validity of the MDA method in a mouse model of maternal immune activation, which is frequently used as a model of immune-mediated neurodevelopmental disorders. Using this model, we found that chronic treatment (>4 weeks, once per day) with risperidone via MDA led to a dose-dependent mitigation of MIA-induced social interaction deficits and amphetamine hypersensitivity. Taken together, the MDA procedure described herein represents a novel pharmacological administration method for per os treatments in mice that is easy to implement, cost effective, non-invasive, and less stressful for the animals than conventional oral gavage methods.
Collapse
Affiliation(s)
- Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Roberto Arban
- Boehringer-Ingelheim Pharma GmbH & Co KG, Dept. of CNS Discovery Research, Biberach, Germany
| | - Cornelia Dorner-Ciossek
- Boehringer-Ingelheim Pharma GmbH & Co KG, Dept. of CNS Discovery Research, Biberach, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Holger Rosenbrock
- Boehringer-Ingelheim Pharma GmbH & Co KG, Dept. of CNS Discovery Research, Biberach, Germany
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Dunn AL, Michie PT, Hodgson DM, Harms L. Adolescent cannabinoid exposure interacts with other risk factors in schizophrenia: A review of the evidence from animal models. Neurosci Biobehav Rev 2020; 116:202-220. [PMID: 32610181 DOI: 10.1016/j.neubiorev.2020.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Many factors and their interaction are linked to the aetiology of schizophrenia, leading to the development of animal models of multiple risk factors and adverse exposures. Differentiating between separate and combined effects for each factor could better elucidate schizophrenia pathology, and drive development of preventative strategies for high-load risk factors. An epidemiologically valid risk factor commonly associated with schizophrenia is adolescent cannabis use. The aim of this review is to evaluate how early-life adversity from various origins, in combination with adolescent cannabinoid exposure interact, and whether these interactions confer main, synergistic or protective effects in animal models of schizophrenia-like behavioural, cognitive and morphological alterations. Patterns emerge regarding which models show consistent synergistic or protective effects, particularly those models incorporating early-life exposure to maternal deprivation and maternal immune activation, and sex-specific effects are observed. It is evident that more research needs to be conducted to better understand the risks and alterations of interacting factors, with particular interest in sex differences, to better understand the translatability of these preclinical models to humans.
Collapse
Affiliation(s)
- Ariel L Dunn
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Patricia T Michie
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Lauren Harms
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
17
|
Santos-Toscano R, Ucha M, Borcel É, Ambrosio E, Higuera-Matas A. Maternal immune activation is associated with a lower number of dopamine receptor 3-expressing granulocytes with no alterations in cocaine reward, resistance to extinction or cue-induced reinstatement. Pharmacol Biochem Behav 2020; 193:172930. [PMID: 32294488 DOI: 10.1016/j.pbb.2020.172930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023]
Abstract
There is evidence for increased rates of drug use among schizophrenic patients. However, the causality in this relationship remains unclear. In the present work, we use a maternal immune activation model to test whether animals at high risk of developing a schizophrenia-like condition are more prone to acquire cocaine self-administration, show enhanced sensitivity to the reinforcing actions of cocaine or if they are resistant to extinction or vulnerable to relapse. Also, given that D3 and CB2 receptor expression in immune cells is altered in patients with schizophrenia, we examined the populations of immune cells expressing these receptors. Pregnant rats were daily injected with lipopolysaccharide (LPS) (2 mg/kg s.c.) or saline during pregnancy, and we tested prepulse inhibition -PPI- in the offspring. After this, one group of rats was submitted to cocaine self-administration (0.5 mg/kg) under fixed and progressive ratio schedules, dose-response testing, extinction and cue-induced drug-seeking. Another group was sacrificed to study the immune blood cells by flow cytometry. While rats born to LPS-treated mothers showed impaired PPI, there were no differences in cocaine self-administration acquisition, responsiveness to dose shifts, extinction or cue-induced reinstatement. Finally, there were fewer D3R+ granulocytes in the LPS-offspring and an exciting trend for CB2R+ lymphocytes to be more abundant in LPS-exposed rats. Our results indicate that the higher prevalence of cocaine abuse among people with schizophrenia is not due to a pre-existing pathology and suggest that D3R+ granulocytes and possibly CB2R+ lymphocytes could be potential biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Raquel Santos-Toscano
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Érika Borcel
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| |
Collapse
|
18
|
Lotter J, Möller M, Dean O, Berk M, Harvey BH. Studies on Haloperidol and Adjunctive α-Mangostin or Raw Garcinia mangostana Linn Pericarp on Bio-Behavioral Markers in an Immune-Inflammatory Model of Schizophrenia in Male Rats. Front Psychiatry 2020; 11:121. [PMID: 32296347 PMCID: PMC7136492 DOI: 10.3389/fpsyt.2020.00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a severe brain disorder that is associated with neurodevelopmental insults, such as prenatal inflammation, that introduce redox-immune-inflammatory alterations and risk for psychotic symptoms later in life. Nutraceuticals may offer useful adjunctive benefits. The aim of this study was to examine the therapeutic effects of Garcinia mangostana Linn (GML) and one of its active constituents, α-mangostin (AM), alone and as adjunctive treatment with haloperidol (HAL) on schizophrenia related bio-behavioral alterations in a maternal immune-activation (MIA) model. Sprague-Dawley dams were exposed to lipopolysaccharide (LPS) (n = 18) or vehicle (n = 3) on gestational days 15 and 16. Male offspring (n = 72) were treated from PND 52-66 with either vehicle, HAL (2 mg/kg), GML (50 mg/kg), HAL + GML, AM (20 mg/kg), or HAL + AM. Control dams and control offspring were treated with vehicle. In order to cover the mood-psychosis continuum, prepulse inhibition (PPI) of startle, open field test (locomotor activity), and the forced swim test (depressive-like behavior) were assessed on PND's 64-65, followed by assay of frontal-cortical lipid peroxidation and plasma pro-inflammatory cytokines, viz. interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α). MIA-induced deficits in sensorimotor gating were reversed by HAL and HAL + GML, but not GML and AM alone. MIA-induced depressive-like behavior was reversed by AM and GML alone and both in combination with HAL, with the combinations more effective than HAL. MIA-induced cortical lipid peroxidation was reversed by HAL and AM, with elevated IL-6 levels restored by GML, AM, HAL, and HAL + GML. Elevated TNF-α was only reversed by GML and HAL + GML. Concluding, prenatal LPS-induced psychotic- and depressive-like bio-behavioral alterations in offspring are variably responsive to HAL, GML, and AM, with depressive (but not psychosis-like) manifestations responding to GML, AM, and combinations with HAL. AM may be a more effective antioxidant than GML in vivo, although this does not imply an improved therapeutic response, for which trials are required.
Collapse
Affiliation(s)
- Jana Lotter
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Marisa Möller
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Olivia Dean
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Department of Psychiatry, The Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Brian H. Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
19
|
Hong J, Bang M. Anti-inflammatory Strategies for Schizophrenia: A Review of Evidence for Therapeutic Applications and Drug Repurposing. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:10-24. [PMID: 31958901 PMCID: PMC7006977 DOI: 10.9758/cpn.2020.18.1.10] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/12/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder with a substantial socioeconomic and humanistic burden. Currently available treatment strategies mostly rely on antipsychotic drugs, which block dopaminergic effects in the mesolimbic pathway of the brain. Although antipsychotic drugs help relieve psychotic symptoms, a definitive cure for schizophrenia has yet to be achieved. Recent advances in neuroinflammation research suggest that proinflammatory processes in the brain could cause alterations in neurobehavioral development and increase vulnerability to schizophrenia. With a growing need for novel strategies in the treatment of schizophrenia, it would be meaningful to review the current evidence supporting the therapeutic potential of anti-inflammatory strategies. This review details the key findings of clinical trials that investigate the efficacy of anti-inflammatory agents as adjuvants to antipsychotic treatment. We further discuss the possibilities of repurposing anti-inflammatory agents and developing novel strategies for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Jonghee Hong
- CHA University School of Medicine, Seongnam, Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
20
|
Aguilar-Valles A, Rodrigue B, Matta-Camacho E. Maternal Immune Activation and the Development of Dopaminergic Neurotransmission of the Offspring: Relevance for Schizophrenia and Other Psychoses. Front Psychiatry 2020; 11:852. [PMID: 33061910 PMCID: PMC7475700 DOI: 10.3389/fpsyt.2020.00852] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Prenatal infections have been linked to the development of schizophrenia (SCZ) and other neurodevelopmental disorders in the offspring, and work in animal models indicates that this is to occur through the maternal inflammatory response triggered by infection. Several studies in animal models demonstrated that acute inflammatory episodes are sufficient to trigger brain alterations in the adult offspring, especially in the mesolimbic dopamine (DA) system, involved in the pathophysiology of SCZ and other disorders involving psychosis. In the current review, we synthesize the literature on the clinical studies implicating prenatal infectious events in the development of SCZ. Then, we summarize evidence from animal models of maternal immune activation (MIA) and the behavioral and molecular alterations relevant for the function of the DAergic system. Furthermore, we discuss the evidence supporting the involvement of maternal cytokines, such as interleukin 6 (IL-6) and leptin (a hormone with effects on inflammation) in mediating the effects of MIA on the fetal brain, leading to the long-lasting effects on the offspring. In particular, IL-6 has been involved in mediating the effects of MIA animal models in the offspring through actions on the placenta, induction of IL-17a, or triggering the decrease in non-heme iron (hypoferremia). Maternal infection is very likely interacting with additional genetic and environmental risk factors in the development of SCZ; systematically investigating how these interactions produce specific phenotypes is the next step in understanding the etiology of complex psychiatric disorders.
Collapse
Affiliation(s)
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
21
|
Di Biase MA, Katabi G, Piontkewitz Y, Cetin-Karayumak S, Weiner I, Pasternak O. Increased extracellular free-water in adult male rats following in utero exposure to maternal immune activation. Brain Behav Immun 2020; 83:283-287. [PMID: 31521731 DOI: 10.1016/j.bbi.2019.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In previous work, we applied novel in vivo imaging methods to reveal that white matter pathology in patients with first-episode psychosis (FEP) is mainly characterized by excessive extracellular free-water, and to a lesser extent by cellular processes, such as demyelination. Here, we apply a back-translational approach to evaluate whether or not a rodent model of maternal immune activation (MIA) induces patterns of white matter pathology that we observed in patients with FEP. To this end, we examined free-water and tissue-specific white matter alterations in rats born to mothers exposed to the viral mimic polyriboinosinic-polyribocytidylic acid (Poly-I:C) in pregnancy, which is widely used to produce alterations relevant to schizophrenia and is characterized by a robust neuroinflammatory response. METHOD Pregnant dams were injected on gestational day 15 with the viral mimic Poly-I:C (4 mg/kg) or saline. Diffusion-weighted magnetic resonance images were acquired from 17 male offspring (9 Poly-I:C and 8 saline) on postnatal day 90, after the emergence of brain structural and behavioral abnormalities. The free-water fraction (FW) and tissue-specific fractional anisotropy (FAT), as well as conventional fractional anisotropy (FA) were computed across voxels traversing a white matter skeleton. Voxel-wise and whole-brain averaged white matter were tested for significant microstructural alterations in immune-challenged, relative to saline-exposed offspring. RESULTS Compared to saline-exposed offspring, those exposed to maternal Poly-I:C displayed increased extracellular FW averaged across voxels comprising a white matter skeleton (t(15) = 2.74; p = 0.01). Voxel-wise analysis ascribed these changes to white matter within the corpus callosum, external capsule and the striatum. In contrast, no significant between-group differences emerged for FAT or for conventional FA, measured across average and voxel-wise white matter. CONCLUSION We identified excess FW across frontal white matter fibers of rats exposed to prenatal immune activation, analogous to our "bedside" observation in FEP patients. Findings from this initial experiment promote use of the MIA model to examine pathological pathways underlying FW alterations observed in patients with schizophrenia. Establishing these mechanisms has important implications for clinical studies, as free-water imaging reflects a feasible biomarker that has so far yielded consistent findings in the early stages of schizophrenia.
Collapse
Affiliation(s)
- Maria A Di Biase
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gili Katabi
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Piontkewitz
- Straus Center for Computational Neuroimaging, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ina Weiner
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Golofast B, Vales K. The connection between microbiome and schizophrenia. Neurosci Biobehav Rev 2019; 108:712-731. [PMID: 31821833 DOI: 10.1016/j.neubiorev.2019.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
There has been an accumulation of knowledge about the human microbiome, some detailed investigations of the gastrointestinal microbiota and its functions, and the highlighting of complex interactions between the gut, the gut microbiota, and the central nervous system. That assumes the involvement of the microbiome in the pathogenesis of various CNS diseases, including schizophrenia. Given this information and the fact, that the gut microbiota is sensitive to internal and environmental influences, we have speculated that among the factors that influence the formation and composition of gut microbiota during life, possible key elements in the schizophrenia development chain are hidden where gut microbiota is a linking component. This article aims to describe and understand the developmental relationships between intestinal microbiota and the risk of developing schizophrenia.
Collapse
Affiliation(s)
- Bogdana Golofast
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| |
Collapse
|
23
|
Maternal Immune Activation during Pregnancy Alters the Behavior Profile of Female Offspring of Sprague Dawley Rats. eNeuro 2019; 6:eN-NWR-0437-18. [PMID: 31016229 PMCID: PMC6477592 DOI: 10.1523/eneuro.0437-18.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Sex differences are documented in psychiatric and neurological disorders, yet most preclinical animal research has been conducted in males only. There is a need to better understand of the nature of sex differences in brain disease in order to meet the needs of psychiatric patients. We present the behavior profile of adult female offspring produced using a maternal immune activation (MIA) model where pregnant rats receive an immune stimulant and the offspring typically show various abnormalities consistent with psychiatric illnesses such as schizophrenia and autism. The results in female offspring were compared to a previously published cohort of their male siblings (Lins et al., 2018). We examined prepulse inhibition (PPI), sociability, MK-801-induced locomotor activity, crossmodal object recognition (CMOR), and oddity discrimination; behaviors relevant to the positive, negative, and cognitive symptoms of schizophrenia. No between-treatment differences in PPI or locomotor activity were noted. Tactile memory was observed in the control and treated female offspring, visual recognition memory was deficient in the polyinosinic:polycytidylic acid (polyI:C) offspring only, and both groups lacked crossmodal recognition. PolyI:C offspring were impaired in oddity preference and had reduced preference for a stranger conspecific in a sociability assay. Systemic maternal CXCL1, IL-6, and TNF-a levels 3 h after polyI:C treatment were determined, but no relationship was found between these cytokines and the behavior seen in the adult female offspring. Overall, female offspring of polyI:C-treated dams display an array of behavior abnormalities relevant to psychiatric illnesses such as schizophrenia similar to those previously reported in male rats.
Collapse
|
24
|
Codagnone MG, Spichak S, O'Mahony SM, O'Leary OF, Clarke G, Stanton C, Dinan TG, Cryan JF. Programming Bugs: Microbiota and the Developmental Origins of Brain Health and Disease. Biol Psychiatry 2019; 85:150-163. [PMID: 30064690 DOI: 10.1016/j.biopsych.2018.06.014] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
It has been nearly 30 years since Dr. David Barker first highlighted the importance of prenatal factors in contributing to the developmental origins of adult disease. This concept was later broadened to include postnatal events. It is clear that the interaction between genetic predisposition and early life environmental exposures is key in this regard. However, recent research has also identified another important factor in the microbiota-the trillions of microorganisms that inhabit key body niches, including the vagina and gastrointestinal tract. Because the composition of these maternal microbiome sites has been linked to maternal metabolism and is also vertically transmitted to offspring, changes in the maternal microbiota are poised to significantly affect the newborn. In fact, several lines of evidence show that the gut microbiota interacts with diet, drugs, and stress both prenatally and postnatally and that these exogenous factors could also affect the dynamic changes in the microbiota composition occurring during pregnancy. Animal models have shown great utility in illuminating how these disruptions result in behavioral and brain morphological phenotypes reminiscent of psychiatric disorders (anxiety, depression, schizophrenia, and autism spectrum disorders). Increasing evidence points to critical interactions among the microbiota, host genetics, and both the prenatal and postnatal environments to temporally program susceptibility to psychiatric disorders later in life. Sex-specific phenotypes may be programmed through the influence of the microbiota on the hypothalamic-pituitary-adrenal axis and neuroimmune system.
Collapse
Affiliation(s)
- Martin G Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Irish Centre for Fetal and Neonatal Translational Research and Cork University Maternity Hospital, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Irish Centre for Fetal and Neonatal Translational Research and Cork University Maternity Hospital, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
25
|
Bergdolt L, Dunaevsky A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog Neurobiol 2018; 175:1-19. [PMID: 30590095 DOI: 10.1016/j.pneurobio.2018.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
The developing brain is sensitive to a variety of insults. Epidemiological studies have identified prenatal exposure to infection as a risk factor for a range of neurological disorders, including autism spectrum disorder and schizophrenia. Animal models corroborate this association and have been used to probe the contribution of gene-environment interactions to the etiology of neurodevelopmental disorders. Here we review the behavior and brain phenotypes that have been characterized in MIA offspring, including the studies that have looked at the interaction between maternal immune activation and genetic risk factors for autism spectrum disorder or schizophrenia. These phenotypes include behaviors relevant to autism, schizophrenia, and other neurological disorders, alterations in brain anatomy, and structural and functional neuronal impairments. The link between maternal infection and these phenotypic changes is not fully understood, but there is increasing evidence that maternal immune activation induces prolonged immune alterations in the offspring's brain which could underlie epigenetic alterations which in turn may mediate the behavior and brain changes. These concepts will be discussed followed by a summary of the pharmacological interventions that have been tested in the maternal immune activation model.
Collapse
Affiliation(s)
- Lara Bergdolt
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States
| | - Anna Dunaevsky
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States.
| |
Collapse
|
26
|
Bonapersona V, Joëls M, Sarabdjitsingh RA. Effects of early life stress on biochemical indicators of the dopaminergic system: A 3 level meta-analysis of rodent studies. Neurosci Biobehav Rev 2018; 95:1-16. [PMID: 30201218 DOI: 10.1016/j.neubiorev.2018.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022]
Abstract
Adverse early life events are a well-established risk factor for the precipitation of behavioral disorders characterized by anomalies in the dopaminergic system, such as schizophrenia and addiction. The correlation between early life conditions and the dopaminergic system has been causally investigated in more than 90 rodent publications. Here, we tested the validity of the hypothesis that early life stress (ELS) alters dopamine signaling by performing an extensive 3-level mixed effect meta-analysis. We included several ELS models and biochemical indicators of the dopaminergic system in a variety of brain areas, for a total of 1009 comparisons. Contrary to our expectations, only a few comparisons displayed a significant effect. Specifically, the striatal area was the most vulnerable, displaying decreased dopamine precursor and increased metabolites after ELS. To make all data openly accessible, we created MaDEapp (https://osf.io/w25m4/), a tool to explore data of the meta-analysis with the intent to guide future (pre)clinical research and allow power calculations. All in all, ELS induces a few yet robust changes on biochemical indicators of the dopaminergic system.
Collapse
Affiliation(s)
- V Bonapersona
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands; University Medical Center Groningen, University of Groningen, The Netherlands
| | - R A Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands
| |
Collapse
|
27
|
Prospective Analysis of the Effects of Maternal Immune Activation on Rat Cytokines during Pregnancy and Behavior of the Male Offspring Relevant to Schizophrenia. eNeuro 2018; 5:eN-NWR-0249-18. [PMID: 30225350 PMCID: PMC6140112 DOI: 10.1523/eneuro.0249-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023] Open
Abstract
Influenza during pregnancy is associated with the development of psychopathology in the offspring. We sought to determine whether maternal cytokines produced following administration of viral mimetic polyinosinic-polycytidylic acid (polyI:C) to pregnant rats were predictive of behavioral abnormalities in the adult offspring. Timed-pregnant Sprague Dawley rats received a single intravenous injection of 4-mg/kg polyI:C or saline on gestational day (GD)15. Blood was collected 3 h later for serum analysis of cytokine levels with ELISA. Male offspring were tested in a battery of behavioral tests during adulthood and behavior was correlated with maternal cytokine levels. Maternal serum levels of CXCL1 and interleukin (IL)-6, but not tumor necrosis factor (TNF)-α or CXCL2, were elevated in polyI:C-treated dams. PolyI:C-treated dams experienced post-treatment weight loss and polyI:C pups were smaller than controls at postnatal day (PND)1. Various behavior alterations were seen in the polyI:C-treated offspring. Male polyI:C offspring had enhanced MK-801-induced locomotion, and reduced sociability. PolyI:C offspring failed to display crossmodal and visual memory, and oddity preference was also impaired. Set-shifting, assessed with a lever-based operant conditioning task, was facilitated while touchscreen-based reversal learning was impaired. Correlations were found between maternal serum concentrations of CXCL1, acute maternal temperature and body weight changes, neonatal pup mass, and odd object discrimination and social behavior. Overall, while the offspring of polyI:C-treated rats displayed behavior abnormalities, maternal serum cytokines were not related to the long-term behavior changes in the offspring. Maternal sickness effects and neonatal pup size may be better indicators of later effects of maternal inflammation in the offspring.
Collapse
|
28
|
Petitdant N, Lecomte A, Robidel F, Gamez C, Blazy K, Villégier AS. Alteration of adaptive behaviors of progeny after maternal mobile phone exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10894-10903. [PMID: 29397508 DOI: 10.1007/s11356-017-1178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Exposure of pregnant women to radiofrequency (RF) devices raises questions on their possible health consequences for their progeny. We examined the hazard threshold of gestational RF on the progeny's glial homeostasis, sensory-motor gating, emotionality, and novelty seeking and tested whether maternal immune activation would increase RF toxicity. Pregnant dams were daily restrained with loop antennas adjoining the abdomen (fetus body specific absorption rates (SAR): 0, 0.7, or 2.6 W/kg) and received three lipopolysaccharide (LPS) intra-peritoneal injections (0 or 80 μg/kg). Scores in the prepulse startle inhibition, fear conditioning, open field, and elevated plus maze were assessed at adolescence and adulthood. Glial fibrillary acidic protein (GFAP) and interleukines-1β (ILs) were quantified. LPS induced a SAR-dependent reduction of the prepulse startle inhibition in adults. Activity in the open field was reduced at 2.6 W/kg at adolescence. GFAP and ILs, emotional memory, and anxiety-related behaviors were not modified. These data support the hypothesis that maternal immune activation increased the developmental RF exposure-induced long-term neurobiological impairments. These data support the fact that fetuses who receive combined environmental exposures with RF need special attention for protection.
Collapse
Affiliation(s)
- Nicolas Petitdant
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Anthony Lecomte
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Franck Robidel
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Christelle Gamez
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Kelly Blazy
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Anne-Sophie Villégier
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France.
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France.
- Unité de Toxicologie Expérimentale, Parc Technologique ALATA, Institut National de l'Environnement Industriel et des Risques, BP no. 2, 60550, Verneuil-en-Halatte, France.
| |
Collapse
|
29
|
|
30
|
The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models. Int J Mol Sci 2017; 18:ijms18091916. [PMID: 28880200 PMCID: PMC5618565 DOI: 10.3390/ijms18091916] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.
Collapse
|
31
|
Perinatal inflammation and adult psychopathology: From preclinical models to humans. Semin Cell Dev Biol 2017; 77:104-114. [PMID: 28890420 DOI: 10.1016/j.semcdb.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain.
Collapse
|
32
|
Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology. Brain Behav Immun 2017; 63:35-49. [PMID: 28189716 DOI: 10.1016/j.bbi.2017.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/26/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023] Open
Abstract
Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is the first evidence for the emergence of long-term behavioral and brain abnormalities after lactational exposure to an inflammatory agent, supporting a causal link between early immune activation and disrupted neuropsychodevelopment. That such exposure produces schizophrenia- or depression-like phenotype depending on sex, resonates with notions that risk factors are transdiagnostic, and that sex is a susceptibility factor for neurodevelopmental psychopathologies.
Collapse
|
33
|
Wang H, Farhan M, Xu J, Lazarovici P, Zheng W. The involvement of DARPP-32 in the pathophysiology of schizophrenia. Oncotarget 2017; 8:53791-53803. [PMID: 28881851 PMCID: PMC5581150 DOI: 10.18632/oncotarget.17339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is one of the most devastating heterogeneous psychiatric disorders. The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia based on neurochemical evidences of elevated brain striatal dopamine synthesis capacity and increased dopamine release in response to stress. Dopamine and cyclic AMP-regulated phosphoprotein of relative molecular mass 32,000 (DARPP-32) is a cytosolic protein highly enriched in the medium spiny neurons of the neostriatum, considered as the most important integrator between the cortical input and the basal ganglia, and associated with motor control. Accumulating evidences has indicated the involvement of DARPP-32 in the development of schizophrenia; i. DARPP-32 phosphorylation is regulated by several neurotransmitters, including dopamine and glutamate, neurotransmitters implicated in schizophrenia pathogenesis; ii. decrease of both total and phosphorylated DARPP-32 in the prefrontal cortex are observed in schizophrenic animal models; iii. postmortem brain studies indicated decreased expression of DARPP-32 protein in the superior temporal gyrus and dorsolateral prefrontal cortex in patients with schizophrenia; iv. DARPP-32 phosphorylation is increased upon therapy with antipsychotic drugs, such as haloperidol and risperidone which improve behavioral performance in experimental animal models and patients; v. Genetic analysis of the gene coding for DARPP-32 propose an association with schizophrenia. Cumulatively, these findings implicate DARPP-32 protein in schizophrenia and propose it as a potential therapeutic target. Here, we summarize the possible roles of DARPP-32 during the development of schizophrenia and make some recommendations for future research. We propose that DARPP-32 and its interacting proteins may serve as potential therapeutic targets in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Haitao Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Mohd Farhan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
34
|
Nishi A, Shuto T. Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders. Expert Opin Ther Targets 2017; 21:259-272. [PMID: 28052701 DOI: 10.1080/14728222.2017.1279149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alterations in dopamine neurotransmission has been implicated in pathophysiology of neuropsychiatric and neurodegenerative disorders, and DARPP-32 plays a pivotal role in dopamine neurotransmission. DARPP-32 likely influences dopamine-mediated behaviors in animal models of neuropsychiatric and neurodegenerative disorders and therapeutic effects of pharmacological treatment. Areas covered: We will review animal studies on the biochemical and behavioral roles of DARPP-32 in drug addiction, schizophrenia and Parkinson's disease. In general, under physiological and pathophysiological conditions, DARPP-32 in D1 receptor expressing (D1R) -medium spiny neurons (MSNs) promotes dopamine/D1 receptor/PKA signaling, whereas DARPP-32 in D2 receptor expressing (D2R)-MSNs counteracts dopamine/D2 receptor signaling. However, the function of DARPP-32 is differentially regulated in acute and chronic phases of drug addiction; DARPP-32 enhances D1 receptor/PKA signaling in the acute phase, whereas DARPP-32 suppresses D1 receptor/PKA signaling in the chronic phase through homeostatic mechanisms. Therefore, DARPP-32 plays a bidirectional role in dopamine neurotransmission, depending on the cell type and experimental conditions, and is involved in dopamine-related behavioral abnormalities. Expert opinion: DARPP-32 differentially regulates dopamine signaling in D1R- and D2R-MSNs, and a shift of balance between D1R- and D2R-MSN function is associated with behavioral abnormalities. An adjustment of this imbalance is achieved by therapeutic approaches targeting DARPP-32-related signaling molecules.
Collapse
Affiliation(s)
- Akinori Nishi
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| | - Takahide Shuto
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| |
Collapse
|
35
|
Moe AAK, Scott JG, Burne TH, Eyles DW. Neural changes induced by antipsychotic administration in adolescence: A review of studies in laboratory rodents. J Psychopharmacol 2016; 30:771-94. [PMID: 27413140 DOI: 10.1177/0269881116654776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adolescence is characterized by major remodelling processes in the brain. Use of antipsychotic drugs (APDs) in adolescents has increased dramatically in the last 20 years; however, our understanding of the neurobiological consequences of APD treatment on the adolescent brain has not kept the same pace and significant concerns have been raised. In this review, we examined currently available preclinical studies of the effects of APDs on the adolescent brain. In animal models of neuropsychiatric disorders, adolescent APD treatment appears to be protective against selected structural, behavioural and neurochemical phenotypes. In "neurodevelopmentally normal" adolescent animals, a range of short- and long-term alterations in behaviour and neurochemistry have been reported. In particular, the adolescent brain appears to be sensitive to long-term locomotor/reward effects of chronic atypical APDs in contrast with the outcomes in adults. Long-lasting changes in dopaminergic, glutamatergic and gamma-amino butyric acid-ergic systems induced by adolescent APD administration have been observed in the nucleus accumbens. A detailed examination of other potential target regions such as striatum, prefrontal cortex and ventral tegmental area is still required. Through identification of specific neural pathways targeted by adolescent APD treatment, future studies will expand the current knowledge on long-term neural outcomes which are of translational value.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - James G Scott
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia Discipline of Psychiatry, School of Medicine, The University of Queensland Centre for Clinical Research, Herston, QLD, Australia Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Darryl W Eyles
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| |
Collapse
|
36
|
Santos-Toscano R, Borcel É, Ucha M, Orihuel J, Capellán R, Roura-Martínez D, Ambrosio E, Higuera-Matas A. Unaltered cocaine self-administration in the prenatal LPS rat model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:38-48. [PMID: 27089985 DOI: 10.1016/j.pnpbp.2016.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Although cocaine abuse is up to three times more frequent among schizophrenic patients, it remains unclear why this should be the case and whether sex influences this relationship. Using a maternal immune activation model of schizophrenia, we tested whether animals at higher risk of developing a schizophrenia-like state are more prone to acquire cocaine self-administration behavior, and whether they show enhanced sensitivity to the reinforcing actions of cocaine or if they are resistant to extinction. Pregnant rats were injected with lipopolysaccharide on gestational day 15 and 16, and the offspring (both male and female) were tested in working memory (T-maze), social interaction and sensorimotor gating (prepulse inhibition of the acoustic startle response) paradigms. After performing these tests, the rats were subjected to cocaine self-administration regimes (0.5mg/kg), assessing their dose-response and extinction. Male rats born to dams administered lipopolysaccharide showed impaired working memory but no alterations to their social interactions, and both male and female rats showed prepulse inhibition deficits. Moreover, similar patterns of cocaine self-administration acquisition, responsiveness to dose shifts and extinction curves were observed in both control and experimental rats. These results suggest that the higher prevalence of cocaine abuse among schizophrenic individuals is not due to a biological vulnerability directly associated to the disease and that other factors (social, educational, economic, familial, etc.) should be considered given the multifactorial nature of this illness.
Collapse
Affiliation(s)
- Raquel Santos-Toscano
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Érika Borcel
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Javier Orihuel
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Roberto Capellán
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| |
Collapse
|
37
|
Waterhouse U, Roper VE, Brennan KA, Ellenbroek BA. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats. Dis Model Mech 2016; 9:1159-1167. [PMID: 27483346 PMCID: PMC5087828 DOI: 10.1242/dmm.025072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin) at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg) at one of three neurodevelopmental time periods [gestation days (GD) 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND) 60] and included: prepulse inhibition (PPI), latent inhibition (LI) and delayed non-matching to sample (DNMTS). Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously) were administered, and animals were re-tested in the same tasks (PND 110). Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11) resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI) and selective (LI) improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI) and induced a global enhancement of sensorimotor gating (PPI).
Collapse
Affiliation(s)
- Uta Waterhouse
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Vic E Roper
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Katharine A Brennan
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
38
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
39
|
Bo QL, Chen YH, Yu Z, Fu L, Zhou Y, Zhang GB, Wang H, Zhang ZH, Xu DX. Rosiglitazone pretreatment protects against lipopolysaccharide-induced fetal demise through inhibiting placental inflammation. Mol Cell Endocrinol 2016; 423:51-9. [PMID: 26773728 DOI: 10.1016/j.mce.2016.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/25/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ is highly expressed in human and rodent placentas. Nevertheless, its function remains obscure. The present study investigated the effects of rosiglitazone, a PPAR-γ agonist, on LPS-induced fetal death. All pregnant mice except controls were intraperitoneally injected with LPS (150 μg/kg) daily from gestational day (GD)15 to GD17. As expected, maternal LPS injection caused placental inflammation and resulted in 63.6% fetal death in dams that completed the pregnancy. Interestingly, LPS-induced fetal mortality was reduced to 16.0% when pregnant mice were pretreated with RSG. Additional experiment showed that rosiglitazone pretreatment inhibited LPS-induced expressions of tumor necrosis factor (Tnf)-α, interleukin (Il)-1β, Il-6, macrophage inflammatory protein (Mip)-2 and keratinocyte-derived chemokine (Kc) in mouse placenta. Although rosiglitazone had little effect on LPS-evoked elevation of IL-10 in amniotic fluid, it alleviated LPS-evoked release of TNF-α and MIP-2 in amniotic fluid. Further analysis showed that pretreatment with rosiglitazone, which activated placental PPAR-γ signaling, simultaneously suppressed LPS-evoked nuclear factor kappa B (NF-κB) activation and blocked nuclear translocation of NF-κB p65 and p50 subunits in trophoblast giant cells of the labyrinth layer. These results provide a mechanistic explanation for PPAR-γ-mediated anti-inflammatory activity in the placentas. Overall, the present study provides additional evidence for roles of PPAR-γ as an important regulator of placental inflammation.
Collapse
Affiliation(s)
- Qing-Li Bo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China; Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Lin Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yan Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Gui-Bin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Zhi-Hui Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China.
| |
Collapse
|
40
|
Marco EM, Velarde E, Llorente R, Laviola G. Disrupted Circadian Rhythm as a Common Player in Developmental Models of Neuropsychiatric Disorders. Curr Top Behav Neurosci 2016; 29:155-181. [PMID: 26728169 DOI: 10.1007/7854_2015_419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The environment in which individuals develop and mature is critical for their physiological and psychological outcome; in particular, the intrauterine environment has reached far more clinical relevance given its potential influence on shaping brain function and thus mental health. Gestational stress and/or maternal infection during pregnancy has been related with an increased incidence of neuropsychiatric disorders, including depression and schizophrenia. In this framework, the use of animal models has allowed a formal and deep investigation of causal determinants. Despite disruption of circadian clocks often represents a hallmark of several neuropsychiatric disorders, the relationship between disruption of brain development and the circadian system has been scarcely investigated. Nowadays, there is an increasing amount of studies suggesting a link between circadian system malfunction, early-life insults and the appearance of neuropsychiatric diseases at adulthood. Here, we briefly review evidence from clinical literature and animal models suggesting that the exposure to prenatal insults, i.e. severe gestational stress or maternal immune activation, changes the foetal hormonal milieu increasing the circulating levels of both glucocorticoids and pro-inflammatory cytokines. These two biological events have been reported to affect genes expression in experimental models and critically interfere with brain development triggering and/or exacerbating behavioural anomalies in the offspring. Herein, we highlight the importance to unravel the individual components of the body circadian system that might also be altered by prenatal insults and that may be causally associated with the disruption of neural and endocrine developmental programming.
Collapse
Affiliation(s)
- Eva M Marco
- Department Physiology (Animal Physiology II), Faculty of Biological Sciences, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain.
| | - Elena Velarde
- Department Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea (UE), Villaviciosa de Odón, Madrid, Spain
| | - Ricardo Llorente
- Department Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea (UE), Villaviciosa de Odón, Madrid, Spain
| | - Giovanni Laviola
- Section of Behavioral Neuroscience, Department Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
41
|
Patrich E, Piontkewitz Y, Peretz A, Weiner I, Attali B. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model. Brain Behav Immun 2016; 51:240-251. [PMID: 26327125 DOI: 10.1016/j.bbi.2015.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022] Open
Abstract
Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits.
Collapse
Affiliation(s)
- Eti Patrich
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Psychology, Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Piontkewitz
- Strauss Center for Computational Neuroimaging, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ina Weiner
- Department of Psychology, Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
42
|
Möller M, Swanepoel T, Harvey BH. Neurodevelopmental Animal Models Reveal the Convergent Role of Neurotransmitter Systems, Inflammation, and Oxidative Stress as Biomarkers of Schizophrenia: Implications for Novel Drug Development. ACS Chem Neurosci 2015; 6:987-1016. [PMID: 25794269 DOI: 10.1021/cn5003368] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia is a life altering disease with a complex etiology and pathophysiology, and although antipsychotics are valuable in treating the disorder, certain symptoms and/or sufferers remain resistant to treatment. Our poor understanding of the underlying neuropathological mechanisms of schizophrenia hinders the discovery and development of improved pharmacological treatment, so that filling these gaps is of utmost importance for an improved outcome. A vast amount of clinical data has strongly implicated the role of inflammation and oxidative insults in the pathophysiology of schizophrenia. Preclinical studies using animal models are fundamental in our understanding of disease development and pathology as well as the discovery and development of novel treatment options. In particular, social isolation rearing (SIR) and pre- or postnatal inflammation (PPNI) have shown great promise in mimicking the biobehavioral manifestations of schizophrenia. Furthermore, the "dual-hit" hypothesis of schizophrenia states that a first adverse event such as genetic predisposition or a prenatal insult renders an individual susceptible to develop the disease, while a second insult (e.g., postnatal inflammation, environmental adversity, or drug abuse) may be necessary to precipitate the full-blown syndrome. Animal models that emphasize the "dual-hit" hypothesis therefore provide valuable insight into understanding disease progression. In this Review, we will discuss SIR, PPNI, as well as possible "dual-hit" animal models within the context of the redox-immune-inflammatory hypothesis of schizophrenia, correlating such changes with the recognized monoamine and behavioral alterations of schizophrenia. Finally, based on these models, we will review new therapeutic options, especially those targeting immune-inflammatory and redox pathways.
Collapse
Affiliation(s)
- M. Möller
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - T. Swanepoel
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - B. H. Harvey
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
43
|
Reisinger S, Khan D, Kong E, Berger A, Pollak A, Pollak DD. The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther 2015; 149:213-26. [PMID: 25562580 DOI: 10.1016/j.pharmthera.2015.01.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/28/2022]
Abstract
Increasing epidemiological and experimental evidence implicates gestational infections as one important factor involved in the pathogenesis of several neuropsychiatric disorders. Corresponding preclinical model systems based upon maternal immune activation (MIA) by treatment of the pregnant female have been developed. These MIA animal model systems have been successfully used in basic and translational research approaches, contributing to the investigation of the underlying pathophysiological mechanisms at the molecular, cellular and behavioral levels. The present article focuses on the application of a specific MIA rodent paradigm, based upon treatment of the gestating dam with the viral mimic polyinosinic-polycytidilic acid (Poly(I:C)), a synthetic analog of double-stranded RNA (dsRNA) which activates the Toll-like receptor 3 (TLR3) pathway. Important advantages and constraints of this animal model will be discussed, specifically in light of gestational infection as one vulnerability factor contributing to the complex etiology of mood and psychotic disorders, which are likely the result of intricate multi-level gene×environment interactions. Improving our currently incomplete understanding of the molecular pathomechanistic principles underlying these disorders is a prerequisite for the development of alternative therapeutic approaches which are critically needed in light of the important drawbacks and limitations of currently available pharmacological treatment options regarding efficacy and side effects. The particular relevance of the Poly(I:C) MIA model for the discovery of novel drug targets for symptomatic and preventive therapeutic strategies in mood and psychotic disorders is highlighted in this review article.
Collapse
Affiliation(s)
- Sonali Reisinger
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Deeba Khan
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Eryan Kong
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
44
|
Abstract
Molecular profiling studies have helped increase the understanding of the immune processes thought to be involved in the etiology and pathophysiology of psychiatric disorders such as schizophrenia. Current therapeutic interventions with first- and second-generation antipsychotics are suboptimal. Poor response rates and debilitating side effects often lead to poor treatment compliance. This highlights the pressing need to identify more effective treatments as well as objective biomarker based tests, which can help predict treatment response and identify diagnostic subpopulations. Such tests could enable early detection of patients who will benefit from particular therapeutic interventions. In this review, we discuss studies relating to dysfunctions of the immune system in patients with schizophrenia and the effects of antipsychotic medication on the molecular components of these systems. Immune system dysfunction may in part be related to genetic risk factors for schizophrenia, but there is substantial evidence that a wide range of environmental factors ranging from exposure to infectious agents such as influenza and Toxoplasma gondii to HPA axis dysfunction play an important role in the etiopathogenesis of schizophrenia. Ongoing research efforts, testing therapeutic efficacy of anti-inflammatory agents used as add-on medications are also discussed. From a therapeutic perspective, these represent the initial steps toward novel treatment approaches and more effective patient care in the field of mental health.
Collapse
|
45
|
Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure--a neurodevelopmental rat model of schizophrenia--differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:17-30. [PMID: 25455585 DOI: 10.1016/j.pnpbp.2014.10.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. Gender differences can be seen in various features of the illness and sex steroid hormones (e.g. estrogen) have strongly been implicated in the disease pathology. In the present study, we evaluated sex differences in the effects of prenatal exposure to a bacterial endotoxin (lipopolysaccharide, LPS) in rats. Pregnant dams received LPS-injections (100 μg/kg) at gestational day 15 and 16. The offspring was then tested for prepulse inhibition (PPI), locomotor activity, anxiety-like behavior and object recognition memory at various developmental time points. At postnatal day (PD) 33 and 60, prenatally LPS-exposed rats showed locomotor hyperactivity which was similar in male and female offspring. Moreover, prenatal LPS-treatment caused PPI deficits in pubertal (PD45) and adult (PD90) males while PPI impairments were found only at PD45 in prenatally LPS-treated females. Following prenatal LPS-administration, recognition memory for objects was impaired in both sexes with males being more severely affected. Additionally, we assessed prenatal infection-induced alterations of parvalbumin (Parv) expression and myelin fiber density. Male offspring born to LPS-challenged mothers showed decreased myelination in cortical and limbic brain regions as well as reduced numbers of Parv-expressing cells in the medial prefrontal cortex (mPFC), hippocampus and entorhinal cortex. In contrast, LPS-exposed female rats showed only a modest decrease in myelination and Parv immunoreactivity. Collectively, our data indicate that some of the prenatal immune activation effects are sex dependent and further strengthen the importance of taking into account gender differences in animal models of schizophrenia.
Collapse
Affiliation(s)
- Lena Wischhof
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany.
| | - Ellen Irrsack
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Carmen Osorio
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Michael Koch
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| |
Collapse
|
46
|
Mattei D, Schweibold R, Wolf SA. Brain in flames - animal models of psychosis: utility and limitations. Neuropsychiatr Dis Treat 2015; 11:1313-29. [PMID: 26064050 PMCID: PMC4455860 DOI: 10.2147/ndt.s65564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The neurodevelopmental hypothesis of schizophrenia posits that schizophrenia is a psychopathological condition resulting from aberrations in neurodevelopmental processes caused by a combination of environmental and genetic factors which proceed long before the onset of clinical symptoms. Many studies discuss an immunological component in the onset and progression of schizophrenia. We here review studies utilizing animal models of schizophrenia with manipulations of genetic, pharmacologic, and immunological origin. We focus on the immunological component to bridge the studies in terms of evaluation and treatment options of negative, positive, and cognitive symptoms. Throughout the review we link certain aspects of each model to the situation in human schizophrenic patients. In conclusion we suggest a combination of existing models to better represent the human situation. Moreover, we emphasize that animal models represent defined single or multiple symptoms or hallmarks of a given disease.
Collapse
Affiliation(s)
- Daniele Mattei
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Regina Schweibold
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany ; Department of Neurosurgery, Helios Clinics, Berlin, Germany
| | - Susanne A Wolf
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
47
|
Immune System Related Markers: Changes in childhood Neuropsychiatry Disorders Cause and Consequence. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-13602-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Atypical antipsychotic paliperidone prevents behavioral deficits in mice prenatally challenged with bacterial endotoxin lipopolysaccharide. Eur J Pharmacol 2015; 747:181-9. [DOI: 10.1016/j.ejphar.2014.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/25/2023]
|
49
|
Chronic schizophrenia is associated with over-expression of the interleukin-2 receptor gamma gene. Psychiatry Res 2014; 217:158-62. [PMID: 24713359 DOI: 10.1016/j.psychres.2014.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/08/2013] [Accepted: 03/15/2014] [Indexed: 11/23/2022]
Abstract
Altered immune response, including low-grade inflammatory processes, is involved in the pathogenesis of schizophrenia, a chronic psychiatric disorder with complex etiology. Distinct gene variants of a number of pro-inflammatory and chemotactic cytokines together with their receptors associate with this disorder. Interleukin-2 receptor gamma (IL-2RG) represents an important signaling component of many interleukin receptors and so far, no data on the functional state of this receptor in schizophrenia have been reported. The aim of this study was to investigate mRNA expression of the IL2RG gene (IL2RG) in schizophrenia patients in comparison with healthy subjects (controls). Total RNA was isolated from peripheral blood of 66 schizophrenia patients and 99 healthy subjects of Armenian population. The mRNA expression was determined by quantitative real-time polymerase chain reaction (RT-PCR) using PSMB2 as housekeeping gene. IL2RG mRNA expression was upregulated in peripheral blood of patients in comparison with controls (patients vs. controls, median [interquartile range]: 2.080 [3.428-1.046] vs. 0.324 [0.856-0.000], p<0.0001). In conclusion, our findings suggest that over-expression of the IL2RG gene may be implicated in altered immune response in schizophrenia and contribute to the pathomechanisms of this disorder.
Collapse
|
50
|
Manganese-enhanced magnetic resonance imaging reveals increased DOI-induced brain activity in a mouse model of schizophrenia. Proc Natl Acad Sci U S A 2014; 111:E2492-500. [PMID: 24889602 DOI: 10.1073/pnas.1323287111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Maternal infection during pregnancy increases the risk for schizophrenia in offspring. In rodent models, maternal immune activation (MIA) yields offspring with schizophrenia-like behaviors. None of these behaviors are, however, specific to schizophrenia. The presence of hallucinations is a key diagnostic symptom of schizophrenia. In mice, this symptom can be defined as brain activation in the absence of external stimuli, which can be mimicked by administration of hallucinogens. We find that, compared with controls, adult MIA offspring display an increased stereotypical behavioral response to the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), an agonist for serotonin receptor 2A (5-HT2AR). This may be explained by increased levels of 5-HT2AR and downstream signaling molecules in unstimulated MIA prefrontal cortex (PFC). Using manganese-enhanced magnetic resonance imaging to identify neuronal activation elicited by DOI administration, we find that, compared with controls, MIA offspring exhibit a greater manganese (Mn(2+)) accumulation in several brain areas, including the PFC, thalamus, and striatum. The parafascicular thalamic nucleus, which plays the role in the pathogenesis of hallucinations, is activated by DOI in MIA offspring only. Additionally, compared with controls, MIA offspring demonstrate higher DOI-induced expression of early growth response protein 1, cyclooxygenase-2, and brain-derived neurotrophic factor in the PFC. Chronic treatment with the 5-HT2AR antagonist ketanserin reduces DOI-induced head twitching in MIA offspring. Thus, the MIA mouse model can be successfully used to investigate activity induced by DOI in awake, behaving mice. Moreover, manganese-enhanced magnetic resonance imaging is a useful, noninvasive method for accurately measuring this type of activity.
Collapse
|