1
|
Islam MR, Markatos C, Pirmettis I, Papadopoulos M, Karageorgos V, Liapakis G, Fahmy H. Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH). Molecules 2024; 29:3647. [PMID: 39125051 PMCID: PMC11314199 DOI: 10.3390/molecules29153647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Corticotropin-releasing factor (CRF) is a key neuropeptide hormone that is secreted from the hypothalamus. It is the master hormone of the HPA axis, which orchestrates the physiological and behavioral responses to stress. Many disorders, including anxiety, depression, addiction relapse, and others, are related to over-activation of this system. Thus, new molecules that may interfere with CRF receptor binding may be of value to treat neuropsychiatric stress-related disorders. Also, CRF1R antagonists have recently emerged as potential treatment options for congenital adrenal hyperplasia. Previously, several series of CRF1 receptor antagonists were developed by our group. In continuation of our efforts in this direction, herein we report the synthesis and biological evaluation of a new series of CRF1R antagonists. Representative compounds were evaluated for their binding affinities compared to antalarmin. Four compounds (2, 5, 20, and 21) showed log IC50 values of -8.22, -7.95, -8.04, and -7.88, respectively, compared to -7.78 for antalarmin. This result indicates that these four compounds are superior to antalarmin by 2.5, 1.4, 1.7, and 1.25 times, respectively. It is worth mentioning that compound 2, in terms of IC50, is among the best CRF1R antagonists ever developed in the last 40 years. The in silico physicochemical properties of the lead compounds showed good drug-like properties. Thus, further research in this direction may lead to better and safer CRF receptor antagonists that may have clinical applications, particularly for stress-related disorders and the treatment of congenital adrenal hyperplasia.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| | - Christos Markatos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece; (I.P.); (M.P.)
| | - Minas Papadopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece; (I.P.); (M.P.)
| | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - Hesham Fahmy
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
2
|
Matsoukas MT, Panagiotopoulos V, Karageorgos V, Chrousos GP, Venihaki M, Liapakis G. Structural and Functional Insights into CRF Peptides and Their Receptors. BIOLOGY 2024; 13:120. [PMID: 38392338 PMCID: PMC10886364 DOI: 10.3390/biology13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Corticotropin-releasing factor or hormone (CRF or CRH) and the urocortins regulate a plethora of physiological functions and are involved in many pathophysiological processes. CRF and urocortins belong to the family of CRF peptides (CRF family), which includes sauvagine, urotensin, and many synthetic peptide and non-peptide CRF analogs. Several of the CRF analogs have shown considerable therapeutic potential in the treatment of various diseases. The CRF peptide family act by interacting with two types of plasma membrane proteins, type 1 (CRF1R) and type 2 (CRF2R), which belong to subfamily B1 of the family B G-protein-coupled receptors (GPCRs). This work describes the structure of CRF peptides and their receptors and the activation mechanism of the latter, which is compared with that of other GPCRs. It also discusses recent structural information that rationalizes the selective binding of various ligands to the two CRF receptor types and the activation of receptors by different agonists.
Collapse
Affiliation(s)
- Minos-Timotheos Matsoukas
- Department of Biomedical Engineering, School of Engineering, University of West Attica, 12243 Athens, Greece
| | - Vasilis Panagiotopoulos
- Department of Biomedical Engineering, School of Engineering, University of West Attica, 12243 Athens, Greece
| | - Vlasios Karageorgos
- Department of Pharmacology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO, National and Kapodistrian University of Athens, Livadias 8, 11527 Athens, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Liapakis
- Department of Pharmacology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
3
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Yang X, Geng F. Corticotropin-releasing factor signaling and its potential role in the prefrontal cortex-dependent regulation of anxiety. J Neurosci Res 2023; 101:1781-1794. [PMID: 37592912 DOI: 10.1002/jnr.25238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
A large body of literature has highlighted the significance of the corticotropin-releasing factor (CRF) system in the regulation of neuropsychiatric diseases. Anxiety disorders are among the most common neuropsychiatric disorders. An increasing number of studies have demonstrated that the CRF family mediates and regulates the development and maintenance of anxiety. Thus, the CRF family is considered to be a potential target for the treatment of anxiety disorders. The prefrontal cortex (PFC) plays a role in the occurrence and development of anxiety, and both CRF and CRF-R1 are widely expressed in the PFC. This paper begins by reviewing CRF-related signaling pathways and their different roles in anxiety and related processes. Then, the role of the CRF system in other neuropsychiatric diseases is reviewed and the potential role of PFC CRF signaling in the regulation of anxiety disorders is discussed. Although other signaling pathways are potentially involved in the process of anxiety, CRF in the PFC primarily modulates anxiety disorders through the activation of corticotropin-releasing factor type1 receptors (CRF-R1) and the excitation of the cAMP/PKA signaling pathway. Moreover, the main signaling pathways of CRF involved in sex differentiation in the PFC appear to be different. In summary, this review suggests that the CRF system in the PFC plays a critical role in the occurrence of anxiety. Thus, CRF signaling is of great significance as a potential target for the treatment of stress-related disorders in the future.
Collapse
Affiliation(s)
- Xin Yang
- Department of Physiology, Shantou University Medical College, Shantou, China
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Marazziti D, Carmassi C, Cappellato G, Chiarantini I, Massoni L, Mucci F, Arone A, Violi M, Palermo S, De Iorio G, Dell’Osso L. Novel Pharmacological Targets of Post-Traumatic Stress Disorders. Life (Basel) 2023; 13:1731. [PMID: 37629588 PMCID: PMC10455314 DOI: 10.3390/life13081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychopathological condition with a heterogeneous clinical picture that is complex and challenging to treat. Its multifaceted pathophysiology still remains an unresolved question and certainly contributes to this issue. The pharmacological treatment of PTSD is mainly empirical and centered on the serotonergic system. Since the therapeutic response to prescribed drugs targeting single symptoms is generally inconsistent, there is an urgent need for novel pathogenetic hypotheses, including different mediators and pathways. This paper was conceived as a narrative review with the aim of debating the current pharmacological treatment of PTSD and further highlighting prospective targets for future drugs. The authors accessed some of the main databases of scientific literature available and selected all the papers that fulfilled the purpose of the present work. The results showed that most of the current pharmacological treatments for PTSD are symptom-based and show only partial benefits; this largely reflects the limited knowledge of its neurobiology. Growing, albeit limited, data suggests that the hypothalamic-pituitary-adrenal axis, opioids, glutamate, cannabinoids, oxytocin, neuropeptide Y, and microRNA may play a role in the development of PTSD and could be targeted for novel treatments. Indeed, recent research indicates that examining different pathways might result in the development of novel and more efficient drugs.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Gabriele Cappellato
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Federico Mucci
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Miriam Violi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Giovanni De Iorio
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| |
Collapse
|
6
|
Rupanagunta GP, Nandave M, Rawat D, Upadhyay J, Rashid S, Ansari MN. Postpartum depression: aetiology, pathogenesis and the role of nutrients and dietary supplements in prevention and management. Saudi Pharm J 2023; 31:1274-1293. [PMID: 37304359 PMCID: PMC10250836 DOI: 10.1016/j.jsps.2023.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Postpartum depression (PPD) is a challenging psychological disorder faced by 10-30% of mothers across the globe. In India, it occurs among 22% of mothers. Its aetiology and pathophysiology aren't fully understood as of today but multiple theories on the interplay of hormones, neurotransmitters, genetics, epigenetics, nutrients, socio-environmental factors, etc. exist. Nutrients are not only essential for the synthesis of neurotransmitters, but they may also indirectly influence genomic pathways that methylate DNA, and there is evidence for molecular associations between nutritional quality and psychological well-being. Increased behavioural disorders have been attributed to macro- and micronutrient deficiencies, and dietary supplementation has been effective in treating several neuropsychiatric illnesses. Nutritional deficiencies occur frequently in women, especially during pregnancy and breastfeeding. The aim of this study was to perform a comprehensive literature review of evidence-based research in order to identify, gather and summarize existing knowledge on PPD's aetiology, pathophysiology, and the role of nutrients in its prevention as well as management. The possible mechanisms of action of nutrients are also presented here. Study findings show that the risk of depression increases when omega-3 fatty acid levels are low. Both fish oil and folic acid supplements have been used to effectively treat depression. Antidepressant efficacy is lowered by folate insufficiency. Folate, vitamin B12, iron, etc. deficiencies are more prevalent in depressed people than in non-depressed people. Serum cholesterol levels and plasma tryptophan levels are found to be inversely correlated with PPD. Serum vitamin D levels were associated inversely with perinatal depression. These findings highlight the importance of adequate nutrition in the antepartum period. Given that nutritional therapies can be affordable, safe, simple to use, and are typically well-accepted by patients, more focus should be placed on dietary variables in PPD.
Collapse
Affiliation(s)
- Gnana Prasoona Rupanagunta
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), MB Road, Pushp Vihar, Sector 3, New Delhi 110017, India
| | - Divya Rawat
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Cain CK. Beyond Fear, Extinction, and Freezing: Strategies for Improving the Translational Value of Animal Conditioning Research. Curr Top Behav Neurosci 2023; 64:19-57. [PMID: 37532965 PMCID: PMC10840073 DOI: 10.1007/7854_2023_434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Translational neuroscience for anxiety has had limited success despite great progress in understanding the neurobiology of Pavlovian fear conditioning and extinction. This chapter explores the idea that conditioning paradigms have had a modest impact on translation because studies in animals and humans are misaligned in important ways. For instance, animal conditioning studies typically use imminent threats to assess short-duration fear states with single behavioral measures (e.g., freezing), whereas human studies typically assess weaker or more prolonged anxiety states with physiological (e.g., skin conductance) and self-report measures. A path forward may be more animal research on conditioned anxiety phenomena measuring dynamic behavioral and physiological responses in more complex environments. Exploring transitions between defensive brain states during extinction, looming threats, and post-threat recovery may be particularly informative. If care is taken to align paradigms, threat levels, and measures, this strategy may reveal stable patterns of non-conscious defense in animals and humans that correlate better with conscious anxiety. This shift in focus is also warranted because anxiety is a bigger problem than fear, even in disorders defined by dysfunctional fear or panic reactions.
Collapse
Affiliation(s)
- Christopher K Cain
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, USA.
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
8
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
9
|
Lv Y, Wen J, Fang Y, Zhang H, Zhang J. Corticotropin-releasing factor receptor 1 (CRF-R1) antagonists: Promising agents to prevent visceral hypersensitivity in irritable bowel syndrome. Peptides 2022; 147:170705. [PMID: 34822913 DOI: 10.1016/j.peptides.2021.170705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino acid polypeptide that coordinates the endocrine system, autonomic nervous system, immune system, and physiological behavior. CRF is a signaling regulator in the neuro-endocrine-immune (NEI) network that mediates visceral hypersensitivity. Rodent models to simulate changes in intestinal motility similar to those reported in the irritable bowel syndrome (IBS), demonstrate that the CRF receptor 1 (CRF-R1) mediates intestinal hypersensitivity under many conditions. However, the translation of preclinical studies into clinical trials has not been successful possibly due to the lack of sufficient understanding of the multiple variants of CRF-R1 and CRF-R1 antagonists. Investigating the sites of action of central and peripheral CRF is critical for accelerating the translation from preclinical to clinical studies.
Collapse
Affiliation(s)
- Yuanxia Lv
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Jing Wen
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Yingying Fang
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Haoyuan Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, China.
| | - Jianwu Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| |
Collapse
|
10
|
Ibarguen-Vargas Y, Leman S, Palme R, Belzung C, Surget A. CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity. Pharmaceutics 2021; 13:pharmaceutics13122114. [PMID: 34959395 PMCID: PMC8707167 DOI: 10.3390/pharmaceutics13122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Despite promising initial reports, corticotropin-releasing factor receptor type-1 (CRF-R1) antagonists have mostly failed to display efficacy in clinical trials for anxiety or depression. Rather than broad-spectrum antidepressant/anxiolytic-like drugs, they may represent an ‘antistress’ solution for single stressful situations or for patients with chronic stress conditions. However, the impact of prolonged CRF-R1 antagonist treatments on the hypothalamic–pituitary–adrenal (HPA) axis under chronic stress conditions remained to be characterized. Hence, our study investigated whether a chronic CRF-R1 antagonist (crinecerfont, formerly known as SSR125543, 20 mg·kg−1·day−1 ip, 5 weeks) would alter HPA axis basal circadian activity and negative feedback sensitivity in mice exposed to either control or chronic stress conditions (unpredictable chronic mild stress, UCMS, 7 weeks), through measures of fecal corticosterone metabolites, plasma corticosterone, and dexamethasone suppression test. Despite preserving HPA axis parameters in control non-stressed mice, the 5-week crinercerfont treatment improved the negative feedback sensitivity in chronically stressed mice, but paradoxically exacerbated their basal corticosterone secretion nearly all along the circadian cycle. The capacity of chronic CRF-R1 antagonists to improve the HPA negative feedback in UCMS argues in favor of a potential therapeutic benefit against stress-related conditions. However, the treatment-related overactivation of HPA circadian activity in UCMS raise questions about possible physiological outcomes with long-standing treatments under ongoing chronic stress.
Collapse
Affiliation(s)
- Yadira Ibarguen-Vargas
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
- EUK-CVL, Université d’Orléans, 45100 Orléans, France
| | - Samuel Leman
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
| | - Rupert Palme
- Department of Biomedical Sciences/Biochemistry, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Catherine Belzung
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
- Correspondence: (C.B.); (A.S.); Tel.: +33-2-47366994 (C.B.); +33-2-47367305 (A.S.)
| | - Alexandre Surget
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
- Correspondence: (C.B.); (A.S.); Tel.: +33-2-47366994 (C.B.); +33-2-47367305 (A.S.)
| |
Collapse
|
11
|
Design, synthesis, structural optimization, SAR, in silico prediction of physicochemical properties and pharmacological evaluation of novel & potent thiazolo[4,5-d]pyrimidine corticotropin releasing factor (CRF) receptor antagonists. Eur J Pharm Sci 2021; 169:106084. [PMID: 34856350 DOI: 10.1016/j.ejps.2021.106084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022]
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide secreted from the hypothalamus and is the main regulator of the hypothalamus-pituitary-adrenocortical (HPA) axis. CRF is the master hormone which modulates physiological and behavioral responses to stress. Many disorders including anxiety, depression, addictive disorders and others are related to over activation of the CRF system. This suggests that new molecules which can interfere with CRF binding to its receptors may be potential candidates for neuropsychiatric drugs to treat stress-related disorders. Previously, three series of pyrimidine and fused pyrimidine CRF1 receptor antagonists were synthesized by our group and specific binding assays, competitive binding studies and determination of the ability to antagonize the agonist-stimulated accumulation of cAMP (the second messenger for CRF receptors) were reported. In continuation of our efforts in this direction, in the current manuscript, we report the synthesis & biological evaluation of a new series of CRF1 receptor antagonists. Seven compounds showed promising binding affinity with the best two compounds (compounds 6 & 43) displaying a superior binding affinity to all of our previous compounds. Compounds 6 & 43 have only 4 times and 2 times less binding affinity than the standard CRF antagonist antalarmin, respectively. Thus, our two best lead compounds (compound 6 & 43) can be considered potent CRF receptor antagonists with binding affinity of 41.0 & 19.2 nM versus 9.7 nM for antalarmin.
Collapse
|
12
|
Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci 2021; 22:674-684. [PMID: 34545241 DOI: 10.1038/s41583-021-00513-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological sex differences in anxiety disorders and major depression are well characterized. Yet the circuits and mechanisms that contribute to these differences are understudied, because preclinical studies have historically excluded female rodents. This oversight is beginning to be addressed, and recent studies that include male and female rodents are identifying sex differences in neurobiological processes that underlie features of these disorders, including conflict anxiety, fear processing, arousal, social avoidance, learned helplessness and anhedonia. These findings allow us to conceptualize various types of sex differences in the brain, which in turn have broader implications for considering sex as a biological variable. Importantly, comparing the sexes could aid in the discovery of novel therapeutics.
Collapse
|
13
|
Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, Verma R. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr Rev 2021; 42:219-258. [PMID: 33704446 PMCID: PMC8348944 DOI: 10.1210/endrev/bnaa034] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/08/2023]
Abstract
In May 2014, the National Institutes of Health (NIH) stated its intent to "require applicants to consider sex as a biological variable (SABV) in the design and analysis of NIH-funded research involving animals and cells." Since then, proposed research plans that include animals routinely state that both sexes/genders will be used; however, in many instances, researchers and reviewers are at a loss about the issue of sex differences. Moreover, the terms sex and gender are used interchangeably by many researchers, further complicating the issue. In addition, the sex or gender of the researcher might influence study outcomes, especially those concerning behavioral studies, in both animals and humans. The act of observation may change the outcome (the "observer effect") and any experimental manipulation, no matter how well-controlled, is subject to it. This is nowhere more applicable than in physiology and behavior. The sex of established cultured cell lines is another issue, in addition to aneuploidy; chromosomal numbers can change as cells are passaged. Additionally, culture medium contains steroids, growth hormone, and insulin that might influence expression of various genes. These issues often are not taken into account, determined, or even considered. Issues pertaining to the "sex" of cultured cells are beyond the scope of this Statement. However, we will discuss the factors that influence sex and gender in both basic research (that using animal models) and clinical research (that involving human subjects), as well as in some areas of science where sex differences are routinely studied. Sex differences in baseline physiology and associated mechanisms form the foundation for understanding sex differences in diseases pathology, treatments, and outcomes. The purpose of this Statement is to highlight lessons learned, caveats, and what to consider when evaluating data pertaining to sex differences, using 3 areas of research as examples; it is not intended to serve as a guideline for research design.
Collapse
Affiliation(s)
- Aditi Bhargava
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Walter L Miller
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institutes of Mental Health, Intramural Research Program, Bethesda, MD, USA
| | - Ragini Verma
- Diffusion and Connectomics In Precision Healthcare Research (DiCIPHR) lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl Biochem Biotechnol 2020; 192:146-179. [DOI: 10.1007/s12010-020-03272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
|
15
|
Seiglie MP, Huang L, Cottone P, Sabino V. Role of the PACAP system of the extended amygdala in the acoustic startle response in rats. Neuropharmacology 2019; 160:107761. [PMID: 31493466 PMCID: PMC6842120 DOI: 10.1016/j.neuropharm.2019.107761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
Anxiety-related disorders are the most prevalent mental disorders in the world and they are characterized by abnormal responses to stressors. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide highly expressed in the extended amygdala, a brain macrostructure involved in the response to threat that includes the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). The aim of this series of experiments was to systematically elucidate the role of the PACAP system of the CeA and BNST under both control, unstressed conditions and after the presentation of a stressor in rats. For this purpose, we used the acoustic startle response (ASR), an unconscious response to sudden acoustic stimuli sensitive to changes in stress which can be used as an operationalization of the hypervigilance present in anxiety- and trauma-related disorders. We found that infusion of PACAP, but not the related peptide vasoactive intestinal peptide (VIP), into either the CeA or the BNST causes a dose-dependent increase in ASR. In addition, while infusion of the antagonist PACAP(6-38) into either the CeA or the BNST does not affect ASR in non-stressed conditions, it prevents the sensitization of ASR induced by an acute footshock stress. Finally, we found that footshock stress induces a significant increase in PACAP, but not VIP, levels in both of these brain areas. Altogether, these data show that the PACAP system of the extended amygdala contributes to stress-induced hyperarousal and suggest it as a potential novel target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mariel P Seiglie
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Lillian Huang
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Kokras N, Hodes GE, Bangasser DA, Dalla C. Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development? Br J Pharmacol 2019; 176:4090-4106. [PMID: 31093959 PMCID: PMC6877794 DOI: 10.1111/bph.14710] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has long been implicated in the pathophysiology of depression, and HPA axis-based compounds have served as potential new therapeutic targets, but with no success. This review details sex differences from animal and human studies in the function of HPA axis elements (glucocorticoids, corticotropin releasing factor, and vasopressin) and related compounds tested as candidate antidepressants. We propose that sex differences contribute to the failure of novel HPA axis-based drugs in clinical trials. Compounds studied preclinically in males were tested in clinical trials that recruited more, if not exclusively, women, and did not control, but rather adjusted, for potential sex differences. Indeed, clinical trials of antidepressants are usually not stratified by sex or other important factors, although preclinical and epidemiological data support such stratification. In conclusion, we suggest that clinical testing of HPA axis-related compounds creates an opportunity for targeted, personalized antidepressant treatments based on sex. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of PharmacologyNational and Kapodistrian University of AthensAthensGreece
- First Department of Psychiatry, Eginition HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Georgia E. Hodes
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginia
| | | | - Christina Dalla
- Department of PharmacologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
17
|
Hupalo S, Bryce CA, Bangasser DA, Berridge CW, Valentino RJ, Floresco SB. Corticotropin-Releasing Factor (CRF) circuit modulation of cognition and motivation. Neurosci Biobehav Rev 2019; 103:50-59. [PMID: 31212019 DOI: 10.1016/j.neubiorev.2019.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023]
Abstract
The neuropeptide, corticotropin-releasing factor (CRF), is a key modulator of physiological, endocrine, and behavioral responses during stress. Dysfunction of the CRF system has been observed in stress-related affective disorders including post-traumatic stress disorder, depression, and anxiety. Beyond affective symptoms, these disorders are also characterized by impaired cognition, for which current pharmacological treatments are lacking. Thus, there is a need for pro-cognitive treatments to improve quality of life for individuals suffering from mental illness. In this review, we highlight research demonstrating that CRF elicits potent modulatory effects on higher-order cognition via actions within the prefrontal cortex and subcortical monoaminergic and cholinergic systems. Additionally, we identify questions for future preclinical research on this topic, such as the need to investigate sex differences in the cognitive and microcircuit actions of CRF, and whether CRF may represent a pharmacological target to treat cognitive dysfunction. Addressing these questions will provide new insight into pathophysiology underlying cognitive dysfunction and may lead to improved treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sofiya Hupalo
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, United States.
| | - Courtney A Bryce
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Debra A Bangasser
- Psychology Department and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Craig W Berridge
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Rita J Valentino
- National Institute on Drug Abuse, Bethesda, MD 20892, United States
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Herman FJ, Simkovic S, Pasinetti GM. Neuroimmune nexus of depression and dementia: Shared mechanisms and therapeutic targets. Br J Pharmacol 2019; 176:3558-3584. [PMID: 30632147 DOI: 10.1111/bph.14569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Dysfunctional immune activity is a physiological component of both Alzheimer's disease (AD) and major depressive disorder (MDD). The extent to which altered immune activity influences the development of their respective cognitive symptoms and neuropathologies remains under investigation. It is evident, however, that immune activity affects neuronal function and circuit integrity. In both disorders, alterations are present in similar immune networks and neuroendocrine signalling pathways, immune responses persist in overlapping neuroanatomical locations, and morphological and structural irregularities are noted in similar domains. Epidemiological studies have also linked the two disorders, and their genetic and environmental risk factors intersect along immune-activating pathways and can be synonymous with one another. While each of these disorders individually contains a large degree of heterogeneity, their shared immunological components may link distinct phenotypes within each disorder. This review will therefore highlight the shared immune pathways of AD and MDD, their overlapping neuroanatomical features, and previously applied, as well as novel, approaches to pharmacologically manipulate immune pathways, in each neurological condition. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Francis J Herman
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA
| | - Sherry Simkovic
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA
| | - Giulio M Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA.,Geriatrics Research. Education, and Clinical Center, JJ Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
19
|
Depression as a Neuroendocrine Disorder: Emerging Neuropsychopharmacological Approaches beyond Monoamines. Adv Pharmacol Sci 2019; 2019:7943481. [PMID: 30719038 PMCID: PMC6335777 DOI: 10.1155/2019/7943481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/26/2023] Open
Abstract
Depression is currently recognized as a crucial problem in everyday clinical practice, in light of ever-increasing rates of prevalence, as well as disability, morbidity, and mortality related to this disorder. Currently available antidepressant drugs are notoriously problematic, with suboptimal remission rates and troubling side-effect profiles. Their mechanisms of action focus on the monoamine hypothesis for depression, which centers on the disruption of serotonergic, noradrenergic, and dopaminergic neurotransmission in the brain. Nevertheless, views on the pathophysiology of depression have evolved notably, and the comprehension of depression as a complex neuroendocrine disorder with important systemic implications has sparked interest in a myriad of novel neuropsychopharmacological approaches. Innovative pharmacological targets beyond monoamines include glutamatergic and GABAergic neurotransmission, brain-derived neurotrophic factor, various endocrine axes, as well as several neurosteroids, neuropeptides, opioids, endocannabinoids and endovanilloids. This review summarizes current knowledge on these pharmacological targets and their potential utility in the clinical management of depression.
Collapse
|
20
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Smith AM, Thomas AK. Reducing the Consequences of Acute Stress on Memory Retrieval. JOURNAL OF APPLIED RESEARCH IN MEMORY AND COGNITION 2018. [DOI: 10.1016/j.jarmac.2017.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Kojima T, Mochizuki M, Takai T, Hoashi Y, Morimoto S, Seto M, Nakamura M, Kobayashi K, Sako Y, Tanaka M, Kanzaki N, Kosugi Y, Yano T, Aso K. Discovery of 1,2,3,4-tetrahydropyrimido[1,2-a]benzimidazoles as novel class of corticotropin releasing factor 1 receptor antagonists. Bioorg Med Chem 2018; 26:2229-2250. [PMID: 29459145 DOI: 10.1016/j.bmc.2018.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
A new class of corticotropin releasing factor 1 (CRF1) receptor antagonists characterized by a tricyclic core ring was designed and synthesized. Novel tricyclic derivatives 2a-e were designed as CRF1 receptor antagonists based on conformation analysis of our original 2-anilinobenzimidazole CRF1 receptor antagonist. The synthesized tricyclic derivatives 2a-e showed CRF1 receptor binding activity with IC50 values of less than 400 nM, and the 1,2,3,4-tetrahydropyrimido-[1,2-a]benzimidazole derivative 2e was selected as a lead compound with potent in vitro CRF1 receptor binding activity (IC50 = 7.1 nM). To optimize the pharmacokinetic profiles of lead compound 2e, we explored suitable substituents on the 1-position and 6-position, leading to the identification of compound 42c-R, which exhibited potent CRF1 receptor binding activity (IC50 = 58 nM) with good oral bioavailability (F = 68% in rats). Compound 42c-R exhibited dose-dependent inhibition of [125I]-CRF binding in the frontal cortex (5 and 10 mg/kg, p.o.) as well as suppression of locomotor activation induced by intracerebroventricular administration of CRF in rats (10 mg/kg, p.o.). These results suggest that compound 42c-R successfully binds CRF1 receptors in the brain and exhibits the potential to be further examined for clinical studies.
Collapse
Affiliation(s)
- Takuto Kojima
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan.
| | - Michiyo Mochizuki
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Takafumi Takai
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Yasutaka Hoashi
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Sachie Morimoto
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Masaki Seto
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Minoru Nakamura
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Katsumi Kobayashi
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Yuu Sako
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Maiko Tanaka
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Naoyuki Kanzaki
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Yohei Kosugi
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Takahiko Yano
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Kazuyoshi Aso
- Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| |
Collapse
|
23
|
Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav Brain Res 2017; 341:79-90. [PMID: 29284108 DOI: 10.1016/j.bbr.2017.12.025] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
A number of factors (biogenic amine deficiency, genetic, environmental, immunologic, endocrine factors and neurogenesis) have been identified as mechanisms which provide unitary explanations for the pathophysiology of depression. Rather than a unitary construct, the combination and linkage of these factors have been implicated in the pathogenesis of depression. That is, environmental stressors and heritable genetic factors acting through immunologic and endocrine responses initiate structural and functional changes in many brain regions, resulting in dysfunctional neurogenesis and neurotransmission which then manifest as a constellation of symptoms which present as depression.
Collapse
Affiliation(s)
- Emmanuel Jesulola
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia.
| | - Peter Micalos
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia
| | - Ian J Baguley
- Brain Injury Rehabilitation Service, Westmead Hospital, Hawkesbury Rd, Wentworthville, NSW Australia
| |
Collapse
|
24
|
Spinieli RL, Leite-Panissi CRA. Similar effect of CRF 1 and CRF 2 receptor in the basolateral or central nuclei of the amygdala on tonic immobility behavior. Brain Res Bull 2017; 137:187-196. [PMID: 29246866 DOI: 10.1016/j.brainresbull.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 11/27/2022]
Abstract
Studies have used paradigms based on animal models to understand human emotional behavior because they appear to be correlated with fear- and anxiety-related defensive patterns in non-human mammals. In this context, tonic immobility (TI) behavior is an innate response associated with extreme threat situations, such as predator attack. Some reports have demonstrated the involvement of corticotropin-releasing factor (CRF) in regulation of the endocrine system, defensive behaviors and behavioral responses to stress. Particularly, a previous study showed that the activation of CRF receptors in the basolateral (BLA) or central (CeA) nuclei of the amygdala increased TI responses, whereas treatment with a non-selective CRF antagonist, alpha-helical-CRF9-41, decreased this innate fear response. However, while CRF1 receptors have pronounced effects in stress-induced anxiety, CRF2 receptors appear be involved in the expression of both stress-induced anxiety and spontaneous anxiety behavior. In this study, we investigated the effects of specific CRF receptors, CRF1 and CRF2, in the BLA and CeA on the duration of TI in guinea pigs. The results show that blockade of CRF1 and CRF2 receptors in the BLA and CeA produces a decrease in fear and/or anxiety, as suggested by a decrease in TI duration in the guinea pigs. Additionally, the specific antagonists for CRF1 and CRF2 receptors were able to prevent the increase in TI duration induced by CRF administration at the same sites. These results suggest that the modulation of fear and anxiety by the CRF system in the BLA and CeA occurs through concomitant effects on CRF1 and CRF2 receptors.
Collapse
Affiliation(s)
- Richard Leandro Spinieli
- Psychobiology Graduation Program, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Psychobiology Graduation Program, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry School of the University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
25
|
Tanaka M, Tomimatsu Y, Sakimura K, Ootani Y, Sako Y, Kojima T, Aso K, Yano T, Hirai K. Characterization of CRF 1 receptor antagonists with differential peripheral vs central actions in CRF challenge in rats. Peptides 2017; 95:40-50. [PMID: 28689880 DOI: 10.1016/j.peptides.2017.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate peripheral and central roles of corticotropin-releasing factor (CRF) in endocrinological and behavioral changes. Plasma adrenocorticotropin (ACTH) concentration was measured as an activity of hypothalamic-pituitary-adrenal (HPA) axis. As behavioral changes, locomotion and anxiety behavior were measured after CRF challenge intravenously (i.v.) for the peripheral administration or intracerebroventricularly (i.c.v.) for the central administration. Plasma ACTH concentration was significantly increased by both administration routes of CRF; however, hyperlocomotion and anxiety behavior were induced only by the i.c.v. administration. In the drug discovery of CRF1 receptor antagonists, we identified two types of compounds, Compound A and Compound B, which antagonized peripheral CRF-induced HPA axis activation to the same extent, but showed different effects on the central CRF signal. These had similar in vitro CRF1 receptor binding affinities (15 and 10nM) and functional activities in reporter gene assay (15 and 9.5nM). In the ex vivo binding assays using tissues of the pituitary, oral treatment with Compound A and Compound B at 10mg/kg inhibited [125I]-CRF binding, whereas in the assay using tissues of the frontal cortex, treatment of Compound A but not Compound B inhibited [125I]-CRF binding, indicating that only Compound A inhibited central [125I]-CRF binding. In the peripheral CRF challenge, increase in plasma ACTH concentration was significantly suppressed by both Compound A and Compound B. In contrast, Compound A inhibited the increase in locomotion induced by the central CRF challenge while Compound B did not. Compound A also reduced central CRF challenge-induced anxiety behavior and c-fos immunoreactivity in the cortex and the hypothalamic paraventricular nucleus. These results indicate that the central CRF signal, rather than the peripheral CRF signal would be related to anxiety and other behavioral changes, and CRF1 receptor antagonism in the central nervous system may be critical for identifying drug candidates for anxiety and mood disorders.
Collapse
Affiliation(s)
- Maiko Tanaka
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshiro Tomimatsu
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsuya Sakimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshikazu Ootani
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuu Sako
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takuto Kojima
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuyoshi Aso
- Research Alliance Group, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiko Yano
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keisuke Hirai
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
26
|
Henckens MJAG, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 2016; 17:636-51. [PMID: 27586075 DOI: 10.1038/nrn.2016.94] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dysregulation of the corticotropin-releasing factor (CRF)-urocortin (UCN) system has been implicated in stress-related psychopathologies such as depression and anxiety. It has been proposed that CRF-CRF receptor type 1 (CRFR1) signalling promotes the stress response and anxiety-like behaviour, whereas UCNs and CRFR2 activation mediate stress recovery and the restoration of homeostasis. Recent findings, however, provide clear evidence that this view is overly simplistic. Instead, a more complex picture has emerged that suggests that there are brain region- and cell type-specific effects of CRFR signalling that are influenced by the individual's prior experience and that shape molecular, cellular and ultimately behavioural responses to stressful challenges.
Collapse
Affiliation(s)
- Marloes J A G Henckens
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
27
|
Barra de la Tremblaye P, Plamondon H. Alterations in the corticotropin-releasing hormone (CRH) neurocircuitry: Insights into post stroke functional impairments. Front Neuroendocrinol 2016; 42:53-75. [PMID: 27455847 DOI: 10.1016/j.yfrne.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
Although it is well accepted that changes in the regulation of the hypothalamic-pituitary adrenal (HPA) axis may increase susceptibility to affective disorders in the general population, this link has been less examined in stroke patients. Yet, the bidirectional association between depression and cardiovascular disease is strong, and stress increases vulnerability to stroke. Corticotropin-releasing hormone (CRH) is the central stress hormone of the HPA axis pathway and acts by binding to CRH receptors (CRHR) 1 and 2, which are located in several stress-related brain regions. Evidence from clinical and animal studies suggests a role for CRH in the neurobiological basis of depression and ischemic brain injury. Given its importance in the regulation of the neuroendocrine, autonomic, and behavioral correlates of adaptation and maladaptation to stress, CRH is likely associated in the pathophysiology of post stroke emotional impairments. The goals of this review article are to examine the clinical and experimental data describing (1) that CRH regulates the molecular signaling brain circuit underlying anxiety- and depression-like behaviors, (2) the influence of CRH and other stress markers in the pathophysiology of post stroke emotional and cognitive impairments, and (3) context and site specific interactions of CRH and BDNF as a basis for the development of novel therapeutic targets. This review addresses how the production and release of the neuropeptide CRH within the various regions of the mesocorticolimbic system influences emotional and cognitive behaviors with a look into its role in psychiatric disorders post stroke.
Collapse
Affiliation(s)
- P Barra de la Tremblaye
- School of Psychology, Behavioral Neuroscience Program, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - H Plamondon
- School of Psychology, Behavioral Neuroscience Program, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
28
|
Mochizuki M, Kori M, Kobayashi K, Yano T, Sako Y, Tanaka M, Kanzaki N, Gyorkos AC, Corrette CP, Cho SY, Pratt SA, Aso K. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists. J Med Chem 2016; 59:2551-66. [DOI: 10.1021/acs.jmedchem.5b01715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michiyo Mochizuki
- Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masakuni Kori
- Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsumi Kobayashi
- Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiko Yano
- Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuu Sako
- Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maiko Tanaka
- Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoyuki Kanzaki
- Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Albert C. Gyorkos
- Array BioPharma Inc., 3200
Walnut Street, Boulder, Colorado 80301, United States
| | | | - Suk Young Cho
- Array BioPharma Inc., 3200
Walnut Street, Boulder, Colorado 80301, United States
| | - Scott A. Pratt
- Array BioPharma Inc., 3200
Walnut Street, Boulder, Colorado 80301, United States
| | - Kazuyoshi Aso
- Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
29
|
Turcu AF, Spencer-Segal JL, Farber RH, Luo R, Grigoriadis DE, Ramm CA, Madrigal D, Muth T, O'Brien CF, Auchus RJ. Single-Dose Study of a Corticotropin-Releasing Factor Receptor-1 Antagonist in Women With 21-Hydroxylase Deficiency. J Clin Endocrinol Metab 2016; 101:1174-80. [PMID: 26751191 PMCID: PMC4803170 DOI: 10.1210/jc.2015-3574] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/31/2015] [Indexed: 02/05/2023]
Abstract
CONTEXT Treatment of 21-hydroxylase deficiency (21OHD) is difficult to optimize. Normalization of excessive ACTH and adrenal steroid production commonly requires supraphysiologic doses of glucocorticoids. OBJECTIVES We evaluated the safety and tolerability of the selective corticotropin releasing factor type 1 (CRF1) receptor antagonist NBI-77860 in women with classic 21OHD and tested the hypothesis that CRF1 receptor blockade decreases early-morning ACTH and 17α-hydroxyprogesterone (17OHP) in these patients. PARTICIPANTS The study enrolled eight classic 21OHD females, ages 18-58 years, seen at a single tertiary referral university setting. DESIGN This was a phase Ib, single-blind, placebo-controlled, fixed-sequence, single-dose trial. During three treatment periods separated by 3-week washout intervals, patients sequentially received placebo, NBI-77860 300 mg, and NBI-77860 600 mg at 10 pm; glucocorticoid therapy was withheld for 20 hours. We evaluated ACTH, 17OHP, androstenedione, and testosterone as well as NBI-77860 pharmacokinetics over 24 hours. RESULTS Dose-dependent reductions of ACTH and/or 17OHP were observed in six of eight subjects. Relative to placebo, NBI-77860 led to an ACTH and 17OHP reduction by a mean of 43% and 0.7% for the 300 mg dose, respectively, and by 41% and 27% for the 600 mg dose, respectively. Both NBI-77860 doses were well tolerated. CONCLUSION The meaningful reductions in ACTH and 17OHP following NBI-77860 dosing in 21OHD patients demonstrate target engagement and proof of principle in this disorder. These promising data provide a rationale for additional investigations of CRF1 receptor antagonists added to physiologic doses of hydrocortisone and fludrocortisone acetate for the treatment of classic 21OHD.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| | - Joanna L Spencer-Segal
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| | - Robert H Farber
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| | - Rosa Luo
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| | - Dimitri E Grigoriadis
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| | - Carole A Ramm
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| | - David Madrigal
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| | - Tim Muth
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| | - Christopher F O'Brien
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine (A.F.T., J.L.S.-S., C.A.R., D.M., T.M., R.J.A.), and Department of Pharmacology (R.J.A.), University of Michigan, Ann Arbor, Michigan 48109; and Neurocrine Biosciences (R.H.F., R.L., D.E.G., C.F.O.), San Diego, California 92130
| |
Collapse
|
30
|
Brummelte S, Galea LAM. Postpartum depression: Etiology, treatment and consequences for maternal care. Horm Behav 2016; 77:153-66. [PMID: 26319224 DOI: 10.1016/j.yhbeh.2015.08.008] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 01/20/2023]
Abstract
This article is part of a Special Issue "Parental Care". Pregnancy and postpartum are associated with dramatic alterations in steroid and peptide hormones which alter the mothers' hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes. Dysregulations in these endocrine axes are related to mood disorders and as such it should not come as a major surprise that pregnancy and the postpartum period can have profound effects on maternal mood. Indeed, pregnancy and postpartum are associated with an increased risk for developing depressive symptoms in women. Postpartum depression affects approximately 10-15% of women and impairs mother-infant interactions that in turn are important for child development. Maternal attachment, sensitivity and parenting style are essential for a healthy maturation of an infant's social, cognitive and behavioral skills and depressed mothers often display less attachment, sensitivity and more harsh or disrupted parenting behaviors, which may contribute to reports of adverse child outcomes in children of depressed mothers. Here we review, in honor of the "father of motherhood", Jay Rosenblatt, the literature on postnatal depression in the mother and its effect on mother-infant interactions. We will cover clinical and pre-clinical findings highlighting putative neurobiological mechanisms underlying postpartum depression and how they relate to maternal behaviors and infant outcome. We also review animal models that investigate the neurobiology of maternal mood and disrupted maternal care. In particular, we discuss the implications of endogenous and exogenous manipulations of glucocorticoids on maternal care and mood. Lastly we discuss interventions during gestation and postpartum that may improve maternal symptoms and behavior and thus may alter developmental outcome of the offspring.
Collapse
Affiliation(s)
| | - Liisa A M Galea
- Dept. of Psychology, Graduate Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Katz DA, Liu W, Locke C, Dutta S, Tracy KA. Clinical safety and hypothalamic-pituitary-adrenal axis effects of the arginine vasopressin type 1B receptor antagonist ABT-436. Psychopharmacology (Berl) 2016; 233:71-81. [PMID: 26407603 DOI: 10.1007/s00213-015-4089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
RATIONALE Arginine vasopressin type 1B receptor (V1B) receptor antagonism is considered a potential therapeutic for diseases with hypothalamic-pituitary-adrenal (HPA) axis dysregulation. OBJECTIVES The aim of the present study was to evaluate the safety and pharmacodynamics of ABT-436, a selective V1B antagonist, in healthy adults. METHODS Healthy adults received daily oral doses of ABT-436 in two clinical trials. In a dose escalation trial, nine subjects received each of 100, 500, or 800 mg ABT-436, or placebo, in the morning for 7-14 days. In a crossover trial on two 7-day regimens, 20 subjects received 200 mg ABT-436 each morning or each evening. Pharmacokinetics, measures of basal HPA axis activity, and safety were assessed in both trials. RESULTS Mild gastrointestinal intolerance was more common with ABT-436 treatment, compared to placebo, and showed dose dependence. Mean increases and decreases of systolic blood pressure (at different times), and mean pulse increases, were observed in subjects who received 800 mg ABT-436. Mean decreases of plasma adrenocorticotrophic hormone (ACTH), serum cortisol, urine total glucocorticoids, and urine cortisol, compared to placebo, were observed following 7 daily doses of 500 and 800 mg ABT-436. Statistically significant mean differences of plasma ACTH, serum cortisol, and urine total glucocorticoids were observed between morning and evening regimens of 200 mg ABT-436. The largest observed differences were near the times of maximum post-dose ABT-436 plasma concentrations. CONCLUSIONS ABT-436 regimens of 200-800 mg once daily (QD) for 7 days attenuated basal HPA axis activity. The results support further evaluation of ABT-436 for treatment of disorders in which HPA axis dysregulation may have an etiologic role.
Collapse
Affiliation(s)
- David A Katz
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.
- , 222 West Merchandise Mart Plaza, Suite 1230, Chicago, IL, 60654, USA.
| | - Wei Liu
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Charles Locke
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Sandeep Dutta
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | |
Collapse
|
32
|
Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res 2015; 1641:177-88. [PMID: 26607253 DOI: 10.1016/j.brainres.2015.11.021] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/26/2022]
Abstract
Women are more likely than men to suffer from post-traumatic stress disorder (PTSD) and major depression. In addition to their sex bias, these disorders share stress as an etiological factor and hyperarousal as a symptom. Thus, sex differences in brain arousal systems and their regulation by stress could help explain increased vulnerability to these disorders in women. Here we review preclinical studies that have identified sex differences in the locus coeruleus (LC)-norepinephrine (NE) arousal system. First, we detail how structural sex differences in the LC can bias females towards increased arousal in response to emotional events. Second, we highlight studies demonstrating that estrogen can increase NE in LC target regions by enhancing the capacity for NE synthesis, while reducing NE degradation, potentially increasing arousal in females. Third, we review data revealing how sex differences in the stress receptor, corticotropin releasing factor 1 (CRF1), can increase LC neuronal sensitivity to CRF in females compared to males. This effect could translate into hyperarousal in women under conditions of CRF hypersecretion that occur in PTSD and depression. The implications of these sex differences for the treatment of stress-related psychiatric disorders are discussed. Moreover, the value of using information regarding biological sex differences to aid in the development of novel pharmacotherapies to better treat men and women with PTSD and depression is also highlighted. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
|
33
|
Bangasser DA, Kawasumi Y. Cognitive disruptions in stress-related psychiatric disorders: A role for corticotropin releasing factor (CRF). Horm Behav 2015; 76:125-35. [PMID: 25888454 PMCID: PMC4605842 DOI: 10.1016/j.yhbeh.2015.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 12/28/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Stress is a potential etiology contributor to both post-traumatic stress disorders (PTSD) and major depression. One stress-related neuropeptide that is hypersecreted in these disorders is corticotropin releasing factor (CRF). Dysregulation of CRF has long been linked to the emotion and mood symptoms that characterize PTSD and depression. However, the idea that CRF also mediates the cognitive disruptions observed in patients with these disorders has received less attention. Here we review literature indicating that CRF can alter cognitive functions. Detailed are anatomical studies revealing that CRF is poised to modulate regions required for learning and memory. We also describe preclinical behavioral studies that demonstrate CRF's ability to alter fear conditioning, impair memory consolidation, and alter a number of executive functions, including attention and cognitive flexibility. The implications of these findings for the etiology and treatment of the cognitive impairments observed in stress-related psychiatric disorders are described.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| | - Yushi Kawasumi
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
34
|
Waters RP, Rivalan M, Bangasser DA, Deussing JM, Ising M, Wood SK, Holsboer F, Summers CH. Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev 2015; 58:63-78. [PMID: 26271720 DOI: 10.1016/j.neubiorev.2015.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/24/2015] [Accepted: 07/24/2015] [Indexed: 01/05/2023]
Abstract
Major depressive disorder (MDD) is a devastating disease affecting over 300 million people worldwide, and costing an estimated 380 billion Euros in lost productivity and health care in the European Union alone. Although a wealth of research has been directed toward understanding and treating MDD, still no therapy has proved to be consistently and reliably effective in interrupting the symptoms of this disease. Recent clinical and preclinical studies, using genetic screening and transgenic rodents, respectively, suggest a major role of the CRF1 gene, and the central expression of CRF1 receptor protein in determining an individual's risk of developing MDD. This gene is widely expressed in brain tissue, and regulates an organism's immediate and long-term responses to social and environmental stressors, which are primary contributors to MDD. This review presents the current state of knowledge on CRF physiology, and how it may influence the occurrence of symptoms associated with MDD. Additionally, this review presents findings from multiple laboratories that were presented as part of a symposium on this topic at the annual 2014 meeting of the International Behavioral Neuroscience Society (IBNS). The ideas and data presented in this review demonstrate the great progress that has been made over the past few decades in our understanding of MDD, and provide a pathway forward toward developing novel treatments and detection methods for this disorder.
Collapse
Affiliation(s)
| | | | | | - J M Deussing
- Max Planck Institute of Psychiatry, Munich, Germany
| | - M Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - S K Wood
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany; HMNC GmbH, Munich, Germany
| | - Cliff H Summers
- University of South Dakota, Vermillion, SD, USA; Sanford School of Medicine, Vermillion, SD, USA.
| |
Collapse
|
35
|
Dale E, Bang-Andersen B, Sánchez C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 2015; 95:81-97. [DOI: 10.1016/j.bcp.2015.03.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/13/2015] [Indexed: 12/28/2022]
|
36
|
Taché Y, Million M. Role of Corticotropin-releasing Factor Signaling in Stress-related Alterations of Colonic Motility and Hyperalgesia. J Neurogastroenterol Motil 2015; 21:8-24. [PMID: 25611064 PMCID: PMC4288101 DOI: 10.5056/jnm14162] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress.
Collapse
Affiliation(s)
- Yvette Taché
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
37
|
Contoreggi C. Corticotropin releasing hormone and imaging, rethinking the stress axis. Nucl Med Biol 2014; 42:323-39. [PMID: 25573209 DOI: 10.1016/j.nucmedbio.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022]
Abstract
The stress system provides integration of both neurochemical and somatic physiologic functions within organisms as an adaptive mechanism to changing environmental conditions throughout evolution. In mammals and primates the complexity and sophistication of these systems have surpassed other species in triaging neurochemical and physiologic signaling to maximize chances of survival. Corticotropin releasing hormone (CRH) and its related peptides and receptors have been identified over the last three decades and are fundamental molecular initiators of the stress response. They are crucial in the top down regulatory cascade over a myriad of neurochemical, neuroendocrine and sympathetic nervous system events. From neuroscience, we've seen that stress activation impacts behavior, endocrine and somatic physiology and influences neurochemical events that one can capture in real time with current imaging technologies. To delineate these effects one can demonstrate how the CRH neuronal networks infiltrate critical cognitive, emotive and autonomic regions of the central nervous system (CNS) with somatic effects. Abundant preclinical and clinical studies show inter-regulatory actions of CRH with multiple neurotransmitters/peptides. Stress, both acute and chronic has epigenetic effects which magnify genetic susceptibilities to alter neurochemistry; stress system activation can add critical variables in design and interpretation of basic and clinical neuroscience and related research. This review will attempt to provide an overview of the spectrum of known functions and speculative actions of CRH and stress responses in light of imaging technology and its interpretation. Metabolic and neuroreceptor positron emission/single photon tomography (PET/SPECT), functional magnetic resonance imaging (fMRI), anatomic MRI, diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (pMRS) are technologies that can delineate basic mechanisms of neurophysiology and pharmacology. Stress modulates the myriad of neurochemical and networks within and controlled through the central and peripheral nervous system and the effects of stress activation on imaging will be highlighted.
Collapse
Affiliation(s)
- Carlo Contoreggi
- Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224.
| |
Collapse
|
38
|
Howerton AR, Roland AV, Fluharty JM, Marshall A, Chen A, Daniels D, Beck SG, Bale TL. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol Psychiatry 2014; 75:873-83. [PMID: 24289884 PMCID: PMC3997756 DOI: 10.1016/j.biopsych.2013.10.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Women are twice as likely as men to suffer from stress-related affective disorders. Corticotropin-releasing factor (CRF) is an important link between stress and mood, in part through its signaling in the serotonergic dorsal raphe (DR). Development of CRF receptor-1 (CRFr1) antagonists has been a focus of numerous clinical trials but has not yet been proven efficacious. We hypothesized that sex differences in CRFr1 modulation of DR circuits might be key determinants in predicting therapeutic responses and affective disorder vulnerability. METHODS Male and female mice received DR infusions of the CRFr1 antagonist, NBI 35965, or CRF and were evaluated for stress responsivity. Sex differences in indices of neural activation (cFos) and colocalization of CRFr1 throughout the DR were examined. Whole-cell patch-clamp electrophysiology assessed sex differences in serotonin neuron membrane characteristics and responsivity to CRF. RESULTS Males showed robust behavioral and hypothalamic-pituitary-adrenal axis responses to DR infusion of NBI 35965 and CRF, whereas females were minimally responsive. Sex differences were also found for both CRF-induced DR cFos and CRFr1 co-localization throughout the DR. Electrophysiologically, female serotonergic neurons showed blunted membrane excitability and divergent inhibitory postsynaptic current responses to CRF application. CONCLUSIONS These studies demonstrate convincing sex differences in CRFr1 activity in the DR, where blunted female responses to NBI 35965 and CRF suggest unique stress modulation of the DR. These sex differences might underlie affective disorder vulnerability and differential sensitivity to pharmacologic treatments developed to target the CRF system, thereby contributing to a current lack of CRFr1 antagonist efficacy in clinical trials.
Collapse
Affiliation(s)
- Alexis R Howerton
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison V Roland
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica M Fluharty
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anikò Marshall
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Derek Daniels
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Sheryl G Beck
- Department of Anesthesia, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Tracy L Bale
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Beurel E, Nemeroff CB. Interaction of stress, corticotropin-releasing factor, arginine vasopressin and behaviour. Curr Top Behav Neurosci 2014; 18:67-80. [PMID: 24659554 DOI: 10.1007/7854_2014_306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Stress mediates the activation of a variety of systems ranging from inflammatory to behavioral responses. In this review we focus on two neuropeptide systems, corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and their roles in regulating stress responses. Both peptides have been demonstrated to be involved in anxiogenic and depressive effects, actions mediated in part through their regulation of the hypothalamic-pituitary-adrenal axis and the release of adrenocorticotropic hormone. Because of the depressive effects of CRF and AVP, drugs modifying the stress-associated detrimental actions of CRF and AVP are under development, particularly drugs antagonizing CRF and AVP receptors for therapy in depression.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | | |
Collapse
|
40
|
Zaidan H, Leshem M, Gaisler-Salomon I. Prereproductive stress to female rats alters corticotropin releasing factor type 1 expression in ova and behavior and brain corticotropin releasing factor type 1 expression in offspring. Biol Psychiatry 2013; 74:680-7. [PMID: 23726318 DOI: 10.1016/j.biopsych.2013.04.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/24/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human and animal studies indicate that vulnerability to stress may be heritable and that changes in germline may mediate some transgenerational effects. Corticotropin releasing factor type 1 (CRF1) is a key component in the stress response. We investigated changes in CRF1 expression in brain and ova of stressed female rats and in the brain of their neonate and adult offspring. Behavioral changes in adulthood were also assessed. METHODS Adult female rats underwent chronic unpredictable stress. We extracted mature oocytes and brain regions from a subset of rats and mated the rest 2 weeks following the stress procedure. CRF1 expression was assessed using quantitative reverse-transcription polymerase chain reaction. Tests of anxiety and aversive learning were used to examine behavior of offspring in adulthood. RESULTS We show that chronic unpredictable stress leads to an increase in CRF1 messenger RNA expression in frontal cortex and mature oocytes. Neonatal offspring of stressed female rats show an increase in brain CRF1 expression. In adulthood, offspring of stressed female rats show sex differences in both CRF1 messenger RNA expression and behavior. Moreover, CRF1 expression patterns in frontal cortex of female offspring depend upon both maternal and individual adverse experience. CONCLUSIONS Our findings demonstrate that stress affects CRF1 expression in brain but also in ova, pointing to a possible mechanism of transgenerational transmission. In offspring, stress-induced changes are evident at birth and are thus unlikely to result from altered maternal nurturance. Finally, brain CRF1 expression in offspring depends upon gender and upon maternal and individual exposure to adverse environment.
Collapse
Affiliation(s)
- Hiba Zaidan
- Department of Psychology, University of Haifa, Haifa, Israel
| | | | | |
Collapse
|
41
|
Patel RN. Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 2013; 3:741-77. [PMID: 24970190 PMCID: PMC4030968 DOI: 10.3390/biom3040741] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023] Open
Abstract
Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates and drugs has become increasingly important in the pharmaceutical industry. There has been an increasing awareness of the enormous potential of microorganisms and enzymes derived there from for the transformation of synthetic chemicals with high chemo-, regio- and enatioselectivities. In this article, biocatalytic processes are described for the synthesis of chiral alcohols and unntural aminoacids for pharmaceuticals.
Collapse
Affiliation(s)
- Ramesh N Patel
- SLRP Associates Consultation in Biotechnology, 572 Cabot Hill Road, Bridgewater, NJ 08807, USA.
| |
Collapse
|
42
|
Million M, Zhao JF, Luckey A, Czimmer J, Maynard GD, Kehne J, Hoffman DC, Taché Y. The newly developed CRF1-receptor antagonists, NGD 98-2 and NGD 9002, suppress acute stress-induced stimulation of colonic motor function and visceral hypersensitivity in rats. PLoS One 2013; 8:e73749. [PMID: 24040053 PMCID: PMC3765344 DOI: 10.1371/journal.pone.0073749] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/21/2013] [Indexed: 12/30/2022] Open
Abstract
Corticotropin releasing factor receptor 1 (CRF1) is the key receptor that mediates stress-related body responses. However to date there are no CRF1 antagonists that have shown clinical efficacy in stress-related diseases. We investigated the inhibitory effects of a new generation, topology 2 selective CRF1 antagonists, NGD 98-2 and NGD 9002 on exogenous and endogenous CRF-induced stimulation of colonic function and visceral hypersensitivity to colorectal distension (CRD) in conscious rats. CRF1 antagonists or vehicle were administered orogastrically (og) or subcutaneously (sc) before either intracerebroventricular (icv) or intraperitoneal (ip) injection of CRF (10 µg/kg), exposure to water avoidance stress (WAS, 60 min) or repeated CRD (60 mmHg twice, 10 min on/off at a 30 min interval). Fecal pellet output (FPO), diarrhea and visceromotor responses were monitored. In vehicle (og)-pretreated rats, icv CRF stimulated FPO and induced diarrhea in >50% of rats. NGD 98-2 or NGD 9002 (3, 10 and 30 mg/kg, og) reduced the CRF-induced FPO response with an inhibitory IC50 of 15.7 and 4.3 mg/kg respectively. At the highest dose, og NGD 98-2 or NGD 9002 blocked icv CRF-induced FPO by 67–87% and decreased WAS-induced-FPO by 23–53%. When administered sc, NGD 98-2 or NGD 9002 (30 mg/kg) inhibited icv and ip CRF-induced-FPO. The antagonists also prevented the development of nociceptive hyper-responsivity to repeated CRD. These data demonstrate that topology 2 CRF1 antagonists, NGD 98-2 and NGD 9002, administered orally, prevented icv CRF-induced colonic secretomotor stimulation, reduced acute WAS-induced defecation and blocked the induction of visceral sensitization to repeated CRD.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Colon/drug effects
- Colon/physiopathology
- Corticotropin-Releasing Hormone/administration & dosage
- Corticotropin-Releasing Hormone/metabolism
- Corticotropin-Releasing Hormone/pharmacology
- Defecation/drug effects
- Diarrhea/physiopathology
- Diarrhea/prevention & control
- Drug Antagonism
- Hyperalgesia/physiopathology
- Hyperalgesia/prevention & control
- Injections, Intraperitoneal
- Injections, Intraventricular
- Injections, Subcutaneous
- Intubation, Gastrointestinal
- Irritable Bowel Syndrome/metabolism
- Irritable Bowel Syndrome/physiopathology
- Irritable Bowel Syndrome/prevention & control
- Male
- Molecular Structure
- Pyrazines/administration & dosage
- Pyrazines/chemistry
- Pyrazines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/physiology
- Viscera/drug effects
- Viscera/physiopathology
Collapse
Affiliation(s)
- Mulugeta Million
- CURE/Digestive Diseases Research Center, Department of Medicine, Division of Digestive Diseases, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Oppenheimer Family Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- * E-mail:
| | - Jing-Fang Zhao
- CURE/Digestive Diseases Research Center, Department of Medicine, Division of Digestive Diseases, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Andrew Luckey
- CURE/Digestive Diseases Research Center, Department of Medicine, Division of Digestive Diseases, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - József Czimmer
- CURE/Digestive Diseases Research Center, Department of Medicine, Division of Digestive Diseases, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - George D. Maynard
- Neurogen Corporation, Branford, Connecticut, United States of America
| | - John Kehne
- Neurogen Corporation, Branford, Connecticut, United States of America
| | - Diane C. Hoffman
- Neurogen Corporation, Branford, Connecticut, United States of America
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Department of Medicine, Division of Digestive Diseases, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Oppenheimer Family Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| |
Collapse
|
43
|
Williams JP. Corticotropin-releasing factor 1 receptor antagonists: a patent review. Expert Opin Ther Pat 2013; 23:1057-68. [DOI: 10.1517/13543776.2013.795545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Contoreggi C, Lee MR, Chrousos G. Addiction and corticotropin-releasing hormone type 1 receptor antagonist medications. Ann N Y Acad Sci 2013; 1282:107-18. [PMID: 23398379 DOI: 10.1111/nyas.12007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Derangements in corticotropin-releasing hormone (CRH) through its type 1 receptor (CRHR1) have been identified in many pathologic conditions. Preclinical models of addiction find that small-molecule antagonists of CRHR1 can limit induction, maintenance, and relapse to drugs of abuse. Neuropsychiatric clinical trials of CRHR1 antagonists have shown mixed efficacy; treatment of addictive disorders has not been established, but finding effective treatments for addictive disorders is critical. Establishing effectiveness for substance abuse treatment will require a different design approach than was used for depression and anxiety trials. Focusing on active versus passive outcome measures, such as resilience to external stressful stimuli, may provide signals in curbing craving and relapse. Study design should include measures of abstinence and drug exposure, but additional elements of stress prevention should also be incorporated. Agents that could provide preemptive protection from drug use and relapse are novel and untested. An understanding of the evolutionary significance of the stress system and preclinical models suggests that these agents may provide protection in this manner. Investigators designing future trials might refocus their understanding of addiction and treatment in this new direction.
Collapse
Affiliation(s)
- Carlo Contoreggi
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
45
|
Effects of fluoxetine on CRF and CRF1 expression in rats exposed to the learned helplessness paradigm. Psychopharmacology (Berl) 2013; 225:647-59. [PMID: 22960774 DOI: 10.1007/s00213-012-2859-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/16/2012] [Indexed: 12/25/2022]
Abstract
RATIONALE Stress is a common antecedent reported by people suffering major depression. In these patients, extrahypothalamic brain areas, like the hippocampus and basolateral amygdala (BLA), have been found to be affected. The BLA synthesizes CRF, a mediator of the stress response, and projects to hippocampus. The main hippocampal target for this peptide is the CRF subtype 1 receptor (CRF1). Evidence points to a relationship between dysregulation of CRF/CRF1 extrahypothalamic signaling and depression. OBJECTIVE Because selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for depression, we investigated the effect of chronic treatment with the SSRI fluoxetine on long-term changes in CRF/CRF1 signaling in animals showing a depressive-like behavior. METHODS Male Wistar rats were exposed to the learned helplessness paradigm (LH). After evaluation of behavioral impairment, the animals were treated with fluoxetine (10 mg/kg i.p.) or saline for 21 days. We measured BLA CRF expression with RT-PCR and CRF1 expression in CA3 and the dentate gyrus of the hippocampus with in situ hybridization. We also studied the activation of one of CRF1's major intracellular signaling targets, the extracellular signal-related kinases 1 and 2 (ERK1/2) in CA3. RESULTS In saline-treated LH animals, CRF expression in the BLA increased, while hippocampal CRF1 expression and ERK1/2 activation decreased. Treatment with fluoxetine reversed the changes in CRF and CRF1 expressions, but not in ERK1/2 activation. CONCLUSION In animals exposed to the learned helplessness paradigm, there are long-term changes in CRF and CRF1 expression that are restored with a behaviorally effective antidepressant treatment.
Collapse
|
46
|
Takahashi Y, Hashizume M, Shin K, Terauchi T, Takeda K, Hibi S, Murata-Tai K, Fujisawa M, Shikata K, Taguchi R, Ino M, Shibata H, Yonaga M. Design, synthesis, and structure-activity relationships of novel pyrazolo[5,1-b]thiazole derivatives as potent and orally active corticotropin-releasing factor 1 receptor antagonists. J Med Chem 2012; 55:8450-63. [PMID: 22971011 DOI: 10.1021/jm300864p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes the design, synthesis, and structure-activity relationships of a novel series of 7-dialkylamino-3-phenyl-6-methoxy pyrazolo[5,1-b]thiazole derivatives for use as selective antagonists of the corticotropin-releasing factor 1 (CRF(1)) receptor. The most promising compound, N-butyl-3-[4-(ethoxymethyl)-2,6-dimethoxyphenyl]-6-methoxy-N-(tetrahydro-2H-pyran-4-yl)pyrazolo[5,1-b][1,3]thiazole-7-amine (6t), showed high affinity (IC(50) = 70 nM) and functional antagonism (IC(50) = 7.1 nM) for the human CRF(1) receptor as well as dose-dependent inhibition of the CRF-induced increase in the plasma adrenocorticotropic hormone (ACTH) concentration at a dose of 30 mg/kg (po). Further, in the light/dark test in mice, the compound 6t showed anxiolytic activity at a dose of 30 mg/kg (po).
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Medicinal Chemistry, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dutt R, Madan AK. Predicting biological activity: computational approach using novel distance based molecular descriptors. Comput Biol Med 2012; 42:1026-41. [PMID: 22964398 DOI: 10.1016/j.compbiomed.2012.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/07/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
Four novel distance based molecular descriptors termed as superpendentic eccentric distance sum indices 1-4 (denoted by:∫P-1EDS, ∫P-2EDS, ∫P-3EDS and ∫P-4EDS) as well as their topochemical counterparts (denoted by:∫cP-1EDS, ∫cP-2EDS, ∫cP-3EDS and ∫cP-4EDS) have been conceptualized and developed in the present study. The sensitivity towards branching, discriminating power, and degeneracy of the proposed novel descriptors were investigated. Utility of these indices was investigated for development of models through decision tree and moving average analysis for the prediction of human corticotropin releasing factor-1 receptor binding affinity of substituted pyrazines. A wide variety of 46 2D and 3D molecular descriptors including proposed indices was employed for development of models through decision tree and moving average analysis. The calculation of most of these descriptors for each compound of the dataset was performed using online E-Dragon software (version 1.0). An in-house computer programme was also employed to calculate additional topological descriptors which did not figure in E-Dragon software. The decision tree classified and correctly predicted the input data with an impressive accuracy of 92% in the training set and 71% during cross-validation. A total of three descriptors, identified by decision tree, were subsequently utilized for development of suitable models using moving average analysis. These models predicted human corticotropin releasing factor-1 receptor binding affinity with an accuracy of ≥85%. The statistical significance of models was assessed through sensitivity, specificity and Matthew's correlation coefficient. High discriminating power, high sensitivity towards branching amalgamated with negligible degeneracy offer proposed descriptors a vast potential for use in the quantitative structure-activity/property/toxicity relationships so as to facilitate drug design.
Collapse
Affiliation(s)
- R Dutt
- Guru Gobind Singh College of Pharmacy, Yamunanagar-135001, India
| | | |
Collapse
|
48
|
Takahashi Y, Hibi S, Hoshino Y, Kikuchi K, Shin K, Murata-Tai K, Fujisawa M, Ino M, Shibata H, Yonaga M. Synthesis and structure-activity relationships of pyrazolo[1,5-a]pyridine derivatives: potent and orally active antagonists of corticotropin-releasing factor 1 receptor. J Med Chem 2012; 55:5255-69. [PMID: 22587443 DOI: 10.1021/jm300259r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design, synthesis, and structure-activity relationships of a series of 3-dialkylamino-7-phenyl pyrazolo[1,5-a]pyridines (I) as selective antagonists of the corticotropin-releasing factor 1 (CRF(1)) receptor are described. The most prominent compound to emerge from this work, 46 (E2508), exhibits potent in vitro activity, excellent drug-like properties, and robust oral efficacy in animal models of stress-related disorders. It has advanced into clinical trials.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Medicinal Chemistry, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Griebel G, Holsboer F. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov 2012; 11:462-78. [PMID: 22596253 DOI: 10.1038/nrd3702] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The search for novel drugs for treating psychiatric disorders is driven by the growing medical need to improve on the effectiveness and side-effect profile of currently available therapies. Given the wealth of preclinical data supporting the role of neuropeptides in modulating behaviour, pharmaceutical companies have been attempting to target neuropeptide receptors for over two decades. However, clinical studies with synthetic neuropeptide ligands have been unable to confirm the promise predicted by studies in animal models. Here, we analyse preclinical and clinical results for neuropeptide receptor ligands that have been studied in clinical trials for psychiatric diseases, including agents that target the receptors for tachykinins, corticotropin-releasing factor, vasopressin and neurotensin, and suggest new ways to exploit the full potential of these candidate drugs.
Collapse
Affiliation(s)
- Guy Griebel
- Sanofi, Exploratory Unit, 91385 Chilly-Mazarin, France.
| | | |
Collapse
|
50
|
Gehlert DR, Cramer J, Morin SM. Effects of corticotropin-releasing factor 1 receptor antagonism on the hypothalamic-pituitary-adrenal axis of rodents. J Pharmacol Exp Ther 2012; 341:672-80. [PMID: 22402929 DOI: 10.1124/jpet.111.189753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Corticotropin-releasing factor (CRF) is the major hypothalamic neuropeptide responsible for stimulation of the hypothalamic-pituitary-adrenal axis (HPAA), resulting in the synthesis and release of glucocorticoids from the adrenal cortex. In a recent study, we reported the discovery of the CRF1 receptor antagonist, 3-(4-chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine (MTIP), which has efficacy in preclinical models of stress-induced alcohol consumption. Because CRF1 is important in HPAA activation, we evaluated the effects of MTIP administration on rodent HPAA function. Initial studies established the MTIP doses required for brain and pituitary CRF1 occupancy and those associated with the inhibition of intracerebroventricular CRF on the HPAA in mice. Then, rat basal plasma corticosterone (CORT) concentrations were measured hourly by radioimmunoassay for 24 h after three daily doses of MTIP or vehicle. In these studies, the early phase of the nocturnal CORT surge was reduced; however, the area under the CORT curve was identical for the 24-h period. In subsequent studies, increases in plasma CORT due to direct pharmacological manipulation of the HPAA axis or by stressors were evaluated after MTIP treatment in mice. MTIP attenuated CORT responses generated by immediate bolus administration of insulin or ethanol; however, MTIP did not affect activation of the HPAA by other stressors and pharmacological agents. Therefore, MTIP can modulate basal HPAA activity during the CORT surge and reduced activation after a select number of stressors but does not produce a lasting suppression of basal CORT. The ability of MTIP to modulate plasma CORT after hyperinsulinemia may provide a surrogate strategy for a target occupancy biomarker.
Collapse
Affiliation(s)
- Donald R Gehlert
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|